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ABSTRACT OF THE DISSERTATION

The Bessel-Plancherel theorem and applications
by
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Doctor of Philosophy in Mathematics
University of California San Diego, 2011

Professor Nolan Wallach, Chair

Let G be a simple Lie Group with finite center, and let K C G be a maximal
compact subgroup. We say that G is a Lie group of tube type if G/K is a her-
mitian symmetric space of tube type. For such a Lie group G, we can find a
parabolic subgroup P = M AN, with given Langlands decomposition, such that N
is abelian, and N admits a generic character with compact stabilizer. We will call
any parabolic subgroup P satisfying this properties a Siegel parabolic.

Let (7, V) be an admissible, smooth, Fréchet representation of a Lie group of
tube type G, and let P C G be a Siegel parabolic subgroup. If x is a generic
character of N, let Wh, (V) = {A : V — C|X(w(n)v) = x(n)v} be the space
of Bessel models of V. After describing the classification of all the simple Lie
groups of tube type, we will give a characterization of the space of Bessel models
of an induced representation. As a corollary of this characterization we obtain
a local multiplicity one theorem for the space of Bessel models of an irreducible
representation of G.

As an application of this results we calculate the Bessel-Plancherel measure of a
Lie group of tube type, L2(N\G; x), where x is a generic character of N. Then we
use Howe’s theory of dual pairs to show that the Plancherel measure of the space
L*(O(p—r,q—s)\O(p, q)) is the pullback, under the © lift, of the Bessel-Plancherel
measure L?(N\Sp(m,R);x), where m = r + s and y is a generic character that

depends on r and s.
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Introduction

In the classical theory of modular forms, there is a construction that associates
to every cusp form f on the upper half plane H an L-function

Qn

s"

L(s, f) =

n>0

This L-function is related to other objects of interest in number theory, like elliptic
curves over number fields, and its study is of critical importance in a wide range of
applications. The L function L(s, f) can also be constructed using a representation
theoretic point of view, by considering the space of Whittaker models of a discrete
series representation of SL(2,R), associated with the modular form f. If we also
include Mass forms, then we can extend this construction to include all types of
representations of SL(2,R). This point of view has been incredibly successful and
has given rise to an intricate and beautiful theory of L-functions associated to
automorphic representations of GL(n).

Unfortunately, this theory has not been as successful with other groups like
GSp(n). Part of the problem is that not all automorphic representations of GSp(n)
admit a Whittaker model. In [21] Siegel developed a technique, analogous to the
theory of modular forms, to construct L-functions associated with holomorphic
representations of Sp(n, R) [25]. In this construction, the space of Whittaker mod-

els is replaced by the space of generalized Bessel models
Why(V)={X:V — C|X(w(n)v) = x(n)A(v), for all n € N},

where P = M AN is a Siegel parabolic subgroup of Sp(n,R), with given Langlands

decomposition, and x is a generic character of N, i.e., the P-orbit of x on N is



open. This construction has been adapted by Novodvorsky and Piatetski-Shapiro
[15] to construct L-functions associated to automorphic representations of GSp(4).

The study of the space of generalized Bessel models is the subject of the first
chapter of this thesis. In order to describe the results obtained in that chapter we
need to introduce a little bit of notation. Let G be a simple Lie group with finite
center, and let K be a maximal compact subgroup. We say that G is a Lie group
of tube type if K\G is a Hermitian symmetric space of tube type. In section 1.2
we use the correspondence between Euclidean simple Jordan algebras over R and
simple Hermitian symmetric spaces of tube type to describe a classification of the
simple Lie groups of tube type. As a consequence of this classification we have the

following proposition.
Proposition 0.0.1. If G is a Lie group of tube type, then
1. There exists a parabolic subgroup P = M AN, with given Langlands decom-

position, such that N is abelian.

2. There exists a unitary character x on N, such that its stabilizer in M,
M, ={m € M |x(m 'nm) = x(n) VYn € N},
18 compact.

If P C GG is a parabolic subgroup satisfying 1 and 2, then we say that P is a
Siegel parabolic subgroup.

Let G be a Lie group of tube type, and let P = M AN be a Siegel parabolic sub-
group, with given Langlands decomposition. Let (o, V,) be an admissible, smooth,

Fréchet representation of M, and let v € ai. (a = Lie(A)). Define

I - {¢ GV f is smooth and f(namk) = a”~?a(m)f(k) } ‘

foralln € N, a € Aand m € M

Here p is half the sum of the roots associated to the p-pair (P, A) [23], and P =
MAN is the parabolic opposite to P. If we set (7(g) f)(z) = f(zg), for all f € I3,
7, g € G, then (7, I35,) defines and admissible, smooth, Fréchet representation of
G. Let

Why(I75) ={X: 15, — C| X(n- f) = x(n)A(f), for all n € N}



be the space of generalized Bessel models for a generic character xy € N. This
space has been subject of careful study during recent years. In the real case the
more general results can be found in [22], where a multiplicity one result is proved
in the case where P = M AN is a very nice parabolic subgroup [26], and (o, V)
is finite dimensional representation of M. In this context multiplicity one means
that

dim Wh, (I77,) = dim V5. (0.1)

In 2007 Dipendra Prasad asked if a similar result was true in the case where
(0,V,) is an admissible, smooth, Frechet, moderate growth representation of M.
In this case the statement about dimensions in equation (0.1) has to be replaced

by an M,-intertwiner isomorphism between V, and Wh,(I35,), where
M, ={m € M| x(mnm™) = x(n), for all n € N}.

Let I, be the representation smoothly induced from K, = KNM to K. Given
f € I2° define
fo(namk) = a”Po(m) f(k).

The map f — f, defines a K-equivariant linear isomorphism from I2° to I7,.

Consider the integrals

7(f) = /N V()L F, (n) din.

These integrals are called generalized Jacquet integrals and converge absolutely and
uniformly on compacta for Rev < 0 [22]. Let o € V] and define v, (v) = o JY,.
Observe that if Rev < 0 then v, defines a weakly holomorphic map into (13°)".

Theorem 0.0.2. Assume that M, is compact.
t) v, extends to a weakly holomorphic map from ag to (13°)
1) Given v € ai define

Malfo) = W)(f),  f el

Then N, € Wh,(I35,) and the map p v A, defines an M, -equivariant iso-
morphism between V| and Why (135,).



When M, is not compact, the above theorem as it is stated is false. This is
mainly due to the fact that the orbits of the symmetric space X := M, \M under
the action of a minimal parabolic subgroup of M are much more complicated
than in the case where M, is compact [14]. However something can still be said
about Wh,(12;,). Assume that the center of M, is compact, and let (7,V;) be an
irreducible, admissible, tempered, infinite dimensional representation of M, . As in
the case were M, is compact, define v,(v) = po JX, and observe that if Rev < 0
then ~, defines a weakly holomorphic map into Hom(I°, V). Let

Why-(155,) =N 175, — Vo | XMw(mn) f) = x(n)7(m)A(f), Ym € My, n € N}.
Theorem 0.0.3. With assumptions as above.

t) v, extends to a weakly holomorphic map from ag to Hom(13°, V7).

1) Given v € ag define

Malfo) = uW)(f),  fe .

Then N\, € Why (I, and the map p — X\, defines a linear isomorphism

o,V

between Homyy, (Vo, V) and Why - (I55,).
We will now describe an application of the results given so far. Let

L2(N\Gi ) — { fG e ‘ f(ng) = x(n)f(g) and } |
S | F(@)2dNg < 0

We will call this the space of generalized Bessel functions. Observe that there is a

natural action of M, x G on this space with G acting on the right, and M, acting

on the left. In chapter 2 we compute the “Bessel-Plancherel” measure, i.e., the

spectral decomposition of the space of generalized Bessel functions with respect to

this action. The calculations are based on the work of Wallach described in [24]

and depend on theorem 0.0.2 and 0.0.3. The main result of that chapter is:

Theorem 0.0.4. Let G be a Lie group of tube type, and let P = M AN be a Siegel

parabolic subgroup of G, with given Langlands decomposition. Let x be a generic



unitary character of N, and let M, be its stabilizer in M. Then the spectral
decomposition of L*(N\G; x), with respect to the action of M, x G, is given by

PG = [ [ Weln e o rdut) dum)

where W, ; is some multiplicity space, p is the usual Plancherel measure of G,
and v is the Plancherel measure of M,. Furthermore, if M, is compact, then

Wy (m) = Wh,y, () is finite dimensional.

Given an irreducible unitary representation (w, H;), let (7%, HX) be the associ-
ated contragradient representation. Then, in chapter 2, we also have the following

theorem

Theorem 0.0.5. Let G be a Lie group of tube type, and let P = M AN be a Siegel
parabolic subgroup with given Langlands decomposition. Let €2 be the set of open
P-orbits in N. If x is a generic character of N, let O, be its associated P-orbit

in N. Then, for p-almost all irreducible tempered representations (mw,Vy) of G,

™|p = @/ W, +(7) @ Ind}, N T X du(T).

0,e0” Mx

Here the spaces W, () are the same as the ones appearing in the spectral decom-

position of L*(N\G; ).

Let G be a reductive group and let X be a G-spherical variety. In [20] Sakel-
laridis and Venkatesh give a conjecture describing the spectral decomposition of
L?(X) in terms of the representation theory of another group. This conjecture
generalizes the results of Harish-Chandra for L?*(G) and of Delorme, Schlichtkrull
and Van Den Ban for L?(X), where X is a symmetric space |3, 4, 5, 6]. More
precisely the Sakellaridis-Venkatesh conjecture postulates the existence of a group

Gx and a correspondence
0:Gx — G,

between the unitary duals of Gx and G, such that

13(X) = / () ® O (r) du(r),



where p is the Plancherel measure of Gx, and m(m) is some multiplicity space
whose dimension is finite, and typically < 1. If X satisfies some technical hypoth-
esis, then the group Gx has the property that its dual group is Gy, the dual group
associated to X by Gaitsgory and Nadler [7], and hence the conjecture fits nicely
into the setting of a proposed “relative Langlands program” [19].

Using the theory of dual pairs of the oscillator representation to construct
the map O, Howe [9], parameterized the spectral decompositions of the space
L*(O(p—1,¢)\O(p, ) in terms of the unitary dual of SL(2,R). Following the same
ideas it’s possible to obtain examples in the spirit of the Sakellaridis-Venkatesh
conjecture, but that lie beyond the spherical variety case. For example, consider
the dual pair (Sp(m,R) x O(p,q)) C Sp(mn,R), p+ ¢ = n, and assume that
p > q > m. The last condition states that we are in the stable case. To simplify the
exposition, assume also that n is even (the n odd case is very similar, but involves
a double cover of Sp(m,R)). Let P = M AN be the Siegel parabolic subgroup of
Sp(m,R), with given Langlands decomposition, and let x,s, 7+ s = m, be the
character of N given by

where

I,
Ir,s =

and y is some fixed nontrivial unitary character of R. Let

L*(N\Sp(m, R); Xp,s) = {f : Sp(m,R) — C f(ng) = xrs(n)f(g) and } |

fN\Sp(m,]R) |f(g)‘2ng <00
Observe that MA = GL(m,R) in a natural way, and M, = O(r,s). In this
setting theorem 0.0.4 says that

L2(N\Sp(m, R); xrs) / / Wy o(x) 1 @ mdy(r) du(r), (0.2)
Sp(m,R)N JO(r,s)"

where 7 is the Plancherel measure of O(r,s) and p is the Plancherel measure of

Sp(m,R). Moreover, by theorem 0.0.5, we have that for p-almost all tempered



representation 7 of Sp(m,R)

@ / Xr S5 7' ® IndO(r s)N T*X:,s dn<7—) (03)

r4s=m (r,s)"

On the other hand, Howe showed that in the stable range the Oscillator represen-
tation (&, L*(R™")) of Sp(mn,R) decomposes in the following way when restricted
to Sp(m, R) x O(p, q):

L2(R™ = /S o TEO (). (0.4)

where p is the Plancherel measure of Sp(m,R) and ©(r) is a representation of
O(p, q) called the ©-lift of 7. A lot of work has been done to describe the explicit
O-correspondence, and in the stable range this correspondence can be described
using the work of Jian-Shu Li [12] among others. Using equations (0.2), (0.3), (0.4)
and the explicit formulas for the action of (Sp(m,R) x O(p, q)) on L*(R™") given
in [1, 17, 18, 16] we obtain the following description of L*(O(p —r,q — s)\O(p, q))

Theorem 0.0.6. As an O(r,s) x O(p, q)-module with O(r,s) acting on the left,
and O(p,q) acting on the right

L2(O0(p — r.q — s\O(p. q)) = / . / W) 87 @ O () dur)

where 1 and p are the Plancherel measures of O(r,s) and Sp(m,R) respectively,

and Wy, , -(7) are the multiplicity spaces appearing in equation (0.3).

Observe that when m = 1 we regain Howe’s result [9]. Also observe that in
this case the decomposition given in equation (0.2) is contained in Wallach’s work

on the Plancherel-Whittaker measure for minimal parabolic subgroups [24].



Chapter 1

Bessel models for representations of

Lie groups of tube type

1.1 Siegel modular forms on the upper half plane

Let H={z=x+1iy € C|ly > 0} denote the complex upper half plane. For
each integer k > 0, we will consider the space of holomorphic functions f : H — C

such that

HE5) = st (1)

for all integers a, b, ¢, d, such that ad —bc = 1. Observe that this condition implies

that f(z 4+ 1) = f(z), for all z € H, and hence we have a Fourier series expansion

f(2) =) anq" (1.2)

neL

where ¢ = e*™*. We say that f is a modular form of weight k, if a, = 0 for all
n < 0. If, in addition to this conditions, we have that ag = 0, then we say that f
is a cusp form.

Given a cusp form f of weight k, we can define a Dirichlet series

Qn

Lisf) =Y,

s
n>0

where the a, are the Fourier coefficients appearing in the expansion of f (1.2).

Observe that this Dirichlet series defines a holomorphic function for Res > 0.



Moreover, it can be shown that L(s, f) has meromorphic continuation to all of
C, and that it satisfies a functional equation. The L-functions constructed this
way are related to other objects of interest in number theory, like elliptic curves
over the rational numbers via the modularity theorem, and its study is of central
importance in a wide range of applications.

The numbers a,,, appearing in this construction, have a beautiful representation
theoretic interpretation, that we will now describe. Given a holomorphic function

f on H, and an element g € SL(2,R), define

(flrg)(2) = <cz+d>-kf(jjj§), g= [ Z ] .

This equation defines a right action of SL(2,R) on the space of holomorphic func-
tions on H. Given a modular form f of weight k, define a function ¢ on SL(2,R)
by

o(g) = (flrg)(@)-

It is then clear, using equation (1.1), that ¢ € C*(I'\SL(2,R)), where I' =
SL(2,7). Furthermore it can be shown that if

cosf sind

k(0) = [ € 50(2),

—sinf cosf

then
d(gk(0)) = €™ (g).

Let U(g) be the universal enveloping algebra of g = Lie(SL(2,R)), and set Vi =
U(g)®. Then, it can be shown that Vi is isomorphic to the space of SO(2, R)-finite
vectors of a discrete series representation (7, H) of SL(2,R), with lowest weight k.
Let V' = H® be the space of smooth vectors of H. Then for each n € Z there is a

natural choice of a linear functional A\, : V — C such that

. <7T ([ ! ”’;D v) = 2\ (1),

This family of linear functionals has the property that \,(¢) = a, for all n € Z.
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The theory of Maass forms extends this theory to include all types of unitary
representations of SL(2,R). The analogous functionals ), are called, following

Jacquet, Whittaker functionals corresponding to the unitary character y,, of N

1 =z .
Xn — 627rmx ]
0 1

We will now move to the Siegel upper half plane, H,,, consisting of elements

given by

Z = X +1Y with X and Y symmetric m x m matrices over R and Y positive
definite. Let G = Sp(m,R) realized as the set of 2m x 2m matrices with block

form

A B
C D
with A, B,C, D, m x m matrices such that if

0 I
J= ,

with I the m X m identity matrix, then

g:

Y

gJg’ =J.

Observe that we can define an action of G on H,, by “linear fractional transforma-

tions”

g-Z=(AZ + B)(CZ+ D)™,

In this case C.L.Siegel [21] considered subgroups I' of finite index in Gz = Sp(m, Z),

and holomorphic functions f on H,,, such that (with g in block form as above)
£(9Z) = det (CZ + DY £(2),

for ¢ € T' and a growth condition at co. As above one has the subgroup N

consisting of the elements of the form
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with L an m xm symmetric matrix over R. Observe that ['N/V contains a subgroup
of finite index in Ny = Gz N N. We will assume, just as we did in the classical

case, that I' N N is actually equal to Nz. Then,

f(Z+1L)=f(2)

for L an m X m symmetric matrix with entries in Z. We can thus expand this

Siegel modular form in a Fourier series.

E (ZSeZMTT(SZ),

where the sum runs over the m x m symmetric matrices S over Z. One finds that
if ag # 0 then S must be positive semi-definite.
Once again this coefficients have a beautiful representation theoretic interpre-

tation. We can consider
XS(”(X>> _ eZm’Tr(SX)7

with S a symmetric m x m matrix over R. Let M be the image of GL(m,R) in G

g 0
g — .
0 ¢7

Then P = MN is the Siegel parabolic subgroup of GG, and we have an action of

via the embedding

M on N (and hence in its space of characters N) by conjugation. One finds that
if a character is generic (that is, the M-orbit in the character group is open) then
the character must be given by xg with det.S # 0. The stabilizer of the character
is compact if, only if, S is positive or negative definite. If (7, V) is an irreducible

representation of Sp(m,R), we will set
Whyo(Vi) ={X: Vi — C| A(n(L)v) = xs(n(L))A(v)}.

If the stabilizer of the character ygs is compact, we will call any element \ &€
Why,(Vz) a Bessel model. If xg is just a generic character, then we will call
any A € Wh,(Vy) a generalized Bessel model. One can show (c.f. WI5|) that
the only such models for holomorphic (resp. antiholomorphic) representations are

those corresponding to positive definite (resp. negative definite) such S. Thus
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the only generic characters that can appear if we consider holomorphic or anti-
holomorphic Siegel modular forms are the ones with compact stabilizer, and the
relevant space here is the space of Bessel models of holomorphic or antiholomorphic
representations of G. As in the case of SL(2,R) (m = 1) this theory can be
extended to include other types of representation of Sp(m,R). In this case we
need to broaden or scope to include the space of generalized Bessel models for a

generic character xg.

1.2 Classification of Lie groups of tube type and

its generalized Bessel characters

Let G be a connected simple Lie group with finite center and let K be a max-
imal compact subgroup. We assume that G/K is Hermitian symmetric of tube
type. This can be interpreted as follows. There exists a group homomorphism, ¢,
of a finite covering, S of PSL(2,R) into G such that if H = ¢(S) then H N K is
the center of K. We take a standard basis h, e, f of Lie(H) over R with the stan-
dard TDS (three dimensional simple) commutation relations ([e, f] = h, [h, €] =
2e,[h, f] = =2f). If g = Lie(G), then we have g=n@®m S adn with n,md a,n
respectively the —2,0, 2 eigenspace of ad(h), a = Rh, and m the orthogonal com-
plement of a in m ® a with respect to the Cartan-Killing form. In particular, n
and n are commutative and e € n, f € n. Let 6 be the Cartan involution of G
corresponding to the choice of K, then we may assume, n =n, f = —fe and
R(e— f) = Lie(HNK). Set p=m@dadn and let P = {g € G|Ad(g)p = p}.
Then P is a parabolic subgroup of GG, and if we take its Langlands decomposition
P = MAN, then m = Lie(M), a = Lie(A) and n = Lie(N). Let x be a generic

character of N, and let
My ={m € M |x o Ad(m) = x}.

In this section we will describe representatives for all the equivalence classes of
generic characters on N. For the rest of the section we will fix a unitary character

xr of R. This is the list of examples.
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1. G = Sp(n,R) realized as 2n x 2n matrices such that gJ,g7 = J, with

with I, the n x n identity matrix (upper T' means transpose). (g) = (¢~ )”. With

a9 Y ] GLmR},
{lomlﬂ lg € GL(n,R)

(e -
N = X e M(n,R),XT=X}.
0 I

The list of generic characters is described as follows: let p, ¢ be two positive integers

this description

such that p + ¢ = n. Define a character y, , as follows

I X
Xp.q ( [ ] ) = xr(tr [p,qX)-
0 I

From this definitions it is clear that

MXp,q = O(p’ Q)

using the natural identification M = GL(n,R).

2. G = SU(n,n) realized as the 2n x 2n complex matrices, g, such that
gL,g* = L, with
0 i,
L, = .
—il, 0

In this case the centralizer, M A, of h in G is the set of all

g O
0 ( *)_]
With g - GL(TL,C), and

it }
N = X € M(n,R),X* =X }.
0 I
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Representatives of equivalence classes of characters are again parameterized by

positive integers p, ¢ such that p + ¢ = n and we can define

I X
Xp.a ( [ ] ) = xr(tr I, X).
0 I

M,,, = U(p,q).

In this case

3. G = SO*(4n) realized as the group of all g € SO(4n, C) such that gJs,g* =
Jon. We can describe g = Lie(G) as a Lie subalgebra of Ms,(H) as the matrices

in block form
A X

y —A*
with A, XY € M,(H) and X* = X, Y* = Y. In this form g N My, (R) =
Lie(Sp(n,R)). We take e, f,h as above and note that MA = GL(n,H). If

we define x, , as before it is then easy to check that

MXp,q = Sp(p7 q)

4. G the Hermitian symmetric real form of E7. In this case we will emphasize
a decomposition of Lie(G) which makes it look exactly like those examples 1.,2.,

and 3.. In each of those cases we have

A X

Lie(G) = v

with A an element of M, (F) and F = R,C or H the upper * is the conjugate
(of the field) transposed. Furthermore, X,Y are elements of M, (F) that are self
adjoint. Example 4 corresponds to the octonions; Q. Here we replace M3(Q) by
mda=R® Eg, (the real form of real rank 2 with maximal compact of type F}).
We take for X, Y elements of the exceptional Euclidean Jordan algebra (the 3 x 3
conjugate adjoint matrices over @ with multiplication A - B = 3(AB + BA) thus
in this case the X’s and Y’s are defined in the same way for the octonions as for
the other fields). Here m acts by operators that are a sum of Jordan multiplication

and a derivation of the Jordan algebra (the derivations defining the Lie algebra of
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compact Fy). With this notation our choice of e, f, h are exactly the same as the

examples for R, C or H. In this case we can define the characters

X3,o(<[ é )I( D = xr(tr X).

in which case M, is isomorphic to compact Fy, or the character

I X
o
0 I

in which case M,,, is isomorphic to Fy 1, the real form of F} of real rank 1. The

) = XR(U' ]271X).

stabilizer of the characters x; 2 and x¢ 3 are the same as the stabilizers for x5, and
X3,0 Tespectively.

There is one more example (that doesn’t fit this beautiful picture).

5. G = SO(n,2) realized as the group of n+2 by n+ 2 matrices of determinant

1 that leave invariant the form

0 0 1
0 I,11 O
1 0 0
Here
a 0 0
MA = 0 m 0 la € R*, m € SO(n—1,1)
0 0 at
and
1 ot _(vév)
N = 0 I v |v e R
0 0 1

Representatives of the orbits of generic characters are given by

1 _,Ut (v,v)

2
Xk 0 I v = Xr(Vk),
0o 0 1

where vy, is the k-th component of v. Observe that

M,, = SO(n—1,R).
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and
M,, = SO(n—2,1), if k& # n.

1.3 Jacquet integrals and Bessel models

Let G be one of the simple Lie groups of tube type we just described, and let
P = MAN, x and M, be as before. Let P, = M,A,N, be a minimal parabolic
sugroup such that

P, C P, N C N, AC A, M, C M.

Let @ be the system of positive roots of G relative to P,, and let @}, be the system
of positive roots of M A induced by ®*. Let W = W(G, A,), Wy = W(MA, A,)
and set

WM = {we W |wdj, C T}
Then we have the following classical result.

Lemma 1.3.1 (Bruhat decomposition). With notation and assumptions as above.

1. If v € W, then v can be expressed in a unique way as a product of an element

in War and an element in WM.

2. Givenv € W, fix w, € Ng(As) such that Mow, = v. Then

3. Let vg be the longest element of W, vy the longest element of Wy, and set

oM = wveupr. If we set wg = Wy, Wy = Wy, and WM = w,m, then

PuwMpP = PuwMN

and if v # v™ then
dim P,w, P < dim Pw™ N.
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Corollary 1.3.2. Assume that the character x has compact stabilizer. Then

G= |J Pw,MN.

veWM

Furthermore, if v € WM and v # o™, then
dim P,w, M, N < dim P,w™ M, N.

Proof. From the classification of simple Lie groups of tube type, we see that if the
stabilizer of x, M,, is compact, then there is a maximal compact subgroup K such
that, if we set Ky = M N K, then M, = Kj; is a maximal compact subgroup of
M. We note that WY = {v € W|v-®;, C &'}, hence w,(P, N M)w,' C P,. The

[wasawa decomposition implies that
M = (P,NM)Ky,.

Since w,A,w, ' C A, for all v € W we see that

¢ = |J Pw(P.nM)KyN= | Paw,(Pon M)w, 'w,KyN
veWM veWM
= |J Paw,KuN.
veWM

If we now use that M, = K); we obtain the decomposition we wanted. The
dimension assertion follows from the fact that v = vgvy, is the unique element
of W™ such that w,Nw, ' N N, = {1}. O

Lemma 1.3.3. Assume that the character x has compact stabilizer. If v € WM

is not v then the restriction of x to w, ' Now, N N is non-trivial.

Proof. The tube type assumption implies that ® is a root system of type C,, with
n = dim A,. Hence, there exist linear functionals ¢y, ...,&, on a, = Lie(A,) such
that

T ={e; £l <i<j<n}uU{2e,..,2,}

and

O, ={e—¢jl1 <i<j<n}
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Let X € Lie(N) be such that [H, X] = 2¢,(H)X, for all H € Lie(A,). For
such an X it can be checked that dx(X) # 0. Hence, if v € WM and x restricted

to w1 Now, N N is trivial, we must have
v (2g) € —DT, i=1,..,n.
Therefore v=! - (¢; + ¢;) € —®* for all i < j, which implies that v = v, O

Given an admissible, smooth, Fréchet representation, (w,V;), of G, and a

generic character, x, of N, define the space of Bessel models of V. to be
Why (V) = {X € V.| Mr(n)v) = x(n)v for all n € N }.

Here V! is the continuous dual of V. Observe that we can define an action of
M, on Wh, (V) by setting (m - \)(v) = A(w(m)~tv), for m € M,, X € Wh, (V).
Effectively, if n € N,

(m-N)(r(n)v) = Mx(m) 'm(n)v) = Xx(m nm)r(m) 1)
= x(m~'nm)A(w(m)~v) = x(n)(m - \)(v),

where the last equality follows from the fact that y o Ad(m) = yx, for all m € M,.

If (7,V;) is an admissible, smooth, Fréchet representation of M, we will set
Whyr(Ve) = {\ € Hom(Vy., V;) | A(m(mn)v) = x(n)7(m)v},

where Hom(V;, V) is the set of continuous linear maps between V. and V,.. Observe
that if (7,V;) is irreducible, then there is a natural A/ -equivariant embedding,
VI®@ Whyr(Ve) — Why(V;), given by (1 ® A)(v) = p(A(v)) for p € VI, X €
Why(Vz), and v € V.

Let (0,V,) be an admissible, smooth, Fréchet representation of M of moderate
growth. Let a = Lie(A), and let ai be the set of complex valued linear functionals
on a. Let p be half the sum of the positive roots of P relative to A. Given an

element v € ag, set

o,(nam) = a"**a(m). forallne N,ae A, me M.
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Let
175, ={¢: G — V, | ¢ is smooth, and ¢(namk) = a*¢(k)},

and define an action of G on 133, by setting 7, ,(9)¢(x) = ¢(xg) for x,g € G. If

2V

we give to 135, the usual C* topology, then (75, [35,) is an admissible, smooth,

o,V

Fréchet representation of G of moderate growth. Let
I ={¢: K — V,|¢ is smooth and ¢(mk) = o(m)o(k), for all m € Ky}

Observe that this space has a natural K-action. Given ¢ € I°, define ¢,, € 177,
by

Po(namk) = a” "o (m)o(k).
Observe that the map ¢ — ¢,, defines a K-equivariant isomorphism between I3°
and I35, for all v € ag.

Given an element ¢ € I2°, and a generic character y of N we define its gener-

o

alized Jacquet integral to be the integral

Jon(9) Z/Nx(n)_l(bo,y(an) dn.

Observe that if G is a simple Lie group of tube type, then dim ai = 1, and we can
use p to identify a; with C. We will use this identification during the rest of the
chapter.

Lemma 1.3.4. There exists a constant q, such that
T2ul6) = [ () bm )
N

converges absolutely and uniformly in compacta of {v € a| Rev > ¢,} for all

pely,.

Proof. From the Iwasawa decomposition of GG, we have that for any n € N, there

exists n(wMn) € N, a(w™n) € A, m(wMn) € M and k(w™n) € K such that
160 (W' n) | = a(w'n) 7o (m(w n)) dg, (k(w*n))]. (1.3)

On the other hand, in [W3 proof of 4.5.6] it is proved that there exists some

constants C; and r, depending on o, such that

lo(m(w*n))Il < Cilln]"
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Now in [W3 lemma 4.A.2.3] it’s shown that there exists a constant Cy and linear

functional > 0 such that
| < Cha(w™n)=*.

Therefore

lo(m(w*n))|| < Ca(wn)"*,

for some constant C' > 0. From this equation and (1.3) we conclude that
160, (W n)|| < Ca(w™n) =842 gy, ((w'n)).

Therefore, it is enough to show that there exists a constant ¢, such that, if v € ag.
and Rev > ¢,, then

/ a(w™n) TRV dn < oo,
N

But this follows directly from [W3, thm 4.5.4]. O

Let v € ai be such that Rev > ¢,, and let € V. Define a linear functional
Ay of 1, by

Mm) = 10 5,0) = ([ X0 0r?n) ).

It’s easy to check that A\, € Wh,(I35,). Furthermore, given v € V, we can find an
element ¢ € I,, with support on Pw™ N such that JX,(¢) = v. This means that
if A, = Ay, then g = /. In the next section we will describe how we can use the

theory of the transverse symbol of Kolk-Varadarajan to define a map
Dy Why(I35,) — V)

for all v € a such that if Rev > ¢,, then ®,,()\,) = p. Furthermore, we will
show how we can make use of lemma 1.3.3 to show that this map ®,, is injective

in the case where xy has compact stabilizer.

1.4 The transverse symbol of Kolk-Varadarajan

Let H be a Lie group, and let X be a C'"*° manifold with a left H action. Given
a Fréchet space F, let C°(X : E) be the space of smooth, compactly supported
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functions on X with values in . We will denote by
D'(X :E):=(CX(X:E))
its dual space, and we will make the identification
D'(X : E) +— Hom(C>(X), E').

We will call any element in this space an E-distribution on X.

Fix an H-orbit @ C X. Let Diff™ be the sheaf of differential operators of
order < r on X. For any z € X let Vx(r) be the subspace of Différ) generated by
germs of r-tuples vy - - - v, of vector fields around z for which at least one of the v;
is tangent to O. Let

1 = Diffr=Y 4y,

Choosing local coordinates at x it can be seen that i actually is the stalk at x

of a subsheaf 1) C Diff™ [11]. Hence we have a well-defined quotient sheaf
MT = Difg™) /](7”).

with stalk at z equal to MY = Diff") /I Tt can be checked that M ™ is a vector
bundle over O of finite rank [11]. This is the r-th graded part of the transverse jet
bundle on @. Observe that M) is the r-th symmetric power of A/().

We say that T € D'(X : E) has transverse order < r at x € O, if there exists
an open neighborhood U of x in X, such that for all f € C*(U : E), with the
property that Df|ony = 0 for all D e Diff ™ (U), T(f) = 0. Let Dgr) (X : E) be
the linear subspace of elements in D'(X : E) which have transverse order < r at
all points of O. Observe that if T € Dgr) (X : E), then suppT C O, which justifies
the notation.

Given a normal subgroup H' C H, and a point y € O, define a character x, of
Hy={he€ H'|h-y=y} by

o)

omy (h)’

where g is the modular function of H, and 5Hz'; is the modular function of H,.

Xy(h)

The following theorem is a restatement of theorems 3.9, 3.11 and 3.15 of [11].
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Theorem 1.4.1 (Kolk-Varadarajan). Let X be a C™ manifold with a left action
of H, let (m, E) be a smooth Fréchet representation of a normal subgroup H' of H,
and let O C X be an H-orbit of X.

1. Assume that the action of H' can be extended to an action of H. If there
exists y € O, such that

(M) ® E'® C,)" = (0),

for all r € Z>y, then
Dh(X : By =(0).

2. Assume that H = H'. Then for any
TeDY(X:E)/DY V(X E),
there exists 1, € (Mér) ® E'® C,)" such that

T(f) = /H () an

3. Assume that E s finite dimenstonal, and assume that for all y € O
r H'
(M" & E'® C,)" = (0),

for all r € Z>q, then
Dh(X : By =(0).

We will now show how we can use this result to define a linear map
Dy, Why(I35,) — V.
Given f € C*(G), and v € V,, set
fraws(@) = [ Fpa)o(o) o

Then
fP,U,I/,v<pg) =0,(p)f(9), Le JPoww € ]I%?a—y'
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Let
Upgy, ={f € I3, | supp f C P(w™)"N}.

Then, given f € C°(G) such that supp f € P(w™)*N, froue € Upy,. Further-
more, the span of the fp,, ,’s constructed this way is dense in Up,, .
Let
D'(P(w™)*N : V) ={T : C=*(P(w™)*N) — V/}

be the space of V, distributions on P(w™)*N. Given A € Wh,(Ip,,), define
A€ D'(P(wM)*N :V,) by
M) @) = Mfpowo).
It’s easy to check that actually
e D'(Pw™)*N .V,

Ov—2p

® CX)PXN.

Hence, according to part 2 of Kolk-Varadarajan theorem, there exist p) € V! such

that
AN = ( /[ X(n)1f<prn>a,,<p>1vdTpdn)
Afrows) = ( / X(n)_lfp,g,y,v(an)dn>

= 0 Jpg, (frovelk)-

We will denote the map A — py by ®p,,. Observe that if Rev > ¢, then &, is

surjective, since given pu € V! we can define A\, = 1o J,, and it’s then clear that
CIDQ,,(AH) = K.

Proposition 1.4.2. Assume that the character x has compact stabilizer. If A €
Wh,(Iz,) and Ay, =0 then A = 0.

Corollary 1.4.3. If x has compact stabilizer, then the map
Ppy, : Why(Ips,) — V.

18 tnjective.
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Proof (of proposition). We will first reduce the problem to the case where o is an
induced representation. If (n,V) is a finite dimensional representation of P,, we
define I3, to be the space of smooth ¢ : G — V such that ¢(pg) = n(p)¢(g) for
p € P and g € G. Set m,(g)¢(z) = ¢(zg), for x,g € G. If we endow I3 with the
C topology, then (,, [1%:,77) is an admissible, smooth, Fréchet representation of
moderate growth. Let (¢, F') be a finite dimensional representation of Py, := P,NM
and let (¢, I3 ) be the corresponding representation of M (Observe that PN M is
a minimal parabolic subgroup of M). The Casselman-Wallach theorem implies that
there exists a surjective, continuous, M-intertwining operator L : I3 . — V for
some finite dimensional representation (£, F') of Py;. This map lifts to a surjective

G interwining map L: ]103?%'/ — Ig, ,, given by L(¢)(g) = L(¢(g)) for ¢ € II%?%V,
g € G. The representation I, 18 equivalent to the representation smoothly
induced from P, to G' by the representation &, of P, with values on F' defined as
follows:

& (nap) = a”P&(p) forpe Py,a€ A, n e N.

Setting n = &, we can identify the map L with a surjective G-equivariant map
L : Iy, — I%,,. Set Up, = {¢ € I, |supp¢ C Pw™N = P,w™ P}, and
define Wh, (I3 ,) in the same way as above. Assume that we have proved the
o €., assume that if A € Why(IZ ) and Ay, , = 0, then
A =0. Let \ € Why(Ig,,) be such that Ay, , = 0 and let A = L*) be the
pullback of A to Wh,(Ig,) by L. Tt’s easy to check, using the definition of L,

proposition for I3

that S“Upo,n = 0 and hence, by our assumptions, A=L*\= 0, but L is surjective,
therefore A = 0. We will now prove the proposition for Wh, (I3 ).
Let A € Wh, (I ,) be such that Ay, = 0. Proceeding as before, we can
define a distribution
ANeD(G:F®C,)NrN

that vanishes on the big Bruhat cell. Now, if we can prove that

D;:)O'LU'UK]\/[N<G P ® Cx)NOXN = (O) Yo € WM’ v 7& ’U]\/[’

then, the standard Bruhat theoretic argument shows that A, and hence ), is equal

to 0.
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Now, since Ky, = M

v, we can extend the action of N, x N on F ® C, to an

action of P, x Ky N. Therefore, from part 1 of theorem 1.4.1, we just need to
show that
(M) ® (F @ C,))NxNw = (0),  vr>0.

But this follows from the fact N, acts unipotently on MI(J;) ® F’" and that the

restriction of y to w, *N,w, N N is non-trivial, according to lemma 1.3.3. [

Although proposition 1.4.2 is false in the case where the stabilizer of x is non-
compact, we will show later how we can obtain a similar result in the general case.
But before we are able to prove this result we will need dig a little bit more into

the structure of Lie groups of tube type.

1.5 The Bruhat-Matsuki decomposition of a Lie
group of tube type

An affine symmetric space is a triple (G, H, o) consisting of a connected Lie
group G, a closed subgroup H of G and an involutive automorphism o of G such
that H lies between GG, and the identity component of G, where GG, denotes the
closed subgroup of G consisting of all the elements fixed by o. If G is real semi-
simple, Matsuki [14] has given an explicit double coset decomposition of the space
H\G/P, where P is a minimal parabolic subgroup of G. His construction goes as
follows.

Let (G, H,o) be an affine symmetric space such that G is real semi-simple,
and (g, b, o) the corresponding symmetric algebra. Let 6 be a Cartan involution
commutative with o, and g = € p the corresponding Cartan decomposition. Since
the factor space G/ P is identified with the set of all minimal parabolic subalgebras
of g, the following theorem and corollary give a complete characterization of the
H-orbits on G/P.

Theorem 1.5.1. 1. Let P, be a minimal parabolic subalgebra of g. Then there
exists a o-stable mazimal abelian subspace a, of p and a positive system ®T of

the root system ® of the pair (g, a,) such that P, is H,-conjugate to P(a,, 1),
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where H, is the identity component of H, P(a,, ®T) = m@a,&n, m = z(ay),
Nn=> o+ o ond go = {X € g|[Y, X] = a(Y)Xfor all Y € P,}.

2. Let a, and a, be o-stable mazimal abelian subspaces of p, and ®*, (&T)

/
p

P(ap, %) and P(ay, (7)) are H-conjugate, then a, and a, are K -conjugate

be positive systems of root systems o(P(a,) and ®(P(a,) respectively. If

If a, is a o-stable maximal abelian subspace of p, we can define a subgroup
W (a,, K ) of the Wey group W(a,) by W(a,, K;) = (M*(a,) N K, /(M(a, N K,),
where M*(a,) = Ng(a,), and M(a,) = Zk(ay).

Corollary 1.5.2. Let {a,, |i € I} be representatives of the K -conjugacy classes
of o-stable maximal abelian subspaces of p. Then there exists a one-to-one corre-
spondence between the H-conjugacy classes of minimal parabolic subalgebras of g
and

UierW (ap, K )\W (ay,)

where the union is disjoint. The correspondence 1s given as follows. Fiz a positive
system @i of ®(ay,) for each i € I. Then W(ay, K )w € Uie/W (a,, K )\W (ay,)
corresponds to the H-conjugacy class of minimal parabolic subalgebras of g con-

taining P(ay, wd;).

Let a, be a o-stable maximal abelian subspaces of p such that a,+ = a, Np is
maximal abelian in p, = pNh. put ¢ ={X € g|o(X) = —X}, and (a,+) = {a €
®(ay) | Hy € ay+}, where H, is the unique element in a, such that B(H,, H) =
a(H) for all H € a, (B is the Killing form of g). Let oy, i = 1,...,k be elements
of ®(a,+) and X,,, ¢ = 1,...,k be on-zero elements of g,,. Then {X,,,...,Xq,}
is said to be a g-orthogonal system of ®(a,+) if the following two conditions are
satisfied: (i) X, € qfori=1,...,k,, (i) [Xa,, Xo,] = 0 and [X,,,0(X,,)] = 0 for
i i=1,.... k]

Two g-orthogonal systems {X,,,...,X,,} and {Yjs,,...,Ys } are said to be
conjugate under W(a,, K ) if there is a w € W(a,, K ) such that w(Zle RH,,) =
Zle RHg,. Then the following theorem gives a complete characterization of the

K -conjugacy classes of o-stable maximal abelian subspaces of p.
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Theorem 1.5.3. Let (G, H,o) be an affine symmetric spaces such that g is real
semi-simple, 8 a Cartan involution of g commutative with o, and g = € & p the
corresponding Cartan decomposition of g. Let ay+ be a mazimal abelian subspace
of p* and a, a mazimal abelian subspace of p containing ay+. Then there exists a
one-to-one correspondence between the K -conjugacy classes of o-stable mazrimal
abelian subspaces of p and the W (a,, K )-conjugacy classes of g orthogonal systems
of ®(ay+). The correspondence is given as follows: Let Q = {X,,,..., Xa, } be aq-
orthogonal system of ®(ay+). Put v =S¢  RH,,, a = {H € ap+ | B(H,x) = 0},

o = a + 35 R(X,, — X_4,), where ay_ = a, N g, and a, = a, +a,.

/
-
Then the W (a,, K)-conjugacy class of q-orthogonal system of ®(ay+) contain-
ing Q corresponds to the K. -conjugacy class of o-stable maximal abelian sub-
space of p containing a;. Moreover if X,,, —i = 1,...,k, is normalized such

that 20;;(Hy, ) B(Xa;, X—a;) = —1, then
Cl; = Ad(exp (7/2)()(041 + X*al)) o -Ad(exp (W/Z)(Xak + X*ak))am
where X_,, = 0(X,,).

Theorem 1.5.4. Let (G, H,o0) be an affine symmetric space such that G is real
semi-simple, 0 a Cartan involution commutative with o, and g = €@ p the cor-
responding Cartan decomposition. Let a, be a mazimal abelian subspace of p
such that ay+ is mazimal abelian in py, and {Q1,...,Qmn} be representatives of
W (a,, K )-conjugacy classes of q-orthogonal systems of ®(ay+). Suppose that Q); =
{Xays- -y Xa,} is normalized such that 20;(Hy,)B(Xa,, X—o,) = =1, i =1,...,k
Joreach j=1,...,m. Put c(Q;) =exp (¢/2)(Xay + X-0y) (0/2)( X, + X0, )-
Then

1. We have the following decomposition of G.
G = UL Upew (ap, k1) \W (ap,) Hw,c(Q;) P (disjoint union)

where P = P(a,, @), ®* is a positive system of ®(a,), a,, = Ad(c(Q;))a,,
and w,is an element of M*(a,,) that represents an element of the left coset

v C Wi(ap,).
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2. Put P, = w,c(Q:)Pc(Q:) 'wyt. Let hi,hy € H and py,ps € P. Then
hyw,c(Qi)p1 = haw,c(Q;)p2 if and only if there exists an x € H N P, such
that hy = hyz and that ps = c(Q;) 'w; *o ™ w,c(Q;)p: .

8. Let P = P(a,,®") = MA,NT be a minimal parabolic subgroup of G such

that a; is o-stable. Then

HNP=(K;nM)Ajexp(hnntnon™).

In this section we will record the decomposition of some relevant symmetric

spaces with respect to the action of a minimal parabolic subgroups. Let G =
GL(n,F), H=U(p,q,F), for F =R, C, H or Q. Let

B! = I

2 p—q

Oqfi qui

forn=p+q, p>q>i, and define o' : G — G by
0'(9) = B, ,0(9) B, -

Then o' is an involution, and 00 = 0" for all i. Let H' = {g € G|o'(g9) = g}
Then (G, H',c") is a symmetric space. Let h* = Lie(H"), then

A —-TF X Aecgli,F), Zeculp—iq—iF),
h' = -S* Z T S, T € Endp(F1, Fp=ia=i),
Yy S —A X*=-X,Y*=-Y
Let
At
a= N ER S,
An

and observe that a M h? is maximal abelian in p N h?, where

g=tdp
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is the Cartan decomposition of g. Let

g’ ={X e g|o"(X) = —X},

then
A T X Aegl(i, F), Z2* = Z,
q? = S Z T S, T € Endp(Fi~° FP=517%),
Yy § A* X'=X,Y"=Y
Let
0 E;;
X = 0 )
0
then {X,...,X,}, is a representative of the unique conjugacy class of maximal

g-orthogonal systems. Let

V2 V2
PR 5k
I, Og—i
G = Iy
V2 V2
—2, 21,
Oqfi [qfi
0 .~ _ pi 0.~1 _ yi
then ¢;B,, ¢;” = B, ,, c;:H"c;” = H', and

q
¢ = U Paw,c;H®,  with Ki = H' N K
=0 veW (a,KL)\W (a)
q
= U U vainCi with P? = w;lpowv.
1=0 vEW(u,K}r)\W(a)
Observe that

( [ )

A1

i
h'Na= Optq2i X eR
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Let x be a unitary character of R, and let B;q be as before. Define a character

v ([ ! ‘f D — (i (Bi X))

Let My be the stabilizer of X;),q in M. According to the Bruhat decomposition.

X;’q on N by

G = U Pw*P = Uw c WMPw*MN

weWM

= U U U POU}*P]w’U*CZ'MX%qN

weWM i=0veW (a,K)\W (a)

= U U U Pow*v*cz-ngqu (1.4)

weWM i=0yeW (a, K )\W (a)

— U U U w* v P M Ne;. (1.5)

=0 weWM peW (a,K)\W (a)
Observe that

A

i

)\

N o1 )

and hence dim (AN M,; ) =t

1.6 The vanishing of certain invariant distributions

Definition 1.6.1. Let (m, V') be a smooth, Fréchet, moderate growth representation
of a semi-simple Lie group G with finite center. We say that V' has a split eigenvec-
tor if the following holds: There exists an [wasawa decomposition g =€ @ a, ® n,,

where g = Lie(G), and an element H € a, such that
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1. The projection of H to any simple factor of g is non-zero.
2. There exists v € V such that H - v = Mv for some X € C.

Lemma 1.6.2. Let G be a connected semi-simple Lie group with finite center.
Let (m,V') be a smooth, irreducible, admissible Fréchet representation of moderate

growth with a split eigenvector. Then dimV < oo.

Proof. Let K be a maximal compact subgroup of G associated with a Cartan
involution #. Let Vi be the space of K-finite vectors of V. Then the Casselman-
Wallach theorem implies that if A\ € (Vi /n.Vk)" then A extends to a continuous
map of V to C. This implies that V;/n.Vx = V/n,V as an a,-module.

Let v # 0 be such that Hv = Av with A € C. Let W be the restricted Weyl
group of GG acting on a,. If g is simple over R, then the action of W on a, would be
irreducible. Hence our assumption on H implies that W H spans a,. If s € W, then
there exists s* € K such that Ad(s*)H = sH, and d(s*)Hs*v = As*v. This implies
that there exists v € V and £ € (a,); such that if H € a, then Hu = £(H)u.
Now since the action of a, diagonalizes on U(g) and U(g)u = V, the action of a,
diagonalizes on V. Let &, ... &, € an be the weights of a, on V/n,V. Then we

see that the set of weights of a, on V' is contained in
U {& + a| @ a non-zero sum of positive roots of a, in n,}.

Note that m < oco. Let n, = On,. These observations imply that n, acts locally
nilpotently on V. Now let u be a weight vector for a, on Vk. (Since V/n,V =

Vi./noVi the above argument implies that such a u exists). Then we have
U(n)U(ao)u = U(no)u
which is finite dimensional. Thus Vi = U(8)U(n,)U (a,)u is finite dimensional. [

Observe that this lemma implies, in particular, that if G is as above, and (7, V)

is an irreducible, tempered representation of G, then V has no split eigenvectors.

Proposition 1.6.3. Let (n,V,) be an admissible representation of P such that N
acts locally unipotently, an V, has finite length. Let

Ipy=A{f:9—V,| [ is C, and f(pg) = n(p)f(g) for all p € P}
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and let
Upy, ={f € Ip,| supp f C Pwy;N}.

Let V. be a representation of M, with no split eigenvectors, and let
Why(Ipy) ={X: Ip, — Vo | X(nm - f) = x(n)T(m)A(f), Vn € N, m € M, }.
Let X € Why +(Ipy) be such that Ny, =0, then A =0

Proof. Given f € C°(G) and v € V,, define f, € I,,, by

fulg) = /P n(p) ™ f(pg)v dip

It’s easy to check that f ® v — f, defines a surjective continuous map from
CX(G)®V;, to Ip,. Let A € Why (Ip,) be such that Ay, = 0, and define a
Hom(V,, V,)-valued distribution A on G by

M) (@) = A(f)-

To prove the proposition it suffices to show that A = 0.
By the definition of A

MLpf)(w) = An(p)'v)  Vpe P (1.6)
MRumf)(v) = x(m)T(m)X  ¥n € N,Vm e M, (1.7)

and supp A C G\ Pw’,N. Recall that, according to equation (1.4)

q
G = U U U Pow*w,c; My N,

=0 weWM w,eW (a,K’ )\W (a)

So the condition suppj\ C G\Pwj,N says that suppS\ is contained outside the
union of the open orbits. We will show that all the other orbits can’t support
distributions satisfying conditions (1.6) and (1.7). Then the usual Bruhat theoretic
argument show that \ = 0.

Let Oy, = Pow*w,c;M, N be an orbit that is not an open orbit. Then either
w* # Wy, ¢; # e or both. Let

H iy = {mn|m € M, and wtw,cim e fw,w™t € P}
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and let

]:I(w,v,i) = {(wwvcim_lci_lwglw_l, m)|m € Hypi}
Observe that lff(wm’i) is the stabilizer of ww,c; on P, x M, N. Define a representation
(n(w,wi)a Vn) of H(w,v,i) by

h-v = (ww,cmei  wy fw ™) - v

Let M)

(w,v,7)

be the r-th transverse bundle on O, defined by Kolk-Varadarajan
[11]. Then theorem 3.9 of the aforementioned paper says that if

HomH(wm(V ®Mw“ Vix) =0, vr, (1.8)

then
D, (G; Hom(V,, V;)) X MN = 0, (1.9)

Assume that ¢; # e. Let u € HomH(w,U,i)(Vn ® M(T Vtx) For each t € R define

UJU’L

cosht sinh ¢
hy = I
sinh ¢ cosht
Observe that the h; define a one parameter subgroup of M,. Observe also that
cosht sinh ¢ et
WW,C; I ci_lw; W= W, I w tw™t e A,

sinh ¢ cosht e

Since the action of A, on V, ® M r ) ) is semi-simple, there exists a nonzero vector

veV,® M((w)v 9 such that
ot
WW, I wytw™t v = ey
et

for some o € C. On the other hand

cosht sinh ¢ et

I p(v) = plww, I w, w™ )
sinh ¢ cosht et
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which contradicts our assumption on V,. Hence if i # 0

Hompy,,, . (V, ® MO ¥ Viy) =0 Vr.

(w,v,i

Now assume that ¢ = 0. Then

Oww,0) = Poww,M,N.

. . o I by 1,,-1
Since w # wyy, there exists 1 < 4,7, < n such that ww, ]7 LW =
I QTEj,j N N . : (r) 3

; € N,. Now since N, acts locally unipotently on V, ® M(wm) there is

aveV,® M((;)m) such that
I xFE;;
7 v=v+0
I

with ¥ € Ker u, and p(v) # 0. On the other hand

1 xEj,j 1 I'Ei,i
w

v) = u(ww, w; tw™)
I

I

I (L’Ei’i

, Ju(v)

plv) = x([

for all x € R, but this is only possible if x(v) = 0 which is a contradiction. From

all this we see that if O, , ) is not an open orbit, then

Do, . (G; Hom(V,, V;))Por M = g

(w,v,%)

Now the standard Bruhat theoretic argument shows that A = 0 which implies

that A = 0. [
We are now ready to state the main result of this chapter.

Theorem 1.6.4. Let (0,V,) be an admissible, smooth, Fréchet representation of

M, and let (1,V;) be an smooth, irreducible, tempered representation of M,,.
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1. The map
O, Why(Ip,, ) — Homu, (Vs, Vr)

defines a linear isomorphism for all v € ag.

2. For all p € Homy, (V,,V;), the map v w po JY, ertends to a weakly

holomorphic map of ai into Hom(I®,V;).

Before starting the proof of this theorem, we will need some technical results

that we will develop in the next section.

1.7 Tensoring with finite dimensional representa-
tion

Let G be a simple Lie group of tube type, and let P = M AN be a Siegel
parabolic. Observe that dim A = 1, hence, we can choose H € Lie(A) such that,
if (n, F') is a finite dimensional representation of G, then there exists an integer r

such that ' = &7 _oF2j—r where
F;={veF|H v=jv}.
Given such a finite dimensional representation (7, F'), set X; = ®f—;Fok—r, then
F=XyD>X;D---D2X,DX,,1=(0)
is a P-invariant filtration. If we now set Y7 = {¢ € F'|¢|x,—o}, then
F=y™" sy >...0Y%=(0)

is the corresponding dual filtration.

We will identify I3, ® F with the space

{0:G—V;, @ Flo(pg) = (0v(p) © I)d(g)}

and observe that

1P on =10 : G — Vo, @ Flo(pg) = (0.(p) @ n(p))é(9) }-



36

With this conventions there is an isomorphism of G-modules

IJ%?UU@F = 1%?01,@17
o — ¢
o « ¢

where
d(g) = (I ®@n(g)e(g), and  o(9) = (I @n(g) )e(g).

Let (n;, X;) be the restriction of n to P acting on X, and let (7;, X;/X;41) be
the representation induced on the quotient.

Then we have the following G-invariant filtration

I]%?JU@W = ]1%?0,/@770 DD IIOD?U,,®7]T+1 = (0)
Moreover, it can be checked that

~ JOO

00 00 ~
]P,au®nj /]P,U,,®T]j+1 - IP,UV(XW_]]"

The next theorem is a restatement of some of the results given in [22]| for the

case at hand.

Theorem 1.7.1. Let G be a Lie group of tube type, and let P = M AN be a Siegel
parabolic subgroup with given Langlands decomposition. Let x be a generic char-
acter of N, and set g = Lie(G). There exists an element ' € U(g)*x, depending
only on F', such that

1. The map
r:Why(I7,,)® F' — Wh(Ip, @ F)

15 an isomorphism.
2. If A€ Why (I, ) @Y7, then T(\) = A+ X with A € (1§, ) @ VI,

Define

L Why(Ip,, )@ F — Why(Ip, o,)
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Then it’s clear, from the above lemma, that I' defines an M, -equivariant iso-
morphism.

If (£,V) is a representation of P, let

I% = {6:G—V]o(pg) = 0p(p)3E(p)b(9)}
Upe = {¢p€lpe|supp¢ C P(w")*N}.

Observe that if ¢ € Up¢ then ¢ has compact support modulo P.

If (7, V;) is a representation of M,, define
Qi Why ,(Ipe) — Homp, (V, V)

in the same way we defined ®7 .
Now observe that, since I' is an M,-equivariant isomorphism, I' induces an

isomorphism, which we wil also denote by T,

T (Why(l,, @ F'@ V)M — (Why(I,eq) @ Vy)Mx
2l 2l
thm’®7([m/) — thﬂ'([m,@?n)

Here we are using the fact that Wh, ,(V;) = (Wh,(V, @ V;)Mx for all representa-
tions (7, V) of G, and (7,V;) of M,.
We will identify

Whywer(ls,) = {A A, @ F — 'V,

Aww®n@=wwwx}.
A(m) @ n(m)e) = 7(m)A(9)

Then we can identify ®7®" with a map
QT Why e (Io,) — Homy, (Vo @ F, V7)),

such that, if A\ € Why yer(I,,), ¢ € Uy ey, and we set py = ®7°7()), then

szmdxwlmemy

N

Let v € a be such that ®7 is an isomorphism for every representation (7, V) of

M,. Then ®7°7 is an isomorphism, and if we set I = D7 on© ['o (®7%7)71, then
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the following diagram commutes

r
thm’@)fugf) th,f([:;f@n)
@7 07, en

Homy, (Vo @ F,V;) Homy, (V, @ F,V;)

(1.10)

Lemma 1.7.2. T is an isomorphism.

Observe that this lemma immediately implies that ®7 ., is an isomorphism.

Proof. Let u € Homa, (V, @ F,V;). Since ®7®7 is an isomorphism, there exists
X € Whyye,(I2°) such that g = ®7E7(\) =: uy, i.e., if ¢ € Upy, ey, then
\@) = sl [ x(n) G(wsm) dn)

N

To prove the lemma, we will show that if 1y € Hom, (V, ® F, V;), is such that
pa(v) =0 for all v € V, ® Xj, then

(x — (L@ p(wy) )0 (m))(0) =0 Vv eV, X,

For any such sy, A € (Why(I) ® Y7 @ V;)Mx, and hence I'(\) = A + A, with
Ae (Ig,) ® Y7L @ V.. Therefore, if ¢ € I2° ® X;_;, then A(¢) = 0 and

Now by definition

FA)(@) = T (@) = / A(n) " S(awayn) dn),

N

But on the other hand since ngS € Upo,an

PO)@) = prn /N 1) $wprn) dn)

= T /N x(n) 11 ® f(wan))é(wasn) dn).
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Given v;_; € V, ® X;_; choose a ¢ € I3° ® X;_; such that ¢(wy) = v;—;. Let
{u*}, be an approximate identity on N, and define ¢* € Up,, by

¢k(an) = uk(n)x(n)d)(an).
Then

lim g ( /N X(0) 76 (wagn) dn) = lim () / 3(1) T @ (ws)) 6 (wr) dn)

i(lim [ gt dn) = Fo)(Jim / m)1 @ n(wnr))é(wnr) dn)
ir(@(wsr) = T(u)T @ nwa)é(w)
(i) = 1@ (i) ) ()] (vy1).

Since this holds for all v;_; € V,®X;_, we conclude that uy—(I@n(wy,) )T () €
VI®@YI~l @V, as we wanted to prove. O

We will now choose a representation (1, F'), such that the action of M on F, is

trivial, then o, ® 19 = 0,_,, and hence

]’OO ~r JOO

ov®MNo ~ Tou—r"

Let
W = {)\ € Wh)m‘( UV®77)‘>\’I@®"J - 0}

Observe that if A € W/*!, then A[;_ ~ defines an element in Why (155, )-

Lemma 1.7.3. There exists and isomorphism

54 W (15— DI,
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such that the following diagram is commutative:

S -
) - B oW 1

o @n;

Why o (120

oy ®n

;ZOWhX7T(I;?Uu®ﬁj )

-
Uu®ﬁj
Y

§=0Home<V0' & Xj/Xj+17 ‘/;')

Xi/Xjr1 = Fro;

HOmMX (VO' X F7 ‘/;')
(1.11)

Corollary 1.7.4. @7 is an isomorphism for all v € ag

Proof (of corollary). Let v € ai be such that ®] is an isomorphism. Then we

know that &7

oven 18 an isomorphism, and from the above diagram ®,, g, is an

isomorphism for all j. In particular, if (1, F) is as before, then ®7 _ is an isomor-
phism. Proceeding by induction, it can now be shown that ® is an isomorphism

for all v € ag. O

Proof (of lemma). Let A € Why (13°,). Since ®7

UU®7] O'u®77
exists iy € Homy (V, ® F,V;) such that if ¢ € U, g, then

M) = ma / A ()" $(wnrm) dn).

N

is an isomorphism, there

Let p; be the natural projection of V, ® F' onto V, ® F,_5;. Since p; is M,-

equivariant, iy op; € Homy (V, @ F,V;). Let A\; = (®7 o )" (a0 p;). Then it is

oL &N
clear that A =} \;. Furthermore if ¢ € Uy, gy, ,, then

A(6) = 1 o / x() " S(wan) di) = 0,

N

since all the values of ¢ are in X ;1. Now since |y = (0 proposition 1.6.3

Tv@Nj41
. . _ . +1
implies that )\j|13<;®nj+l =0, i.e., A\; € W7t Define

SA) = (o, r A),  with A = |7

o ®Nj41 )
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It’s then clear, from the above observations, that S is an isomorphism that makes

diagram 1.11 commute. O

1.8 Holomorphic Continuation of Certain Jacquet
Integrals

Theorem 1.8.1. Let (0,V,) be an admissible, smooth, Fréchet representation of

M, and let (1,V;) be an smooth, irreducible, tempered representation of M,.

1. The map
(I);u : thaT(I;?O',,) — HOm]MX(VJ, ‘/7—)

defines a linear isomorphism for all v € ag.

2. For all v € Homy (V,,V;), the map v — po JX, extends to a weakly

holomorphic map of ai. into Hom(1°,V,).

Proof. We have already seen that ®7 , is an isomorphism for all v € a;. Given

o,V

p e Homy (Vy, Vr), and ¢ € I3° define

TaW)(@) = (27,) " (1) ($o)-

Observe that, if Rev > 0, then v,(v)(¢) = po JX,(¢). We will show that ~
has holomorphic continuation to all v € af, by showing that it satisfies a shift
equation.

Let v € ai. and ¢ € I3° be arbitrary. By definition

Yulv =) (@) = (27,) " (1) (bow—r) = MSop-r)

for some A\ € Wh, -(13%,_,). But now, according to (1.10) and (1.11), there exists

o,v—r

6 € Why yer(ls,), and i € I3°,, such that
’Wt(y - T)(¢) = /\(gba,u—r) = f(5)(¢)
= 6(TTY) == () (TTY),
where 15 = ®7%7(5). This is the desired shift equation which shows that -, is

weakly holomorphic everywhere. O]



Chapter 2

The Bessel-Plancherel theorem

2.1 The Bessel-Plancherel theorem for rank 1 Lie
groups of tube type

Let G be a Lie group of tube type and let P = M AN be a Siegel parabolic
subgroup with given Langlands decomposition. Given a character x of N, we will
set C°(N\G; x) to be equal to the set of smooth functions f : G — C such that
f(ng) = x(n)f(g), for all n € N, g € G, and such that |f| has compact support

modulo N. We will also set

LQ(N\G;X):{f:G—HC

f(ng) = x(n)f(g), forne N, g € G, }
and [ 1f(9)?dNg < o0

Here dNg is the measure on N\G such that, if f € C°(G), then

/G f(g) dg = /N . /N f(ng) dn dNg. (2.1)

Observe that L?(N\G; x) has a natural inner product, defined by

(fh) = e f(g)h(g)dNg,  for f.h € L*(N\G;X).

Let A be the measure on N such that, if f € C°(N), then

f(e) = /N FO0dA), (2.2)

42
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where f is the Fourier transform of f.
Given f € C®(G) € L*(G), define s;(x) € C2(N\G;x) € L*(N\G;x), b

5100)(g) = /N A(n) " f(ng) dn. (2.3)

We would like to use this equation to identify f with a “section” s; on a “vector
bundle” E over N with fibers L*(N\G;x). Unfortunately, this “bundle” fails to
satisfy the local triviality property. We will work around this problem in the
following way: Given f € C*(N\G;x) and p € P set L,f(g) = f(p~'g). Then

Lyf(ng) = f(p~'ng) = f((p"'np)p~"g) = x(p~"np) f(p~"9) = (p- X)(n) Ly f (9),

ie, L,f € CX(N\G;p- x). Moreover, according to section 2.C,

(Lof. Lof) = /N BTN = [ Toa0m) N

N\G

_ f(9)f(9)5p(p) " dNg = dp(p) (£, f),

N\G
where dp is the modular function of P. What this couple of equations say is that we

can extend L, to a conformal transformation from L?(N\G; ) to L*(N\G;p- x).

Now from equation (2.3)

sr, 100(9) = /N () Ry, f(ng) dn = / x(0) 7 F(nggr) dn

= 5 00(991) = (Rersy00)(g) (2.4

and

x(n)"'L, f(ng) dn—/zvx(n)‘lf(p‘lnpp‘lg) dn

fxo
:/ X(pnp™t)~op(p) f(np~'g) dn
/

sL,r(X)(g) =

)"'op(p) f(np~'g) dn
= dp(p)sr(p'x)(p"'9). (2.5)

Let €2 be the set of open orbits for the action of P on N. Then we can use equations

(2.4) and (2.5) to define a P x G-vector bundle

E
!

W,
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with fibers £, = L2(N\G'X). Now observe that, if f € C°(G), then, according
to equations (2.1), (2.2) and (

%ﬁ:AJhwwmwg

—‘Aw/kf )(9) dA(x) dNg

- / (s700)s 5500} AA(X)
= @/ Sf Sf d)\( ) (26)

weN
where the last equality follows from the fact that the complement of the union of

the open orbits of P in N has measure zero. Therefore, if we set
L*(w,E,\) ={s:w— E|s(x) € Ey, and [ [[s(x)]*d\(x) < oo},

then the map f — s; extends to a P x G-equivariant isometry between L?(G) and
Bopeal?(w, E, \). This is the identification we were after when we defined s;.

We will now use the material developed in section 2.A to continue the study of
the decomposition of L?*(G) with respect to the action of P x G. For every w € €,
we will fix a character y, € w. Then, according to the material in section 2.A,

there is a natural P x G-equivariant isomorphism

P L (w, B\ = P Ind G .o L (N\G; xw)-

we we
Therefore
L*(G) = PL(w E N =@ md S, o L (N\G;xw)

weN weN

S @/ Indy n(X, ® 7°) @ L* (M, N\G; 7 © x.)di(7)
wen Y Mxw

g@/ImMMmT ﬁmrmmwmm>
wen ¥ Mx

1%

B[ [ Werm o () @ m i (an(r) (2.7)
MXw

weN

Here 7 is the Plancherel measure of M,, whereas p,,, is a measure on G that

depends on w and 7, and W, -(7) is some multiplicity space, that also depends
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on w and 7. On the other hand, Harish-Chandra’s Plancherel theorem says that

L2(G) é/w*\p@@wdu(w), (2.8)

a
where p is the Plancherel measure on G.
We will now restrict to the case where GG has rank 1. In this case if y is generic,

then M, is compact, and hence equation (2.7) reads

LG) = DD [ Wewnlr) 9y y(x,®7) 7 diter (1),
we ) G
‘]\/[Xw
From this and equation (2.8) we conclude that, for u-almost all ,
Tl 2P P Wir(r) @ Indjy v X, © 77, (2.9)
well TGMXw

and that p, , is absolutely continuous with respect to the Plancherel measure p,

for all w, 7, i.e.,
L*(M,N\G;T® x) & / W, (m) @ mdu(r). (2.10)
G

Observe that in the rank 1 case P is both, a maximal and a minimal parabolic
subgroup, and hence this case is contained in the calculation of the Whittaker-
Plancherel measure given in [24]|. There the multiplicity spaces W, () are explic-
itly computed to be isomorphic to the space of Whittaker models Wh, ().
Looking at equations (2.7), (2.8), (2.9) and (2.10) it is natural to state the

following conjecture:

Conjecture 2.1.1. For p-almost all w,

| p & @/ - Wy, (m)® IndﬁXwNXw ® Tdn(T). (2.11)
TEMy,,

we

Furthermore, if x is a generic character of N, then
L*(N\G; x) = / / Wyr(m) @ 7" @ mdn(r)dp(r), (2.12)
G J

where 1 is the Plancherel measure of M,, and i is the Plancherel measure of G.
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Proving this conjecture will be the goal of this chapter. We will start in section
2.2 where we will restate the asymptotic expansion of certain matrix coefficients
developed by Wallach [23], [24]. Then, in section 2.3, we will define the Schwartz
space, € (N\G;x), of L*(N\G;x), analogous to the Schwartz space, € (G), of
L*(G), and define a “Fourier transform” map between ¢(G) and €(N\G;x). In
section 2.4 we will use the results developed in the previous two sections to prove
equations (3.13) and (2.12). This is the generalized Bessel-Plancherel theorem,
generalized in the sense that the group M, may not be compact.

In the case where M, is compact, we can give a more explicit description of
the isomorphism appearing in equation (2.12). In section 2.5 we will use the holo-
morphic continuation of the generalized Jacquet integrals proved in section 1.8 to
calculate the Fourier transform of a wave packet, in the case where M, is compact.
This calculations will allow us to “push forward” the decomposition of €' (G) to
obtain a decomposition of €(N\G; x) with explicit intertwiner operators. Finally
in section 2.6 we will use this results, together with the asymptotic expansions
developed in section 2.2, to identify the multiplicity spaces W, ,(m) with the space
of Bessel models Wh, ().

The chapter closes with three appendixes that, although not necessary for the
main results of this chapter, are related to the material discussed here. In appendix
2.A we discuss the basic representation theory of parabolic subgroups. Although
this results are known from the work of Wolf et. al. [13], it is convenient to have
them here to set the notation, and for easy reference. Appendix 2.B discusses
the Plancherel measure of the space L?(P). Although not directly related to the
Bessel-Plancherel measure, some of the ideas discussed there are used through this
chapter. Finally in appendix 2.C it is proved that the support of the Whittaker-
Plancherel measure with respect to any parabolic subgroup is contained in the
tempered spectrum. This result may be useful in future calculations of other
Whittaker-Plancherel measures. At least they give us hope that this Whittaker-

Plancherel measures may not be “too awful”.
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2.2 The asymptotic expansion of certain matrix

coefficients

Let (m, H) be an admissible, finitely generated, Hilbert representation of G.
Let V be the space of smooth vectors of H. Given v € V and A € V' we can
define a smooth function ¢, ,(g) = A(7(g)v) for ¢ € G. This function is called
a matrix coefficient function. In this section we will describe some asymptotic
expansions of certain matrix coefficients, c, ,, where X\ satisfies certain properties.
The exposition of this sections follows very closely the material developed in [23]
and [24]. I decided to put it here as it is convenient to develop this results together,
but if the reader so desires he can also look at the original exposition by looking
at the references in the appropriate places.

Let’s start by specifying what we mean by an asymptotic expansion.

Definition 2.2.1. By a formal exponential polynomial power series we will mean

a formal sum of the form

Z et me(t)e_"t (2.13)

1<5<r n>0

where p;, s a polynomial in t for each j, n.

The point here is that we do not care if the series converges. Fix such a formal

series, then we may rearrange it in the following way:

> etitpy,(t), (2.14)

i>1
with u; € {zx —n| 1<k <r,n>0,n¢€N}, Reu; > Reus,..., and p,; is the
sum of the py,, with 2z, —n = u;. We will call N a gap of the series if uy > un1.
If f is a function on R, we say that f is asymptotic as t — 400 to the formal
exponential polynomial power series given as in (2.13) if, for each gap N, there

exists constants C' and €, depending on N, such that

f(t) =D e'py, ()] < Celemv=I  for t > 1.

J<N
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Notice that if NV is a gap then
: —(Reun)t - ujt _
Jim e [F(t) = e"'py, ()] = 0.

Lemma 2.2.2. Let

Z szt ijm(t)efnt

1<j<r 00
and
w;t —nt
> €ty gialt)e
1<5<s n>0

be two formal exponential polynomial series such that z; — 2z, (respectively w; —wy)
is not an integer for j # k and pjo # 0, ¢;0 # 0. If both formal exponential
polynomial series are asymptotic to the same function f, then r = s, and after

relabeling w; = 2, Pjn = Qjn-
This is precisely lemma 4.A.1.2 in [23].

Definition 2.2.3. Let (m, H) be as above, and let (P,, A;) be a minimal p-pair for
G. We say that X\ € V' is tame with respect to (P, Ao) if there exists § € al, such
that

| X \(m(a)v)| < Cxa’,

forall X € U(g), veV and a € CI(A]).

The important point in this definition is that 0 doesn’t depend on the element
X € U(g). Observe that if A € (H)*>, then ) is tame for all minimal p-pairs
(P, As). The following proposition provides more examples of tame linear func-

tionals.

Proposition 2.2.4. Let (7w, H) be an admissible, finitely generated, Hilbert repre-
sentation of G. Let P = NAM be the Siegel parabolic described in section 1.2, and
let x be a character of N whose stabilizer, M, is compact. If X\ € Wh, (V)(7) (the
T-isotypic component) for some T € MX, then X\ is tame for every minimal p-pair
(P, As) such that A C As.
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Proof. By the Gelfand-Neimark decomposition g =n @& m @ a @& n. On the other
hand, according to the Iwasawa decomposition, m = m, @ ay; ® nyr, where m, =
Lie(M,), and ay; @ nyy C Lie(P,). Therefore g = n@® (m, @ ay & ny) S a @,
and hence

U(g) =U(a® ap @ np)Um)U(my, & n). (2.15)

The plan for the proof of this proposition is the following: we will show that
it A € Why(V)(7), then U(m, & m)A C Wh,(V)(7), and there exists § € a
such that |XA(a - v)|] < Cx,a’, for all a € CI(AF). We will also show that if
A € Why (V)(7) satisfies that [A(a - v)| < C,a® for all a € Cl(A}), and X € U(n),
then |X\(a - v)| < Cx,a’, for all a € CI(AF). Observe that in this case X\ may
no longer be in Wh, (V)(). Finally, if [A(a - v)| < C,a’ for all a € CI(AY), and
X € U(a® ap @ nyy), we will show that [ X\(a-v)|] < Cx,al, for all a € CI(A]).
It is then clear that all this statements, together with equation (2.15), are enough
to prove the proposition.

Given A € Why (V) (7), set Wy = U(m, @ n)\ and observe that this is a finite
dimensional subspace of Wh, (V)(7). Let {\1,..., A\¢} be a basis of W). Then for
any given v € V| and every 1 < i < k, there exists J; € a., and a constant C;, such
that

Ni(a-v)| < Cia® for all a € Cl(AY).
Let § € a/ be such that a® < a’, forall 1 <i <k, a € Cl(A}). If X € U(m, dn),
then there exists some constants b;(X) such that

k

| X \(7(a)v)| = |Zbi(X))\i(7r(a)v)| < Z b;(X)|Cia < Ca? (2.16)

i=1
for some constant C'.

Let A € Wh,(V)(7) be such that [A(a - v)| < C,a® for all a € Cl(A}). Since
A C Ao, we have that n = nNn, dnNn,. Let X € (nNn,), for some root
a € (P, As). Then

XAa-0)| = AGXTa-v)] = [MaAd(@)(XT) - v)] = [Aala )X -0)]

S OXVUG(S_OC S CXVU(I(S. (217)
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Now let X € (nNn,)_p for some root 5 € ®(P,, A,). In this case we can always
find Y € (nNn,)z such that x(Y) # 0. For such a Y’

YA(a-v)| = AYTa-v)| = |MNaAd(@ ) (YT) - v)|
XA -v)] = [Ma(a™®)YT v)| < Cypa®”
Aa-v)] < C«;/ﬂ)a&—,b” (2.18)

where in the last step we are using that x(Y) # 0. Using this improved estimate

we see that

[XXa-v)] = [MXTa-v)| = [AaAd(a™)(XT) - v)l
= |Aa(a”) X" )| < C a1 < O al. (2.19)
Since 1 is a direct sum of spaces of the form (nNn,), and (AN 1,)_p5 with o, f €
O(P,, As), from (2.17) and (2.19) we conclude that, if X € U(n), then | XA(a-v)| <
Cxa’, for all a € CI(AT).

Now assume that A is a linear functional such that |A(a -v)| < C,a’ for all

a€ Cl(AL), and let X € U(a,) = U(a @ aps). Then
(XA (m(a)v)] = (@ (XT)m(a)v)| = [A(m(a)m(XT)v)] < Cxpa’. (220)
Finally, let X € (ny;), for some root a € ®(P,, A,). Then
[XXa-v)] = [MXTa-v)| = [MaAd(a™)(XT) - v)| = [Ma(a™*) X" - v)|
< Cxoa® ™ < Oxpad. (2.21)
Since nyy is a direct sum of its weight spaces, from equations (2.20) and (2.21) we
conclude that |X\(a - v)| < Cx,a® for all X € U(a @ ay @ nyy). We have thus

proved all the statements that we made at the beginning of the proof, so we are

done. 0

Let K C G be a maximal compact subgroup. If (m,V) is as above, we will
denote by Vi the space of K-finite vectors of V. Let Fj be a subset of ®(Fy, Ap),
(P, A;) be the corresponding standard p-pair, and let P, = M;A;N; be the
parabolic subgroup opposite to P;. Set

E(P,V) ={p € (am)c| (Vi/mVk), # 0},
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where (Vi /11 Vi), is the generalized p-weight space of Vi /i Vi, i.e., there exists
d > 1 such that for all H € a4

(H — p(H))* (Vi /71 Vi), = 0.

Now assume that ®(Fy, Ag) = {aq,...,a,}. Define Hy,...H, € ag by o,;(H;) =
d;;- Then we can define Ay € af by

Ay (H,) = max{Re u(H,) | € E(Py, V)}.

The following theorem provides an asymptotic expansion for the matrix co-
efficient function c),, where v € V and X is a tame linear functional, and it’s

essentially a combination of theorems 15.2.4 and 15.2.5 in [24].

Theorem 2.2.5. Let (7w, H) be an admissible, finitely generated, Hilbert represen-
tation of G, and let (P, A1) be a standard p-pair with respect to the minimal p-pair
(Ps, A). If A € V' is tame with respect to (P, As) then

1) There exists d > 0 such that if v € V then for all a € CI(Af)
(Aa-v)] < (1 +log [lal)?a™ oy, (v),
for some continuous seminorm, oy, , of V.

1) If HE€ a,*, m e My and v €'V then

Aexp(tH)m - v) ~ Z et Z e @ ), L o(tH, m,v)
HEE(PL,V) QeLT
as t — 0o, where py 0 : 0, X My x V — C is a function that is polynomial

n a,, real analytic in My and linear in 'V, and

L = {Z njo;|a; € (P, Ay) and n; is a nonnegative integer}.
J
The proof of this result is complicated and first we will need to prove the same
result, but for v € Vi instead of v € V. Namely we need to first prove the following

lemma (which is equivalent to theorem 15.2.2 in [24]).
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Lemma 2.2.6. Let (7, H) be an admissible, finitely generated, Hilbert representa-
tion of G, and let (P, A1) be a standard p-pair with respect to the minimal p-pair
(P, Ao). If A € (V) is tame with respect to (P,, Ao) then

1) There exists d > 0 such that if v € Vi then for all a € CI(A7)
[Ma-0)] < (14 log [|al)?a™V o, (v),
for some continuous seminorm, oy, of V.

1) If H € a,t, m € My and v € Vi then

Mexp(tHym - v) ~ S e § QU o (4 m, )
HeE(PLV) QeLf
as t — oo, where py .0 : ay X My X Vi — C is a function that is polynomial

in a,, real analytic in My and linear in Vi, and

L= {Z njoy | o € (P, Ay) and n; is a nonnegative integer}.
J
Proof. We will start with the proof of i.
Since A is tame with respect to (Ps, A,), there exists § € a’ such that

IMa - v)| < alox(v) (2.22)

for some seminorm oy of V. Let A(P,, A;) = {au,... o} and choose elements
H; € a, such that o;(H;) = ;5. Then A = > Aja; and 0 = ) 4y, with A; =
A(H;), 0; = 6(H;). The idea of the proof is to show that if §; > A; then we can
replace 9; with A; at the cost of possibly changing the seminorm o, and adding a
polynomial term.

Fix oy € A(Ps, As) and set F; = A(P,, A,) — {a;} and P, = Pp,. Then
a; = RH; and any given a € CL(AJ) can be expressed uniquely as a = a;a, with
a; = exp(tH;), t > 0, and a = exp(d_ ¢;H;), with ¢; > 0, ¢; = 0. We will now
make use of the K-finiteness of v. Let ¢; be the canonical projection of Vi onto

Vi /1 V. We claim that

if g;(v) =0, then IAa-v)| < a® %) (v), (2.23)
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for some seminorm o} (v). Effectively, let Xi,..., X, be a basis of i; consisting of
root vectors with corresponding roots 3y, ...,8,. If ¢i(v) = 0, then v = Y Xjv;

and hence

Aa-v)| = > MaXjv))|

> IM(Ad(a)(X))a - v)))
> %X Aa ;)]
Z a’*Pioy 5 (v))

a®~%ah (v).

INIA A

IN

Here we are using the fact that if 3; is a root of f; and a € CI(AT) then a® < a=%.
Given v € Vg, choose vectors v = vy, ...,v, € Vi, such that {q(v1),...,q(v,)}
is a basis of U(a;)g;(v). Then

H,‘Uj = Z bjkvk + w; (224)
k

with w; € n;Vg. Given a € CI(Af) such that a* = 1, set

Maga - vy)
F(t,a,v) =
Maga - vy)
and
Maga - wy)
G(t,a,v) = :
Aaza - wy)

Then equation (2.24) says that

d
EF(t’ a,v) = BF(t,a,v) + G(t,a,v),

where B = [b;x]. Solving this differential equation explicitly we get that
t
F(t,a,v) = eBF(0,a,v) + etB/ e *BG(s,a,v)ds.
0
Observe that, since v = vy,

t
Maca-v)| < [|F(t,a,v0)]| < [[eF(0,a,0)] + HetB/ e PG(s,av)ll,  (225)
0
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here we are using the usual norm in C". We will now estimate the two summands
in the right hand side of (2.25).
By equation (2.22)
|F(0,@,v)|| < @oy(v). (2.26)

On the other hand by the definition of A = Ay
HetBH < (1 + t)dietmax{p(Hi)|u€E(P¢,V)} — (1 + t)d"e“\i. (2'27)

Using equations (2.26) and (2.27) we can estimate the first summand in the right
hand side of (2.25), namely

1€ PF(0,a,v)|| < (1+t)%ebaloy(v). (2.28)
To estimate the second summand of (2.25) observe that by equation (2.23)
IG(t,a,v)| < a’e® Vo) (v). (2.29)

Breaking C" as a direct sum of the invariant subspaces of B, and using (2.29), it

can be shown that
[|et? /t e*BG(s,a,v) ds|| < (14+)%a’e!C Vol (v)+Cs(1+t)%eba’ o) (v). (2.30)
0
Finally, from (2.25), (2.28) and (2.30) we obtain the following bound
IAapd - v)| < (14 t)% etmadhidi=tigd s (), (2.31)

If A; < 6; — 1 we can use the fact that (1+ )% < Ce'/?, for some constant C,
to get equation (2.22) again but for a new linear functional § gotten from replacing

9; by 9; — 1/2. We can then repeat this same argument a finite number of times
(6;—1)

until we get A; > &; — 1. Observe that in the last step e'* dominates e’ , SO,
again from equations (2.25), (2.28) and (2.30), we get
IMawa - v)|] < (1+t)%ea’s,(v) (2.32)

where d; is as in equation (2.27). Observe that this d; is independent of v.
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To finish the proof of i, observe that if a € CI(Af) then a = exp(} ¢, H;),
for some ¢; > 0. If we repeat the argument leading up to equation (2.32) for all
1=1,...,1, we get that

l
(Ma-v)] < () [T +t)% e < 74 (v)(1 +log ||| )*a®
=1

for some d > 0 and some seminorm &4.

We will now start the proof of ii. We will only prove this result for P, = F, the
remaining cases being a consequence of this result. Fix a tame linear functional \.
Let

af ={H €a,"||H|| =1 and a(H) > € for all a« € ®(P,, A,)},

and set L = max{A(H)|H € a,*, |H|| = 1}. Let gx be the canonical projection
of Vi onto V; /it V. Arguing as in the proof of (2.23) we can show that

if H € af and gi(v) = 0, then

(2.33)
MexptH - v)| < (1 +t)%e!E gy (v) for all t > 0,
where o, is a continuous seminorm on V.
Given v € Vi, choose vectors v = vy, ..., v, € Vi, such that {qx(v1),...,q(v,)}
is a basis of U(a,)gr(v). Then, as in the proof of part i, we have that
Huv; = Z bir(H)vy, + w; (2.34)
k

with w; € nfVy. Hence, if we set

Avr)
Flo)=|
A(vr)
and
Alwy)
G(v) = : ,
AMw,)

then, from equation (2.34), we get that

d
%F(exp tH-v) = B(H)F(exptH -v) + G(exptH - v),
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where B(H) = [b;(H)]. Solving this differential equation explicitly we get that
t
FlexptH -v) = P F(y) 4 BUH) / e *BUIG(exp sH - v) ds. (2.35)
0

We will use this equation to derive an asymptotic expansion for A(exptH - v) for
every H € af.

Given H € af, define Ef (P, V) = {u € E¥(P,V)|u(H) > L — ke}. Observe
that, since E¥ (P, V) is finite, there exists § > 0 such that u(H) > L — ke + 6,
for all € EF, (P, V). Let PFy be the projection of C” onto the generalized
eigenspaces of B(H) with eigenvalues of the form pu(H), for p € Ef (P, V). Set
QF ;y = I—PFy, where I is the indentity map on C". Starting with equation (2.35),

and arguing as in the proof of i, we can show that
HQ’;HF(eXp tH - v)|| < (1 +t)e!T7*) g, (v). (2.36)

On the other hand, from the fact that [|e™BEPF || < C(1 + s)desk=L79) "and
statement (2.33), we get that

He—sB(H)pEIfHGv@Xp sH - U)” < (1 + 3)2des(k:e—L—5)€s(L—ke)U/\(v)

= (1+8)*e ™ 0y\(v). (2.37)
From the above equation, the integral
/ ||e_SB(H)P€]fHG(eXp sH -v)| ds < o0.
0

Set
Fe’fH(v) = PGITHF(U) + / e*SB(H)PfHG(eXp sH -v)ds. (2.38)
0

Then the above estimates imply that
|F(exptH -v) — etB(H)Fel’fH(v)H < (14 )Xt Ek g, (1), (2.39)
Using again that [le" PPk || < C(1 + t)%e'®<=L79) we obtain that

lim e B PrFexptH - v) = FFy(v). (2.40)

t—00 €
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From this equation we can get the following identity

Fhy) = Jim e G800 Py Fesp(s + 1) -0
) —00
= ¢ P lim e PP FlexptH - [expsH - v])
—00
= ¢ sBH )FEkH(eXpsH v), (2.41)

or equivalently, F¥, (exp sH - v) = e*BHFF(v).
Set f%,(t,v) equal to the first component of F*y(exptH - v). Then

k,H(m ’U) = Z et(uiQ)(H)pI:,H”u,Q (tv U) (242)

WEE(P,V), QeLt
Re(p—Q)(H)>L—ke+6

for some polynomials pf’Hvqu(t, v). Observe that, as long as ke > L + 0 + Re(Q —
w)(H), this polynomials are independent of k, so, if we let & — oo, we can use
equations (2.39) and (2.42) to define an asymptotic expansion for \(exptH - v).
Since asymptotic expansions are unique, the polynomials appearing in the expan-
sion are independent of the € > 0 chosen. Summarizing, we have shown that, given

H € af, there exists polynomials pg, o(t,v), such that

MexptH - v) ~ Z A ()
HEE(Po,V), QeLY
as t — o0o. To finish the proof, we need to show that the py , o(t,v) are actually
polynomial on ay.
Let Hy, Hy € af. If we can show that PFy F¥, (v) = PFy FFy (v), then we
have finished the proof of the lemma. To simplify notation, we will write P; for
Pk ‘i, 1 for F* ‘i, and analogously for P, and F3. We will start by making the

following simple observations: Since Hy, Hy € af, then 1 > (Hy, Hy) = ¢ > 0.
Therefore, if s,t > 0,

<SH1 + tHQ, SH1 + tHg) = 82<H1,H1> + 28t<H1,H2> + t2<H2,H2>
= 24 2stc+1? > 2sP 4 2ste+ 12 = (sc+t)2
The upshot is that we have shown s + ¢ > ||sH; + tHs| > ¢s +t. Now observe
that, if p € Efy (P,V)NEFy (P,V), then u(Hy), u(Hy) > L — ke + 6, and hence

( sHy + tHy ) - su(Hy) + tu(Hz)
|sHy + tHs| s+

> L—ke+0. (2.43)
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Making use of this observations, and of equation (2.37), we can check that

He_B(SH1+tH2)P2P1G(exp(sH1 +tHs) -v)|| < (1+|sHy + tH2]|)2de_5”SH1+tH2H
X ox(v)

< (14 s+ t)2Me 0t (v). (2.44)
Hence, by the definition of F},

6—tB(H2)P2F1(eXp tHy -v) = 6_tB(H2)P2P1F(eXp tHy - v)
+ / e PR Py P Gexp(sH, + tH,) - v) ds,
0

where the convergence of the last integral is guaranteed by equation (2.44). Taking

the limit as ¢ — oo, and using again equation (2.44), we get

tlim e_tB(H2)P2F1(eXp tHy-v) = tlim e_tB(HZ)PQPlF(eXp tHy-v)+0
—00 —00
= PlFQ(U), (245)

where the last equality follows from equation (2.40). But now, using equation

(2.41), we have that

e~ sBH) tlim e_tB(HQ)PQFl(eXp tHy - lexpsHy -v]) = G_SB(Hl)PlFQ(eXp sHy - v)
—00
lim e B2 p, (exptHs-v) = PiFy(v).

t—o00

Using this identity, and reversing the roles of H; and Hj in equation (2.45), we get
that

lim e_tB(Hl)Png(exp tHy -v) = PyFi(v)

t—o00

lim PlFQ(U) = PQFl(U),
t—o0
as we wanted to show. ]

With this result at hand we will now start the proof of the theorem.

Proof (of theorem). Once again we will only consider the case P, = Fp, the re-

maining cases being a consequence of this result. The plan for the proof is teh
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following: Given H € ag such that a(H) is an integer for all & € ®(Py, A), we will

show that, for any v € V, the matrix coefficient c,, has asymptotic expansion

P
AexptH -v) ~ Z et me(t, v)e ™, (2.46)
i=1

n>0

where p; ,(t,v) are functions that are polynomial on ¢ and continuous on v. Since
asymptotic expansions are unique, if v is a K-finite vector, this asymptotic expan-
sion must coincide with the asymptotic expansion given in lemma 2.2.6. Now using
that the p;,, are continuous, and that Vi is dense in V', we see that this asymptotic
expansion should be of the form specified in the statement of the theorem.

To get the asymptotic expansion described in (2.46), we will first need to make
some observations. By the Gelfand-Naimark decomposition g = ny @& my @ ag ® ng.
Let p : ¢ — my®agp be the canonical projection with respect to this decomposition.
It’s a known result of Harish-Chandra that there exist elements 1 = eq,...,¢e4 €

Z((m())(c D (Clo)(c) such that
Z((mo)c ® (ag)c) = @P(Z(gc))ei-

In particular for all H € af, there exist elements z;; € Z(g), such that He; =
> p(zi5)e;. Let {Xy,..., X,} be a basis of iy consisting of root vectors with cor-
responding roots —ay, ..., —a,, a; € ®(Fy, A)T. Then, there exists Y, € U(g)
such that z;; = p(z;;) + >, XYk, and hence

H@i: E zijej— E XkY;jkej.
J J.k

Therefore, given v € V, if we set Uy, = Zj gijke;, then we get
He;-v = ZX(Zz‘j)ej ‘v — ZXkUik - 0.
J k

Let ¢ be the canonical projection of V onto V/aV. The above equation implies
that U(ag)g(v) is contained in the span of ey - ¢(v),...,eq- q(v). Set xi; = x(2i;),
and let z,..., 2, be the generalized eigenvalues of the matrix [x;;]. Now observe

that

HXkerik: U = Oék(H)Xkerik -V + ZXkalelUik - U+ ZXszUsjUik - V.
l s
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Let ¢y be the canonical projection of V' onto V/W. Then, from the above equa-
tion, we see that the span of the ¢; - v’s and the Xje;u;; - v's contains the subspace
Ulag)ga(v) of V/a2V. Furthermore for fixed 4,k the subspaces generated by the
Xpeju, - v are invariant under the action of H, and the generalized eigenvalues
associated with this action are of the form z; — ay(H). If we continue with this
process, we can find a finite number of generating vectors for U(ag)qx(v) on V/aFV.
Furthermore the action of H on this subspace has generalized eigenvalues of the
form z; —m with m a non negative integer (because ay(H) is a non negative in-
teger for all k). If we now proceed as in the proof of lemma 2.2.6, we would get
an asymptotic expansion as the one described in (2.46). To finish the proof of the
theorem, we just need to refine the above argument to include all H € ag, which

is easily done. O

2.3 The Schwartz space for L?*(N\G; )

Before giving the definition of the Schwartz space for L*(N\G; x), we will first

recall the definition of the Schwartz space for L?(G), and some of its properties.

Definition 2.3.1. If f € C°(G), X, Y € U(gc), and d € N, set

qxyd(f) = sup | Ly Rx f(9)|2(9) "' (1 +log |lg]l)?,
g€

where Z is Harish-Chandra’s “=-function”. We define the Schwartz space of G to
be
C(G)={f € C®G)|gxya(f) <oo forall X,Y € U(gc), d € N}.

If we endow %(G) with the topology induced by the seminorms ¢xy4, then
¢ (G) becomes a Fréchet space. Furthermore, it is well known that C°(G) C
% (G) C L*(@), and that this inclusions are continuous and dense if we use the
usual topologies on this spaces.

Let P = MAN be a Siegel parabolic subgroup of GG, with given Langlands

decomposition. Then we will fix, as usual, a generic character x of N.
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Definition 2.3.2. If f € C*°(N\G;x), X € U(gc), and dy,dy € N, set

Ax.dr.d (f) = sup a(g)~"Ear(m(g)) ™ (1 +log la(g) )™ (1 + log [Im(g) )| Rx f (9)|-

é

=-function” for the group M. Define the Schwartz space for
L*(N\G; x) to be the space

Here =), is the

C(N\G; x) = {f € C*(N\G;X) | 4x.a1,0,(f) < 00 for all X € Ulgc), di, dz € N}.

We will endow €' (N\G; x) with the topology induced by the seminorms qx 4, d,-
Then it is easily seen that € (N\G;x) is a Fréchet space and that the space
CX(N\G;x) of all f € C®(N\G;x), such that |f| € C*(N\G), is dense in
G (N\G; x)-

Lemma 2.3.3. If f € €(N\G;x), then f € L*(N\G;x). Furthermore, there
exists dy,ds € N and 0 < C' < oo such that || f|l2 < Cqr.dy,a,(f)-

Proof. Let d; and dy be so large that
/ (1 +log [la])) " da = C3 < =,
A

and
/ Ear(m)?(1 + log [m(g)|))~*® dm = C3; < oo,
M
for some positive constants Cy and Cy. If f € €(N\G; x), then

|f(namk)| < a*(1 + log|la(g)l)) ™" Eas (m)((1 + log m(g) )™ qr.a1.4 (f).

Thus,

2 _ 2 . _9 9
e = [ g [ [ ] ol dodm i
(7 [ (1t log al) ™ da [ Z(mp(1+ log fm(g) ) dm
A M

2,2 2
< CACMql,dl,dg'

IN
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Lemma 2.3.4. Let ¢ € €(N\G;x) and f € €(G). Then

/¢ g)dg = (6, )

converges absolutely and there ezist continuous seminorms q, and gz on € (N\G; x)

and € (@), respectively, such that |(¢, f)] < q1(d)q(f).

Proof. We are looking at

/N /A /M /K a”* x(n)¢(amk) f (namk) dn da dm dk.

Now for each dy, ds, we have

[d(amk)| < qa,.a,(6)a” (1 +log [lal) =" =(m)(1 + log [|m(g)|)) ="

Thus,

/ 6@ DAy < draran(d) / a~(1 + log [laf)~

NXxAXMxK

x Zpr(m)(1 + log |m(9)||)~%|f (namk)| dn da dm dk.

In the proof of theorem 7.2.1 of [23], it is shown that there exists p, a continuous

semi-norm on % (G) such that

0P Zps () /N | (nam)|dn < p(f). (2.47)

Thus, if we take ¢o2(f) = supycx P(Rif), then we have

[166)1@lds < tuaa@)r) [ @+ loglal)* do
< [ Zm2(1-+1og () ) dm

If di and ds are sufficiently large, then the integral on the right converges. There-
fore, if we take ¢; = q1,4,.4,, With dy and dy large enough, we obtain the statement

of the lemma. O

Note that equation (2.47) immediately implies the following lemma:
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Lemma 2.3.5. If f € €(G), set

filg) = /NX(H)lf(ng) dn.

The integral converges absolutely and the map f — f, is continuous from € (G) to
G (N\G; x).

Let (m, H;) be an irreducible, square integrable, Hilbert representation of G,
and let V; be the space of C*-vectors of H,. Then (m,V,) is an irreducible,
Fréchet representation of moderate growth. Now, let H. be the dual of H,, and let
(7', H.) be the contragradient representation defined by (7'(g)¢)(v) = ¢(7(g) '),
forpe H ,ve Hy, g € G. Let V. = Vi be the space of C™-vectors of H! . and let
7 =7'|y,. Then (7, V;) is also an irreducible, Fréchet representation of moderate

growth. Observe that there is a natural G-invariant bilinear pairing
(,):VixV,—C

given by (¢,v) = ¢(v).

Lemma 2.3.6. Given ¢ € Vi, and v € V., define
Cs0(9) = (&, m(g)v).

Then cy, € €(G).

Proof. Let g € G. According to the K AK decomposition, there exists ki, ks € K,
and a € A} such that g = kjake. Hence according to part i) of theorem 2.2.5,

there exists d; > 0, and continuous seminorms ¢;, g2 on Vi, V., respectively, such

that, for all X, Y € U(gc),

Ly Rxcoo(g)l = [(7(ky) ' 7(Y)o, m(a)m(ka)m(X)v)]
< (1 +logllal)"a’qu (7 (k) "7 (V) @) ga(m (ke) (X )v)

< (1+]log flal)™a"ay (¢)ax(v),

where ¢y (¢) = sup,cx qu(7(k)7'7(Y)¢), and qx(v) = supyc g @2(7(k)7(X)v). On
the other hand theorem 4.5.3 of [23] says that there exist constants C, d such that

a P <Z=(g) < Ca " (1+log Ha||)d2.
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Therefore, for all d > 0

Ly Rxco,0(9)[Z(9) " (1 +1log |9])? < av (9)gx (v)(1 + log [|a] ) a7,

But now since V; is square integrable, A+p, € —Tal. Hence there exists a constant,
Cxya, such that |Ly Rxcy,(9)|2(9)7 (1 + log||g|)¢ < Cxya for all g € G. Since
X, Y and d were arbitrary, we conclude that c,, € € (G) as we wanted to show. [

Proposition 2.3.7. Let (m, H;) be a square integrable Hilbert representation of G,
and let P = MAN be a Siegel parabolic subgroup with given Langlands decomposi-
tion. Let x be a character of N whose stabilizer M, in M is compact, (1, H;) an
irreducible, finite dimensional representation of M, and let Wh,(V;)(7) be the 7
isotypic component of Wh, (V) under the action of M,. Given A € Wh,(V;)(7)
we will set T\(v) = cxp. Then Ty defines a continuous intertwiner operator be-
tween Vi and € (N\G; x)(7) (the T isotypic component of € (N\G; x) under the
left action of M, ). Furthermore, each Ty extends to a continuous intertwining

operator from H to L*(N\G;x)(7), and
Home(H, L*(N\G: x)(7)) = {T3 | A € Why (Va)(7)}

Proof. We will first show T)(v) € €(N\G; x)(7) for all v € V,. According to the
Iwasawa decomposition, given g € GG, we can find n € N, a € A, m € M, and
k € K such that g = namk. If we now use the K AK decomposition for M, we
can find ki, ko € M, and a,, € (A, N M)T such that m = kja,,ko. Therefore
[Rxero(9)] = |77 (kin) " A(w(aam ) (kok)m(X)v)|
()" (k1) ~' A (aap)m (kok)m (X)v)]
[T (k1) T A(m (@ap, ) (kok)m (X)) (2.48)

Now, since Wh,(V;)(7) is finite dimensional, there exists A, ..., A, € Wh, (V;)(7)

such that
A= 3" 6,(k)A

for some functions ¢y, ..., ¢, € C*°(M,). From this and equation (2.48)

[Rxeru(9)l = Y di(k)Ni(m(aam)m(kok)m(X)o)|
< D IR (aay)m(kek)m(X)v)].
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Now let () be a minimal parabolic subgroup, such that aa,, € CI(AES). Then, by
part i) of theorem 2.2.5, there exists d > 0, and continuous seminorms o), such

that

IA

[Rxcan(9)] D 16ik)I(1 +log llaan||)(aam) 2o, ((kak)m (X))
< Cx(1+log [laas|)*(aam)"

< Cx(1+log [lall)*(1 + log [lam|)*(aan)*?

A

where

Cx = sup Z!@(lﬂl)llm(ﬂ(kz)Xv)-

kieM, °

kocK

Observe that Ag = —puqg — pg with ug € Ta,. Now, since
n,=n,Nngdn,Nng =n,Nng dn, Nng,

then p, = —pg +dq, with dg € Cl(Tag) and also p, = pg — g, With 7 € Cl(Tag).
Therefore A = —jig — dg + po = —ptg — 79 — po. On the other hand theorem 4.5.3
of [23] says that there exist constants C, dy such that

a™" < Ep(m) < Ca™P(1+ log [|al))®.
Therefore for all dy, dy > 0

[ Rxex(9)[En(m) = (1 + log flam )™ (1 + log [lall)*a™?
< CX(l—l—logHamH)led(l—|—10g||a||)d2+2da_“Q_5Q+p°a,}“Q_WQ_p°a_pafnm

— Cx(1+1og lanll)s /(1 + log [laf))=+*a—+e~aa e,

Now, since pg € Fag, and dg, 7 € Cl(Tag), we conclude that there exists a

constant Cx g4, 4, such that
|Rxcxu(9)|Za (m) (1 4 log [|anm )™ (1 + log ||al)®a™" < Cx 4y 4,

Since X, d; and dy were arbitrary we conclude that ¢, € €(N\G;N) as we

wanted to show.
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We will now define a new G-invariant inner product on V in the following way:
given vy, vy € Vi, we have that T)(vy), Th(v2) € €(N\G; N), and hence, by lemma
2.3.3, Ta(vs), Ta(v9) € L*(N\G). Set

(v1,v2)x = (Ta(v), T (w)).

Then it is clear that (-,-), is G-invariant. Therefore, by Schur lemma,

(v1,v2)x = (Th(v1), Ta(v2)) = c(X)(v1, v2)

for some constant ¢(\). Thus 7T, extends to a bounded operator from H to

L*(N\G; x)(7). We therefore see that
Homg (H, L*(N\G; X)(7)) D {Tx\| A € Why(Vy)(7)}.

To prove the other inclusion observe that if T € Homg(H, L>(N\G; x)(7)), then
T maps C* vectors to C* vectors and defines a continuous intertwining operator
on smooth Frechet representations. Now L?(N\G; x)(7)® C C°(N\G; x)(7) and
evaluation at 1 is continuous on L*(N\G;x)(7)*. Define Ap(v) = T(v)(1) for
v € Vi. Then, A\p € Why(V;)(7) and T' = T),.. The result now follows. O

2.4 The generalized Bessel-Plancherel theorem

After the work done in the previous two sections, we are finally ready to tackle
conjecture 2.1.1. We will focus on proving the decomposition given in equation
(3.13), and we will then show how we can use this result to prove the generalized
Bessel-Plancherel theorem given in (2.12).

We will start by considering an irreducible, square integrable, Hilbert repre-
sentation (7, H;) of G. Let V;, Vi be as in the past section, and let ¢ € Vi and
v € V; be arbitrary. By theorem 2.3.6, the function ¢4, € ¢(G), and hence, by

lemma 2.3.5, the integral

[ (o) @ wn)o) dn
N
converges absolutely. Therefore, we can define a map

WX : Vi — Why(V,)
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by
WX(6)(v) = /N () (6. 7 (n)o) dn.

When it’s clear from the context what the the representation m is, we will sometimes
drop the suffix 7 and denote this map simply by WX. Observe that the matrix
coefficient function cyx(g)» € €(IN\G;x), and also observe that R(g)cwx(g) =

CWx (@) m(g)v-
Lemma 2.4.1. With notation and assumptions as above:
1. WX is M\,N equivariant.
2. There exists a non-degenerate, hermitian form (-,-). on WX(Vz) such that
(ewsionans ewsionnas) = 7 (WX(60), WX (G2 (on, ),
where d. is the formal degree of .
3. For all ¢1, @9 € Vz,
(61,02) = [ WX (0). W¥(a)) s
Here dx = d\(x) in the notation of equation (2.2).
4. If o € Vi, v € V,, then
WX(¢)(v) = (WX(0), WX())x,
where U is the element in Vi defined by v(w) = (v, w), for all w € H.
5. There 1s a non-degenerate bilinear pairing
(+)r : WX(V2) x WX(V2) — C,

given by
(WX(¢), WX(0))r := (WX(0), WX(0)) 7.
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Proof. Part 1 of this lemma follows directly from the definition of WX so we will
start with the proof of 2. Given \;, \y € WX(V}) define a G-invariant inner product
on V, by

<U1> U2>>\17>\2 = d7r<c>\1,v1a C)\z,v2>'
Since this inner product is G-invariant, then, by Schur lemma, there exists a con-

stant (A1, A2), such that

dﬂ'(c)\l,?)l) C/\2,1)2> == <U1a v2>)\17/\2 - <)\17 )\2>7r<U17 U2>'

It is then clear that the bilinear form (-,-), defined this way is hermitian and
non-degenerate.

We will now prove part 3. By classical Fourier analysis, if f € L'(N)N L?*(N),
then

/N F)f(n)dn = U, f) = (F, ) = /N FOOF00 d. (2.49)

Hence, if ¢1, ¢2 € Vi, and vy, vy € Vi,

<C¢1,v17 C¢2ﬂ)2> = /N<CWX(¢1)7U1 ) CWX(¢2)7U2> dX

1 1 N X
T (on o a) = /N WX (61), WM 2)) (01 13)

Here we are using that cg, ,,, Cppw, are in L'(N) N L?(N) when restricted to N,
according to lemma 2.3.5 and lemma 2.3.6. Since this equation holds for all vy, vy €
V., we conclude that
(61,00) = [ (VX(60). W¥(6a))s
N

We will now move to part 4. From part 2,

(ewrstonrons W) = WX G), WG elor ). (250)
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On the other hand, by definition

)Ul)WX(¢2)( (9)va)dNg

Wx(
- /N . /N () or,mmmglon) don | x(na) (6, m(nag)ea) dna N

N

= /\ //anz ¢1, (nlg)vl)(¢2,7T(n29)v2)dn1dn2ng
N\G JN

= / //X ¢1, n1n29)vl)(¢277T(n29)02)dn1dn2dN9
N\GJN

_ /N x(n / 1) 1r, 7(g)01) (6, w(g)0s) dg dny
T(n1)d1, @) (v1, va2) dny
_ /N A

1
= d_w X(2)(

Il
2\

><

I'—§“|

¢2, (nl)él)@}la U2> dn,

S &

)<v17v2> (2.51)

Now, since equations (2.50) and (2.51) hold for all vy, vy € V,;, we conclude that

WX(62)(01) = (WX (1), WX(62))x,

which is equivalent to the equation appearing in part 4.
Finally, for part 5 we only need to check that the definition only depends on
WX(v), but by part 4

(WX(), WX(v)) 1= (WX(0), WX(¢))x = WX()(v) = WX(v)(9),

where the last equality follows from the intrinsic symmetry between ¢ and v in the
definition of WX(¢)(v). O

We will denote by W, (H,) the closure of WX(V;) with respect to the inner
product (-, -),. When it is clear what the representation 7 is, we will also drop the

suffix 7 in the notation of this inner product.
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Let P = MAN be a Siegel parabolic subgroup of G, with given Langlands
decomposition. Given y € N and p € P, define

T(p) : Why(Vz) —> Why (Va),

by (7(p)A)(v) = A(w(p)~tv), for X € Why(V,), and v € V. Observe that, if p;,
pe € P, then 7(p1)7t(p2) = 7(p1p2). Also observe that, if ¢ € Vi, v € V,, then

FEHWXB) (W) = WXS)(r(p) v) = /N x() 7 (6, w(n)m(p) M) dn
- /N X ()" (6, w(p) " (prp~ YY) dn

N /Nx(p‘lnp)‘l(ff(p)cb,W(n)v)5p(p) dn
= dp(P)WPX(7(p)9)(v),

where dp is the modular function of P. Since v € V, was arbitrary, we conclude
that 7(p)WX(¢) = dp(p)WPX(7(p)o).

Let 2 be the set of open orbits for the action of P on N. For every w € (), we
will fix a character x,, € w. Now, given ¢ € Vi, we will define fy,(p) € WX(Vx)
by

—1

fow(p) = 7(P)W?P

Set f¢(p) = ZweQ f¢7w<p)'

().

Proposition 2.4.2. The map ¢ — f4 induces a P-equivariant isometry between
P
Hy and ©ueaIndy, W LJ(Hy).

Proof. Let ¢ € V, then

ot = /M (Fo(D): Folp)) dp

XWN\P

- /M QAW (0), 3 APIW” X (0)) dp

xw N\P weN weN

= > [ (WX(¢), WX(¢)) dx

_ / (WX(8), WX($)) dx = (6, ).

N
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Now given f € Ind]\}}mN Wx«(Vz), define ¢ by setting

1

WP X (¢r) = 7 (p) ™" fu(p)-

Then
Or.00) = [ W0 WX(6p )iy
= [ L) ) iy
= /MX“,N\P f(p), f(p)) dp
~ (1.5,
Besides
fo;(p) = L%ﬁ(p)wp_l'x“(aﬁf) - u}EZQ7?(10)7?(19)‘%(p) = f(p).
and

W (07,) = 7 (p) fowlp) = T R)RR)IWTX(6) = W (9),
which implies that ¢y, = ¢. O]

We now want to construct a map analogous to W)X in the case where (7, Hy)
is an induced representation. Let Py = MyAyNy be a minimal parabolic subgroup,
and assume that P = M AN is a Siegel parabolic subgroup dominating Fy. Let
P, = M;A;N; be another parabolic subgroup dominating Py. If (o, H,) is an

admissible, Hilbert representation of M, and v € (a;)r = Lie(A;)¢, we will set

Igj;:{fze—w,,

fis C*, and f(namk) = a""Po(m)f(k)
forall n € Ny, a € Ay, and m € M, '

Here P, = M; A, N; is the parabolic opposite to P, p is half the sum of the positive
roots of P relative to Ay, and V, is the set of smooth vectors of H,. We will denote

by I, the completion of this space with respect to the inner product

o f) = /K G, () dk,  FeI,
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where K C (G is a maximal compact subgroup.
Let x be a generic character of N. Then, according to theorem 1.5.4, there is

a subset W, of the Weyl Group of M such that

U PuawM, c M (2.52)

weWy
is open and dense, here ]5le =P, N M. Set M,, == M, NP, and Ny, = NN Ny.
If (0, H,) is unitary, and v € ia}, then for all f € 1,

en=3 [ A goemyanin 25

wewy, M
Set
={f €I, | supp f C PP}
Then, by (2.52) and (2.53), U,, is dense in I,, and P-invariant. Given f € U,,

we will set
R0 = [ ) (o) s

We will now consider the natural G-invariant pairing between I, and I5 _,
given by

(6, f) = / 619). 16 ds.

where dg = a=?’dk for g = namk, n € Ni,a € Ay, me My, ke K. If $ € Us_,,

and m € M,, we will set
Wy (9)(m) = WALy (r(wm)¢) € WX (V),
where x; = X|N1\417 Ny, = NN M.
Lemma 2.4.3. If m € M,,, then
W (@) (mim) = 6 (m)Wgr (¢)(m),
where 6% (m) = ¢(wmw™).
Proof. By definition
WX (@) (mm) = WX J_(m(wivm)e)
= WXI(/N X(nl)lqﬁ(nl(wﬁ”Lwl)wm)dm).
N



Set m* = wmw~! € M,,. Then

wso)m) = we( [ ) ) 90 () Yo )

- we( [ ) ) () (0) i) ).

Now since m™ normalizes N; we have that
WX2(o)(Am) = &(m®)WE( / A7 (7)) g(mywm)
N,
— (e / ©(n1) 2 b(nywm)dny
NNI

= ()W /N ()™ g(rywm)dny

= (M)W (o) (m).

Lemma 2.4.4. If g € Us_, and [ € U,,, then cy |y € L*(N) N L*(N) and

/N ()@, m(n) " fdn = 3 / (WX () (m), W, (¢) (m)) dm.

u}EW Xl \MX

Proof. From equation (2.53)

[ 6.m) )l an

)
| /K . /N (@b, ) d |

/ / [(¢(nikn), f(nik))| dn, dk dn
Kay \Km J Ny

IA

IN Il
— — —

(p(nnik), f(nik))| dndn, dk

K]\41\KM /]VVN
Ky \Kum /NN
/J;TN

I,

1
1

IN
—

/ |(G(nm) d(nanik), f(nik))| dny, dng dny dk

/1
..
/ LT
f

IA
T
<

-
=
<

Wl (ngk))(f(nlk))| dng dn1 dk
(W (¢(nak)), Wy (f(n1k)))| dny dny dk.

IN
T
<

T
=
<

1

73
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Now, since the support of ¢, f is compact modulo P, and contained in P, P the
last integral is convergent. Since n + (¢, w(n)~! f) is continuous, bounded and L',

then it is also L?2. Now

[ )@ gy an
= o xtmn fm)dng d

weWy
weWy My \Myx J Nn,

B / / / ¢(nnywm), f(nywm)) dn dny dm
weW, My \M Ny

- weW, /JWX1\MX [VNl

/ / X(nmno) (3 (1) p(nanywm), f(nywm)) dny, dny dny dm
NN, J Nary

- Z /xl\M /]VNl /szl x(nany WX (¢(ngwm))(f (nywm)) dng dny dm

weW,

5 s,

weW,

/N X(n2)x(na) = (W ($(nawm)), Wi (f (nawm))) dng dny dm.

=X [ ) m) dn

weW, X1\M

]

With this results in place, we are now ready to state the analog of proposition
2.4.2 for induced representations. This result is a very important step in the way

of proving equation (3.13).
Proposition 2.4.5. Given ¢ € Us _,, define
fd),w,w(p) - W;f;’w(ﬁ<p)¢)(e), w e Qa w e WXw‘

The map ¢ — > . foww €xtends to a P-equivariant isometry between I5 _, and
Do Indyy |y Wi, (How).
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Proof. Observe that, by the definition of W), if m € M,, then

o,V )

W3 ((mp)o)(e) = W (7 (p)g) (m).

Hence, if ¢ € Us _,,

(O Fouww: Z foww)
(WX (x m), WX (% m))dmd
> /N e ) . W )0 )

(Xw)l\A4X

/ /M (WX () (m), W™, (6) () dmdx

(Xw)l\A4X

/N X @un() o) dn = (6.0),

where in the last step we have used lemma 2.4.4 and Fourier inversion formula.
We can extend this map to an injective isometry between the Hilbert spaces 15 _,

and @, Indff(Xw)lN Wi (How). Now since
(W (@)(e) | ¢ € Us o} = WX (V)

and WX*(V %) is dense in W, (H,w) we conclude that this extended map is

surjective. O

We will now show how we can use this results to prove conjecture 2.1.1. Let x
be a generic character of N. From abstract representation theory, we have that as
an M,-module,

Indy Wy, (Hpw) 2 [ W2 (1) @7 dn, (7) (2.54)

X

for some measure 7y, that depends on o, X, w, and some multiplicities WU,X(T) that
also depend on o, 7 and w. On the other hand, if (P, A;) is a standard parabolic
subgroup with respect to (P, Ag), then we will write (P, A1) > (P,, A,). Let
Ey(My) be the set of irreducible, square integrable representations of M; up to

equivalence. Then Harish-Chandra’s Plancherel theorem states that

e P D / L5y ® Loy dpto (v), (2.55)

(Pl A1)>'(Po Ao) O’GEQ(Ml)
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where (a})" is the positive Weyl chamber of a} relative to P;, and p, is a measure
on (a})" that can be calculated explicitly. On the other hand, by proposition 2.4.5
and equation (2.54)

I(},*V =~ @IndM(X 1 N ( )1(Ho-w)

12

MXUJ
@Ind v Indyp ™y Wi, (How)

@Ind / ) ® T d%x( 7)
GB/ ®IndM N T dng, (T) (2.56)

I

I

Hence, by equations (2.55) and equation (2.56)

va = Q@

(P1,A1) © (a

b @GB / . / ) @ Ind} v 1 ® Ly, dpis(v) di (7).

(P1,A1) ©

. / 7) @ Indl 7 di (1) Ly dp ()

I

Where in the last equation we have used that 77, is independent of v to reverse
the order of integration. On the other hand equation (2.7) says that

S [ [ Wl @I (8 7 i (i),

weQ ¥ Mxw, /G
From this two equations, we conclude that 1y is absolutely continuous with
respect to 7, fu, . is absolutely continuous with respect to p and W, .(1,,) =

D, W, (7). Using this, and the series of equations leading to equation (2.7), we

conclude that
L*(N\G; x) = / / Wy r(m) @ 7" @ mdn(T)dp(r), (2.57)
G Jur,

as we wanted to show.

2.5 The Fourier transform of a wave packet

Let P = M AN be a Siegel parabolic subgroup of a Lie group of tube type G.

In the last section we proved the generalized Bessel-Plancherel theorem, that is, we
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showed that if x is a generic character of NV, then
L*(N\G; x) = / / Wyr(m) @ 7" @ mdn(7)dp(n),
G Jar,

where 7, f are the Plancherel measures of M, and G respectively, and W, () is
some multiplicity space, that we identified with a subspace of Wh, ,(m). What we
want to show now is that if M, is compact, then W, .(7) is actually isomorphic
with Wh, -(7), and hence finite dimensional.

Fix a generic character x of IV with compact stabilizer, and let O, be the orbit

of x under the action of P on N. Then we have the following lemma

Lemma 2.5.1. Let (0, H,) be an admissible, Hilbert representation of M. Given
v € ag, denote by I, the representation induced from the opposite parabolic to P

by o andv. Let ¢ € 157, be such that
éln € LY(N) N L2(N) and supp ¢ C O, is compact.

Let f € 17, be arbitrary. Then

0.5 = [ 0. T8 o
N
if we use the convention that JYXo(f) = 0 if xo ¢ Oy.

Proof. Observe that, for all xo € N, ¢(xo) = Jzo_y(gb). Now

(@.5) = [ (6ln). 1) dn
Given A <0, let f € I35, be defined by
f(k(n)) = a(n)* f(k(n)) A € o real,

where n = f(n)a(n)m(n)k(n), with n(n) € N, a(n) € A, m(n) € M, k(n) € K.
Set
®(0, 1.0 ) = [ (60}, P(n)) dr.

Then @ is continuous for A < 0, and analytic for A < 0. Now for A < 0
B0 Lm0 = [ (o0, aln)Fln)) dn.
N
— [ UZL0) () o

N
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On the other hand, if we set

N

B0, 1N = [ U0 T3 (P e
then ® is analytic for all X and, for A < 0, ®(¢, f,v,\) = ®(¢, f,v, ). Therefore

(¢, f,v,0) = (¢, f,v,0)
(6.f) = / (T, TX(f)) dxo.

N

as we wanted to show. O

Let Py = MyAqNy be a minimal parabolic subgroup, with given Langlands
decomposition, and assume that P dominates FP,. Let P, = M;A;N; be another

parabolic subgroup dominating P,. Let Py, = PN M; = My, Ay, Ny, where
MA]WIIMQMl A]Wl:AﬂMl NMlzNﬂMl

Let (0, H,) be a Hilbert, square integrable representation of M, and let V, be its
space of smooth vectors. Then, by the Casselman-Wallach theorem, there exist

and injective intertwiner map
a:Vy, — 1 g&

where ¢ is an irreducible, smooth representation of My, and A\ € Lie(Apr, ). The

Casselman-Wallach theorem also implies the existence of a map
T .
(6 [g)_)\ — Vs

such that

for all ¢ € Ig’o_)\, v eV,

Lemma 2.5.2. Let V, and I¢ ) be as above, and let x1 = x|n,, . Then for all

xS Igi)\, vev,,

W (a (6)) (0) = (7, (6), A ()):

where f = a(v).
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Proof. Let ¢ € Ig‘i/\ be such that

OINy, € L'(Nagy) N L*(Nyy,) and supp ¢ C Oy, is compact.

Then

W (aT(9)(v) = /N i (), ()~ f) dn

|
T
X
><

| / (I (6), T3 (x(n) 1)) dxo dn
Ny

1

N / Xl /N Xo(n)_l(‘]g—,\(gb)’ng,(,)\(f))dXodn
(JZ (¢) TE()-

On the other hand, we know that for all v € V,, the map ¢ — WXt (aT(¢))(v) is in
thT(]g—A)' Hence there exists p, € V¢ such that

WX (a”(9))(v) = mo(JE-,(9))

From this two equations we conclude that p, = ngi\( f), and hence

WX (' (¢))(v) = (JEL,(¢), JS(),
as we wanted to show. O

Corollary 2.5.3. If (0,V,) is a square integrable representation of M, define
Fax,u Ay — W (V)

by
FX,(¢) = WX 0 J5_,(9).

Then FY, has holomorphic continuation to all v € (a1)¢.

Proof. Let

a:VU—>Ig°j\

and

T . 700
« ‘157,/\—>V5"
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be as before. Observe that « induces an intertwining map

defined by a(f)(g) = a(f(g)), for f € I35, and a corresponding surjective map

~T . 700 0
a’ [ﬂg e — 15,

Let ¢ € fﬁE,A v € V,. Then from lemma 2.5.2

771}7

W o JX 6T (6))(w) = Wl (JL |, (6))

T —x—V

= (TS0 TS,

where f = a(v). Now, if we use the natural identification I, , = I¢ y4,, then the

&0

above equation becomes

FX,(6(6)) = (JX,_(8). S ().
Observe that the right hand side has holomorphic continuation to all v. O

Definition 2.5.4. Define

WY, 152, — Indy WX (V)

W3, (@) (m) = FZ,(m(m)o).

Observe that if ¢ € Uz _,, then this definition is consistent with the previous
definition of WX,. Also observe that

(W,)" s (Indys W (Ve)) — (I,
is injective. Furthermore, (VV;C’V)T((Ind%z1 WX (V5))') € Why(1g°,).

Proposition 2.5.5. The map ¢ — . fJ extends to a P-equivariant isometry
between I5 ., and 3 Indf\}XlN Wy, (H,).

Proof. The proof is completely analogous to the proof of 2.4.5. m
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We are now ready to state the main result of this section. Let Py, P and P; be

as before. Let (o, H,) a square integrable, Hilbert representation of M, and set

:{f:K—>VC,

fis C* and f(mk) = o(m)f(k)
for all m € Ky, := K N M, }
Observe that as a K-module I2* = [ for all v € (a1)c. Or, in other words,
there is a family of representations (m,,3°), v € (a;)¢ with the same underlying
representation space.
Let ¢ € I, f € I,, and let « : ia] — C be a smooth compactly supported

function. For any g € G we will set
¥(f,6.0)(0) = | a)é,mulo)) dua(1)

where p, is the Plancherel measure. Then U(f, ¢, a) € €(G) [24, thm 12.7.7].

Proposition 2.5.6. If U(f, ¢,a) € €(G) is defined as above, then

| w6, dn = [ a()WEL)T OV 0 ditn ),

1

Proof. Given A\, \y € daf, set

¢’f v, )\la)\Q

= L ) G m). S ) donn g4
o, SNy, S\,
Observe that if A\;(o;) <0 for all i = 1,2, o; € (P, Ay), then O(¢, f, v, A1, A2) <

oo, and this integral defines a continuous function that is real analytic if \;(a;) <0
for all i = 1,2, a; € ®(P, Ay) (recall that we are inducing from the parabolic
opposite to Pp). Also observe that equation (2.53) implies that
©(0,£,%,0,0) = [ x(0) [ a)(@,mtn) )
N a)

On the other hand set

B(6, .1, 1, No) = / AW WXy )T oW, oo (D) (o, v) dv.

/
1

Then @ is analytic for Ay, As.
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If X\i(a;) <0, for all i = 1,2, a; € ®(Py, Ay), then the following integrals are
absolutely convergent, so we can change the order of integration in the next series

of equations.

(¢7 f7 v, )\17 )\2
B / / / / G_pr, (mim), fuir, (nmn)) dmdny dp,(v) dn
al NNI MXl\MX

- /a,1 /MX1\MX /NN1 /NX(n)_ (P—vir, (M), frir, (nanm)) dn dny dm dp, (v)
- / : /MM\MX /N . /N X (') T (@pn (mam), fuin, (nm)) dndny dm dpig (v)
b
/NM X)Xy (7)), 0 () T, o, (2(m) )@ () dit dim it (v)
- L1,
/N o (0 T (R0 W, () ) (0)do s d )
= L B O (1)) s 1)

:/Zumgwgowxm@wmmm

1

= O, f,1, M1, \a).

Now, since ® and @ are analytic, O(op, f,1,0,0) = Cﬁ(qﬁ, f,1v,0,0), i.e

[ x| a@otmm) ) dun) = [ @)V )T WA EG)E) duo(v).

/
1 1

as we wanted to show. O

2.6 The explicit Bessel-Plancherel theorem

Let G be a simple Lie group of tube type. Let P, = M,A,N, be a minimal
parabolic subgroup, and let P = M AN be a Siegel parabolic subgroup dominating
P,. Let P, = M;A{N; be another parabolic subgroup dominating P,. Let y be a



generic character of N whose stabilizer in M, M,, is compact. We will set

Nay = NOAM, My, =MOM, Ay, =AnNDM,,
Ny, =NNN,, M, =M,NP,.

The purpose of this section is to prove the following theorem:

Theorem 2.6.1. With notation as above,
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1. Let (0,V,) be a square integrable representation of My, and let v € (a1)g.
If (1, H;) is an irreducible representation of M,, then Wh,(I35,)(7) is finite

dimensional, and for all v € (ay) there exists an isomorphism
jo’l/ Wth,Tl (VU) ® H’f — WhX(I;OV)(%)?
where x1 = X|ny, , Tt = T|ny, -

2. As an M, N x G representation

L*(N\G) =~ o) ) / Why, o (Vy) @ He @ I, dpg ().

rENTy, (P, AL (Po,Ao) o€€a(My) 10T

where 1 1s the usual Plancherel measure for G.

3. Given a € CX(iay; Why, - (V,) ® Hz), and f € 13°, define

cosle) = [ IS0 (o)) ()

1

Then cq.5 € €(N\G; x).

We call this the exzplicit Bessel-Plancherel theorem as here, unlike the case

for the generalized Bessel-Plancherel theorem, the multiplicities appearing in the

decomposition are associated with finite dimensional vector spaces of interest in

their own, and we also have explicit intertwiner operators.

We will start this section by stating a version of Frobenius reciprocity on which

we will rely for the rest of the section. Although this result is well known, we will

include a proof of it here as it will be useful to have at hand the explicit formulas

for the isomorphism.
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Let (7,V;) be an irreducible representation of a compact group K, and let

(0,V,) be a smooth, Fréchet representation of a subgroup M C K. Let
I ={f: K —V,|fissmooth, and f(mk) = o(m)f(k) for all m € M}.

We define a smooth Fréchet representation, (I°, ), of K by setting 7(k)f(k) =
f(kE) for all k,k € K. Then we have the following result

Lemma 2.6.2. With notation as above, there exists a canonical isomorphism
Homg (I, V) = Hompy (V,, V).

Proof. Part 2 of theorem 1.4.1 says that, given A € Homg (I°,V,), there exists a
unique puy € Homy(V,, V), such that

A(f) = A U ) (2.58)

and the map A — p, defines a linear isomorphism between Homg (12°,V;) and
Homy(V,,V;). This is enough to prove the lemma, but we would like to give a
more explicit description of py. What it’s clear is that, if for any u € Hom (V,, V)
and f € I>°, we set

() = /M OGO (2.59)

then A\, = A and py, = p.
Given v € V,, set

Xrw(k) :/ X-(mk)o(m) v dm.
M
It’s straightforward to check that x,, € I>°. Furthermore, for all m € M
Xromw(k) = / xr(mk)o(m) o (m)vdm
M

= /MXT(mmk)a(m)lvdm: X+ (mkm)o(m) v dm

= (k) = ().
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Let d, be the dimension of V. Then from equation (2.58),
/\<dTXT,v) = / T(k:)_lluk(dTXT,v(k)) dk

M\K

_ / 07 (k) s / o (k) (m) Yo dm) di
M\K M

= / / Ao (mk)T (k) pa(o(m) o) dm dk
M\K J M

= / / d-x-(mk)T(mk) ™y (v) dm dk
M\K J M

B /K Ao ()T (k) pa(0) e = aa (v).

that is
pa(v) = AMdrXrw)- (2.60)

This is the formula that we wanted to obtain. O

Proposition 2.6.3. If (0, H,) is a square integrable, Hilbert representation of My,
then Why, (Vo) = Wy - (1s.).

Proof. By Proposition 2.3.7, if (7, H,) is a square integrable, Hilbert representation
of G, then
W (Hz)(7) = Why (V)(7). (2.61)

On the other hand, by proposition 2.5.5
~Y Mx
Wy(lyy) = ImdMX1 Wy, (Hy).
Let W,,(H,) be the dual of W,, (H,). Then, by Frobenius reciprocity,

WiIow)(7) = Hy® Homuy, (Indy Wy, (H,), H,)
H: @ Homyy, (W, (H,), H;)
= H% ® Wh’Xl,ﬁ (VU)7

I

where the last equations follows from (2.61) and the definition of Wh,, -, (V,). O

We will now want to show that Wh, -(12,) = Why, -, (V,) for all v. For this

we will first need the following lemma.
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Lemma 2.6.4. Consider the following commutative diagram.:

0o — U 5% VvV 2B W — 0
S 1 T |
0 — U 2 v 2w — 0,
where the two rows are short exact sequences. If S is an isomorphism, and T is

injective, then T is an isomorphism. Furthermore there exists an isomorphism

R :U — U’ that makes the whole diagram commute.

Proof. The proof is a classical diagram chasing argument, and it’s provided below,
but the reader my want to amuse himself and do the diagram chasing by his own.
We will first show that 7" is surjective. Let w’ € W’. Since pj, is surjective, there

exists v/ € V' such that w' = p(v'). Set w = py 0 S~1(v') € W. Then
T(w)=TopyoS V) =ph(v)) =w'

Since T" was already injective by hypothesis, we conclude that 7" is an isomorphism.

Now let ©w € U and observe that

pa(S(p1(u))) = T(p2(p1(u))) =0,

since py o p; = 0. But now by the exactness of the bottom row, there exists a
unique v’ € U’ such that p|(u') = S(p1(u)). Set R(u) = w'. It’s easy to check that
this defines a linear map between U and U’ that makes the diagram commute.

Let u € U be such that R(u) = 0. Then S™'op,oR(u) = 0 = p;(u). Since p; is
injective, this implies that « = 0. Since the only condition in u was that R(u) =0
we conclude that R is injective.

Now let v’ € U’. Then p} o p)(u') = (T o py 0 S71)(py(v')) = 0. Now since T'
is an isomorphism, we conclude that py(S~! o p|(v/)) = 0. Hence there exists a

unique u € U such that p;(u) = S™! o pj(u'), therefore

pi() = S opi(u) = pr(R(w)).

Now since p) is injective we conclude that R(u) = «/, finishing the proof of the

surjectivity of R and finishing the proof of the lemma. O]
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Let (0, H,) be an irreducible, square integrable, Hilbert representation of My,
and let v € (
€ Why, -, (V,) and f € I35, define

o)

a1)c. Let (7, H;) be an irreducible representation of M,. Given

Jor () (f) :/N /M " x(n) 7 r(m) "t u( f (nm)) dn dm.

Lemma 2.6.5. Let ®(Py, A;)" be the system of positive roots of Ay induced by P.
Let B denote the Cartan-Killing form on gc. Let p € Why, (V) and f € I35,
If ReB(v,a) > 0 for all a € ®(Py, A1), then the integral defining jX;7 (11)(f)

converges absolutely.
Proof. The proof of this lemma is identical to the proof of lemma 1.3.4 O

Proposition 2.6.6. Let u € Why, - (V,) and f € I35,. The map v — jX7(1)(f)

extends to a holomorphic map from (a1); to C. Furthermore
j?”; : thm'l <V0> — WhX,T<I§,Ou)
is a linear bijection for all v € (a1)¢.

Proof. Let Q = P, N M; be a minimal parabolic subgroup of M;. Let (£, V) be an
irreducible finite dimensional representation of My, and let 0 € (ag N'my) be such
that there exists a surjective map from I3, ; onto V. Here I3, s = I but we are
including the parabolic subgroup from which we are inducing to avoid confusion
with the several induced representations that we will use in this proof. Let W

denote the kernel of this map. If v € (a1), then we have the exact sequence

— Iz — 1z _ —0.

(e.]
0 IP177TQ,§,5‘W7V P1,mQ.¢,5,V Pyov

In this sequence the first arrow is given by the obvious homomorphism 57, given
by S1(f)(k) = f(k), since W C I, 5, and the second arrow is given by Sa(f)(k) =
S(f(k)). The point is that the total spaces and S, Sy are independent of v. we

therefore have the exact sequence

5 Whe (I S Whe (I
) — Why+( ) —> Why( MNre  —0.

oo
0 WthT<[7 Py,wq 5,0 Pimges v/ HUp
(2.62)

Pyov
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We also have
ST o0 o0
0 — Wh’XluTl (V0'> — Wthﬂ’l (IQ7£,5) — WthuTl (IQ,E,(S)’W — 0 (263)
To simplify notation we will denote mg¢ s by 1. Then we have that
WhX,T(II%?JrQ,&é,y) HomMo (‘/57 |2 ) Wh)m T1 (IQ £, 5)

The isomorphism induced by this two isomorphisms is precisely j, , = jngr,,o(I)g]’“.

We now want to show that j,, induces a well-defined injective map between

Why, (I3, 5)lw and Why (I3 S V)‘Ipl .- To show that the induced map is

well defined, we need to show that if u € Why, -, (I& ), and plw = 0, then

Jnp(W)]re =0. Let f eIy .- Then the map v — Jnw(1)(f) is holomorphic on
1,8V 1ad)

v. Let Re B(v,a) > 0> 0. Then

I ()(f) = /N /M X)) ) i =0,

since f(nm) € W for all n € Ny,, m € M,, and u|lw = 0. Since the map v —
Jnw(p)(f) is holomorphic on v we conclude that j,, (1) (f) = 0 for all v € (a1)c.

Since [ € I3 Py WAs arbitrary, we conclude that j,, induces a well-defined map

between I/VhX1 n(I&e 5)lw and Why, T(IP1 S u)’1p1 .
Now we want to show that the map is injective. Assume that j, (@)1= =0.

Pp,p,v

Let w € W. We will define a function on Up, ,, N II%?%V in the following way:

given m € M,, and n € Ny, we set

f(nm) = ¢(n)XT,w(m)>

where ¢ € C°(Ny,) is a function such that

/N X o) dn =

0 = Juuli /N ) /M g X0t o) i

- /N /M \M b (m) T (@ (n) Xrw(m)) dndm
_ /M 7 mOxa(m)) dm = (),

Then
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according to the proof of lemma 2.6.2. But this says that u(w) = 0 for all w €
W, ie., plw = 0. Therefore the map j,, is well defined and injective between
Why, (U3¢ s)lw and Why (15 rocs V)‘IPI Y Therefore we are in the situation

of lemma 2.6.4, and hence we can define an isomorphism jX7 from Wh,, -, (V5) to

Wh,y (I3 ) such that if Re B(v, a) > 0 for all alpha in ®(P, A))" or f € Up, .,

then
= [ f (o) ) dhn,
NN1 MXl\MX
and the map v — jX7(x)(f) is holomorphic in v. O

To prove the theorem given at the beginning of this section we just have to
put together all the results we have obtained. More concretely, part 1 is just
a restatement of proposition 2.6.6. Part 2 follows from part 1, the generalized
Bessel-Plancherel theorem and propositions 2.6.3 and 2.6.6. Finally, part 3 is just

a restatement of proposition 2.5.6.

2.A Irreducible representations of Siegel Parabolic
Subgroups

Theorem 2.A.1. Let P be a Siegel parabolic subgroup of a Lie group G, and let
P = MAN be its Langlands decomposition. If (w, H) is an irreducible unitary

representation of P, then
H=Tndj) y7x  withT €M, x€N.
Proof. As an N-module, we have that

n= [ B

where E, = L, @ V,, V, € ]\7, and L, is a multiplicity space. This means that

there exists a vector bundle
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and a measure v on N, such that
H~ AN, Ev) = {s: N — B|s( eEX,/ 1sCO 2 () < oo}

under the action

Under this isomorphism we can extend this action of N on LQ(N ,E,v) to an action
of P on the same space.

Let m € M, and define
Em
i

N

to be the vector bundle such that E;“ = Ep,.y. Define a measure v,,, on N by
Um(X) =v(m - X) for X ¢ N a measurable set

and define
7(m) : L*(N, E,v) — L*(N,E™, v,,)

by

We claim that 7(m) is an isometry. Effectively
el = [ 1m0 o)
= /H $)(m 0P dy )

= [ 1m0l

= |x(m !!2—H I,

where the last equality comes from the fact that the action of P is unitary. Now

if we define an action of N on L3N, E™, v,,) by

(7m - 8)(x) = x(n)s(x),
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then 7(m) becomes an N-intertwiner,that is,

T(m)(m(n)s)(x) = m(m)m(n)s(m - x)

= 7w(mnm ) (x(m)s)(m - x)

= (m-x)(mnm")(m(m)s)(m - x)

= x(m~'mnm~'m)(x(m)s)(m - x)

= x(n)(r(m)s)(x) = (mm(n)7(m)s)(x)-
But now since N is a CCR group the N-interwiner
r(m): L*(N,E,v) — L*(N,E™, v,)
should come from a morphism of vector bundles
7(m): E — E™,

(m)s(x), and hence

2

that is, (7(m)s)(x) =

which says that

-1

(m(m)s)(x) = 7(m)s(m=" - x).

Now since Lz(N7E,I/) is irreducible as a representation of P, the support of v

should be contained in a unique P-orbit on N , and hence
L*(N,E,v) = L*(MA/M,, E) = nd}, \ E,.

Using again that L2(N, E, v) is irreducible we conclude that E, = 7y with 7 € M,,
X € N. Putting all of this together we get that

H= IndﬁXN TX

as we wanted to show. O
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2.B Decomposition of L*(P,d,p) under the action
of Px P

We will now decompose L?(P,d,p) under the action of P x P given by
(p1,p2) - f = 5<p1)_1Lp1szf-
As a left N-module

L*(P) = IndyInd) 12 Indy(L*(N))
= Tnafy( [ HS(R) du(x)

12

[ 1k (V) du(o) 2 LY B ),
N

with £, = HS(V,). The isomorphism is given in the following way: Given f €
C.(P), define s; € L*(N, E,v) by

sr(x)(p) = /N x(n) " f(np) dn.

Observe that [|f|| = ||sf|| and hence this map extends to an isometry between
L?(P) and L?(N, E,v). Furthermore

sk, r(X)(p) = /Nx(n)‘lRplf(np)dnz/x(n)‘lf(nppl)dn

= sp(x)(pp1) = (R, Sf(X))(p;:[

and

5L, f00®) = [ x(n)7'0(p1) " Ly, f(np) dn

x(n) 70 (p1) " f (py 'npupy o) din

I
T

X(pinpy ")~ f (npy'p) dn

I
—

N(pflx)(n)’lf (npy'p) dn

= s;(pr ) (1 'p) = [Los(pr 0))(p).
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Therefore
LN, E,u) = PLw,E, )

we

. MNxP _

= @ Indifiﬁxp IndAMX]>\<7><N X @ X
wel

o @ IndiIXN(/A Y ® IndﬁXN TX) dv(T)
weN My

=} @ / IndiIXN ™' ® IndﬁXN Tx dv(T),
weq 7 Mx

where v is the Plancherel measure of M,.

2.C Temperedness of the spectrum

Let G be a real reductive group and let K be a maximal compact subgroup.
Let P, = N,A.M, be a minimal parabolic subgroup of G with given Langlands
decomposition and let P = NAM be another parabolic subgroups dominating P,
ie, P, C P, NCN,, AC A, and M, C M. Let x be a unitary character of N
and let

LZ(N\G;X):{f:G—>C

f(ng) =x(n)f(g),Vn € N, g€ G } ‘
and [y, 1f(9)?dNg < o0

The measure on N\G is chosen so that if dg and dn are some fixed invariant

measures on GG and N, respectively, then

/N . /N f(ng) dn d(Ng) = /G 7(9)dg

for all f integrable on G. Set C.(N\G;x) equal to the space of all continuous
functions on G such that f(ng) = x(n)f(g) for all n € N, g € G and such that
9= |f(g)l is in C(N\G).

Lemma 2.C.1. Let Nyy = NoNM, Ay = Ao N M and Ky = KN M. There is

a choice of measures dnys, dao, da and dm, on Ny, A., A and M, respectively,
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such that if f € C.(N\G), then

F(g)dNg = /A /M /K 0207 f(amik) dk dm da (2.64)

= / / /aOpr(nmaok)dkdaoan (2.65)
Ny o VK

where p and pp are half the sum of the roots of (P, A) and (P,, A,), respectively.

N\G

Proof. Let pyr be equal to half the sum of the roots of (Py, Ay), Py = PN M.
The lemma follows from the integral formulas of the Iwasawa decomposition of G

and M and from the fact that p = pyr + pp. m

Given f € L*(N\G; ) define (m,(9)f)(z) = f(zg). Then (m,, L*(N\G;x)) is

a unitary representation of G. We now state the main result of this section.
Lemma 2.C.2. supp(m,) is contained in the tempered spectrum of G.

Proof. By the arguments given in chapter 14 of [24], it suffices to show that if
f € C.(N\G;x), then
[(m(9)f, )] < CrE(g) (2.66)

where Z is Harish-Chandra’s Z function. Let v € K and let C.(N\G;x)(7) be
the 7-isotypic component of C.(N\G;x). Since the direct sum of the isotypic
components is dense in C.(N\G;x), it suffices to take f € C.(N\G;x)(v). For
such an f define f(g) = sup{|f(gk)| |k € K}. Then f € C.(N\G/K) and

[(mx(9)f; )] < d()[mi9) [, f)] (2.67)

with 1 denoting the trivial character of N. Thus, to complete the proof we may
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assume that y = 1 and that f € C.(N\G/K). With this assumptions

f(zg)f(z)dx
N\G

/ / / a;? f(nyrackg) f(nasaok) dk das an‘

Nu J 4o JK

/ / / a;? f(narackg) f(naras) das an’ dk
K |/ Ny J Ao

1/2
/ [/ / a;? | f(nyrackg)|? da an}
K LJNy J Ao
1/2
X {/ / a;? | f(naras)|? da an} dk
Ny J Ao

1/2
< W[ | [ [ airmakoP do,du v 26s)

We will now write kg = no(kg)ao(kg)k(kg), with n.(kg) € N, a.(kg) € A, and
k(kg) € K. Then

[(mg)f. )] =

IA

IN

f(naackg) = f(naraono(kg)ao(kg)k(kg)) = f(nar(acns(kg)as asas(kg)), (2.69)
with a.n.(kg)a;! € N,. Now observe that N, = N x N, and hence
aon0<k9)ao_l = n(ao, k, g)nM(am k, g)

with n(ao, k, g) € N and nys(a., k,g) € Ny. Plugging this into equation (2.69) we
get that

f(nyackg) = fnun(aos, k, g)na(ao, k, g)acas(kg))
= f((nMn(afoakag)n;j)nMnM(aoakag)aoao(kg))
= f(nMnM(aoakvg)aoafo(kg))7



96
where the last equality follows from the fact that nyn(a., k,g)n,; € N. Therefore
1/2
/ {/ / a;??| f(narackg) | da, an} dk.
K LINy J Ao
1/2
- / [/ / ay??| f(narmar(ao, k, g)acas(kg))|* dao an} dk.
K Ny o
1/2
= / [/ / ag* a.(kg)*|f (naras)|? das an] dk.
K L/ Ny J Ao

1/2
= [atbgrar] [ [ i) da o
— =S (2.70)

The lemma now follows from (2.66), (2.67), (2.69) and (2.70). O



Chapter 3

Applications: Howe duality

3.1 Howe duality and the relative Langlands pro-

gram

Let G be the set of &-points of a reductive algebraic group defined over a local
field k. Associated to this group G we can find the dual group G, which is a
complex reductive algebraic group, and its L-group G, which is a semi-direct
product of the absolute Galois group of & with G. Let WDy be the Weil-Deligne
group of &. In their current form, the local Langlands conjectures establish that

there is a natural finite to one correspondence between the sets

Conjugacy classes of Equivalent classes of
L-parameters — Irreducible smooth
¢: WDy — G representations of G

Let “H be a subgroup of the L-group of G, and consider the set of L-parameters
¢ that factor through “H. The natural question here is: What is the set of
irreducible representations of G associated to this L-parameters? The general

consensus is that there should be a subgroup, HcC G, such that

¢:WDg —> L@ Irreducible representations
N O SN e of G with an H
Lo invariant functional

97
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One can also ask the same question in the opposite direction: Given a subgroup
HC G, satisfying certain properties, is there an “H C G such that we have a
correspondence like the mentioned above?

In recent years there has been a lot of progress in formalizing this ideas. For
example, if X is a G-spherical variety, then Gaitsgory and Nadler 7] have defined a
subgroup Gy, of the dual group G of G, that encodes many aspects of the geometry
and the representation theory of the variety X. This result set into motion the
so called “relative Langlands program”, which aims to set a framework for the study
of H -distinguished representations of G. Building on this ideas, Sakellaridis and
Venkatesh [20], have stated a conjecture that relates the harmonic analysis of the
space L?(X) with the group Gx. The ideal result in this direction is the following:

Given a G-spherical variety X, we want to find a group Gx and a correspondence
0:AcC Gy — G,
between the unitary duals of G and Gy, with the following properties:
1. If m € A has L-parameter ¢ : WD; — "G, then ©(r) has L-parameter

io¢: WDg — "G, where i is the natural inclusion of “G'x into *G.

2. We have the following spectral decomposition:

IHX) = [ M(r) @ O(m) du(m)
where p is the Plancherel measure of Gx restricted to A, and M () is some
multiplicity space.
We will consider the following classical example to illustrate this ideas. Let
X =5"1~0(n-1,R)\O(n,R),

where S"! is the (n — 1)-th sphere, and O(n,R) is the group of n x n orthogonal
matrices. We want to understand the decomposition of L?(S™!) under the natural
action of O(n,R).

Let C[xy,...,x,] be the space of complex valued polynomials in n variables.
This space has a natural action of O(n,R) and, from classical invariant theory,

Clas, ..., z.) = @ H" @ C[r?),

k>0
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where 72 = 2?2 + - - 22 and

= {p(x) € Clxy,...,x,]|degp(z) = k, and Ap = 0}.

Here ) )
0 0
A=—+-- 4+ —
x? oz
is the Laplace operator. The spaces H* are irreducible under the action of O(n,R)
and, if we restrict this polynomials to the unit circle, we can identify them with
square integrable functions on S™~!. The functions obtained this way are the

so called spherical harmonics, and it’s a classical result that

Sn 1 @Hk

k>0
Let
0 0
e = r2/2:(x%+---+xn)/2
e B2= (ot )2
B - 023 o2’

Then, an easy calculation shows that [h,e] = 2e, [h, f] = —2f and [e, f] = h, i.e.,
sl(2,C) ~ Spanc{h,e, f}. Observe that the action of this differential operators
commutes with the action of O(n,R). Furthermore, for all k£ > 0,

H* ® C[r?] = D

+n,

where DL% is an irreducible, lowest weight representation of si(2, C) with lowest
weight k + 5. This representation integrates to a discrete series representation of
SL(2,R), the double cover of SL(2,R).

Let A ={Dy, .|k >0} C (SL(2,R))" and define

©:4— O(n,R),

O(Dyf,») = H".
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Then, since the D,:ng are square integrable, it’s clear that
2

L3(sm 1) = / O () dyu().

where y1 is the Plancherel measure of 5’7}(2, R).

We will now describe a family of examples of this kind of correspondence where
the space X is not a spherical variety. What this examples will show is that the
ideas discussed here have applications beyond the spherical variety setting. To
construct this examples we will use Howe’s theory of dual pairs.

Let :S';)(n,]R) be the double cover of the symplectic group Sp(n,R). There is
a special representation of %(n, R) on L?(R™) called the oscillator representation
[10]. Let G1,Gs C gj/a(n, R) be two reductive subgroups. We say that they form a
reductive dual pair if one group is the centralizer of the other one in %(n, R) and
viceversa. In this case Howe duality theory states that, if we restrict the oscillator
representation to the subgroup generated by GG; and G, then

L(R") = / 7 © O(r)du(r),

for some measure p, where ©(7) is an irreducible representation of Go. Even more,

We will focus on the dual pair Sp(m,R) x O(p,q) C Sp(m(p+ q),R). Let’s start
with the case m = 1. In this case, Howe has shown that, if p, ¢ > 2,

Wh(r) @ O(x) du(m),

SL(2,R)

L0 - 1.0\ 00 = |
where p is the Plancherel measure of Sp(m,R), and
Why(m) ={X:V; — C| A(m(n)v) = x(n)A(v) for all n € N},

for some generic character y of the unipotent radical, N, of some minimal parabolic

subgroup P = M AN. On the other hand, Wallach [24] has shown that

Whs(m) @ m dp(r),

SL(2,R)

I3(\N\SL2 R); y) = /
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where

L*(N\SL(2,R); x) = {f : SL(2,R) — C

f(ng) = Xr,s(n)f(g) and } .
fN\S‘E(ZR) |f(9)?dNg < o0

In other words the Plancherel measure of L?(O(p,q — 1)\O(p,q)) can be seen as
the pullback, under the ©-lift, of L2(N\SL(2, R): x).

We will now consider the dual pair Sp(m,R) x O(p,q) C Sp(m(p+q),R), with
m > 1. We will assume that we are in the stable range, that is, p,q > m. Let
P = MAN be a Siegel parabolic subgroup with given Langlands decomposition.
Let x be a generic character of V. In this case generic means that the orbit of x

in N under the action of M is open. Let
My = {m e M|x(m™'nm) = x(n)}
be the stabilizer of x in M. Then there is a natural action of M, x G on

f(ng) = x(n)f(g) and } |

L*(N\Sp(m,R); x) = {f : Sp(m,R) — C
fN\%(m,R) |f(9)PdNg < o0

Theorem 3.1.1. As a M, x G-module
L*(N\Sp(m,R); x // m) T Qmdy(r)du(r),

where p, v, are the Plancherel measures of %(m,R) and M, respectively, and
W, -(m) is some multiplicity space that depends on x and 7. Furthermore, if M,

is compact, then W, (7)) =2 Wh,, ,(7), where
Why(m) ={\: Ve — Vo | AN(w(mn)v) = x(n)7(m)A(v) for allm € M,, n € N}.

The purpose of this chapter is to use the explicit formulas for the action of

P x G on the oscillator representation and this result to show that

Theorem 3.1.2. If r + s = m, then there exists a generic character, x,s, of N

such that

LXO(p —r.q— s)\O(p, q) /S R/M Wy,or(m) @ F @ 7 dv(7) dpu(m).

Xr,s
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3.2 Howe Duality for the Symplectic and the Or-
thogonal Group

Consider the dual pair (Sp(m,R),O(p,q)) C Sp(mn,R), with n = p + ¢, and
p > q > 2m. The last condition asserts that we are in the stable range. Let
P = MN be the Siegel parabolic subgroup of Sp(m,R) with given Langlands
decomposition. In the theory of the oscillator representation there are very explicit
formulas for the action of P x O(p,q) on L*(R™") [1, 16, 17, 18]. To simplify the
exposition we will only consider the case where n is even. The case n odd is very
similar, but involves taking a double cover of Sp(m,R). To write down the explicit
action on the oscillator representation we will identify R™" with Hom(R™ R"),

and we will fix a unitary character ¢ of R. The action is then given by

( ! )I( -90> (1) = w(trXTtIpﬂT)go(T) (3.1)
< 8 At -so) (T) = |det A|2p(TA), AecGL(m,R)  (3.2)
(- T) = olg'T),  ge0@ma) (33)

where T' € Hom(R™,R"). Using this formulas we will describe L*(Hom(R™,R"))
as a representation of P x O(p,q). Let

U= {T € Hom(R™,R")

T is of maximal rank and the inner }

product on T(R™) is non-degenerated

Observe that U C Hom(R™,R") is open, dense, and its complement has mea-

sure 0. Let r, s > 0 be a pair of integers such that » + s = m, and define
U,s ={T € U|T(R™) has signature (r,s)}.

It’s then clear that

U= U Ur,s;

r+s=m

and hence
L*(Hom(R™,R") =  L*(U,,). (3.4)

r4+s=m
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By looking at the formulas for the action of P x O(p,q) on L?*(Hom(R™,R"™)), it
is easy to check that the subspaces L?(U,.,) are P x O(p, q) invariant.
We will now describe L?(U, ) as a P x O(p, ¢)-module. Let T,., € U, be given

by T, se; = €p—_r+i, and define a character x, s on N by the formula

I X )
Xrs | ) = X T g T = b X

Let
M,y ={m & M |x,s(mnm™") = x,.(n)}

be the stabilizer of x, s in M. We will now identify M with GL(m,R). Observe
that then M, ¢ gets identified with O(r,s). On the other hand we can define an
embedding of O(r,s) x O(p — r,q — s) into O(p, q) by identifying O(p — r,q — s)
with the subgroup of O(p,q) that fixes every element in the image of 7, , and
O(r, s) with the subgroup that fixes every element in the orthogonal complement
of the image of T,.,. With this identifications in mind, let H, ; be the stabilizer
of T, in M x O(p,q). Observe that there is a subgroup, that we will denote
by AO(r,s), of H,, such that AO(r,s) C O(r,s) x O(r,s) C M x O(p,q), and
H,s = (AO(r,s) x O(p—r,q — s))N. Then from equations (3.1), (3.2) and (3.3)

we have that

[A(U,s) = Indy " 1@ oo

~ PxO(p.q)
= In d (AO(r,s)xO(p—r,q—s))N 1®1e® Xr,s
=~ Indp, gn L (O(p —r,q — s)\O(p, q)) @ Xrs, (3.5)

where O(p, q) acts on the right on L*(O(p — r,q — s)\O(p,q)) and O(r, s) acts on
the left. Then, from equations (3.4) and (3.5),

L*(Hom(R™,R") = @ Indg, o L*(Op — . = s)\O(p,q)) ® Xrs.  (3.6)

r+s=m
Now we will describe the mixed model of the oscillator representation. Observe
that, since p, ¢ > 2m, there exists a polarization R" = X @ U @Y such that X and
Y are totally isotropic complementary subspaces, and dim X = dimY = 2m. Let
B = Stabx = {g € O(p,q) | gX C X} be the stabilizer of X, and let B = MgNp
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be its Langlands decomposition. We will now describe the mixed model of the
oscillator representation relative to the polarization R* = X & U @ Y. Observe
that R™ = R?™ @ R?™ @ R™ @ R"4", Identifying R?™ ® R?™ and R™ @ R*~4"
with End(R*") and Hom(R™, R"~4™), respectively, we have that

LA(R™) = L*(End(R*™)) @ L*(Hom(R™,R™™*™)),

where we interpretate L?(End(R?™))® L*(Hom(R™, R"~4™)) as the space of square
integrable functions on End(R*™) with values in L?( Hom(R™, R"~%™)). Now iden-
tifying Mp with GL(2m,R) x O(p —2m,q—2m) = GL(X) x O(U), we have that
the action of Sp(m,R) x Mg is given by

(A-¢)(T)(S) = |det A ™™p(AT'T)(S) AecGLEm,R)  (3.7)
(h-o)(T)(S) = o(h'T)(S). (3.8)
(g-0)(T)(S) = [©(9)d(Tg)l(S) g€ Sp(m,R), (3.9)

where T € End(R*"), S € Hom(R™ R"*™) and (0, L*(Hom(R™ R"™)) is
the oscillator representation associated to the dual pair (Sp(m,R),O(U)). Now
observe that GL(2m,R) C End(R?™) is open, dense, and its complement has mea-
sure 0. Therefore, if I5,, € End(R?™) is the identity map, then as a Sp(2m,R) x
GL(2m,R)-module,

LA(R™) = Indey ™81 @ [2(Hom(R™, R*™))

Stab[2m

= / T [Tldg}f((rif%;R)W* ® L*(Hom(R™,R"™*™)) du(r),
Sp(m,R)"

where p is the Plancherel measure of Sp(m,R). Hence, from the abstract theory
of Howe duality,
PE™ )0 = [ 7lp© O(m) du(m) (3.10)
Sp(m,R)"

In the stable range the representation ©(m) has been determined by the work of
Jian-Shu Li [12] among others. We are thus left with the problem of decomposing
an irreducible tempered representation of Sp(m,R) when restricted to P.

Now let’s look at L?(Sp(m,R)) as a P x Sp(m,R)-module. We claim that we
have an isomorphism

L*(Sp(m,R)) = L*(N, E, \),
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where E is a measurable bundle over N with fibers E, = Ind’? (mB) v for any given
X € N, and ) is a Haar measure on N. The isomorphism is given in the following
way: Given f € L?(Sp(m,R)), define sy € L2(N, E, \) by

5100)(g) = /N A(n) ™ f(ng) dn,

where dn is the usual Lebesgue measure on N. The way we should interpret the
above formula is that we have an isomorphism L2(Sp(m, R)) 2 Ind57™® Ind¥ 1 =
Ind?™® [2(N), and in the last expression we take the Fourier transform on
L2(N). With this convention the measure A on N is the measure dual to dn. Now
by definition

sr, 1 (00() = /N () Ry, f(ng) dn = / \(1) " f(ngar) dn

5 00(991) = (Ryys; 00)(9).

and

s100) =[x

N

= /Xpnp )"'6(p) f(np~g) dn

x(n)~'L, f(ng) dn—/Nx(nYlf(p‘lnpp‘lg) dn

=z

= (n)~'o(p)f(np~g) dn

= d(p)ss( )P 1) = [0(p) Lyps (0~ X)1(9),

2

where ¢ is the modular function of P. This means that the action of P x Sp(m,R)
on LQ(N, E,n) is given by a vector bundle action, and hence, if  is the set of open
orbits for the action of M on N , then

U .
r4+s=m

where (), ; is the orbit of the character x, , defined before. Therefore

L*(Sp(m,R)) = L*(N,E,\)
~ @ In dPXSp m,R) Ind}S'Vp(m,R) Xris

My s NxSp(m
r+s=m

PxS mR
P Indy e e LAAN\Sp(m, R); xrs).

r4+s=m

I
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But, then according to equation (2.57),

L*(Sp(m,R)) @ IndP” / / Wy, o () @ 78 @ mdn(7)d gty s (10),
rbs=m Sp(m,R)N JO(r,s)N
(3.11)

where 7 is the Plancherel measure of O(r, s) and p, s is the Bessel-Plancherel mea-

sure. On the other hand, the Harish-Chandra Plancherel theorem says that
L2(Sp(m, R)) = / |p ® 7 du(m). (3.12)
Sp(m,R)"

Now from equations (3.12) and (3.11) we conclude that

=@ [ W)@ty die), (313)
(@)

r+s=m (r,s)

From this and equation (3.10) we have that

L*(Hom(R™ R")) = / Tl O du(r

/ / Wy or (1) @ IndM NT
r+s=m

®O(r" ( )dum( ) (3.14)

1%

But then, from this and equation (3.6), we have that as an O(r, s) x O(p, ¢)-module

PO@-reN0ea) 2 [ [ W mer 00 dnir) ()

3.3 The Dual Pair (SL(2,R), O(V)) outside stable
range

The results obtained in the former section can be further refined when we

restrict ourselves to the case n =1, i.e., to the dual pair (SL(2,R), O(V)).

3.3.1 The case O(V) = O(n)

From classical invariant theory we know that as an SL(2,R) x O(n)-module

L*R") ~ PH @ ¢

k>0



107

where H* are the harmonic polynomials of degree k, and sl(2,R) acts via the

operators
e=1r?/2 f=-A/2, h=E+n/2

where F is the Euler operator.
In this case the f-correspondence relates the irreducible representations of O(n)

on H* with the irreducible representations of SL(2,R) with lowest weight &+ n/2.

3.3.2 The case O(V) = O(p, 1)

We will now consider the dual pair (SL(2,R),O(p,1)). Once again we will
only consider the case where n = p + 1 is even, and leave to the reader the
modifications needed for the case where n is odd. Let P = MN C SL(2,R) be
the minimal parabolic subgroup consisting of all upper triangular matrices, with
given Langlands decomposition. Let {ey,...,e,} be the canonical basis of R", and
assume that we have an inner product (,) such that (e;,e;) =0if i # 7, (e;,e;) =1
for 1 < i < p, and (e,,e,) = —1. Then the oscillator representation associated
to the dual pair (SL(2,R),O(p,1)) can be realized on the space L*(R"), and the
action of P x O(p,1) is given by the following formulas:

([1 T '90> (v) = ¥((v,0)flv)  VrekR, (3.15)

([)\ s -go) (v) = [N"?p(\)  VAeR, (3.16)
(g-9)v) = wlg"lv)  VgeO(p1), (3.17)

where v € R". Let U = {v € R"|(v,v) # 0}. Then U is open, dense, and
its complement has measure 0. Observe that U = U, UU_, where U, = {v €
R"™| (v,v) > 0} and U_ = {v € R"| (v,v) < 0} . Hence

L*(R™) = L2(Uy) @ L*(U). (3.18)

We will identify O(p, R) with the subgroup of O(p, 1) that fixes e,,, O(p—1, 1) with
the subgroup of O(p, 1) fixing e;, and O(1,R) with the center of SL(2,R). We will
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also set H, = Stab., and H_ = Stab.,. Then, putting everything together, we get
that

10

LUy) = Indg "1 x

= IndoarnL*(O(p = 1,1\O(p, 1)) @ x, (3.19)
and
LXU.) = Ind9PY1 gy
= IndoamnL*(O(p, R\O(p, 1)) @ X, (3.20)
where

(L) e ([ ]) e e

Now we will describe the mixed model for the oscillator representation associ-
ated to a complete polarization R” = X®U®Y . Observe that dim X = dimY = 1.
Let B = Stabx = {g € O(p,1)|gX C X}, and let B = MpNg be a Langlands
decomposition. Observe that Mp = R* x O(p — 1,R), where R* = R — {0}.
Since R" = R? @ RP™!, we can identify L*(R") with L*(R?) ® L*(RP~'), which
we interpretate as the space of square integrable functions on R? with values on
L*(RP~1). With this conventions the action of SL(2,R) x Mp is given by the

following formulas:

A=) (@, 9)(v) = Ao e, A ly)(v)  for A € R, (3.21)
(h-¢)((z,9))(v) = o((z,y))(h"v)  for h € O(p—1,R), (3.22)
(9-0)((z,y)(v) = lwp-1(9)o((z,y)g)l(v),  for g € SL(2,R), (3.23)
where z, y € R, v € RP™! and (w,_ 1, L*(RP™!)) is the oscillator representation
associated to the dual pair (SL(2,R),O(p—1,R)). Now observe that R? — {0} and
RP~!—{0} are open dense subsets of R? and RP~!, respectively, and its complements

have measure 0. From this observation, and equations (3.21), (3.22) and (3.23) we

have that as an SL(2,R) x Mp-module

LAR™) = Ind 5 F 2(RFY @ v,
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where

(e

Let A{%1} be the subgroup of H whose projection onto R* is precisely {£1}.
Then

A€ R*} C SL(2,R) x R*.

LR = Indy ™ LR @
o ]nd?j\(,Q’R)XR*Indgﬁl}NL2(Sp_2) ® X

Indy"*®y @ Ind{L,, L2 (S772),

I

where SP~2 C RP™! is the p — 2-dimensional sphere. From all this formulas it is

immediate that

) peopy = [l © O(m) diy (), (3.24)
SL(2,R)"

where p, is the Plancherel-Whittaker measure of L*(N\SL(2,R); x).
Finally, from the usual Plancherel-Whittaker theorem [24] we have that if
(7, Hy) is a tempered representation of SL(2,R), then

7 p = Ind gy nWhy(7) © X @ Indb gyyWhs(m) @ X
But then, from equations (3.18), (3.19), (3.20) and (3.24), we have that
0 - 1)\ 1) = [ o V() 8 O diy () (3.25)
SLE2R)A

and
POEROEZ [ Widn oo dnm.  (32)

Observe that L?(O(p, R)\O(p, 1)) has no discrete spectrum. Effectively from equa-
tion (3.26) only the theta lift of a representation with a positive and a negative

whittaker model can appear in the spectral decomposition of L*(O(p,R)\O(p, 1)).
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