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1. Introduction

The spectral decomposition of the unitary representation L2(H\G) when X = H\G is a sym-
metric space has been studied extensively, especially in the case when G is a real Lie group. In
particular, through the work of many authors (such as [7], [20], [26], [3] and [1]), one now has the
full Plancherel theorem in this setting.

In a recent preprint [23], Sakellaridis and Venkatesh considered the more general setting where
X = H\G is a spherical variety and G is a real or p-adic group. Motivated by the study of periods
in the theory of automorphic forms and the comparison of relative trace formulas, they formulated
an approach to this problem in the framework of Langlands functoriality. More precisely, led by
and refining the work of Gaitsgory-Nadler [9] in the geometric Langlands program, they associated
to a spherical variety X = H\G (satisfying some additional technical hypotheses)

• a dual group ǦX ;
• a natural map ι : ǦX × SL2(C) −→ Ǧ

The map ι induces a map from the set of tempered L-parameters of GX to the set of Arthur
parameters of G, and if one is very optimistic, it may even give rise to a map

ι∗ : ĜX −→ Ĝ

where GX is a (split) group with dual group ǦX and ĜX and Ĝ refer to the unitary dual of the
relevant groups. Assuming for simplicity that this is the case, one has the following conjecture:

Sakellaridis-Venkatesh Conjecture

One has a spectral decomposition

L2(H\G) ∼=

∫

bGX

W (π)⊗ ι∗(π) dµ(π)

where µ is the Plancherel measure of ĜX and W (π) is some (finite-dimensional) multiplicity space.
The multiplicity space W (π) should be related to the space of continuous H-invariant functionals
on the representation ι∗(π).

In particular, the class of the spectral measure of L2(H\G) is absolutely continuous with respect

to that of the pushforward by ι∗ of the Plancherel measure on ĜX , and its support is contained in
the set of those Arthur parameters of G which factor through ι. Moreover, from the point of view
of Arthur parameters, the multiplicity space should be related to the number of inequivalent ways
an Arthur parameter valued in Ǧ can be lifted to ǦX (i.e. factored through ι).

The main purpose of this paper is to verify the above conjecture in many cases when H\G,
or equivalently GX , has low rank, and to specify the multiplicity space W (π). In particular, we
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demonstrate this conjecture for many cases when GX has rank 1, and also some cases when GX has
rank 2 or 3 (see the tables in [23, §15 and §16]). More precisely, our main result is:

Theorem 1. The conjecture of Sakellaridis-Venkatesh holds for the spherical varieties X = H\G
listed in the following tables.

X GLn−1\GLn SOn−1\SOn Sp2n−2\Sp2n

GX GL2 S̃L2 SO(4)

Table 1. Classical cases

X SO3\SL3 Sp6\SL6 SL3\G2 (J, ψ) \G2 SU3\Spin7

GX S̃L3 SL3 S̃L2 PGL3 (Spin3 × Spin5)/∆µ2

X G2\Spin7 G2\Spin8 Spin9\F4 F4\E6

GX SL2 SL3
2/∆µ2 PGL2 SL3

Table 2. Exceptional cases

For the classical cases, the precise results are contained in Theorem 6 in §3.8 and the ensuing
discussion in §3.9. We note that Theorem 6 gives the spectral decomposition, in the spirit of the
Sakellaridis-Venkatesh conjecture, of the so-called generalized Stiefel manifolds, which are homoge-
neous but not necessarily spherical varieties. The exceptional cases are covered in §8.4 (Theorem
16), §8.5 and §9. We note that over R, Kobayashi has given in [15] an explicit description of the dis-
crete spectrum of the generalized Stiefel manifolds in terms of Aq(λ) modules; he has also described
in [16] the spectrum of certain special spherical varieties such as SL3\G2 which can be related to
symmetric spaces (as we explain in §4.4). His viewpoint is quite disjoint from that of this paper.

Theorem 1 is proved using the technique of theta correspondence. More precisely, it turns out
that for the groups listed in the above table, one has a reductive dual pair

GX ×G ⊂ S

for some larger group S. One then studies the restriction of the minimal representation of S to the
subgroup GX ×G. In the context of theta correspondence in smooth representation theory, one can
typically show the following rough statement:

A representation π of G has ψ-generic (and hence nonzero) theta lift to GX

m

π has nonzero H-period.

Our main theorem is thus the L2-manifestation of this phenomenon, giving a description of L2(H\G)
in terms of L2(GX ).

This idea is not really new: a well known example of this kind of result is the correspondence
between the irreducible components of the spherical harmonics on Rn under the action of O(n,R),

and holomorphic discrete series of the group S̃L(2,R), the double cover of SL(2,R). Another ex-
ample is given by the classical paper of Rallis and Schiffmann [21] where they used the oscillator
representation to relate the discrete spectrum of L2(O(p, q−1)\O(p, q)) with the discrete series rep-

resentations of S̃L(2,R). Later, Howe [12] showed how these results can be inferred from his general
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theory of reductive dual pairs, and essentially provided a description of the Plancherel measure of

L2(O(p, q − 1)\O(p, q)) in terms of the representation theory of S̃L(2,R). Then Ørsted and Zhang
[30] proved a similar result for the space L2(U(p, q − 1)\U(p, q)) in terms of the representation
theory of U(1, 1). We give a more steamlined treatment of these classical cases in Section 2, which
accounts for Table 1. The rest of the paper is then devoted to the exceptional cases listed in Table
2.
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2. Classical Dual Pairs

We begin by introducing the classical dual pairs.

2.1. Division algebra D. Let k be a local field, and let | · | denote its absolute value. Let D = k,
a quadratic field extension of k or the quaternion division k-algebra, and let x 7→ x be its canonical
involution. The case whenD is the split quadratic algebra or quaternion algebra can also be included
in the discussion, but for simplicity, we shall stick with division algebras. We have the reduced trace
map Tr : D → k and the reduced norm map Q : D → k. If D 6= k, one has Tr(x) = x+ x ∈ k and
Q(x) = x · x ∈ k.

2.2. Hermitian D-modules. Let V and W be two right D-modules. We will denote the set of
right D-module morphisms between V and W by

HomD(V,W ) = {T : V −→W |T (v1a+ v2b) = T (v1)a+ T (v2)b for all v1, v2 ∈ V , a, b ∈ D}.

In the same way, if V and W are two left D-modules, we set

HomD(V,W ) = {T : V −→W | (av1 + bv2)T = a(v1)T + b(v2)T for all v1, v2 ∈ V , a, b ∈ D}.

If V = W , we will denote this set by EndD(V ). Notice that for right D-module morphisms we are
putting the argument on the right, while for left D-module morphisms we are putting it on the left.

In general, for every statement involving right D-modules one can make an analogous one involv-
ing left D-modules. From now on, we will focus on right D-modules, and we will let the reader with
the task of making the corresponding definitions and statements involving left D-modules. Set

GL(V,D) = {T ∈ EndD(V ) |T is invertible}.

When it is clear from the context what the division algebra is, we will just denote this group by
GL(V ).

Let V ′ be the set of right D-linear functionals on V . There is a natural left D-module structure
on V ′ given by setting

(aλ)(v) = aλ(v), for all a ∈ D, v ∈ V , and λ ∈ V ′.
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Observe that with this structure, W ⊗D V ′ is naturally isomorphic to HomD(V,W ) as a k-vector
space. Given T ∈ HomD(V,W ), we will define an element in HomD(W ′, V ′), which we will also
denote T , by setting (λT )(v) := λ(Tv). This correspondence gives rise to natural isomorphisms
between EndD(V ) and EndD(V ′) and between GL(V ) and GL(V ′).

Definition 2. Let ε = ±1. We say that (V,B) is a right ε-Hermitian D-module, if V is a right
D-module and B is an ε-Hermitian form, i.e B : V × V −→ D is a map such that

(1) B is sesquilinear. That is, for all v1, v2, v3 ∈ V , a, b ∈ D,

B(v1, v2a+ v3b) = B(v1, v2)a+B(v1, v3)b and B(v1a+ v2b, v3) = aB(v1, v3) + bB(v2, v3).

(2) B is ε-Hermitian. That is,

B(v,w) = εB(w, v) for all v,w ∈ V .

(3) B is non-degenerate.

Usually, 1-Hermitian D-modules are simply called Hermitian, while −1-Hermitian D-modules are
called skew-Hermitian. To define left ε-Hermitian D-modules (V,B), we just have to replace the
sesquilinear condition by

B(av1 + bv2, v3) = aB(v1, v3) + bB(v2, v3) and B(v1, av2 + bv3) = B(v1, v2)a+B(v1, v3)b,

for all v1, v2, v3 ∈ V , a, b ∈ D.
Given a right ε-Hermitian D-module (V,B), we will define

G(V,B) = {g ∈ GL(V ) |B(gv, gw) = B(v,w) for all v, w ∈ V },

to be the subgroup of GL(V ) preserving the ε-Hermitian form B. When there is no risk of confusion
regarding B, we will denote this group just by G(V ). Later on, we shall sometimes need use the
same notation to denote a covering group of G(V,B); see §2.4.

Given a right ε-Hermitian D-module (V,B), we can construct a left ε-Hermitian D-module
(V ∗, B∗) in the following way: as a set, V ∗ will be the set of symbols {v∗ | v ∈ V }. Then we
give V ∗ a left D-module structure by setting, for all v, w ∈ V , a ∈ D,

v∗ + w∗ = (v +w)∗ and av∗ = (va)∗.

Finally, we set

B∗(v∗, w∗) = B(w, v) for all v, w ∈ V .

In an analogous way, if V is a leftD-module, we can define a right D-module V ∗, and V ∗∗ is naturally
isomorphic with V . Given T ∈ EndD(V ), we can define T ∗ ∈ EndD(V ∗) by setting v∗T ∗ := (Tv)∗.
With this definition, it is easily seen that (TS)∗ = S∗T ∗, for all S, T ∈ EndD(V ). Therefore the
map g 7→ (g∗)−1 defines an algebraic group isomorphism between GL(V ) and GL(V ∗).

Now observe that the form B induces a left D-module isomorphism B♭ : V ∗ −→ V ′ given by
B♭(v∗)(w) = B(v,w) for v, w ∈ V . In what follows, we will make implicit use of this map to
identify this two spaces. With this identification we can think of T ∗ as a map in EndD(V ) defined
by v∗(T ∗w) := (v∗T ∗)(w), i.e, T ∗ is defined by the condition that

B(v, T ∗w) = B(Tv,w) for all v, w ∈ V .

Observe that this agrees with the usual definition of T ∗.

A D-submodule X ⊂ V is said to be totally isotropic if B|X×X = 0. If X is a totally isotropic
submodule, then there exists a totally isotropic submodule Y ⊂ V such that B|X⊕Y ×X⊕Y is non-
degenerate. If we set

U = (X ⊕ Y )⊥ := {u ∈ V |B(u,w) = 0 for all w ∈ X ⊕ Y },
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then V = X ⊕ Y ⊕ U , and B|U×U is non-degenerate. In this case we say that X and Y are totally

isotropic, complementary submodules. Observe that then B♭|Y ∗ : Y ∗ −→ X ′ is an isomorphism. As
before we will make implicit use of this isomorphism to identify Y ∗ with X ′.

2.3. Reductive dual pairs. Let (V,BV ) be a right εV -Hermitian D-module and (W,BW ) a right
εW -Hermitian D-module such that εV εW = −1. On the k-vector space V ⊗D W ∗ we can define a
symplectic form B by setting

B(v1 ⊗D λ1, v2 ⊗D λ2) = Tr(BW (w1, w2)B
∗
V (λ2, λ1)) for all v1, v2 ∈ V and λ1, λ2 ∈ V ∗.

Let

Sp(V ⊗D W ∗) = {g ∈ GL(V ⊗D W ∗, k) |B(gv, gw) = B(v,w) for all v, w ∈ V ⊗D W ∗}.

Observe that
Sp(V ⊗D W ∗) = G(V ⊗D W ∗, B) = G(V ⊗D W ∗).

Moreover, there is a natural map G(V )×G(W ) −→ Sp(V ⊗D W ∗) given by

(g1, g2) · v ⊗D λ = g1v ⊗ λg
∗
2 .

We will use this map to identify G(V ) and G(W ) with subgroups of Sp(V ⊗D W ∗). These two
subgroups are mutual commutants of each other, and is an example of a reductive dual pair.

2.4. Metaplectic cover. The group Sp(V ⊗DW
∗) has an S1- cover Mp(V ⊗DW

∗) which is called
a metaplectic group. It is known that this S1-cover splits over the subgroups G(V ) and G(W ),
except when V is an odd dimensional quadratic space, in which it does not split over G(W ). In this
exceptional case, we shall simply redefine G(W ) to be the induced double cover, so as to simplify
notation. We remark also that though the splittings (when they exist) are not necessarily unique,
the precise choice of the splittings is of secondary importance in this paper.

2.5. Siegel parabolic. Assume in addition that there is a complete polarization W = E⊕F, where
E, F , are complementary totally isotropic subspaces of W . We will use the εW -Hermitian form
BW to identify F ∗ with E′ by setting f∗(e) = BW (f, e). Observe that this identification induces an
identification between E∗ and F ′ given by

e∗(f) = f∗(e) = BW (f, e) = εWBW (e, f).

In what follows, we will use this identifications between F ∗ and E′, and between E∗ and F ′.

Let
P = {p ∈ G(W ) | p ·E = E}

be the Siegel parabolic subgroup of G(W ), and let P = MN be its Langlands decomposition. To
give a description of the groups M and N , we introduce some more notation.

Let A ∈ EndD(E). We will define A∗ ∈ EndD(F ), by setting, for all e ∈ E, f ∈ F ,

(1) BW (e,A∗f) = BW (Ae, f).

Now given T ∈ HomD(F,E), define T ∗ ∈ HomD(F,E) by setting, for all f1, f2 ∈ F ,

(2) BW (f1, T
∗f2) = εWBW (Tf1, f2).

Given ε = ±1, set
HomD(F,E)ε = {T ∈ HomD(F,E) |T ∗ = εT}.

It is then clear that HomD(F,E) = HomD(F,E)1 ⊕HomD(F,E)−1.

Now we have:

M =

{[
A

(A∗)−1

] ∣∣∣∣ A ∈ GL(E)

}
∼= GL(E)
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and

N =

{[
1 X

1

] ∣∣∣∣ X
∗ = −εWX

}
∼= HomD(F,E)−εW

.

2.6. Characters of N . Given a nontrivial character χ : k→ C× and Y ∈ HomD(E,F )−εW
, define

a character

χY

([
1 X

1

])
= χ(TrF (Y X)).

Here TrF is the trace of Y X : F −→ F seen as a map between k-vector spaces. The map Y 7→ χY

defines a group isomorphism between HomD(E,F )−εW
and N̂ .

Observe that the adjoint action of M on N induces an action of M on N̂ . Using the isomorphisms
of M ∼= GL(E) and N̂ ∼= HomD(E,F )−εW

, we can describe the action of M on N̂ by the formula

A · Y = (A∗)−1Y A−1 for all A ∈ GL(E), Y ∈ HomD(E,F )−εW
.

Given Y ∈ HomD(E,F )−εW
we can define a −ǫW -Hermitian form on E, that we will also denote

Y, by setting

Y (e1, e2) = e∗1(Y e2) = εWBW (e1, Y e2).

Hence the action of M on N̂ is equivalent to the action of GL(E) on sesquilinear, −εW -Hermitian
forms on E.

Let Ω be the set of orbits for the action of M on N̂ . Given Y ∈ HomD(E,F )−εW
, let O = OY

be its orbit under the action of GL(E) and set

MχY
= {m ∈M |χY (m−1nm) = χY (n) for all n ∈ N}.

Using the identification of M with GL(E), and of N̂ with HomD(E,F )−εW
, we see that

MχY
∼= {A ∈ GL(E) | (A∗)−1Y A−1 = Y } = {A ∈ GL(E) |Y = A∗Y A}.

3. Oscillator Representation and Theta Correspondence

After the preparation of the previous section, we can now consider the theta correspondence
associated to the dual pair G(V ) × G(W ) and use it to establish certain cases of the Sakellaridis-
Venkatesh conjecture for classical groups.

3.1. Oscillator representation. Fix a nontrivial unitary character χ of k. Associated to this
character, there exists a very special representation of the metaplectic group, called the oscillator
representation Π of Mp(V ⊗D W ∗). On restricting this representation to G(V ) ×G(W ), one may
write

(3) Π|G(W )×G(V ) =

∫

G(W )∧
π ⊗Θ(π) dµθ(π),

as a G(W ) × G(V )-module, for some measure µθ on G(W )∧ and where Θ(π) is a (possibly zero,
possibly reducible) unitary representation of G(V ). We shall call the map Θ the L2-theta corre-
spondence.

6



3.2. Smooth vs. L2-theta correspondence. One may consider the above restriction of the
oscillator representation in the category of smooth representations (the so-called smooth theta
correspondence). Namely, for π ∈ G(W )∧, let π∞ denote the subspace of smooth vectors of π. Then
one may consider the maximal π∞-isotypic quotient of Π∞ (the smooth representation underlying
Π), which has the form π∞ ⊗ Θ∞(π∞) for some smooth representation Θ∞(π∞) of G(V ), known
as the (big) smooth theta lift of π∞. It is known that Θ∞(π∞) is an admissble representation of
finite length. Moreover, unless k is a 2-adic field, one knows further that Θ∞(π∞) has a unique
irreducible quotient θ∞(π∞) (the small smooth theta lift of π∞); this is the so-called Howe duality
conjecture. In any case, we may define θ∞(π∞) to be the maximal semisimple quotient of Θ∞(π∞).

It is natural to wonder how the L2-theta correspondence and the smooth theta correspondence
are related. One can show using the machinery developed in Bernstein’s paper [2] that, in the
context of (3), for µθ-almost all π, there is a nonzero surjective equivariant map

Π∞ −→ π∞ ⊗Θ(π)∞.

Such a map necessarily factors through:

Π∞
։ π∞ ⊗Θ∞(π∞) ։ π∞ ⊗Θ(π)∞,

so that one has a surjection

Θ∞(π∞) ։ Θ(π)∞.

Thus, we see that Θ(π)∞ is of finite length and unitarizable, so that Θ(π)∞ is semisimple. Hence,
we have a surjection

θ∞(π∞) ։ Θ(π)∞.

Since θ∞(π∞) is semisimple, we deduce that

Θ(π)∞ ⊆ θ∞(π∞),

so that Θ(π) is a direct sum of finitely many irreducible unitary representations for µθ-almost all
π. Indeed, if k is not a 2-adic field, Θ(π) is irreducible with

Θ(π)∞ = θ∞(π∞)

for µθ-almost all π.

Hence, the L2-theta correspondence gives a map

Θ : G(W )∧ −→ R≥0(G(V )∧)

where R≥0(G(V )∧) is the Grothendieck semigroup of unitary representations of G(V ) of finite
length. If k is not 2-adic, Θ takes value in G(V )∧ ∪ {0}. Moreover, one has the compatibility of
L2-theta lifts (considered in this paper) with the smooth theta lifts.

3.3. Restriction to P ×G(V ). We may restrict Π further to P ×G(V ). By Mackey theory, for a
unitary representation π of G(W ),

(4) π|P =
⊕

OY ∈Ω

IndP
MχY

N WχY
(π),

where WχY
(π) is an MχY

N -module such that n · λ = χY (n)λ, for all n ∈ N , λ ∈WχY
(π).

Therefore, from (3) and (4), we have:

(5) Π =
⊕

OY ∈Ω

∫

A⊂ bG(W )
IndP

MχY
N WχY

(π)⊗Θ(π) dµθ(π).

7



3.4. The Schrödinger model. On the other hand, we may compute the restriction of Π to P ×
G(V ) using an explicit model of Π. The complete polarization W = E ⊕ F induces a complete
polarization

V ⊗D W ∗ = V ⊗D E∗ ⊕ V ⊗D F ∗.

With the identifications introduced above, V ⊗D F ∗ = HomD(E,V ), and the oscillator represen-
tation Π can be realized on the Hilbert space L2(HomD(E,V )); this realization of Π is called the
Schrödinger model. The action of P ×G(V ) in this model can be described as follows.

Let B♭
V : V −→ (V ∗)′ be given by

(w∗)(B♭
V v) = BV (w, v).

Then the action of P ×G(V ) on L2(HomD(E,V )) is given by the formulas
[

1 X
1

]
· φ(T ) = χ(TrF (XT ∗B♭

V T ))φ(T ), for all X ∈ HomD(F,E)−εW
,(6)

[
A

(A∗)−1

]
· φ(T ) = |detF (A)|− dimD(V )/2φ(TA), for all A ∈ GL(E),(7)

g · φ(T ) = φ(g−1T ), for all g ∈ G(V ).(8)

Let

ΩV = {OY | OY is open in HomD(E,F )−εW
, and Y = T ∗B♭

V T for some T ∈ HomD(E,V )}.

Given OY ∈ ΩV , we will set

ΥY = {T ∈ HomD(E,V ) |T ∗B♭
V T ∈ OY }.

Then ⋃

OY ∈ΩV

ΥY ⊂ HomD(E,V )

is a dense open subset, and its complement in HomD(E,V ) has measure 0. Therefore

(9) L2(HomD(E,V )) ∼=
⊕

OY ∈ΩV

L2(ΥY )

and each of these spaces is clearly P ×G(V )-invariant, according to the formulas given in equations
(6)–(8).

We want to show that the spaces L2(ΥY ) are equivalent to some induced representation for
P ×G(V ). To do this, observe that the “geometric” part of the action of P × G(V ) on L2(ΥY ) is
transitive on ΥY . In other words, under the action of P ×G(V ) on HomD(E,V ) given by
([

A X
(A∗)−1

]
, g

)
·T = gTA−1 for all

[
A X

(A∗)−1

]
∈ P , g ∈ G(V ) and T ∈ HomD(E,V ),

each of the ΥY ’s is a single orbit. Fix TY ∈ ΥY such that T ∗
YB

♭
V TY = Y . The stabilizer of TY in

P ×G(V ) is the subgroup

(P ×G(V ))TY
=

{([
A X

(A∗)−1

]
, g

)
∈ P ×G(V )

∣∣∣∣ gTY = TYA

}
.

Let g ∈ G(V ) be such that gTY = TYA for some A ∈ GL(E). Then by the definition of G(V )

Y = T ∗
YB

♭
V TY = T ∗

Y g
∗B♭

V gTY = A∗Y A,

that is, A is an element in MχY
.
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Define an equivalence relation in HomD(E,V ) by setting T ∼ S if T = SA for some A ∈ MχY
.

Given T ∈ HomD(E,V ) we will denote its equivalence class, under this equivalence relation, by
[T ]. Let

PMχY
(HomD(E,V )) = {[T ] |T ∈ HomD(E,V )}.

Since G(V ) acts by left multiplication on HomD(E,V ), there is natural action of G(V ) on the space
PMχY

(HomD(E,V )). Set

G(V )TY
= {g ∈ G(V ) | gTY = TY } and G(V )[TY ] = {g ∈ G(V ) | g[TY ] = [TY ]}.

Then (P ×G(V ))TY
⊂MχY

×G(V )[TY ], and according to equations (6)-(8),

L2(ΥY ) ∼= Ind
P×G(V )
(P×G(V ))TY

χY(10)

∼= Ind
P×G(V )
MχY

N×G(V )[TY ]
Ind

MχY
N×G(V )[TY ]

(P×G(V ))TY

χY(11)

Now consider the short exact sequence

1 −→ 1×G(V )TY
−→ (P ×G(V ))TY

q
−→MχY

N −→ 1,

where q is the projection into the first component. Observe that the map q induces an isomorphism
G(V )TY

\G(V )[TY ]
∼= MχY

. From this exact sequence and equation (11), we get that

L2(ΥY ) ∼= Ind
P×G(V )
MχY

N×G(V )[TY ]
L2(G(V )TY

\G(V )[TY ])χY

∼= IndP
MχY

N L2(G(V )TY
\G(V ))χY

.(12)

The action of MχY
N on L2(G(V )TY

\G(V )[TY ])χY
is given (by definition) as follows: N acts by

the character χY , and MχY
acts on L2(G(V )TY

\G(V )[TY ])χY
on the left using the isomorphism

G(V )TY
\G(V )[TY ]

∼= MχY
. Then according to equations (9) and (12)

(13) L2(HomD(E,V )) ∼=
⊕

OY ∈ΩV

IndP
MχY

N L2(G(V )TY
\G(V ))χY

.

But now, from equations (5), (13) and the uniqueness of the decomposition of the N -spectrum, we
obtain:

Proposition 3. As an MχY
N ×G(V )-module,

(14) L2(G(V )TY
\G(V ))χY

∼=

∫

bG(W )
WχY

(π)⊗Θ(π) dµθ(π),

Our goal now is to give a more explicit characterization of the spaces WχY
(π) and the measure

µθ appearing in this formula.

3.5. Stable range. Let (V,BV ) and (W,BW ) be as before. Assume now that there is a totally
isotropic D-submodule X ⊂ V such that dimD(X) = dimD(W ); in other words, the dual pair
(G(V ), G(W )) is in the stable range. In this case, the map

Θ : Ĝ(W ) −→ Ĝ(V )

can be understood in terms of the results of J. S. Li [18]. The measure µθ appearing in equation
(3) is also known in this case: it is precisely the Plancherel measure of the group G(W ). In order
to make this paper more self-contained, we will include an alternative calculation of the measure µθ

using the so-called mixed model of the oscillator representation.

9



3.6. Mixed model. Let X, Y be a totally isotropic, complementary subspaces of V such that
dimD(X) = dimD(W ), and let U = (X ⊕ Y )⊥. We will use BV to identify Y with (X∗)′ by setting

(x∗)y = BV (x, y), for all x ∈ X, y ∈ Y .

Given A ∈ GL(X), we can use the above identification to define an element A∗ ∈ GL(Y ) in the
following way: given x ∈ X and y ∈ Y , we will set (x∗)(A∗y) := (x∗A∗)y, i.e., we will define
A∗ ∈ GL(Y ) by requiring that

BV (x,A∗y) = BV (Ax, y), for all x ∈ X, y ∈ Y .

Observe that the map A 7→ (A∗)−1 defines an isomorphism between GL(X) and GL(Y ). Further-
more if x ∈ X, y ∈ Y and A ∈ GL(X), then

BV (Ax, (A∗)−1y) = BV (x, y).

Therefore, we can define a map GL(X) × G(U) →֒ G(V ) that identifies GL(X) × G(U) with the
subgroup of G(V ) that preserves the direct sum decomposition V = X ⊕ Y ⊕ U .

Consider the polarization V ⊗D W ∗ = (X ⊗W ∗ ⊕ U ⊗ F ∗)
⊕

(Y ⊗W ∗ ⊕ U ⊗ E∗). Then as a
vector space

(15) L2(X ⊗W ∗ ⊕ U ⊗ F ∗) ∼= L2(HomD(W,X)) ⊗ L2(HomD(E,U)).

Let (ωU , L
2(HomD(E,U))) be the Schrödinger model of the oscillator representation associated to

the metaplectic group S̃p(U ⊗D W ∗). We will identify the space appearing on the right hand side
of equation (15) with the space of L2 functions from HomD(W,X) to L2(HomD(E,U)). This is
the so called mixed model of the oscillator representation.

The action of G(W ) × GL(X) × G(U) on this model can be described in the following way: If
T ∈ HomD(W,X) and S ∈ HomD(E,U), then

g · φ(T )(S) = [ωU (g)φ(Tg)](S) ∀g ∈ G(W )(16)

h · φ(T )(S) = φ(T )(h−1S) ∀h ∈ G(U)(17)

A · φ(T )(S) = |detX(A)|dimW/2φ(A−1T )(S) ∀A ∈ GL(X).(18)

We now want to describe this space as an induced representation. To do this, observe that
the set of invertible elements in HomD(W,X) forms a single orbit under the natural action of
G(W )×GL(X). Furthermore this orbit is open and dense, and its complement has measure 0. Fix
T0 ∈ HomD(W,X) invertible, and define a εW -Hermitian form BT0 on X, by setting

BT0(x1, x2) = BW (T−1
0 x1, T

−1
0 x2).

The group that preserves this form is precisely

G(X,BT0) = {T0gT
−1
0 | g ∈ G(W )} ⊂ GL(X).

Let

(G(W )×GL(X))T0 = {(g, T0gT
−1
0 ) | g ∈ G(W )} ∼= G(W )

be the stabilizer of T0 in G(W )×GL(X). Then, according to equations (16)–(18),

L2(W ∗ ⊗X)⊗ L2(HomD(E,U)) ∼= Ind
G(W )×GL(X)
(G(W )×GL(X))T0

L2(HomD(E,U))

∼= Ind
G(W )×GL(X)
G(W )×G(X,BT0

) Ind
G(W )×G(X,BT0

)

(G(W )×GL(X))T0
L2(HomD(E,U)).

Here (G(W )×GL(X))T0 is acting on L2(HomD(E,U)) by taking projection into the first compo-
nent, and then using the oscillator representation to define an action of G(W ) on L2(HomD(E,U)).
But this representation is equivalent to taking projection into the second component and using the
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Schrödinger model of the oscillator representation of S̃p(U ⊗ X∗) (where X is equipped with the
form BT0) to define an action of G(X,BT0) on L2(HomD(T0(E), U)). Therefore

L2(W ∗ ⊗X)⊗ L2(HomD(E,U))

∼= Ind
G(W )×GL(X)
G(W )×G(X,BT0

) Ind
G(W )×G(X,BT0

)

(G(W )×GL(X))T0
L2(HomD(T0(E), U))

∼= Ind
G(W )×GL(X)
G(W )×G(X,BT0

)(Ind
G(W )×G(X,BT0

)

(G(W )×GL(X))T0
1)⊗ L2(HomD(T0(E), U))

∼= Ind
G(W )×GL(X)
G(W )×G(X,BT0

)

∫
bG(W ) π

∗ ⊗ (πT0 ⊗ L2(HomD(T0(E), U))) dµG(W )(π)

∼=
∫

bG(W )
π∗ ⊗ Ind

GL(X)
G(X,BT0

) π
T0 ⊗ L2(HomD(T0(E), U)) dµG(W )(π).(19)

Here π∗ is the contragredient representation of π, πT0 is the representation of G(X,BT0) given by
πT0(g) = π(T−1

0 gT0), for all g ∈ G(X,BT0), and µG(W ) is the Plancherel measure of G(W ). Note
that the multiplicity space of π∗ in (19) is nonzero for each π in the support of µG(W ), i.e. as a

representation of G(W ), Π is weakly equivalent to the regular representation L2(G(W )).

Comparing (3) with (19), we obtain:

Proposition 4. If (G(W ), G(V )) is in the stable range, with G(W ) the smaller group, then in

equations (3) and (14), µθ = µG(W ) is the Plancherel measure of Ĝ(W ).

3.7. The Bessel-Plancherel theorem. Finally, we want to identify the multiplicity spaceWχY
(π)

in (14). Note that this is purely an issue about representations of G(W ); a priori, it has nothing to
do with theta correspondence. What we know is summarized in the following theorem.

Theorem 5 (Bessel-Plancherel theorem). Let (W,BW ) be an εW -Hermitian D-module, and assume
that W has a complete polarization W = E ⊕ F , where E, F are totally isotropic complementary
subspaces. Let P = {p ∈ G(W ) | p ·E = E} be a Siegel parabolic subgroup of G, and let P = MN be

its Langlands decomposition. Given χ ∈ N̂ , let Oχ be its orbit under the action of M , and let Mχ

be the stabilizer of χ in M . Then

(1) For µG(W )-almost all tempered representations π of G(W ),

π|P ∼=
⊕

Oχ∈ΩW

IndP
MχN Vχ(π).

Here µG(W ) is the Plancherel measure of G(W ), ΩW = {Oχ ∈ Ω | Oχ is open in N̂}, and
Vχ(π) is some MχN -module such that the action of N is given by the character χ.

(2) If Oχ ∈ ΩW , then there is an isomorphism of Mχ ×G(W )-modules:

(20) L2(N\G(W );χ) ∼=

∫

bG(W )
Vχ(π)⊗ π dµG(W )(π).

where Vχ(π) is the same space appearing in (1).

(3) If dimD(W ) = 2, then for Oχ ∈ ΩW , dimVχ(π) <∞ and

Vχ(π) ∼= Whχ(π) = {λ : π∞ −→ C |λ(π(n)v) = χ(n)λ(v) for all n ∈ N}

as an MχN -module. Here π∞ stands for the set of smooth vectors of π and the space on the
RHS is the space of continuous χ-Whittaker functionals on π∞.

(4) If k is Archimedean, and Mχ is compact, then

Vχ(π) ⊂Whχ(π)
11



as a dense subspace, and for any irreducible representation τ of Mχ, one has an equality of
τ -isotypic parts:

Vχ(π)[τ ] = Whχ(π)[τ ].

Moreover, this space is finite dimensional.

Proof. Part 2 follows from an argument analogous to the proof of the Whittaker-Plancherel measure
given by Sakellaridis-Venkatesh [23, §6.3]. For the proof of part 1 observe that, by the Harish-
Chandra Plancherel theorem

L2(G(W ))|P×G(W ) =

∫

bG(W )
π∗|P ⊗ π dµG(W )(π).

On the other hand

L2(G(W ))|P×G(W ) =
⊕

Oχ∈ΩW

IndP
MχN L2(N\G(W );χ)

=
⊕

Oχ∈ΩW

IndP
MχN

∫

bG(W )
Vχ(π)⊗ π dµG(W )(π)

=

∫

bG(W )


 ⊕

Oχ∈ΩW

IndP
MχN Vχ(π)


 ⊗ π dµG(W )(π).

Therefore

π∗|P ∼=
⊕

Oχ∈ΩW

IndP
MχN Vχ(π)

for µG(W )-almost all π. In the Archimedean case, this result has also been proved in the thesis of
the second named author without the µG(W )-almost all restriction, yielding an alternative proof of
part 2 for the Archimedean case.

Part 3 is part of the Whittaker-Plancherel theorem, which was proved by Wallach in the Archimedean
case [27], and independently by Delorme, Sakellaridis-Venkatesh and U-Liang Tang in the p-adic
case [4, 23, 25].

Finally, Part 4 was shown by Wallach and the second named author in [11]. �

We note that Theorem 5(1) is a refinement of equation (4): it implies that in (4), only the open
orbits Oχ in Ω contribute. Moreover, for χ ∈ ΩW , the space Vχ(π) in Theorem 5 is the same as the
space Wχ(π) in (4) and (14).

3.8. Spectral decomposition of generalized Stiefel manifolds. We may now assemble all the
previous results together. For OY ∈ ΩV , the space G(V )TY

\G(V ) is known as a generalized Stiefel
manifold. From equations (14) and (19), we deduce:

Theorem 6. Suppose that G(V )TY
\G(V ) is a generalized Stiefel manifold. If, in the notation of

equation (20)

L2(N\G(W );χY ) ∼=

∫

bG(W )
WχY

(π)⊗ π dµG(W )(π).

then

L2(G(V )TY
\G(V )) ∼=

∫

bG(W )
WχY

(π)⊗Θ(π) dµG(W )(π).

12



In a certain sense, the last pair of equations says that the Plancherel measure of the generalized
Stiefel manifold G(V )TY

\G(V ) is the pushforward of the Bessel-Plancherel measure of G(W ) under
the θ-correspondence. We note that in [15], Kobayashi has obtained an explicit description of the
discrete spectrum of these generalized Stiefel manifold in the real case, in terms of Aq(λ) modules.

3.9. The Sakellaridis-Venkatesh conjecture. Using the previous theorem, we can obtain certain
examples of the Sakellaridis-Venkatesh conjecture:

• Taking D = k, k × k or M2(k) to be a split k-algebra and W to be skew-Hermitian with
dimD W = 2, we obtain the spectral decomposition of H\G := G(V )TY

\G(V ) in terms of
the Bessel-Plancherel (essentially the Whittaker-Plancherel) decomposition for GX , where
H\G and GX are listed in the following table.

H\G GLn−1\GLn SOn−1\SOn Sp2n−2\Sp2n

GX GL2 S̃L2 or SL2 SO(4)

This establishes the cases listed in Table 1 in Theorem 1.

• Taking D to be a quadratic field extension of k or the quaternion division k-algebra, and W
to be skew-Hermitian, we obtain the spectral decomposition of

H\G = Un−1\Un, Spn−1(D)\Spn(D)

in terms of the Bessel-Plancherel decomposition of U2 and O2(D). This gives non-split
version of the examples above.

3.10. Multiplicity space. In addition, the multiplicity space Wχ(π) = Whχ(π) can be described
in terms of the space of H-invariant (continuous) functionals on Θ(π)∞. Indeed, by the smooth
analog of our computation with the Schrodinger model in §3.4, one can show:

Lemma 7. For any irreducible smooth representation σ∞ of G(V ), let Θ∞(σ∞) denote the big

(smooth) theta lift of σ∞ to G(W ). Then for χ ∈ OY ∈ ΩW ⊂ N̂ , there is a natural isomorphism
of Mχ-modules:

Whχ(Θ∞(σ∞)) ∼= HomG(V )TY
(σ∞,C).

In the cases we are considering above, one can show that if π is an irreducible tempered repre-
sentation of G(W ), then the small (smooth) theta lift σ = θ∞(π∞) is irreducible (even when k is
2-adic), and moreover, the big (smooth) theta lift Θ∞(σ∞) of σ∞ back to G(W ) is irreducible and
thus isomorphic to π∞. By our discussion in §3.2, we see that for µG(W )-almost all π, one has

Θ(π)∞ ∼= θ∞(π∞) = σ.

Thus the above lemma implies that:

Wχ(π) = Whχ(π) ∼= HomH(Θ(π)∞,C).

This concludes the proof of the classical cases of Theorem 1.

3.11. Unstable range. Though we have assumed that (G(W ), G(V )) is in the stable range from
§3.5, it is possible to say something when one is not in the stable range as well. Namely, in §3.6,
one would take X to be a maximal isotropic space in V (so dimX < dimW here), and consider
the mixed model defined on L2(HomD(W,X))⊗L2(HomD(E,U)). As an illustration, we note the
result for the case when W is a symplectic space of dimension 2 and V is a split quadratic space of
dimension 3, so that

G(W )×G(V ) ∼= S̃L2 × SO3
∼= S̃L2 × PGL2.

For a nonzero Y ∈ N̂ , the subgroup G(V )TY
of G(V ) is simply a maximal torus AY of PGL2.
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Proposition 8. We have

L2(G(V )TY
\G(V )) = L2(AY \PGL2) ∼=

∫

Ĝ(W )
(Wχ(σ)⊗WχY

(σ))⊗Θχ(π) dµG(W )(π).

We record the following corollary which is needed in the second half of this paper:

Corollary 9. The unitary representation L2(sl2) associated to the adjoint action of PGL2 on its
Lie algebra sl2 is weakly equivalent to the regular representation L2(PGL2).

Proof. Since the union of strongly regular semisimple classes are open dense in sl2, we see that
L2(sl2) is weakly equivalent to

⊕
A L

2(A\PGL2), where the sum runs over conjugacy classes of
maximal tori A in PGL2. Applying Proposition 8, one deduces that

⊕

A

L2(A\PGL2) ∼=

∫

Ĝ(W )
Mχ(π)⊗Θχ(π) dµG(W )(π)

with

Mχ(π) = Wχ(π)⊗

(
⊕

A

WχA
(π)

)
.

One can show that the theta correspondence with respect to χ induces a bijection

Θχ : {π ∈ Ĝ(W ) : Wχ(π) 6= 0} ←→ Ĝ(V ).

Moreover, one can write down this bijection explicitly (in terms of the usual coordinates on the

unitary duals of S̃L2 and PGL2). From this description, one sees that

(Θχ)∗(µG(W )) = µG(V ).

This shows that∫

Ĝ(W )
Mχ(π)⊗Θχ(π) dµG(W )(π) ∼=

∫

Ĝ(V )
Mχ(Θ−1

χ (σ)) ⊗ σ dµG(V )(σ),

with Mχ(Θ−1
χ (σ)) 6= 0. This proves the corollary. �

4. Exceptional Structures and Groups

The argument of the previous section can be adapted to various dual pairs in exceptional groups,
thus giving rise to more exotic examples of the Sakellaridis-Venkatesh conjecture. In particular,
we shall show that the spectral decomposition of L2(X) = L2(H\G) can obtained from that of
L2(GX ), with X and GX given in the following table.

X SO3\SL3 SL3\G2 (J, ψ)\G2 Sp6\SL6

GX S̃L3 SL2 PGL3 SL3

X SU3\Spin7 G2\Spin7 G2\Spin8 Spin9\F4 F4\E6

GX (Spin3 × Spin5)/∆µ2 SL2 SL3
2/∆µ2 PGL2 SL3

Table 3

The unexplained notation will be explained in due course. Comparing with the tables in [23, §15 and
§16], we see that these exceptional examples, together with the classical examples treated earlier,
verify the conjecture of Sakallaridis-Venkatesh for almost all the rank 1 spherical varieties (with
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certain desirable properties), and also some rank 2 or rank 3 ones. Indeed, they also include low
rank examples of several infinite families of spherical varieties, such as Sp2n\SL2n, SOn\SLn and
SUn\SO2n+1.

Though the proof will be similar in spirit to that of the previous section, we shall need to deal
with the geometry of various exceptional groups, and this is ultimately based on the geometry of
the (split) octonion algebra O and the exceptional Jordan algebra J(O). Thus we need to recall
some basic properties of O and its automorphism group. A good reference for the material in this
section is the book [13]. One may also consult [19] and [28].

4.1. Octonions and G2. Let k be a local field of characteristic zero and let O denote the (8-
dimensional) split octonion algebra over k. The octonion algebra O is non-commutative and non-
associative. Like the quaternion algebra, it is endowed with a conjugation x 7→ x̄ with an associated
trace map Tr(x) = x+ x̄ and an associated norm map N(x) = x · x̄. It is a composition algebra, in
the sense that N(x · y) = N(x) ·N(y).

A useful model for O is the so-called Zorn’s model, which consists of 2× 2-matrices
(

a v
v′ b

)
, with a, b ∈ k, v ∈ V ∼= k3 and v′ ∈ V ′,

with V a 3-dimensional k-vector space with dual V ′. By fixing an isomorphism ∧3V ∼= k, one
deduces natural isomorphisms

∧2V ∼= V ′ and ∧2 V ′ ∼= V,

and let 〈−,−〉 denote the natural pairing on V ′ × V . The multiplication on O is then defined by
(

a v
v′ b

)
·

(
c w
w′ d

)
=

(
ac+ 〈w′, v〉 aw + dv + v′ ∧ w′

cv′ + bw′ + v ∧ w bd+ 〈v′, w〉

)

The conjugation map is (
a v
v′ b

)
7→

(
b −v
−v′ a

)

so that

Tr

(
a v
v′ b

)
= a+ b and N

(
a v
v′ b

)
= ab− 〈v′, v〉.

Any non-central element x ∈ O satisfies the quadratic polynomial x2 − Tr(x) · x + N(x) = 0.
Thus, a non-central element x ∈ O generates a quadratic k-subalgebra described by this quadratic
polynomial. If this quadratic polynomial is separable, x is said to have rank 2. Otherwise, x is said
to have rank 1.

The automorphism group of the algebra O is the split exceptional group of type G2. The group
G2 contains the subgroup SL(V ) ∼= SL3 which fixes the diagonal elements in Zorn’s model, and
acts on V and V ′ naturally. Clearly, G2 fixes the identity element 1 ∈ O, so that it acts on the
subspace O0 of trace zero elements. The following proposition summarizes various properties of the
action of G2 on O0.

Proposition 10. (i) Fix a ∈ k
×, and let Ωa denote the subset of x ∈ O0 with N(x) = a, then

Ωa is nonempty and G2 acts transitively on Ωa with stabilizer isomorphic to SU3(Ea), where Ea =
k[x]/(x2 − a).

(ii) The automorphism group G2 acts transitively on the set Ω0 of trace zero, rank 1 elements. For
x ∈ Ω0, the stabilizer of the line k · x is a maximal parabolic subgroup Q = L · U with Levi factor
L ∼= GL2 and unipotent radical U a 3-step unipotent group.

Now we note:
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• When a ∈ (k×)2 in (i), the stabilizer of an element in Ωa is isomorphic to SL3; this explains
the 2nd entry in Table 3.
• In (ii), the 3-step filtration of U is given by

U ⊃ [U,U ] ⊃ Z(U) ⊃ {1}

where [U,U ] is the commutator subgroup and Z(U) is the center of U . Moreover,

dimZ(U) = 2 and dim[U,U ] = 3,

so that [U,U ]/Z(U) ∼= k. If ψ is a non-trivial character of k, then ψ gives rise to a nontrivial
character of [U,U ] which is fixed by the subgroup [L,L] ∼= SL2. Setting J = [L,L] · [U,U ],
we may extend ψ to a character of J trivially across [L,L]. This explains the 3rd entry of
Table 3.

Though the octonionic multiplication is neither commutative or associative, the trace form sat-
isfies:

Tr((x · y) · z) = Tr(x · (y · z)),

(so there is no ambiguity in denoting this element of k by Tr(x · y · z)) and G2 is precisely the
subgroup of SO(O, N) satisfying

Tr((gx) · (gy) · (gy)) = Tr(x · y · z) for all x, y, z ∈ O.

4.2. Exceptional Jordan algebra and F4. Let J = J(O) denote the 27-dimensional vector space
consisting of all 3 × 3 Hermitian matrices with entries in O. Then a typical element in J has the
form

α =




a z ȳ
z̄ b x
y x̄ c


 , with a, b, c ∈ k and x, y, z ∈ O.

The set J is endowed with a multiplication

α ◦ β =
1

2
· (αβ + βα)

where the multiplication on the RHS refers to usual matrix multiplication. With this multiplication,
J is the exceptional Jordan algebra.

The algebra J carries a natural cubic form d = det given by the determinant map on J , and
a natural linear form tr given by the trace map. Moreover, every element in J satisfies a cubic
polynomial, by the analog of the Cayley-Hamilton theorem. An element α ∈ J is said to be of rank
n if its minimal polynomial has degree n, so that 0 ≤ n ≤ 3. For example, α ∈ J has rank 1 if and
only if its entries satisfy

N(x) = bc, N(y) = ca, N(z) = ab, xy = cz̄, yz = ax̄, zx = bȳ.

More generally, the above discussion holds if one uses any composition k-algebra in place of O.
Thus, if B = k, a quadratic algebra K, a quaternion algebra D or the octonion algebra O, one has
the Jordan algebra J(B). One may consider the group Aut(J(B),det) of invertible linear maps on
J(B) which fixes the cubic form det, and its subgroup Aut(J,det, e) which fixes an element e with
det(e) 6= 0. For the various B’s, these groups are listed in the following table.

Proposition 11. (i) For any a ∈ k×, the group Aut(J(B),det) acts transitively on the set of e ∈ J
with det(e) = a, with stabilizer group Aut(J(B),det, e) described in the above table. If e is the unit
element of J(B), then Aut(J(B),det, e) is the automorphism group of the Jordan algebra J(B).
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B k K D O

Aut(J(B),det) SL3 SL3(K)/∆µ3 SL3(D)/µ2 = SL6/µ2 E6

Aut(J(B),det, e) SO3 SL3 PGSp6 F4

Table 4

(ii) The group F4 = Aut(J(O)) acts transitively on the set of rank 1 elements in J(O) of trace
a 6= 0. The stabilizer of a point is isomorphic to the group Spin9 of type B4.

In particular, the proposition explains the 1st, 4th, 8th and 9th entry of Table 3.

4.3. Triality and Spin8. An element α ∈ J = J(O) of rank 3 generates a commutative separable
cubic subalgebra k(α) ⊂ J . For any such cubic F -algebra E, one may consider the set ΩE of algebra
embeddings E →֒ J . Then one has:

Proposition 12. (i) The set ΩE is non-empty and the group F4 acts transitively on ΩE.

(ii) The stabilizer of a point in ΩE is isomorphic to the quasi-split simply-connected group SpinE
8

of absolute type D4.

(iii) Fix an embedding j : E →֒ J and let E⊥ denote the orthogonal complement of the image
of E with respect to the symmetric bilinear form (α, β) = tr(α ◦ β). The action of the stabilizer

SpinE
8 of j on E⊥ is the 24-dimensional Spin representation, which on extending scalars to k, is the

direct sum of the three 8-dimensional irreducible representations of Spin8(k) whose highest weights
correspond to the 3 satellite vertices in the Dynkin diagram of type D4.

As an example, suppose that E = k × k × k, and we fix the natural embedding E →֒ J whose
image is the subspace of diagonal elements in J . Then E⊥ is naturally O ⊕ O ⊕ O, and the split
group Spin8 acts on this, preserving each copy of O. This gives an injective homomorphism

ρ : Spin8 −→ SO(O, N)× SO(O, N)× SO(O, N)

whose image is given by

Spin8
∼= {g = (g1, g2, g3) : Tr((g1x) · (g2y) · (g3z)) = Tr(x · y · z) for all x, y, z ∈ O}.

From this description, one sees that there is an action of Z/3Z on Spin8 given by the cyclic permu-
tation of the components of g, and the subgroup fixed by this action is precisely

G2 = Spin
Z/3Z

8 .

This explains the 7th entry of Table 3.

More generally , the stabilizer of a triple (x, y, z) ∈ O3 with (x · y) · z ∈ k
× is a subgroup of

Spin8 isomorphic to G2 (see [28]). For example, the stabilizer in Spin8 of the vector (1, 0, 0) ∈ O3

is isomorphic to the group Spin7 which acts naturally on O0 ⊕ O⊕O. The action of Spin7 on O0

is via the standard representation of SO7, whereas its action on the other two copies of O is via the
Spin representation. From the discussion above, we see that the stabilizer in Spin7 of (x, x̄) ∈ O2,
with N(x) 6= 0, is isomorphic to the group G2. In particular, this explains the 6th entry of Table 3.

On the other hand, the stabilizer in Spin8 of a triple (x, y, z) ∈ O3 with (x · y) · z /∈ k
× is

isomorphic to SU3 ⊂ G2 ⊂ Spin7 ⊂ Spin8 (see [28]). For example, if one takes x = y = 1 ∈ O and
z /∈ k, then K = k[z] is an étale quadratic subalgebra of O and it follows by Proposition 10 that the
stabilizer of (1, 1, z) is isomorphic to SU3(K) ⊂ Spin7. This explains the 5th entry in Table 3.

By the above discussion, it is not difficult to show:
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Proposition 13. (i) The group Spin8 acts transitively on the set of rank 1 elements

α =




a z ȳ
z̄ b x
y x̄ c


 ∈ J(O)

with diagonal part (a, b, c) ∈ k×× k×× k× fixed. Moreover, the stabilizer of a point is isomorphic to
G2.

(ii) The group Spin7 acts transitively on the set of rank 1 elements α ∈ J(O) as in (i) above, with
a, b, c and Tr(x) ∈ k fixed and a · (bc− Tr(x)) 6= 0.

4.4. SL3\G2 and G2\Spin7. From the discussion above, we see that there are isomorphisms of
homogeneous varieties

SL3\G2
∼= SO6\SO7 and G2\Spin7

∼= Spin7\Spin8
∼= SO7\SO8.

Since we have already determined the spectral decomposition of L2(SO6\SO7) and L2(SO7\SO8)

in terms of the spectral decomposition of L2(S̃L2) and L2(SL2) respectively, we obtain the desired
description for SL3\G2 and G2\Spin7. We note that in [16], Kobayashi used the same observation
to deduce the Plancherel theorem of these spherical varieties from the Plancherel theorem for the
corresponding symmetric spaces given above in the real case. He also gave an explicit description of
the branching from SO7 to G2 (for representations of SO7 occurring in L2(SO6\SO7)) in the real
case; the p-adic case of this branching is shown in [8].

The rest of the paper is devoted to the remaining cases in Table 3.

5. Exceptional Dual Pairs

In this section, we introduce some exceptional dual pairs contained in the adjoint groups of type
F4, E6, E7 and E8. We begin with a uniform construction of the exceptional Lie algebras of the
various exceptional groups introduced above. This construction can be found in [22] and will be
useful for exhibiting various reductive dual pairs. The reader may consult [19], [22], [24] and [28]
for the material of this section.

5.1. Exceptional Lie algebras. Consider the chain of Jordan algebras

k ⊂ k× k ⊂ E ⊂ J(k) ⊂ J(K) ⊂ J(D) ⊂ J(O)

where E is a cubic k-algebra, K a quadratic k-algebra and D a quaternion k-algebra, and one has
the containment k × k ⊂ E only when E = k ×K is not a field. Denoting such an algebra by R,
the determinant map det of J(O) restricts to give a cubic form on R. Now set

(21) sR = sl3 ⊕mR ⊕ (k3 ⊗R)⊕ (k3 ⊗R)′,

with
mR = Lie(Aut(R,det)).

One can define a Lie algebra structure on sR [22] whose type is given by the following table.

R k k× k E J(k) J(K) J(D) J(O)
mR 0 k E0 sl3 sl3(K) sl6 e6
sR g2 b3 d4 f4 e6 e7 e8

We denote the corresponding adjoint group with Lie algebra sR by SR, or simply by S if R is
fixed and understood.

Let {e1, e2, e3} be the standard basis of k3 with dual basis {e′i}. The subalgebra of sl3 stabilizing
the lines kei is the diagonal torus t. The nonzero weights under the adjoint action of t on sR form
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a root system of type G2. The long root spaces are of dimension 1 and are precisely the root spaces
of sl3, i.e. the spaces spanned by e′i ⊗ ej . We shall label these long roots by β, β0 and β0 − β, with
corresponding 1-parameter subgroups

uβ(x) =




1 x 0
1 0

1


 , uβ0(x) =




1 0 x
1 0

1


 , uβ0−β(x) =




1 0 0
1 x

1




We also let

wβ =




0 1 0
−1 0 0
0 0 1




denote the Weyl group element associated to β. The short root spaces, on the other hand, are ei⊗R
and e′i ⊗R

′ and are thus identifiable with R.

5.2. Exceptional dual pairs. We can now exhibit 2 families of dual pairs in SR.

• From (21), one has
sl3 ⊕mR ⊂ sR.

This gives a family of dual pairs

(22) SL3 ×Aut(R,det) −→ SR.

We shall only be interested in these dual pairs when R = J(B).

• For a pair of Jordan algebras R0 ⊂ R, we have sR0 ⊂ sR which gives a subgroup GR0 ⊂ SR,
where GR0 is isogeneous to SR0 . If G′

R0,R = Aut(R,R0), then one has a second family of
dual pairs

(23) GR0 ×G
′
R0,R −→ SR.

With R0 ⊂ R fixed, we shall simply write G ×G′ for this dual pair. For the various pairs
R0 ⊂ R of interest here, we tabulate the associated dual pairs in the table below.

R0 ⊂ R k ⊂ J(K) k× k ⊂ J(D) E ⊂ J(D) J(k) ⊂ J(D)
G×G′ G2 × PGL3 Spin7 × (Spin3 × Spin5)/∆µ2 Spin8 × SL2(E)/∆µ2 F4 × PGL2

Observe that in the language of Table 3, with X = H\G, the dual pairs described above are
precisely GX ×G.

5.3. Heisenberg parabolic. The presentation (21) also allows one to describe certain parabolic
subalgebras of sR. If we consider the adjoint action of

t = diag(1, 0,−1) ∈ sl3

on s, we obtain a grading s = ⊕is[i] by the eigenvalues of t. Then




s[0] = t⊕m⊕ (e2 ⊗R)⊕ (e′2 ⊗R
′)

s[1] = ke′2 ⊗ e1 ⊕ (e1 ⊗R)⊕ (e′3 ⊗R
′)⊕ ke′3 ⊗ e2

s[2] = ke′3 ⊗ e1,

and p = ⊕i≥0s[i] is a Heisenberg parabolic subalgebra.

We denote the corresponding Heisenberg parabolic subgroup by PS = MS ·NS . In particular, its
unipotent radical is a Heisenberg group with 1-dimensional center ZS

∼= uβ0(k)
∼= s[2] and

NS/ZS
∼= s[1] = k⊕R⊕R′ ⊕ k,

The semisimple type of its Levi factor MS is given in the table below.
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S F4 E6 E7 E8

MS C3 A5 D6 E7

The Lie bracket defines an alternating form on NS/ZS which is fixed by P 1
S = [PS , PS ]. This gives

an embedding

P 1
S = M1

S ·Ns →֒ Sp(NS/ZS) ⋉NS .

5.4. Intersection with dual pairs. For a pair R0 ⊂ R, with associated dual pair given in (23),
it follows by construction that

(GR0 ×G
′
R0,R) ∩ PS = P ×G′

R0,R,

where P is the Heisenberg parabolic subgroup of GR0 . On the other hand, for the family of dual
pairs given in (22),

(SL3 ×Aut(R,det)) ∩ PS = B ×Aut(R,det)

where B is a Borel subgroup of SL3.

5.5. Siegel parabolic. The group S of type E6 or E7 has a Siegel parabolic subgroup QS = LS ·US

whose unipotent radical US is abelian; we call this a Siegel parabolic subgroup. The semisimple
type of LS and the structure of US as an LS-module is summarized in the following table.

S LS US US as LS-module
E6 D5 O⊕O half spin representation of dimension 16
E7 E6 J(O) miniscule representation of dimension 27

Let ΩQ ⊂ US be the orbit of a highest weight vector in US . The following proposition describes
the set ΩQ:

Proposition 14. (i) If S is of type E6, then

ΩQ = {(x, y) ∈ O
2 : N(x) = N(y) = 0 = x · ȳ}.

(ii) If S is of type E7, then

ΩQ = {α ∈ J : rank(α) = 1}.

5.6. Intersection with dual pairs. With R0 ⊂ R fixed, with associated dual pair G×G′ as given
in (23), one may choose QS so that

(G×G′) ∩QS = G×Q0

with Q0 = L0 · U0 a Siegel parabolic subgroup of G′, so that U0 is abelian. The group Q0 and the
embedding U0 ⊂ US can be described by the following table.

G′ PGL3 (Spin3 × Spin5)/∆µ2 SL2(E)/∆µ2 PGL2

Q0 maximal parabolic (Borel)× (Siegel parabolic) Borel Borel

U0 ⊂ US k
2 ⊂ O2 k⊕ Sym2(k) ⊂ J(O) E ⊂ J(O) k ⊂ J(O)

Identifying the opposite unipotent radical Ū0 with the dual space of U0 using the Killing form, one
has a natural projection

τ : ŪS −→ U0.

This is simply given by the projection from US to U0 along U⊥
0 .
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6. Generic Orbits

In this section, we consider an orbit problem which will be important for our applications. Namely,
with the notation at the end of the last section, we have an action of L0 ×G on the set ΩQ ⊂ US .
We would like to determine the generic orbits of this action. For simplicity, we shall consider the
case when S = E6 and E7 separately.

6.1. Dual Pair in E6. Suppose first that S = E6 so that G′ ×G = PGL3 ×G2. In this case, the
natural L×G2-equivariant projection τ : ŪS −→ Ū0 is given by

τ(x, y) = (Tr(x), T r(y)).

The nonzero elements in Ū0
∼= k

2 are in one orbit of L0; we fix a representative (0, 1) ∈ k2 and note
that its stabilizer in L0 is the “mirabolic" subgroup PL0 of L0

∼= GL2. Then the fiber over (0, 1) is
given by

{(x, y) ∈ O
2 : N(x) = N(y) = Tr(x) = 0, T r(y) = 1, x · ȳ = 0},

and carries a natural action of PL0 ×G2. We note:

Lemma 15. (i) The group G2 acts transitively on the fiber τ−1(0, 1) and the stabilizer of a point
(x0, y0) is isomorphic to the subgroup [L,L] · Z(U) ⊂ J .

(ii) If we consider the subset {(x0, y0 + λx0) : λ ∈ k} ⊂ τ−1(0, 1), then the subgroup of PL0 ×G2

stabilizing this subset is isomorphic to

(PL0 × L · [U,U ])0 = {(h, g · u) : deth = det g}.

The action of the element
(
a b
0 1

)
× g · u ∈ (PL0 × L · [U,U ])0

is by

(x0, y0 + λx0) 7→ (x0, y0 + a−1 · (λ+ b− p(u))x0)

where p : J −→ k ∼= J/[L,L]·Z(U) is the natural projection. Thus, there is a unique generic L0×G2

orbit on ΩQ given by

(L0 ×G2)×(PL0
×L·[U,U ])0 k.

6.2. Dual Pairs in E7. Now suppose that S = E7. As above, we first determine the generic
L0-orbits on Ū0. For each generic L0-orbit in Ū0, let us take a representative χ and let Zχ denote
its stabilizer in L0. Then the fiber τ−1(χ) is preserved by Zχ×G. In each case, it follows by Prop.
11(ii) and Prop. 13 that G acts transitively on τ−1(χ). Denote the stabilizer in G of χ̃ ∈ τ−1(χ) by

Hχ. Then under the action of Zχ ×G, the stabilizer group H̃χ of χ̃ sits in a short exact sequence

1 −−−−→ Hχ −−−−→ H̃χ −−−−→
p

Zχ −−−−→ 1.

Thus, the generic L0 ×G-orbits are given by the disjoint union
⋃

generic χ

(Zχ ×G)×H̃χ
χ̃

where the union runs over the generic L0-orbits on Ū0 and χ̃ is an element in τ−1(χ) with stabilizer

H̃χ. We summarize this discussion in the following table.
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G×G′ F4 × PGL2 Spin8 × SL2(E)/∆µ2 Spin7 × (Spin3 × Spin5)/∆µ2

generic L0-orbits singleton (a, b, c) A = diag(b, c)

∈ (k×/k×2)3/∆k
× ∈ Sym2k

2/GL2(k)
τ−1(χ) α ∈ J(O) α ∈ J(O) α ∈ J(O)

rank 1, trace 1 diagonal= (a, b, c) diagonal= (1, b, c), Tr(z) = 0
Zχ trivial center of G′ = µ2 × µ2 O2

Hχ Spin9 G2 SU3

7. Minimal Representation

In this section, we introduce the (unitary) minimal representation Π of S and describe some
models for Π. Note that when S = F4, Π is actually a representation of the double cover of F4.
When S is of type E, then Π is a representation of S.

7.1. Schrodinger model. Because the groups S = E6 and E7 have a Siegel parabolic subgroup,
there is an analog of the Schrodinger model for the minimal representation Π of S. By [6], the
representation Π can be realized on the space L2(ΩQ, µQ) of square-integrable functions on Q with
respect to a LS-equivariant measure µQ on ΩQ. This is analogous to the Schrodinger model of the
Weil representation. In particular, we have the following action of QS on Π:

{
(l · f)(χ) = δQS

(l)r · f(l−1 · χ)

(u · f)(χ) = χ(u) · f(χ),

where r = 1/4 (resp. 2/9) if S is of type E6 (resp. E7).

7.2. Mixed model. For general S = SR, one has the analog of the mixed model, on which the
action of the Heisenberg group PS is quite transparent. Recall that NS/ZS = k⊕R ⊕R′ ⊕ k and
one has an embedding

P 1
S = [PS , PS ] →֒ Sp(NS/ZS) ⋉NS.

Then by [14], the mixed model of the minimal representation is realized on the Hilbert space

IndPS

P 1
S

L2(R′ ⊕ k
′) ∼= L2(k× ⊕R⊕ k),

where the action of P 1
S on L2(R⊕ k) is via the Heisenberg-Weil representation (associated to any

fixed additive character ψ of k). The explicit formula can be found in [22, Prop. 43].

In fact, one can describe the full action of S on Π by giving the action of an extra Weyl group
element. More precisely, if wβ is the standard Weyl group element in SL3 associated to the root β
(see §5.1), then by [22, Prop. 47], one has

(wβ · f)(t, x, a) = ψ(det(x)/a) · f(−a/t, x,−a).

Since S is generated by PS and the element w0, this completely determines the representation Π.

For example, one may work out the action of an element u−β(b) = wβuβ(b)w−1
β (see §5.1). A

short computation gives:

(u−β(b) · f)(t, x, a) = ψ

(
bdet(x)

a− t2

)
· f(t−

ab

t
, a−

a2b

t2
, x).

If f is continuous, then the above formula gives:

(24) (u−β(b) · f)(1, x, 0) = ψ(−bdet(x)) · f(1, x, 0).

This formula will be useful in the last section.
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8. Exceptional Theta Correspondences: G×G′

Now we may study the restriction of the minimal representation Π to the dual pairs introduced
earlier. In this section, we shall treat the family of dual pairs G×G′ given in (23). For simplicity,
we shall consider the case when S = E6 and E7 separately.

8.1. Restriction to G×G′ ⊂ E7. Suppose first that S is of type E7, so that ΩQ is the set of rank
1 elements in J = J(O). Consider the Schrodinger model for Π. On restricting Π to Q0 × G, we
have the following formulae:





(g · f)(α) = f(g−1 · α) for g ∈ G;

(u(a) · f)(α) = ψ(tr(a · α)) · f(α) for u(a) ∈ U0;

(l · f)(α) = |det(l)|s · f(l−1 · α) for l ∈ L0,

where s is a real number whose precise value will not be important to us here.

From our description of generic L0 × G-orbits given in §6.2, we deduce as in the derivation of
(12) that as a Q0 ×G-module,

(25) Π ∼=
⊕

χ generic

IndQ0×G

U0×H̃χ
χ⊗ 1 ∼=

⊕

χ generic

IndQ0

Zχ·U0
L2(Hχ\G).

Here, G and Zχ
∼= H̃χ/Hχ act on L2(Hχ\G) by right and left translation respectively, and U0 acts

by χ.

8.2. Abstract decomposition. On the other hand, there is an abstract direct integral decompo-
sition

Π =

∫

cG′

π ⊗Θ(π) dνΘ(π).

Restricting to Q0, we may write:

π|Q0
∼=
⊕

χ

IndQ0

Zχ·U0
Wχ(π)

for some Zχ · U0-module Wχ(π) with U0 acting via χ. Thus,

(26) Π ∼=
⊕

χ

∫

cG′

IndQ0

Zχ·U0
Wχ(π)⊗Θ(π) dνΘ(π).

8.3. Comparison. Comparing (25) and (26), we deduce that there is an isomorphism of G-modules:

(27) L2(Hχ\G) ∼=

∫

cG′

Wχ(π)⊗Θ(π) dνΘ(π).

If G′ is isogenous to a product of SL2, the space Wχ(π) = Whχ(π) has been determined in Theorem
5(3) and is at most 1-dimensional. If G′ is (Spin3 × Spin5)/∆µ2, Theorem 5(1, 2, 4), still gives
some partial results on Wχ(π).

8.4. Mixed model. To explicate the measure dνΘ(π), we consider the mixed model of Π restricted
to P ×G′. Since

N/ZS = k⊕R0 ⊕R
′
0 ⊕ k ⊂ NS/ZS .

Under its adjoint action on R⊕ k, G′ fixes R0 ⊕ k pointwise, and its action on R⊥
0 is described in

the following table.

23



G′ R0 R⊥
0

PGL2 J(k) adjoint⊕3

SL3
2/∆µ2 k

3 ⊕3
i=1stdi ⊗ std∨i+1

(Spin3 × Spin5)/∆µ2 k× k (Spin ⊗ Spin)⊕ (1⊗ std)

Thus as a representation of G′, we have:

Π ∼= L2(k×)⊗ L2(R0 ⊕ k)⊗ L2(R⊥
0 )

where G′ acts only on L2(R⊥
0 ) and the action is geometric. Thus, Π is weakly equivalent to L2(R⊥

0 )
as a representation of G′. By our description of the G′-module R⊥

0 , we have:

Lemma 16. (i) If G′ = PGL2 or SL3
2/∆µ2, the representation L2(R⊥

0 ) (and hence Π) is weakly
equivalent to the regular representation L2(G′).

(ii) If G′ = (Spin3×Spin5)/∆µ2, the representation L2(R⊥
0 ) (and hence Π) is weakly contained in

the regular representation L2(G′).

Proof. (i) When G′ = PGL2, this follows from Corollary 9. When G′ = SL3
2/∆µ2, the represen-

tation of G′ on E⊥
A is the restriction of a representation of G̃′ = GL3

2/∆k
× (by the same formula).

Now the action of G̃′ on R⊥
0 has finitely many open orbits with representatives (1, 1, g) ∈ GL3

2 with
g regular semisimple, and the stabilizer of such a representative is ∆T with T a maximal torus in
PGL2. Hence, as a representation of G̃′, L2(R⊥

0 ) is weakly equivalent to
⊕

T

IndG̃′

∆T C ∼=
⊕

T

IndG̃′

∆PGL2
L2(T\PGL2)

as T runs over conjugacy classes of maximal tori in PGL2. By Corollary 9 and the continuity
of induction, we deduce that L2(R⊥

0 ) is weakly equivalent to L2(G̃′). Thus, on restriction to G′,
L2(E⊥) is weakly equivalent to L2(G′), as desired.

(ii) We shall only give a sketch in this case. By considering the generic orbits of G′ on R⊥
0 as in

(i), one shows that L2(R⊥
0 ) is weakly equivalent to the representation L2(∆Spin3\Spin3 × Spin5).

One then checks that tempered matrix coefficients on Spin3×Spin5 are absolutely integrable on the
subgroup ∆Spin3. Using the same argument as in [23, §6], one deduces that the spectral measure
of L2(∆Spin3\Spin3 × Spin5) is absolutely continuous with respect to the Plancherel measure of
G′, whence the result.. �

Concluding, we have:

Theorem 17. There is an isomorphism of G-modules:

L2(Hχ\G) ∼=

∫

cG′

Wχ(π)⊗Θ(π) dµG′(π),

with Wχ(π) is some multiplicity space and µG′ is the Plancherel measure. When G′ = PGL2 or
SL3

2/∆µ2, Wχ(π) = Whχ(π) as given in Theorem 5(3).

In addition, as we discussed in §3.10, the smoooth analog of our argument in this section implies
that when G′ = PGL2 or SL3

2/∆µ2,

Wχ(π) = Whχ(π) ∼= HomHχ(Θ∞(π∞),C) = HomHχ(Θ(π)∞,C)

for µG′-almost all π.
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8.5. Restriction to PGL3 × G2. We now treat the dual pair PGL3 × G2 in S = E6, which can
be done by a similar analysis. In this case, ΩQ ⊂ O2. If we restrict the action of S to Q0 ×G2, we
deduce by Lemma 15(ii) that as a representation of Q×G2,

Π ∼= IndQ0×G2

(PL0
×L·[U,U ])0·U

L2(k)

where the action of (PL0 × L · [U,U ])0 on L2(k) is given through the geometric action described in
Lemma 15(ii) and the action of U0 is by a nontrivial character fixed by PL0 .

By using the Fourier transform on L2(k), we deduce that as a representation of (PL0×L · [U,U ])0,

L2(k) ∼= Ind
(PL0

×L·[U,U ])0

UL0
×J ψ−1 ⊗ ψ.

Hence, as a representation of Q0 ×G2

(28) Π ∼= IndQ0

N0
χ⊗ IndG2

J ψ

where N0 = UL0 · U0 is the unipotent radical of a Borel subgroup of PGL3 and χ is a generic
character of N0.

On the other hand, we have abstractly

(29) Π ∼=

∫

P̂GL3

π|Q0 ⊗Θ(π) dνΘ(π).

We note that if π is tempered, then

π|Q0
∼= IndQ0

N0
χ,

in which case we deduce on comparing (28) and (29) that

(30) L2((J, ψ)\G2) = IndG2
J ψ ∼=

∫

P̂GL3

Θ(π) dνΘ(π).

For (30) to hold, we thus need to show that νΘ is absolutely continuous with respect to the Plancherel
measure of PGL3.

For this, we examine the mixed model of Π which is realized on L2(k× × J(k2) × k). Noting

that J(k2) ∼= gl3 as PGL3-module [19], we deduce that as a representation of PGL3, Π is weakly
equivalent to the representation on L2(sl3) associated to the adjoint action on sl3. As in Corollary
9, we know that L2(sl3) is weakly equivalent to

⊕
T L

2(T\PGL3), with T running over conjugacy
classes of maximal tori in PGL3.

Using the same argument as in [23, §6], one can show that for each T , the spectral measure for
L2(T\PGL3) is absolutely continuous with respect to the Plancherel measure of PGL3, and hence
so is the spectral measure of L2(sl3); this justifies (30) and shows that

L2((J, ψ)\G2) = IndG2
J ψ ∼=

∫

P̂GL3

W (π)⊗Θ(π) dµPGL3(π)

for some multiplicity space W (π) of dimension ≤ 1.

It is natural to ask:

Question 18. For which adjoint simple algebraic group G is the representation L2(g) of G weakly
equivalent to the regular representation L2(G)?

Corollary 9 verifies this conjecture for PGL2. If the conjecture holds for PGL3, one can then
take W (π) to be C for all π. In general, it is not difficult to show (using the argument in [23, §6] for
example) that the support of the spectral measure of L2(g) is contained in the tempered spectrum of
G. We had initially conjectured that L2(g) is weakly equivalent to L2(G). However, Kobayashi has
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explained to us that for the adjoint group G = PU(n, 1) (over R), there is a family of holomorphic
discrete series representations which does not occur in L2(g). Since it is unclear what the correct
statement is in general, we decide to formulate the above question.

9. Exceptional Theta Correspondence: SL3 ×Aut(R,det)

Finally we come to the family of dual pairs SL3×Aut(R,det) ⊂ S = SR given by (22). What is
interesting about this situation is that the group S may have no Siegel parabolic subgroup, so that
the argument below is not the analog of that in the classical cases of §3. To simplify notation, we
shall set G = Aut(R,det). Note that in the case of F4, S is the double cover of F4 and the dual

pair is S̃L3 ×G = S̃L3 × SL3.

Let Q0 = L0 · U0 ⊂ SL3 be the maximal parabolic subgroup stabilizing the subspace ke1 + ke2,
so that

L0
∼= GL2 and U0 = uβ0−β(k)× uβ0(k).

Let χ be a generic character of U0 trivial on uβ0−β(k). The stabilizer in L0 of χ is a subgroup of

the form T0 ⋉ UL0 with T0
∼= k

× contained in the diagonal torus and UL0 = u−β(k). On restricting
the minimal representation Π to Q0 ×G, we may write

Π ∼= IndQ0×G
PL0

U0×GΠχ

for some representation Πχ of PL0U0 ×G with U0 acting by χ. Here, we have used the theorem of
Howe-Moore which ensures that the trivial character of U0 does not intervene.

Now we can describe the PL0U0 × G-module Πχ using the mixed model of Π. Recall that this

mixed model of Π is realized on L2(k××R× k). Moreover, the action of U0 = uβ0−β(k)× uβ0(k) in
this model is: {

(uβ0(z)f)(t, x, a) = ψ(tz) · f(t, x, a)

(uβ0−β(y)f)(t, x, a) = ψ(ay) · f(t, x, a).

As such, Πχ is the representation obtained from Π by specializing (continuous) functions f ∈ Π to
the function x 7→ f(1, x, 0) of R. Thus

Πχ = L2(R)

where the action of T0 × G is geometric, with T0 acting by scaling on R. Moreover, it follows by
(24) that the action of u−β(b) ∈ UL0 is:

(u−β(b) · f)(x) = ψ(−b · det(x)) · f(x).

Now the set {x ∈ R : det(x) 6= 0} is open dense and by Proposition 11(i), it is the union of

finitely many generic orbits of T0 ×G indexed by k
×/(k×)3. For each a ∈ k×/(k×)3, let Ha be the

corresponding stabilizer group whose type is described in Table 4 in §4.2. Then

Π ∼=
⊕

a

IndQ0×G
N0×Ha

χa ⊗ C ∼= IndQ0

N0
χa ⊗ L

2(Ha\G).

On the other hand, one has abstractly

Π ∼=

∫

dSL3

π|Q0 ⊗Θ(π) dνθ(π).

Now we note:

Lemma 19. As a representation of SL3, Π is weakly equivalent to L2(SL3).
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Proof. If S is of type E, the group SL3 is contained in a conjugate of the Heisenberg parabolic
subgroup PS . Indeed, after an appropriate conjugation, we may assume that

SL3 ⊂ Aut(J(k2),det) = SL3 ×µ3 SL3 ⊂ Aut(J(B),det),

where B = k
2, M2(k) or the split octonion algebra O in the respective case. From the description of

the mixed model, one sees that Π is nearly equivalent to the representation of SL3 on L2(J(B)) =

L2(J(k2)) ⊗ L2(J(k2)⊥). Since J(k2) ∼= M3(k) with SL3 acting by left multiplication, we see that

J(k2) is weakly equivalent to the regular representation of SL3. This implies that Π is weakly
equivalent to the regular representation of SL3.

The case when S = F4 is a bit more intricate; we omit the details here. �

Thus νθ = µSL3 and every π in the support of νθ is tempered, so that

π|Q0 =
⊕

a∈k
×

/(k
×

)3

Whχa(π)⊗ IndQ0

N0
χa.

Comparing, we see that

L2(Ha\G) ∼=

∫

dSL3

Whχa(π)⊗Θ(π)dµSL3(π),

as desired.
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