Representations of Parabolic Groups

Raul Gomez

August 19, 2010

Abstract

Some results on representations of parabolic groups. This is only a reference file.

1 Irreducible representations of Parabolic Groups

Theorem 1 Let P be a parabolic subgroup, and let $P=M N$ be its Langlands decomposition. If (π, H) is an irreducible unitary representation of P, then

$$
H \cong \operatorname{Ind}_{M_{\chi} N}^{P} \tau \chi \quad \text { with } \tau \in \hat{M}_{\chi}, \chi \in \hat{N}
$$

Proof. As an N-module, we have that

$$
H \cong \int_{\hat{N}} E_{\chi} d_{\nu}(\chi)
$$

where $E_{\chi} \cong L_{\chi} \otimes V_{\chi}, V_{\chi} \in \hat{N}$, and L_{χ} is a multiplicity space. This means that there exists a vector bundle

and a measure ν on \hat{N}, such that

$$
H \cong L^{2}(\hat{N}, E, \nu):=\left\{s: \hat{N} \rightarrow E \mid s(\chi) \in E_{\chi}, \int_{\hat{N}}\|s(\chi)\|^{2} d_{\nu}(\chi)<\infty\right\}
$$

under the action

$$
(\pi(n) \cdot s)(\chi)=\chi(n) s(\chi)
$$

Under this isomorphism we can extend this action of N on $L^{2}(\hat{N}, E, \nu)$ to an action of P on the same space.

Let $m \in M$, and define

$$
\begin{gathered}
E^{m} \\
\downarrow \\
\hat{N}
\end{gathered}
$$

to be the vector bundle such that $E_{\chi}^{m}=E_{m \cdot \chi}$. Define a measure ν_{m} on \hat{N} by

$$
\nu_{m}(X)=\nu(m \cdot X) \quad \text { for } X \subset \hat{N} \text { a measurable set }
$$

and define

$$
\tau(m): L^{2}(\hat{N}, E, \nu) \longrightarrow L^{2}\left(\hat{N}, E^{m}, \nu_{m}\right)
$$

by

$$
(\tau(m) s)(\chi)=(\phi(m) s)(m \cdot \chi)
$$

We claim that $\tau(m)$ is an isometry. Effectively

$$
\begin{aligned}
\|\tau(m) s\|_{m}^{2} & =\int_{\hat{N}}\|(\tau(m) s)(\chi)\|^{2} d \nu_{m}(\chi) \\
& =\int_{\hat{N}}\|(\pi(m) s)(m \cdot \chi)\|^{2} d_{\nu}(m \cdot \chi) \\
& =\int_{\hat{N}}\|(\pi(m) s)(\chi)\|^{2} d_{\nu}(\chi) \\
& =\| \pi(m) s)\left\|^{2}=\right\| s \|^{2}
\end{aligned}
$$

where the last equality comes from the fact that the action of P is unitary. Now if we define an action of N on $L^{2}\left(\hat{N}, E^{m}, \nu_{m}\right)$ by

$$
\left(\pi_{m} \cdot s\right)(\chi)=\chi(n) s(\chi)
$$

then $\tau(m)$ becomes an N-intertwiner. Effectively,

$$
\begin{aligned}
\tau(m)(\pi(n) s)(\chi) & =\pi(m) \pi(n) s(m \cdot \chi) \\
& =\pi\left(m n m^{-1}\right)(\pi(m) s)(m \cdot \chi) \\
& =(m \cdot \chi)\left(m n m^{-1}\right)(\pi(m) s)(m \cdot \chi) \\
& =\chi\left(m^{-1} m n m^{-1} m\right)(\pi(m) s)(m \cdot \chi) \\
& =\chi(n)(\tau(m) s)(\chi)=\left(\pi_{m}(n) \tau(m) s\right)(\chi) .
\end{aligned}
$$

But now since N is a CCR group the N-interwiner

$$
\tau(m): L^{2}(\hat{N}, E, \nu) \longrightarrow L^{2}\left(\hat{N}, E^{m}, \nu_{m}\right)
$$

should come from a morphism of vector bundles

$$
\tilde{\tau}(m): E \longrightarrow E^{m}
$$

that is, $(\tau(m) s)(\chi)=\tilde{\tau}(m) s(\chi)$, and hence

$$
\begin{aligned}
(\tau(m) s)(\chi) & =\tilde{\tau}(m) s(\chi) \\
(\pi(m) s)(m \cdot \chi) & =\tilde{\tau}(m) s(\chi)
\end{aligned}
$$

which says that

$$
(\pi(m) s)(\chi)=\tilde{\tau}(m) s\left(m^{-1} \cdot \chi\right)
$$

Now since $L^{2}(\hat{N}, E, \nu)$ is irreducible as a representation of P, the support of ν should be contained in a unique M-orbit on \hat{N}, and hence

$$
L^{2}(\hat{N}, E, \nu) \cong L^{2}\left(M / M_{\chi}, E\right) \cong \operatorname{Ind}_{M_{\chi} N}^{P} E_{\chi}
$$

Using again that $L^{2}(\hat{N}, E, \nu)$ is irreducible we conclude that $E_{\chi} \cong \tau \chi$ with $\tau \in \hat{M}_{\chi}, \chi \in \hat{N}$. Putting all of this together we get that

$$
H \cong \operatorname{Ind}_{M_{\chi} N}^{P} \tau \chi
$$

as we wanted to show.

2 Decomposition of $L^{2}\left(P, d_{r} p\right)$ under the action of $P \times P$

We will now decompose $L^{2}\left(P, d_{r} p\right)$ under the action of $P \times P$ given by

$$
\left(p_{1}, p_{2}\right) \cdot f=\delta\left(p_{1}\right)^{-1} L_{p_{1}} R_{p_{2}} f
$$

As a left N-module

$$
\begin{aligned}
L^{2}(P) & \cong \operatorname{Ind}_{N}^{P} \operatorname{Ind}_{1}^{N} 1 \cong \operatorname{Ind}_{N}^{P}\left(L^{2}(N)\right) \\
& \cong \operatorname{Ind}_{N}^{P}\left(\int_{\hat{N}} H S\left(V_{\chi}\right) d \mu(\chi)\right. \\
& \cong \int_{\hat{N}} \operatorname{Ind}_{N}^{P} H S\left(V_{\chi}\right) d \mu(\chi) \cong L^{2}(\hat{N}, E, \mu)
\end{aligned}
$$

with $E_{\chi}=H S\left(V_{\chi}\right)$. The isomorphism is given in the following way: Given $f \in L^{2}(P)$, define $s_{f} \in L^{2}(\hat{N}, E, \nu)$ by

$$
s_{f}(\chi)(p)=\int_{N} \chi(n)^{-1} f(n p) d n
$$

Then

$$
\begin{aligned}
s_{R_{p_{1}} f}(\chi)(p) & =\int_{N} \chi(n)^{-1} R_{p_{1}} f(n p) d n=\int_{N} \chi(n)^{-1} f\left(n p p_{1}\right) d n \\
& =s_{f}(\chi)\left(p p_{1}\right)=\left(R_{p_{1}} s_{f}(\chi)\right)(p)
\end{aligned}
$$

and

$$
\begin{aligned}
s_{L_{p_{1}}} f(\chi)(p) & =\int_{N} \chi(n)^{-1} \delta\left(p_{1}\right)^{-1} L_{p_{1}} f(n p) d n \\
& =\int_{N} \chi(n)^{-1} \delta\left(p_{1}\right)^{-1} f\left(p_{1}^{-1} n p_{1} p_{1}^{-1} p\right) d n \\
& =\int_{N} \chi\left(p_{1} n p_{1}^{-1}\right)^{-1} f\left(n p_{1}^{-1} p\right) d n \\
& =\int_{N}\left(p_{1}^{-1} \chi\right)(n)^{-1} f\left(n p_{1}^{-1} p\right) d n \\
& =s_{f}\left(p_{1}^{-1} \chi\right)\left(p_{1}^{-1} p\right)=\left[L_{p_{1}} s_{f}\left(p_{1}^{-1} \chi\right)\right](p)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L^{2}(\hat{N}, E, \mu) & \cong L^{2}(\hat{N} / M, E, \tilde{\mu}) \\
& \cong \int_{\hat{N} / M} \operatorname{Ind}_{M_{\chi} N \times P}^{P \times P} \operatorname{Ind}_{N}^{P} H S\left(V_{\chi}\right) d \tilde{\mu}(\chi) \\
& \cong \int_{\hat{N} / M} \operatorname{Ind}_{M_{\chi} N}^{P}\left(\int_{\hat{M}_{\chi}} \tau^{*} \chi^{*} \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau \chi\right) d \nu(\tau) d \tilde{\mu}(\chi) \\
& \cong \int_{\hat{N} / M} \int_{\hat{M}_{\chi}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau \chi d \nu(\tau) d \tilde{\mu}(\chi)
\end{aligned}
$$

3 Decomposition of $L^{2}(G)$ under the action of $P \times G$

We will now consider $L^{2}(G)$ as a $P \times G$ module. Reasoning as in the $L^{2}(P)$ case we have an isomorphism

$$
L^{2}(G)=L^{2}(\hat{N}, E, \mu)
$$

with $E_{\chi}=\operatorname{Ind}_{N}^{P} H S\left(V_{\chi}\right)$ given in the follwing way: given $f \in L^{2}(G)$, define $s_{f} \in L^{2}(\hat{N}, E, \mu)$ by

$$
s_{f}(\chi)(g)=\int_{N} \chi(n)^{-1} f(n g) d n
$$

Then

$$
\begin{aligned}
s_{R_{g_{1}} f}(\chi)(g) & =\int_{N} \chi(n)^{-1} R_{g_{1}} f(n g) d n=\int_{N} \chi(n)^{-1} f\left(n g g_{1}\right) d n \\
& =s_{f}(\chi)\left(g g_{1}\right)=\left(R_{g_{1}} s_{f}(\chi)\right)(g)
\end{aligned}
$$

and

$$
\begin{aligned}
s_{L_{p} f}(\chi)(g) & =\int_{N} \chi(n)^{-1} L_{p} f(n g) d n=\int_{N} \chi(n)^{-1} f\left(p^{-1} n p p^{-1} g\right) d n \\
& =\int_{N} \chi\left(p n p^{-1}\right)^{-1} \delta(p) f\left(n p^{-1} g\right) d n \\
& =\int_{N}\left(p^{-1} \chi\right)(n)^{-1} \delta(p) f\left(n p^{-1} g\right) d n \\
& =\delta(p) s_{f}\left(p^{-1} \chi\right)\left(p^{-1} g\right)=\left[\delta(p) L_{p} s_{f}\left(p^{-1} \chi\right)\right](g)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L^{2}(\hat{N}, E, \mu) & \cong L^{2}(\hat{N} / M, E, \tilde{\mu}) \\
& \cong \int_{\hat{N} / M} \operatorname{Ind}_{M_{\chi} N \times G}^{P \times G} \operatorname{Ind}_{N}^{P} H S\left(V_{\chi}\right) d \tilde{\mu}(\chi) \\
& \cong \int_{\hat{N} / M} \operatorname{Ind}_{M_{\chi} N \times G}^{P \times G}\left(\int_{\hat{M}_{\chi}} \tau^{*} \chi^{*} \otimes \operatorname{Ind}_{M_{\chi} N}^{G} \tau \chi\right) d \nu(\tau) d \tilde{\mu}(\chi) \\
& \cong \int_{\hat{N} / M} \int_{\hat{M}_{\chi}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes L^{2}\left(M_{\chi} N \backslash G ; \tau \chi\right) d \nu(\tau) d \tilde{\mu}(\chi) \\
& \cong \int_{\hat{N} / M} \int_{\hat{M}_{\chi}} \int_{\hat{G}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes W_{\chi, \tau}(\pi) \otimes \pi d \nu(\tau) d \tilde{\mu}(\chi) d \tilde{\eta}(\pi)
\end{aligned}
$$

On the other hand

$$
\left.L^{2}(G) \cong \int_{\hat{G}} \pi^{*}\right|_{P} \otimes \pi d \eta(\pi)
$$

Hence $\tilde{\eta}$ is in the measure class of the Plancherel measure, and

$$
\left.\pi^{*}\right|_{P} \cong \int_{\hat{N} / M} \int_{\hat{M}_{\chi}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes W_{\chi, \tau}(\pi) d \nu(\tau) d \tilde{\mu}(\chi)
$$

