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This book is an introduction to Number Theory from a more geometric point

of view than is usual for the subject, inspired by the idea that pictures are often a

great aid to understanding. The title of the book, Topology of Numbers, is intended

to express this visual slant, where we are using the term “Topology” with its general

meaning of “the spatial arrangement and interlinking of the components of a system”.

The other unusual aspect of the book is that, rather than giving a broad introduc-

tion to all the basic tools of Number Theory without going too deeply into any one, it

focuses on a single topic, quadratic forms Q(x,y) = ax2 + bxy + cy2 with integer

coefficients. Here there is a very rich theory that one can really immerse oneself into

to get a deeper sense of the beauty and subtlety of Number Theory. Along the way

we do in fact encounter many standard number-theoretic tools, with some context to

show how useful they can be.

A central geometric theme of the book is a certain two-dimensional figure known

as the Farey diagram, discovered by Adolf Hurwitz in 1894, which displays certain

relationships between rational numbers beyond just their usual distribution along the

one-dimensional real number line. Among the many things the diagram elucidates

that will be explored in the book are Pythagorean triples, the Euclidean algorithm,

Pell’s equation, continued fractions, Farey sequences, and two-by-two matrices with

integer entries and determinant ±1.

But most importantly for this book, the Farey diagram can be used to study

quadratic forms Q(x,y) = ax2+bxy+cy2 via John Conway’s marvelous idea of the

topograph of such a form. The origins of the wonderfully subtle theory of quadratic

forms can be traced back to ancient times. In the 1600s interest was reawakened by

numerous discoveries of Fermat, but it was only in the period 1750-1800 that Euler,

Lagrange, Legendre, and especially Gauss were able to uncover the main features of

the theory.

The principal goal of the book is to present an accessible introduction to this

theory from a geometric viewpoint that complements the usual purely algebraic ap-

proach. Prerequisites for reading the book are fairly minimal, hardly going beyond

high school mathematics for the most part. One topic that often forms a significant

part of elementary number theory courses is congruences modulo an integer n . It

would be helpful if the reader has already seen and used these a little since we will not
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develop congruence theory as a separate topic and will instead just use congruences

as the need arises, proving whatever nontrivial facts are required including several

of the basic ones that form part of a standard introductory number theory course.

Among these is quadratic reciprocity, where we give Eisenstein’s classical proof since

it involves some geometry.

The high point of the basic theory of quadratic forms Q(x,y) is the class group

first constructed by Gauss. This can be defined purely in terms of quadratic forms,

which is how it was first presented, or by means of Kronecker’s notion of ideals intro-

duced some 75 years after Gauss’s work. For subsequent developments and general-

izations the viewpoint of ideals has proven to be central to all of modern algebra. In

this book we present both approaches to the class group, first the older version just

in terms of forms, then the later version using ideals.

Here is how the book is organized. A preliminary Chapter 0 gives a sample of

some of the sorts of questions studied in Number Theory, in particular motivating

the study of quadratic forms by seeing how they arise in understanding Pythagorean

triples, the integer side-lengths of right triangles, such as 3,4,5 and 5,12,13.

After this introduction the next three chapters lay the groundwork for our ap-

proach to quadratic forms by introducing the Farey diagram and its first applications

to visualizing the Euclidean algorithm and continued fractions, both finite and infinite.

The next four chapters are the heart of the book. Chapter 4 introduces the to-

pograph of a quadratic form, which displays all its values visually in a convenient

and effective picture. A variety of examples are given illustrating different kinds of

qualitative behavior of the topograph. As applications, topographs give efficient ways

to compute the values of periodic and eventually periodic continued fractions, and to

find all the integer solutions of Pell’s equation x2 − dy2 = ±1.

Chapter 5 develops the classification theory for quadratic forms ax2+bxy+cy2

in terms of the discriminant b2 − 4ac . There are only a finite number of essentially

distinct forms of a given discriminant, and it is shown how to compute these. Forms

with symmetry play a special role, and a fairly complete picture of these is developed.

Chapter 6 turns to the fundamental representation problem, which is to find all

the values a given form takes on, or in other words, to determine when an equation

ax2 + bxy + cy2 = n has integer solutions. There are two central themes here: how

the factorization of n into primes plays a key role, largely reducing the problem to

the case that n itself is prime; and how congruences modulo the discriminant give

useful criteria for solvability, particularly in the case of primes.

Chapter 7 completes the basic theory by presenting Gauss’s discovery of a way to

multiply forms of a given discriminant, refining the multiplication of the values of the

forms. This leads to an explanation of the seemingly mysterious fact that while there

is essentially only one form of a given discriminant that represents a given prime,

there can be several different forms representing nonprimes.
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Finally, the rather lengthy Chapter 8 goes in a different direction to give an ex-

position of the alternative viewpoint toward quadratic forms by expanding the set of

rational numbers to sets of numbers a+b
√
n with a and b rational. Here the deeper

subtleties of quadratic forms are translated into subtleties with the factorization of

such numbers into “primes” and the lack of uniqueness of such factorizations. In

keeping with the viewpoint of the rest of the book, we strive to make this essentially

algebraic theory as geometric as possible.

At the end of the book there are several tables giving the key data for quadratic

forms of small discriminant.

This book will remain available online in electronic form for free downloading

after it has been published in the traditional paper form. The web address where it

can be found is

http://www.math.cornell.edu/˜hatcher

Also available here will be a list of corrections as well as possible revisions and addi-

tions to the book. Readers are encouraged to send comments and corrections to the

email address posted on the web page.

Note on the September 2024 revision. This version of the book contains various

minor revisions, mostly in Chapters 1 through 7, including a few small additions.

These changes add about ten pages to the length of the book.
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In this preliminary Chapter 0 we introduce by means of examples some of the

main themes of Number Theory, particularly those that will be emphasized in the rest

of the book.

Pythagorean Triples

Let us begin by considering right triangles whose sides all have integer lengths.

The most familiar example is the (3,4,5) right triangle, but there are many others as

well, such as the (5,12,13) right triangle. Thus we are looking for triples (a, b, c) of

positive integers such that a2 + b2 = c2 . Such triples are called Pythagorean triples

because of the connection with the Pythagorean Theorem. Our goal will be a formula

that gives them all. The ancient Greeks knew such a formula, and even before the

Greeks the ancient Babylonians must have known a lot about Pythagorean triples be-

cause one of their clay tablets from nearly 4000 years ago has been found which gives a

list of 15 different Pythagorean triples, the largest of which is (12709,13500,18541) .

(Actually, the tablet only gives the numbers a and c from each triple (a, b, c) for

some unknown reason, but it is easy to compute b from a and c .)

There is an easy way to create infinitely many Pythagorean triples from a given

one just by multiplying each of its three numbers by an arbitrary number n . For

example, from (3,4,5) we get (6,8,10) , (9,12,15) , (12,16,20) , and so on. This

process produces right triangles that are all similar to each other, so in a sense they

are not essentially different triples. In our search for Pythagorean triples there is

thus no harm in restricting our attention to triples (a, b, c) whose three numbers

have no common factor. Such triples are called primitive. The large Babylonian triple

mentioned above is primitive, since the prime factorization of 13500 is 223353 but

the other two numbers in the triple are not divisible by 2, 3, or 5.

A fact worth noting in passing is that if two of the three numbers in a Pythagorean

triple (a, b, c) have a common factor n , then n is also a factor of the third number.

This follows easily from the equation a2 + b2 = c2 , since for example if n divides a

and b , then n2 divides a2 and b2 , so n2 divides their sum c2 , hence n divides c .
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Another case is that n divides a and c . Then n2 divides a2 and c2 , so n2 divides

their difference c2−a2 = b2 , hence n divides b . In the remaining case that n divides

b and c the argument is similar.

A consequence of this divisibility fact is that primitive Pythagorean triples can also

be characterized as the ones for which no two of the three numbers have a common

factor.

If (a, b, c) is a Pythagorean triple, then we can divide the equation a2 + b2 = c2

by c2 to get an equivalent equation
(
a/c

)2
+
(
b/c

)2
= 1. This equation is saying

that the point (x,y) =
(
a/c ,

b/c
)

is on the unit circle x2 + y2 = 1 in the xy-plane.

The coordinates a/c and b/c are rational numbers, so each Pythagorean triple gives a

rational point on the circle, a point whose coordinates are both rational. Notice that

multiplying each of a , b , and c by the same nonzero integer n yields the same point

(x,y) on the circle. Going in the other direction, given a rational point on the circle,

we can find a common denominator for its two coordinates so that it has the form(
a/c ,

b/c
)

and hence gives a Pythagorean triple (a, b, c) . We can assume this triple is

primitive by canceling any common factor of a , b , and c , and this does not change

the point
(
a/c ,

b/c
)
. The two fractions a/c and b/c must then be in lowest terms since

we observed earlier that if two of a , b , c have a common factor, then all three have

a common factor.

From the preceding observations we can conclude that the problem of finding

all Pythagorean triples is equivalent to finding all rational points on the unit circle

x2 +y2 = 1. More specifically, there is an exact one-to-one correspondence between

primitive Pythagorean triples and rational points on the unit circle that lie in the

interior of the first quadrant (since we want all of a,b, c, x,y to be positive).

In order to find all the rational points on the circle x2 + y2 = 1 we will use

a construction that starts with one rational point and creates many more rational

points from this one starting point. The four obvious rational points on the circle are

the intersections of the circle with the coordinate axes, which are the points (±1,0)

and (0,±1) . It does not matter which one we choose as the starting point, so let

us choose (0,1) . Now consider a line which

intersects the circle in this point (0,1) and

some other point P , as in the figure at the

right. If the line has slope m , its equation

will be y =mx + 1. If we denote the point

where the line intersects the x-axis by (r ,0) ,

then m = − 1/r so the equation for the line

can be rewritten as y = 1 − x/r . Here we

assume r is nonzero since r = 0 corresponds to the slope m being infinite and the

point P being (0,−1) , a rational point we already know about. To find the coordinates

of the point P in terms of r when r ≠ 0 we substitute y = 1− x/r into the equation
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x2 +y2 = 1 and solve for x :

x2 +

(
1−

x

r

)2

= 1

x2 + 1−
2x

r
+
x2

r 2
= 1

(
1+

1

r 2

)
x2 −

2x

r
= 0

(
r 2 + 1

r 2

)
x2 =

2x

r

We are assuming P ≠ (0,−1) so x ≠ 0 and we can cancel an x from both sides of the

last equation above and then solve for x to get x = 2r/r2 +1 . Plugging this into the

formula y = 1− x/r gives y = 1− 2/r2 +1 =
r2 ---1/r2 +1 . Thus the coordinates (x,y)

of the point P are given by:

(x,y) =

(
2r

r 2 + 1
,
r 2 − 1

r 2 + 1

)

Note that in these formulas we no longer have to exclude the value r = 0, which just

gives the point (0,−1) . Observe also that if we let r approach ±∞ then the point P

approaches (0,1) , as we can see either from the picture or from the formulas.

If r is a rational number, then the formula for (x,y) shows that both x and y

are rational, so we have a rational point on the circle. Conversely, if both coordinates

x and y of the point P on the circle are rational, then the slope m of the line must

be rational, hence r must also be rational since r = − 1/m . We could also solve the

equation y = 1− x/r for r to get r = x/1---y , showing again that r will be rational if

x and y are rational (and y is not 1). The conclusion of all this is that, starting from

the initial rational point (0,1) we have found formulas that give all the other rational

points on the circle.

Since there are infinitely many different choices for the rational number r , there

are infinitely many rational points on the circle. But we can say something much

stronger than this: every arc of the circle, no matter how small, contains infinitely

many rational points. This is because every arc on the circle corresponds to an interval

of r -values on the x-axis, and every interval in the x-axis contains infinitely many

rational numbers. Since every arc on the circle contains infinitely many rational points,

we can say that the rational points are dense in the circle, meaning that for every point

on the circle there is an infinite sequence of rational points approaching the given

point.

Now we can go back and find formulas for Pythagorean triples. If we set the

rational number r equal to p/q with p and q integers having no common factor,

then the formulas for x and y become:

x =
2
(
p/q

)
(
p/q

)2
+ 1

=
2pq

p2 + q2
and y =

(
p/q

)2
− 1

(
p/q

)2
+ 1

=
p2 − q2

p2 + q2
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These formulas give the ratios x = a/c and y = b/c for all Pythagorean triples

(a, b, c) , so they determine all Pythagorean triples up to multiplication by a constant.

The simplest way to realize the ratios a/c = 2pq/p2 +q2 and b/c = p2 ---q2
/p2 +q2 is

just to take:

(a, b, c) = (2pq,p2 − q2, p2 + q2)

The Pythagorean triples given by this formula may not be primitive, however. For

example, if p and q are both odd then p2−q2 and p2+q2 are both even, as is 2pq ,

so the triple could be simplified by dividing by 2. The nonprimitive triples obtained

in this way are the starred entries in the table below.

(p, q) (x,y) (a, b, c)

(2,1) (4/5,3/5) (4,3,5)

(3,1)∗ (6/10,8/10)∗ (6,8,10)∗→ (3,4,5)
(3,2) (12/13,5/13) (12,5,13)

(4,1) (8/17,15/17) (8,15,17)
(4,3) (24/25,7/25) (24,7,25)

(5,1)∗ (10/26,24/26)∗ (10,24,26)∗→ (5,12,13)
(5,2) (20/29,21/29) (20,21,29)

(5,3)∗ (30/34,16/34)∗ (30,16,34)∗→ (15,8,17)
(5,4) (40/41,9/41) (40,9,41)

(6,1) (12/37,35/37) (12,35,37)

(6,5) (60/61,11/61) (60,11,61)
(7,1)∗ (14/50,48/50)∗ (14,48,50)∗→ (7,24,25)

(7,2) (28/53,45/53) (28,45,53)
(7,3)∗ (42/58,40/58)∗ (42,40,58)∗→ (21,20,29)

(7,4) (56/65,33/65) (56,33,65)
(7,5)∗ (70/74,24/74)∗ (70,24,74)∗→ (35,12,37)

(7,6) (84/85,13/85) (84,13,85)

Notice that the primitive versions of the starred triples occur higher in the table, but

with a and b switched. This is a general phenomenon, as we will see in the course of

proving the following basic result:

Proposition. All primitive Pythagorean triples (a, b, c) , after perhaps interchang-

ing a and b , are obtained from the formula (a, b, c) = (2pq,p2 − q2, p2 + q2) by

letting p and q range over all positive integers with p > q , such that p and q

have no common factor and are of opposite parity (one even and the other odd).

Proof: We have seen that the formula (a, b, c) = (2pq,p2 − q2, p2 + q2) yields all

Pythagorean triples up to multiplication by a constant, so we just need to investigate

when the formula gives a primitive triple and what to do when it gives a nonprimitive

triple. As before we can assume that p and q have no common divisor, and we can

assume that p > q in order for the middle coordinate b = p2 − q2 to be positive.

Case 1: Suppose p and q have opposite parity. If all three of 2pq , p2 − q2 , and

p2+q2 have a common divisor d > 1 then d would have to be odd since p2−q2 and
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p2+q2 are odd when p and q have opposite parity. Furthermore, since d is a divisor

of both p2 − q2 and p2 + q2 it must divide their sum (p2 + q2) + (p2 − q2) = 2p2

and their difference (p2 + q2) − (p2 − q2) = 2q2 . However, since d is odd it would

then have to divide p2 and q2 , forcing p and q to have a common factor (since any

prime factor of d would have to divide p and q ). This contradicts the assumption

that p and q have no common factors, so we conclude that (2pq,p2 − q2, p2 + q2)

is primitive if p and q have opposite parity.

Case 2: Suppose p and q have the same parity. Then their sum and difference are

both even and we can write p + q = 2P and p − q = 2Q for some integers P and Q .

Any common factor of P and Q would have to divide P+Q = 1/2(p+q)+
1/2(p−q) = p

and P −Q = 1/2(p + q) −
1/2(p − q) = q , so P and Q have no common factors. In

terms of P and Q our Pythagorean triple becomes:

(a, b, c) =
(
2pq,p2 − q2, p2 + q2)

=
(
2(P +Q)(P −Q), (P +Q)2 − (P −Q)2, (P +Q)2 + (P −Q)2

)

=
(
2(P2 −Q2),4PQ,2(P2 +Q2)

)

= 2
(
P2 −Q2,2PQ,P2 +Q2)

Canceling the factor of 2 in front of this last expression gives a new Pythagorean triple(
P2−Q2,2PQ,P2+Q2) of the same type

(
2pq,p2−q2, p2+q2) that we started with

but with the first two coordinates switched. This new triple is primitive by Case 1

since P and Q cannot have the same parity, otherwise p = P + Q and q = P − Q

would both be even, which is impossible since they have no common factor.

From Cases 1 and 2 we can conclude that if we allow ourselves to switch the first

two coordinates, then we get all primitive Pythagorean triples from the formula by

restricting p and q to be of opposite parity and have no common factors. ⊔⊓

Pythagorean Triples and Quadratic Forms

There are many questions one can ask about Pythagorean triples (a, b, c) . For

example, we could begin by asking which numbers actually arise as the numbers a ,

b , or c in some Pythagorean triple. It is sufficient to answer the question just for

primitive Pythagorean triples, since the remaining ones are obtained by multiplying

by arbitrary positive integers. We know all primitive Pythagorean triples arise from

the formula

(a, b, c) = (2pq,p2 − q2, p2 + q2)

where p and q have no common factor and are of opposite parity. The latter condition

just amounts to saying p and q are not both odd since they cannot both be even if

they have no common factor. Determining whether a given number can be expressed

in one of the forms 2pq , p2−q2 , or p2+q2 is a special case of the general question
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of deciding when an equation Ap2+Bpq+Cq2 = n has an integer solution p , q , for

given integers A , B , C , and n . Expressions of the form Ax2+Bxy +Cy2 are called

quadratic forms. These will be the main topic studied in Chapters 4–8, where we will

develop some general theory addressing the question of what values a quadratic form

takes on when all the numbers involved are integers. For now, let us just look at the

special cases at hand.

First let us consider which numbers occur as a or b in primitive Pythagorean

triples (a, b, c) . A trivial case is the equation 02 + 12 = 12 which shows that 0 and

1 can be realized by the triple (0,1,1) which is primitive, so let us focus on realizing

numbers bigger than 1. If we look at the earlier table of Pythagorean triples we see

that all the numbers up to 15 can be realized as a or b in primitive triples except for

2, 6, 10, and 14. This might lead us to guess that the numbers realizable as a or b in

primitive Pythagorean triples are the numbers not of the form 4k+ 2. This is indeed

true, and can be proved as follows. First note that since 2pq is even, p2 − q2 must

be odd, otherwise both a and b would be even, violating primitivity. Now, every odd

number is expressible in the form p2−q2 since 2k+1 = (k+1)2−k2 , so in fact every

odd number is the difference between two consecutive squares. Taking p = k+1 and

q = k yields a primitive triple since k and k+ 1 always have opposite parity and no

common factors. This takes care of realizing odd numbers. For even numbers, they

would have to be expressible as 2pq with p and q of opposite parity, which forces

pq to be even so 2pq is a multiple of 4 and hence cannot be of the form 4k+ 2. On

the other hand, if we take p = 2k and q = 1 then 2pq = 4k with p and q having

opposite parity and no common factors.

To summarize, we have shown that all positive numbers 2k+1 and 4k occur as a

or b in primitive Pythagorean triples but none of the numbers 4k+2 occur. To finish

the story, note that a number a = 4k+2 which cannot be realized in a primitive triple

can be realized by a nonprimitive triple just by taking a triple (a, b, c) with a = 2k+1

and doubling each of a , b , and c . Thus all numbers can be realized as a or b in

Pythagorean triples (a, b, c) .

Now let us ask which numbers c can occur in Pythagorean triples (a, b, c) , so we

are trying to find a solution of p2+q2 = c for a given number c . Pythagorean triples

(p, q, r ) give solutions when c is equal to a square r 2 , but we are asking now about

arbitrary numbers c . It suffices to figure out which numbers c occur in primitive

triples (a, b, c) , since by multiplying the numbers c in primitive triples by arbitrary

numbers we get the numbers c in arbitrary triples. A look at the earlier table shows

that the numbers c that can be realized by primitive triples (a, b, c) seem to be fairly

rare: only 5,13,17,25,29,37,41,53,61,65, and 85 occur in the table. These are all

odd, and in fact they are all of the form 4k + 1. This always has to be true because

p and q are of opposite parity, so one is an even number 2k and the other an odd

number 2l+ 1. Squaring, we get (2k)2 = 4k2 and (2l+ 1)2 = 4(l2 + l)+ 1. Thus the
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square of an even number has the form 4u and the square of an odd number has the

form 4v + 1. Hence p2 + q2 has the form 4(u+ v)+ 1, or more simply, just 4k+ 1.

The argument we just gave can be expressed more concisely using congruences

modulo 4. We will assume the reader has seen something about congruences before,

but to recall the terminology: two numbers a and b are said to be congruent modulo a

number n if their difference a−b is a multiple of n . When n is negative, congruence

modulo n is equivalent to congruence modulo |n| , so there is no loss of generality

in restricting attention just to congruence modulo positive numbers. Congruence

modulo 0 is the same as equality, so there is little reason to consider this case. One

writes a ≡ b mod n to mean that a is congruent to b modulo n , with the word

“modulo” abbreviated to “mod”. One can tell whether two numbers are congruent

mod n by dividing each of them by n and checking whether the remainders, which

lie between 0 and n− 1, are equal. Every number is congruent mod n to one of the

numbers 0,1,2, · · · , n−1, and no two of these numbers are congruent to each other,

so there are exactly n congruence classes of numbers mod n , where a congruence

class means all the numbers congruent to a given number. In the preceding paragraph

we were in effect dealing with congruence classes mod 4 and we saw that the square

of an even number is congruent to 0 mod 4 while the square of an odd number is

congruent to 1 mod 4, hence p2 + q2 is congruent to 0+ 1 or 1+ 0 mod 4 when p

and q have opposite parity, so p2 + q2 ≡ 1 mod 4.

Returning to the question of which numbers occur as c in primitive Pythagorean

triples (a, b, c) , we have seen that c ≡ 1 mod 4, but looking again at the list 5,13,17,

25,29,37,41,53,61,65,85 we can observe the more interesting fact that most of these

numbers are primes, and the ones that are not primes are products of earlier primes

in the list: 25 = 5·5, 65 = 5·13, 85 = 5·17. From this somewhat slim evidence

one might conjecture that the numbers c occurring in primitive Pythagorean triples

are exactly the numbers that are products of primes congruent to 1 mod 4. The first

prime satisfying this condition that is not on the original list is 73, and this is realized

as p2 + q2 = 82 + 32 in the triple (48,55,73) . The next two primes congruent to 1

mod 4 are 89 = 82+52 and 97 = 92+42 , so the conjecture continues to look good. As

further evidence for the conjecture, numbers congruent to 1 mod 4 that are not on

the list such as 9 = 3·3, 21 = 3·7, 33 = 3·11, 45 = 32·5, 49 = 7·7, and 57 = 3·19

each have a prime factor that is not congruent to 1 mod 4.

More generally, if we ask which numbers can be expressed as p2+q2 for integers

p and q having no common divisor without requiring them to have opposite parity,

then we will also get the numbers c in the starred entries of the earlier table. As we

saw in the proof of the proposition about Pythagorean triples, these values of c are

just the doubles of the values of c in primitive Pythagorean triples. Thus one can

conjecture that the numbers expressible as p2 + q2 for positive integers p and q

having no common divisor are the products of primes congruent to 1 mod 4 and the
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doubles of these products. This conjecture is correct, but proving it is not easy. We

will do this in Chapter 6.

After this it is easy to go the last step and ask which numbers are sums p2 + q2

for arbitrary positive integers p and q . Now we are free to multiply p and q by the

same positive integer k , which multiplies p2 + q2 by k2 . This leads to the answer

that the numbers expressible as p2 + q2 , besides 0 and 1, are all the numbers n

for which each prime factor congruent to 3 mod 4 occurs to an even power in the

prime factorization of n . Thus the sequence of numbers that are sums of two squares

begins 0,1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32,34,36,37,40, · · ·.

Another question one can ask about Pythagorean triples is how many there are

with two of the three numbers differing only by 1. In the earlier table there are

several: (3,4,5) , (5,12,13) , (7,24,25) , (20,21,29) , (9,40,41) , (11,60,61) , and

(13,84,85) . As the pairs of numbers that differ by 1 get larger, the corresponding

right triangles are either approximately 45-45-90 right triangles, as with the triple

(20,21,29) , or long thin triangles, as with (13,84,85) . To analyze the possibilities,

note first that if two of the numbers in a triple (a, b, c) differ by 1 then the triple

has to be primitive, so we can use our formula (a, b, c) = (2pq,p2 − q2, p2 + q2) .

If b and c differ by 1 then we would have (p2 + q2) − (p2 − q2) = 2q2 = 1 which

is impossible. If a and c differ by 1 then we have p2 + q2 − 2pq = (p − q)2 = 1

so p − q = ±1, and in fact p − q = +1 since we must have p > q in order for

b = p2 − q2 to be positive. Thus we get the infinite sequence of solutions (p, q) =

(2,1), (3,2), (4,3), · · · with corresponding triples (4,3,5), (12,5,13), (24,7,25), · · · .

Note that these are the same triples we obtained earlier that realize all the odd values

b = 3,5,7, · · · .

The remaining case is that a and b differ by 1. Thus we have the equation

p2 − 2pq − q2 = ±1. The left side does not factor using integer coefficients, so it is

not so easy to find integer solutions this time. In the table there are only the two triples

(4,3,5) and (20,21,29) , with (p, q) = (2,1) and (5,2) . After some trial and error one

could find the next solution (p, q) = (12,5) which gives the triple (120,119,169) . Is

there a pattern in the solutions (2,1), (5,2), (12,5)? One has the numbers 1,2,5,12,

and perhaps it is not too great a leap to notice that the third number is twice the second

plus the first, while the fourth number is twice the third plus the second. If this pattern

continued, the next number would be 29 = 2·12+5, giving (p, q) = (29,12) , and this

does indeed satisfy p2−2pq−q2 = 1, yielding the Pythagorean triple (696,697,985) .

These numbers are increasing rather rapidly, and the next case (p, q) = (70,29) yields

an even bigger Pythagorean triple (4060,4059,5741) . Could there be other solutions

of p2−2pq−q2 = ±1 with smaller numbers that we missed? We will develop tools in

Chapters 4 and 5 to find all the integer solutions, and it will turn out that the sequence

we have just discovered gives them all.
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Although the quadratic form p2 − 2pq − q2 does not factor using integer coeffi-

cients, it can be simplified slightly be rewriting it as (p−q)2−2q2 . Then if we change

variables by setting (x,y) = (p−q, q) we obtain the quadratic form x2−2y2 . Find-

ing integer solutions of x2 − 2y2 = n is equivalent to finding integer solutions of

p2 − 2pq − q2 = n since integer values of p and q give integer values of x and y ,

and conversely, integer values of x and y give integer values of p and q since when

we solve for p and q in terms of x and y , we again get equations with integer coef-

ficients: (p, q) = (x +y,y) . Thus the quadratic forms p2 − 2pq − q2 and x2 − 2y2

are completely equivalent, and finding integer solutions of p2 − 2pq − q2 = ±1 is

equivalent to finding integer solutions of x2 − 2y2 = ±1.

The equation x2−2y2 = ±1 is an instance of the equation x2−Dy2 = ±1 which

is known as Pell’s equation (although sometimes this term is used only when the right

side of the equation is +1 and the other case is called the negative Pell equation).

This is a very famous equation in Number Theory which has arisen in many different

contexts going back hundreds of years. We will develop techniques for finding all

integer solutions of Pell’s equation for arbitrary values of D in Chapters 4 and 5. It

is interesting that certain fairly small values of D can force the solutions to be quite

large. For example, for D = 61 the smallest positive integer solution of x2−61y2 = 1

is a rather large pair:

(x,y) = (1766319049,226153980)

As far back as the eleventh and twelfth centuries mathematicians in India knew how to

find this solution. It was rediscovered in the seventeenth century by Fermat in France,

who also gave the smallest solution of x2 − 109y2 = 1, an even larger pair:

(x,y) = (158070671986249,15140424455100)

The way that the size of the smallest solution of x2 − Dy2 = 1 depends upon D is

very erratic and is still not well understood today.

Pythagorean Triples and Complex Numbers

There is another way of looking at Pythagorean triples that involves complex

numbers, surprisingly enough. The starting point here is the observation that a2+b2

can be factored as (a+bi)(a−bi) where i =
√
−1. If we rewrite the equation a2+b2 =

c2 as (a + bi)(a − bi) = c2 then since the right side of the equation is a square, we

might wonder whether each factor a± bi on the left side would have to be a square

too. For example, in the case of the triple (3,4,5) we have (3+ 4i)(3− 4i) = 52 with

3+4i = (2+i)2 and 3−4i = (2−i)2 . So let us ask optimistically whether the equation

(a+bi)(a−bi) = c2 can be rewritten as (p+qi)2(p−qi)2 = c2 with a+bi = (p+qi)2

and a−bi = (p−qi)2 . We might hope also that the equation (p+qi)2(p−qi)2 = c2
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was obtained by simply squaring the equation (p + qi)(p − qi) = c . Let us see what

happens when we multiply these various products out:

a+ bi = (p + qi)2 = (p2 − q2)+ (2pq)i

hence a = p2 − q2 and b = 2pq

a− bi = (p − qi)2 = (p2 − q2)− (2pq)i

hence again a = p2 − q2 and b = 2pq

c = (p + qi)(p − qi) = p2 + q2

Thus we have miraculously recovered the formulas for Pythagorean triples that we

obtained earlier by geometric means, with a and b switched, which does not really

matter:

a = p2 − q2 b = 2pq c = p2 + q2

Our derivation of these formulas just now depended on several assumptions that we

have not justified, but it does suggest that looking at complex numbers of the form

a + bi where a and b are integers might be a good idea. These complex numbers

a+ bi with a and b integers are called Gaussian integers, after C. F. Gauss, the first

mathematician to make a thorough algebraic study of them some 200 years ago. We

will develop the basic properties of Gaussian integers in Chapter 8, in particular ex-

plaining why the derivation of the formulas above is valid.

Rational Points on Quadratic Curves

The same technique we used to find the rational points on the circle x2 +y2 = 1

can also be used to find all the rational points on other quadratic curves Ax2+Bxy+

Cy2 + Dx + Ey = F with integer or rational coefficients A,B,C,D, E, F , provided

that we can find a single rational point (x0, y0) on the curve to start the process.

For example, the circle x2 + y2 = 2 contains the ra-

tional points (±1,±1) and we can use one of these

as an initial point. Taking the point (1,1) , we would

consider lines y − 1 = m(x − 1) of slope m passing

through this point. Solving this equation for y and

plugging into the equation x2 + y2 = 2 would pro-

duce a quadratic equation ax2+bx+ c = 0 whose co-

efficients are polynomials in the variable m , so these

coefficients would be rational whenever m is rational. From the quadratic formula

x =
(
−b ±

√
b2 − 4ac

)
/2a we see that the sum of the two roots is −b/a , a rational

number if m is rational, so if one root is rational then the other root will be rational as

well. The initial point (1,1) on the curve x2+y2 = 2 gives x = 1 as one rational root
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of the equation ax2+bx+c = 0, so for each rational value of m the other root x will

be rational. Then the equation y − 1 =m(x− 1) implies that y will also be rational,

and hence we obtain a rational point (x,y) on the curve for each rational value of m .

Conversely, if x and y are both rational and x ≠ 1 then obviously m = y ---1/x---1 will

be rational. Thus one obtains a dense set of rational points on the circle x2+y2 = 2,

since the slope m can be any rational number. An exercise at the end of the chapter

is to work out the formulas explicitly.

Note that the point (1,−1) is a rational point on the circle which does not arise

from the formulas parametrizing x and y in terms of m since it corresponds to

m = ∞ . This is analogous to the earlier case of the circle x2 + y2 = 1 where the

point (0,−1) corresponded to m = ∞ and r = 0. For the circle x2 + y2 = 2 we

could just as well use the parameter r instead of m , with (r ,0) the point where the

line through (1,1) intersects the x-axis. There are simple formulas relating r and

m , namely r = m ---1/m and m = 1/1---r . From this viewpoint the exceptional slope

m = ∞ corresponds to r = 1 which is not exceptional for the parametrization by r ,

while the exceptional value r = ∞ corresponds to the nonexceptional value m = 0

when the line through (1,1) is parallel to the x-axis.

If we consider the circle x2 + y2 = 3 instead of x2 + y2 = 2 then there are no

obvious rational points. And in fact this circle contains no rational points at all. For if

there were a rational point, this would yield a solution of the equation a2 + b2 = 3c2

by integers a , b , and c with c ≠ 0. We can assume a , b , and c have no common

factor. Then a and b cannot both be even, otherwise the left side of the equation

would be even, forcing c to be even, so a , b , and c would have a common factor

of 2. To complete the argument we look at the equation modulo 4. As we saw earlier,

the square of an even number is 0 mod 4, while the square of an odd number is 1

mod 4. Thus, modulo 4, the left side of the equation is either 0+ 1, 1+ 0, or 1+ 1

since a and b are not both even. So the left side is either 1 or 2 mod 4. However,

the right side is either 3·0 or 3·1 mod 4. We conclude that there can be no integer

solutions of a2 + b2 = 3c2 with c ≠ 0. When c = 0 there is of course the trivial

solution (a, b, c) = (0,0,0) but this is not interesting so we will generally disregard

it in equations of this type.

The technique we just used to show that a2 + b2 = 3c2 has no nontrivial integer

solutions can be used in many other situations as well. The underlying reasoning is

that if an equation with integer coefficients has an integer solution, then this gives

a solution modulo n for all numbers n . For solutions modulo n there are only a

finite number of possibilities to check, although for large n this is a large finite num-

ber. If one can find a single value of n for which there is no solution modulo n ,

then the original equation has no integer solutions. However, this implication is not

reversible, as it is possible for an equation to have solutions modulo n for every num-

ber n and still have no actual integer solutions. A concrete example is the equation
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2x2 + 7y2 = 1. This obviously has no integer solutions, yet it does have solutions

modulo n for each n , although this is certainly not obvious. Note that the ellipse

2x2+7y2 = 1 does contain rational points such as
(
1/3,

1/3

)
and

(
3/5,

1/5

)
. These can

in fact be used to show that 2x2 + 7y2 = 1 has solutions modulo n for each n , as

we will show in Section 2.3 of Chapter 2 when we study congruences in more detail.

In Chapter 6 we will find a complete answer to the question of when the circle

x2+y2 = n contains rational points by showing that there are rational points on this

circle only when there are integer points on it. This reduces the problem to one we

considered earlier, finding the integers n that are sums of two squares.

Determining when a quadratic curve contains rational points turns out to be much

easier than determining when it has integer points. The general problem reduces

fairly quickly to finding rational points on ellipses or hyperbolas of the special form

Ax2+By2 = C where A , B , and C are integers that are not divisible by squares greater

than 1, and such that no two of A , B , and C have a common factor. A theorem of

Legendre then asserts that the curve Ax2 + By2 = C contains rational points exactly

when three congruence conditions modulo A , B , and C are satisfied, namely AC

must be congruent mod B to the square of some number, and likewise BC must be a

square mod A and −AB must be a square mod C . (There is also the obvious condition

that A and B cannot both have opposite sign from C .) For example, if C = 1 this

reduces just to saying that each of A and B is congruent to a square modulo the

other one since the congruence condition mod C holds automatically when C = 1.

For the ellipse 2x2+7y2 = 1 this agrees with what we saw earlier since 2 is a square

mod 7, namely 32 , and 7 is a square mod 2, namely 12 , so Legendre’s theorem

guarantees that the curve has a rational point. In the case of the circle x2 + y2 = 3

the congruence conditions reduce simply to −1 being a square mod 3, which it is not

since every number is congruent to 0, 1, or 2 mod 3 so the squares mod 3 are just

0 and 1 since 22 ≡ 1 mod 3.

Diophantine Equations

Equations like x2 + y2 = z2 or x2 − Dy2 = 1 that involve polynomials with

integer coefficients, and where the solutions sought are required to be integers, or

perhaps just rationals, are called Diophantine equations after the Greek mathemati-

cian Diophantus (ca. 250 A.D.) who wrote a book about these equations that was very

influential when European mathematicians started to consider this topic much later

in the 1600s. Usually Diophantine equations are very hard to solve because of the

restriction to integer solutions. The first really interesting case is quadratic Diophan-

tine equations. By the year 1800 there was quite a lot known about the quadratic case,

and we will be focusing on this case in this book.
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Diophantine equations of higher degree than quadratic are much more challeng-

ing to understand. Probably the most famous one is xn+yn = zn where n is a fixed

integer greater than 2. In the 1600s when the French mathematician Fermat was read-

ing about Pythagorean triples in his copy of Diophantus’ book, he made a marginal

note that, in contrast with the equation x2+y2 = z2 , the equation xn+yn = zn has

no solutions with positive integers x,y, z when n > 2. This is one of many state-

ments that he claimed were true but never wrote proofs of for public distribution, nor

have proofs been found among his manuscripts. Over the next century other math-

ematicians discovered proofs for all his other statements, but this one was far more

difficult to verify. The issue is clouded by the fact that he only wrote this statement

down the one time, whereas all his other important results were stated numerous

times in his correspondence with other mathematicians of the time. So perhaps he

only briefly believed he had a proof. In any case, the statement has become known

as Fermat’s Last Theorem. It was finally proved in the 1990s by Andrew Wiles, using

some very deep mathematics developed mostly over the preceding couple decades.

We have seen that finding integer solutions of x2+y2 = z2 is equivalent to finding

rational points on the circle x2+y2 = 1, and in the same way, finding integer solutions

of xn + yn = zn is equivalent to finding rational points on the curve xn + yn = 1.

For even values of n > 2 this curve looks like a flattened circle or rounded square,

while for odd n it has a similar shape in the first quadrant but a rather different shape

elsewhere, extending out to infinity in the second and fourth quadrants, asymptotic

to the line y = −x :

Fermat’s Last Theorem is equivalent to the statement that these curves have no ra-

tional points except their intersections with the coordinate axes, where x or y is 0.

These examples show that it is possible for a curve defined by an equation of degree

greater than 2 to contain only a finite number of rational points (either two points or

four points here, depending on whether n is odd or even) whereas quadratic curves

like x2 +y2 = n contain either no rational points or an infinite dense set of rational

points.

After quadratic curves the next case that has been studied in great depth is cubic

curves such as the curves defined by equations y2 = x3 + ax2 + bx + c . These are

known as elliptic curves, not because they are ellipses but because of a connection
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with the problem of computing the length of an arc of an ellipse. Depending on the

values of the coefficients a,b, c elliptic curves can have either one or two connected

pieces:

In some cases the number of rational points is finite, any number from 0 to 10 as

well as 12 or 16 according to a difficult theorem of Mazur. In other cases the number

of rational points is infinite and they form a dense set in the curve, or possibly just in

the component that stretches to infinity when there are two components. There is no

simple way known for predicting the number of rational points from the coefficients.

Interestingly, elliptic curves play an important role in the proof of Fermat’s Last The-

orem. Their theory is much deeper than for quadratic curves, and so elliptic curves

are well beyond the scope of this book.

Rational Points on a Sphere

Although we will not be discussing this later in the book, another way to gen-

eralize quadratic curves, in a different direction from considering cubic and higher

degree curves, is to keep the quadratic condition but introduce more variables. After

quadratic curves the next case would be quadratic surfaces, or as they are usually

called, quadric surfaces. These are surfaces in three-dimensional space defined by an

equation Q(x,y, z) = n where Q(x,y, z) is a quadratic function of three variables.

Perhaps the simplest example is the equation x2 + y2 + z2 = 1 which defines the

sphere of radius 1 with center at the origin. Other quadric surfaces are ellipsoids,

paraboloids, hyperboloids, and certain cones and cylinders.

Much of the theory of quadric surfaces parallels that for quadratic curves. To

illustrate, let us consider the problem of finding all the rational points on the sphere

x2 + y2 + z2 = 1, the triples (x,y, z) of rational numbers that satisfy this equation.

Some obvious rational points are the points where the sphere meets the coordinate

axes such as the point (0,0,1) on the z-axis. Following what we did for the circle

x2+y2 = 1, consider a line from (0,0,1) to a point (u,v,0) in the xy-plane. This line

intersects the sphere at some point (x,y, z) , and we want to find formulas expressing

x , y , and z in terms of u and v . To do this we use the following figure:
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Suppose we look at the vertical plane containing the triangle ONQ . From our earlier

analysis of rational points on a circle of radius 1 we know that if the segment OQ has

length |OQ| = r , then |OP ′| = 2r/r2 +1 and z = r2 ---1/r2 +1 . From the right triangle

OBQ we see that u2+v2 = r 2 . The triangle OBQ is similar to the triangle OAP ′ and

the scaling factor to go from OBQ to OAP ′ is

|OP ′|

|OQ|
=

2r/(r 2 + 1)

r
=

2

r 2 + 1

Hence

x =
2

r 2 + 1
·u =

2u

u2 + v2 + 1
and y =

2

r 2 + 1
·v =

2v

u2 + v2 + 1

Also we have

z =
r 2 − 1

r 2 + 1
=
u2 + v2 − 1

u2 + v2 + 1

Summarizing, we have expressed x , y , and z in terms of u and v by the formulas

x =
2u

u2 + v2 + 1
y =

2v

u2 + v2 + 1
z =

u2 + v2 − 1

u2 + v2 + 1

We can also express u and v in terms of x , y , and z . The projection of the point P =

(x,y, z) onto the xz-plane is the point (x,0, z) which is on the line through B and N .

The slope of this line is − 1/u so the equation for the line is z = 1 − x/u . Solving

this for u gives u = x/1---z . Interchanging x and y corresponds to interchanging u

and v so we also have v = y/1---z .

From the formulas relating (x,y, z) to (u,v) we see that x , y , and z are rational

exactly when u and v are rational. Thus we have formulas for all the rational points

(x,y, z) on the sphere except for the pole (0,0,1) in terms of rational parameters u

and v .
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Here is a short table giving a few rational points on the sphere and the corre-

sponding integer solutions of the equation a2 + b2 + c2 = d2 :

(u,v) (x,y, z) (a, b, c, d)

(1,2)
(
1/3 ,

2/3 ,
2/3

)
(1,2,2,3)

(2,3)
(
2/7 ,

3/7 ,
6/7

)
(2,3,6,7)

(1,4)
(
1/9 ,

4/9 ,
8/9

)
(1,4,8,9)

(2,2)
(
4/9 ,

4/9 ,
7/9

)
(4,4,7,9)

(1,3)
(
2/11 ,

6/11 ,
9/11

)
(2,6,9,11)(

3/2,
3/2

) (
6/11 ,

6/11 ,
7/11

)
(6,6,7,11)

(3,4)
(
3/13 ,

4/13 ,
12/13

)
(3,4,12,13)

(2,5)
(
2/15 ,

5/15 ,
14/15

)
(2,5,14,15)(

1/2,
5/2

) (
2/15 ,

10/15 ,
11/15

)
(2,10,11,15)

These are in fact all the primitive positive solutions of a2+b2+c2 = d2 with d ≤ 15,

up to permutations of a , b , and c .

As with rational points on the circle x2 + y2 = 1, rational points on the sphere

x2 + y2 + z2 = 1 are dense since rational points are dense in the xy-plane. Thus

there are lots of rational points scattered all over the sphere. In linear algebra courses

one is often called upon to create unit vectors (x,y, z) by taking a given vector and

rescaling it to have length 1 by dividing it by its length. For example, the vector

(1,1,1) has length
√

3 so the corresponding unit vector is
(
1/
√

3 ,
1/
√

3 ,
1/
√

3

)
. It is rare

that this process produces unit vectors having rational coordinates, but the formulas

derived above give a way to create as many rational unit vectors as we like.

The correspondence we have described between points (x,y, z) on a sphere and

points (u,v) in the plane is called stereographic projection. One can think of the

sphere and the plane as being made of clear glass, and if one looks outward and

downward from the north pole of the sphere the points of the sphere are projected

onto points in the plane, and vice versa. The north pole itself does not project onto

any point in the plane, but points approaching the north pole project to points ap-

proaching infinity in the plane, so one can think of the north pole as corresponding to

an imaginary infinitely distant “point” in the plane. This geometric viewpoint some-

how makes infinity less of a mystery, as it just corresponds to a point on the sphere,

and points on a sphere are not very mysterious. (Though in the early days of polar

exploration the north pole may have seemed very mysterious and infinitely distant.)

One might ask also about spheres x2 + y2 + z2 = n , following what we did

for circles x2 + y2 = n . Finding an integer point on x2 + y2 + z2 = n is asking

whether n is a sum of three squares. One can test small values of n and one finds

that most numbers are sums of three squares, so it is easier to list the ones that are

not: 7,15,23,28,31,39,47,55,60,63,71,79,87,92,95, · · ·. The odd numbers here

are just the numbers 8k + 7, and the even numbers seem to be 4 times the earlier

numbers on the list. In fact it is easy to see that numbers congruent to 7 mod 8 cannot
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be expressed as sums of three squares by the following argument. The squares mod 8

are 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 = 9 ≡ 1, and 42 = 16 ≡ 0, so the squares

of even numbers are 0 or 4 mod 8 and the squares of odd numbers are 1 mod 8.

Obviously 7 cannot be realized as a sum of three terms 0, 1, or 4, so numbers

congruent to 7 mod 8 cannot be sums of three squares.

To rule out numbers 4(8k+7) as sums of three squares, we can work mod 4 where

the squares are just 0 and 1. If we have x2 + y2 + z2 = 4n then x2 + y2 + z2 ≡ 0

mod 4, and the only way to get 0 as a sum of three numbers 0 or 1 is as 0+ 0+ 0.

This means each of x , y , and z must be even, so we can cancel a 4 from both sides

of the equation x2 + y2 + z2 = 4n to get n expressed as a sum of three squares.

Thus numbers 4(8k+ 7) are never realizable as sums of three squares since 8k+ 7

is never a sum of three squares. Repeating this argument, we see that 16(8k+ 7) is

never a sum of three squares since 4(8k+ 7) is not a sum of three squares. Similarly

4l(8k+ 7) is never a sum of three squares for any larger exponent l .

The converse statement that every number not of the form 4l(8k+7) is express-

ible as a sum of three squares is true but is much harder to prove. This was first done

by Legendre.

This answers the question of when the sphere x2 +y2+ z2 = n contains integer

points, but could it contain rational points without containing integer points? Let us

show that this cannot happen. A rational point on x2 + y2 + z2 = n is equivalent to

an integer solution of a2+b2+c2 = nd2 . It will suffice to show that if n is not a sum

of three squares, then neither is nd2 for any integer d . An equivalent statement is

that if n is of the form 4l(8k+7) then so is nd2 . To prove this, let us write d as 2pq

with q odd and p ≥ 0, hence d2 = 4pq2 with q2 ≡ 1 mod 8 since q is odd. Thus we

have nd2 = 4l+p(8k + 7)q2 where the product (8k + 7)q2 is 7 mod 8 since 8k + 7

is 7 mod 8 and q2 is 1 mod 8. This shows what we wanted, that if n is of the form

4l(8k+ 7) then so is nd2 .

For a general quadric surface defined by a quadratic equation with integer coef-

ficients there is a theorem due to Minkowski, analogous to Legendre’s theorem for

quadratic curves, that says that rational points exist exactly when certain congruence

conditions are satisfied. In general, having rational points on a quadric surface is not

equivalent to having integer points as it was for spheres, and the existence of integer

points is a more delicate question.

Moving on to four variables, one could ask about integer or rational points on the

spheres x2 + y2 + z2 +w2 = n in four-dimensional space. Integers that could not

be expressed as the sum of three squares can be realized as sums of four squares,

for example 7 = 22 + 12 + 12 + 12 and 15 = 32 + 22 + 12 + 12 , and it is a theorem

of Lagrange that every positive number can be expressed as the sum of four squares.

Thus the spheres x2 +y2 + z2 +w2 = n always contain integer points.

Minkowski’s theorem remains true for quadratic equations with integer coeffi-
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cients in any number of variables, as does the fact that the existence of a single rational

solution implies that rational solutions are dense.

Exercises

1. (a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100,

regarding (a, b, c) and (b,a, c) as the same triple.

(b) How many more would there be if we allowed nonprimitive triples?

(c) How many triples (primitive or not) are there with c = 65?

2. (a) Find all the positive integer solutions of x2−y2 = 512 by factoring x2−y2 as

(x + y)(x −y) and considering the possible factorizations of 512.

(b) Show that the equation x2 −y2 = n has only a finite number of integer solutions

for each value of n > 0.

(c) Find a value of n > 0 for which the equation x2−y2 = n has at least 100 different

positive integer solutions.

3. (a) Show that there are only a finite number of Pythagorean triples (a, b, c) with a

equal to a given number n .

(b) Show that there are only a finite number of Pythagorean triples (a, b, c) with c

equal to a given number n .

4. Find an infinite sequence of primitive Pythagorean triples where two of the numbers

in each triple differ by 2.

5. Find a right triangle whose sides have integer lengths and whose acute angles are

close to 30 and 60 degrees by first finding the irrational value of r that corresponds to

a right triangle with acute angles exactly 30 and 60 degrees, then choosing a rational

number close to this irrational value of r .

6. Find a right triangle whose sides have integer lengths and where one of the two

shorter sides is approximately twice as long as the other, using a method like the one

in the preceding problem. (One possible answer might be the (8,15,17) triangle, or

a triangle similar to this, but you should do better than this.)

7. Find a rational point on the sphere x2 + y2 + z2 = 1 whose three coordinates are

nearly equal.

8. (a) Derive formulas that give all the rational points on the circle x2 + y2 = 2 in

terms of a rational parameter m , the slope of the line through the point (1,1) on the

circle. (The value m = ∞ should be allowed as well, yielding the point (1,−1) .) The

calculations may be a little messy, but they eventually simplify to give formulas that

are not too complicated:

x =
m2 − 2m− 1

m2 + 1
y =

−m2 − 2m+ 1

m2 + 1
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(b) Using these formulas, find five different rational points on the circle in the first

quadrant, and hence five solutions of a2 + b2 = 2c2 with positive integers a , b , c .

(c) The equation a2 +b2 = 2c2 can be rewritten as c2 = 1/2

(
a2 + b2) , which says that

c2 is the average of a2 and b2 , or in other words, the squares a2 , c2 , b2 form an

arithmetic progression. One can assume a < b by switching a and b if necessary.

Find four such arithmetic progressions of three increasing squares where in each case

the three numbers have no common divisors.

9. (a) Find formulas that give all the rational points on the upper branch of the hyper-

bola y2 − x2 = 1.

(b) Can you find any relationship between these rational points and Pythagorean

triples?

10. (a) Show that the equation x2−2y2 = ±3 has no integer solutions by considering

this equation modulo 8.

(b) Show that there are no primitive Pythagorean triples (a, b, c) with a and b differ-

ing by 3.

11. Show there are no rational points on the circle x2 + y2 = 3 using congruences

modulo 3 instead of modulo 4.

12. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible

by 60. (It suffices to show that abc is divisible by 3, 4, and 5.)

13. Use congruences modulo 8 to show that primitive solutions of a2 + b2 + c2 = d2

must have d odd and must have two of a,b, c even and the other odd.

14. Show that if the curve xn + yn = 1 has a rational point with x and y nonzero,

then it has a rational point with x and y positive. Hint : Consider the equation

an + bn = cn .
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Our goal is to use geometry to study numbers. Of the various kinds of numbers,

the simplest are integers, along with their ratios, the rational numbers. Usually one

thinks of rational numbers geometrically as points along a line, interspersed with

irrational numbers as well. In this chapter we introduce a two-dimensional pictorial

representation of rational numbers that displays certain interesting relations between

them that we will be exploring. This diagram, along with several variants of it that

will be introduced later, is known as the Farey diagram. The origin of the name will

be explained when we get to one of these variants. Here is the diagram:

What is shown here is not the whole diagram but only a finite part of it. The actual

diagram has infinitely many curvilinear triangles, getting smaller and smaller out near
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the boundary circle. The diagram can be constructed by first inscribing the two big

triangles in the circle, then adding the four triangles that share an edge with the two

big triangles, then the eight triangles sharing an edge with these four, then sixteen

more triangles, and so on forever. With a little practice one can draw the diagram

without lifting one’s pencil from the paper: First draw the outer circle starting at the

left or right side, then the diameter, then make the two large triangles, then the four

next-largest triangles, and so on.

Our first task will be to explain how the vertices of all the triangles are labeled

with rational numbers. Perhaps the reader can guess what the rules are before we

spell them out in detail.

1.1 The Mediant Rule

The vertices of the triangles in the Farey diagram are labeled with fractions a/b ,

including the fraction 1/0 for ∞ , according to the following scheme. In the upper half

of the diagram, first label the vertices of the big triangle 1/0 , 0/1 , and 1/1 . Then add

labels for successively smaller triangles by the rule that, if

the labels at the two ends of the long edge of a triangle are

a/b and c/d , then the label on the third vertex of the triangle

is a+c/b+d , so the numerators and denominators are added

separately, contrary to the usual way of adding fractions. The

fraction a+c/b+d is called the mediant of a/b and c/d .

The labels in the lower half of the diagram follow the same scheme, starting with

the labels ---1/0 , 0/1 , and ---1/1 on the large triangle. Using ---1/0 instead of 1/0 as the

label of the vertex at the far left means that we are regarding +∞ and −∞ as the

same. The labels in the lower half of the diagram are the negatives of those in the

upper half, and the labels in the left half are the reciprocals of those in the right half.

For fractions with a nonzero denominator our usual rule will be to write them

with a positive denominator, so the sign of the fraction is the sign of the numerator.

The labels generated by the mediant rule occur in their proper order around the

circle, increasing from −∞ to +∞ as one goes around the circle in the counterclock-

wise direction. This is obviously true for the integer labels, and to verify it for the

others it suffices to show that the mediant a+c/b+d of a/b and c/d is always a num-

ber between a/b and c/d (hence the term “mediant”). Thus we want to show that if

a/b <
c/d then a/b <

a+c/b+d <
c/d . These fractions all have positive denominators,

so the inequality a/b <
c/d is equivalent to ad < bc and a/b <

a+c/b+d is equivalent

to ab + ad < ab + bc . Obviously ad < bc implies ab + ad < ab + bc , so a/b <
c/d

implies a/b <
a+c/b+d . Similarly a+c/b+d <

c/d is equivalent to ad+ cd < bc + cd

which also follows from ad < bc , so a/b <
c/d implies a+c/b+d <

c/d .
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There is another version of the Farey diagram with the boundary circle straight-

ened out to a line:

Here the diagram fills up the upper half of the xy-plane, with the vertex 1/0 of the

original Farey diagram positioned “at infinity” so it is not actually shown in the new

version. The edges of the diagram with one endpoint at 1/0 are drawn as vertical lines

with lower endpoints at the integer points on the x-axis. All the other edges of the

diagram are semicircles with endpoints on the x-axis, and we can position these so

that the vertex labeled a/b is actually the number a/b on the x-axis. This is possible

since when we construct the diagram by adding more and more curvilinear triangles,

we can place the new vertex of each triangle at any point between its outer two vertices,

so we just choose this new vertex to be at the mediant of the outer two vertices. With

this rule the part of the diagram between each pair of consecutive integers n and

n+1 looks the same since the mediant of n+a/b and n+ c/d is n+a+c/b+d as one

can easily check by a simple calculation.

In the previous chapter we described how rational points (x,y) on the unit cir-

cle x2 + y2 = 1 correspond to rational points p/q on the x-axis by means of lines

through the point (0,1) on the circle. Using this correspondence, we can label the

rational points on the circle by the corresponding rational points on the x-axis and

then construct a new Farey diagram in the circle by filling in triangles by the mediant

rule just as before.
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This gives a version of the circular Farey diagram that is rotated by 90 degrees to put

1/0 at the top of the circle, and there are also some perturbations of the positions of the

other vertices and the shapes of the triangles. For our purposes these perturbations

will not make much of a difference since it will usually be just the combinatorial

pattern of the triangles that is important. We drew the circular Farey diagram the way

we did at the beginning of the chapter because it looks more symmetric and is easier

to draw since one does not have to figure out the exact positions of the vertices.

The next figure shows the relationship between the new circular Farey diagram

and Pythagorean triples (a, b, c) using the formulas (a, b, c) = (2pq,p2−q2, p2+q2)

that we found in the previous chapter. The vertex with label p/q thus has coordinates

(x,y) =
(
a/c,

b/c
)
=
(

2pq/p2 +q2 ,p
2 ---q2

/p2 +q2

)
.

The construction we have described for the Farey diagram involves an inductive

process where more and more edges and vertex labels are added in succession. With

a construction like this it is not easy to tell by a simple calculation whether or not two

given rational numbers a/b and c/d are joined by an edge in the diagram. Fortunately

there is such a criterion:

Proposition 1.1. For each pair of fractions a/b and c/d , including ±1/0 , there exists

an edge in the Farey diagram with endpoints labeled a/b and c/d if and only if the

determinant ad− bc of the matrix
(
a
b
c
d

)
is equal to ±1 .
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What this means is that if one starts with the rational numbers together with
±1/0 arranged in order around a circle and one inserts circular arcs inside this cir-

cle meeting it perpendicularly and joining each pair of fractions a/b and c/d such

that ad− bc = ±1, with the circular arc replaced by a diameter in case a/b and

c/d are diametrically opposite on the circle, then no two of these arcs will cross,

and they will divide the interior of the cir-

cle into nonoverlapping curvilinear trian-

gles. This is really quite remarkable when

you think about it, and it does not hap-

pen for other values of the determinant

besides ±1. For example, for determi-

nant ±2 the edges would be the dotted

arcs in the figure at the right. Here there

are three arcs crossing in each triangle of

the original Farey diagram, and these arcs

divide each triangle of the Farey diagram

into six smaller triangles.

Proof: First we show by an inductive argument that for an edge in the diagram joining

two fractions a/b and c/d the associated matrix
(
a
b
c
d

)
has determinant ±1. The

induction starts with the edge joining ±1/0 to 0/1 where the determinant condition

obviously holds. All the other edges are added in stages, first the four edges creating

the two biggest triangles, then the eight edges creating the next four triangles, and

so on. Consider a triangle created at some stage by adding a new vertex labeled

a+c/b+d as the mediant of vertices a/b and c/d from

an earlier stage, as in the figure at the right. We may

assume by induction that ad − bc = ±1 for the long

edge of the triangle which was added at an earlier stage.

The determinant condition then holds also for the two

shorter edges of the triangle since a(b+d)−b(a+ c) =

ad − bc and (a + c)d − (b + d)c = ad − bc . Thus the

determinant condition continues to hold after each stage

of the construction of the diagram, so it holds for all

edges.

Now we prove the converse, the statement that if ad − bc = ±1 then there is

an edge in the diagram joining a/b and c/d . We may assume b ≥ 0 and d ≥ 0 by

multiplying both numerator and denominator of either fraction by −1 if necessary,

which multiplies the determinant ad−bc by −1. The order of the two fractions a/b

and c/d does not matter since interchanging the two columns of the matrix
(
a
b
c
d

)
also

multiplies the determinant by −1. If b or d is 0, say b = 0, then the determinant

condition becomes ad = ±1 so d = 1 and a = ±1. In this case the fractions a/b
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and c/d are ±1/0 and c/1 so they lie at the ends of an edge of the diagram, one of the

vertical edges to 1/0 in the upper halfplane version of the diagram. Thus for the rest

of the proof we may assume b > 0 and d > 0.

The previous figure shows that adding a new triangle to the diagram creates two

new edges corresponding to matrices obtained from
(
a
b
c
d

)
by replacing one of the

columns by the sum of the two columns. To finish the proof we will show that for

each matrix
(
a
b
c
d

)
of determinant ±1 with b > 0 and d > 0 it is possible to perform

a finite sequence of the inverse operations of subtracting one column from the other

and end up with a matrix that we already know corresponds to an edge in the diagram.

We will do this by always subtracting the column with smaller second entry from the

column with larger second entry, so that these two entries remain positive. We stop

the process when the two entries in the second row become equal. For example, here

is how the process works for the matrix
(

3
8

7
19

)
:

(
3 7

8 19

)
→

(
3 4

8 11

)
→

(
3 1

8 3

)
→

(
2 1

5 3

)
→

(
1 1

2 3

)
→

(
1 0

2 1

)
→

(
1 0

1 1

)

Here the last matrix corresponds to the edge joining 1/1 and 0/1 . Reversing the steps

reducing
(

3
8

7
19

)
to
(

1
1

0
1

)
, we are adding one column to the other at each stage so each

new matrix produced in this way corresponds to an edge of the diagram. In particular

this shows that the original matrix
(

3
8

7
19

)
corresponds to an edge of the diagram.

For the general argument we start with a matrix
(
a
b
c
d

)
of determinant ±1 with

b > 0 and d > 0. If b ≠ d then we subtract the column with smaller second entry from

the column with larger second entry, and repeat this operation until the two entries in

the second row are equal. We cannot get a 0 in the second row since this would mean

that the previous matrix already had equal entries in the second row. Once we get a

matrix with equal entries in the second row, these entries will divide the determinant

which is ±1 so these entries must be 1. Thus the matrix is of the form
(
a
1
c
1

)
, with

determinant a−c = ±1 so a and c differ by 1. The corresponding fractions are then

n/1 and n+1/1 for some integer n , and there is an edge of the diagram joining these

two fractions, one of the large semicircles in the upper halfplane diagram. Hence

when we reverse the sequence of column subtractions by performing a sequence of

column additions, each successive matrix will correspond to an edge of the diagram

and in particular
(
a
b
c
d

)
will correspond to an edge of the diagram. ⊔⊓

The sign of the determinant ad−bc has a simple interpretation for fractions a/b

and c/d with positive denominators since in this case the inequality ad − bc > 0 is

equivalent to a/b >
c/d and ad− bc < 0 is equivalent to a/b <

c/d . Thus the sign of

the determinant tells which of a/b or c/d is larger.

Here is an interesting consequence of the preceding proposition:

Corollary 1.2. The mediant rule for labeling the vertices in the Farey diagram

always produces labels a/b that are fractions in lowest terms.
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This would follow automatically if it was always true that the mediant of two

fractions in lowest terms is again in lowest terms, but this is not always the case. For

example, the mediant of 1/3 and 2/3 is 3/6 , and the mediant of 2/7 and 3/8 is 5/15 .

Somehow cases like this do not occur in the Farey diagram.

Before deducing the corollary let us introduce a bit of standard terminology. For a

fraction a/b to be in lowest terms means that a and b have no common factor greater

than 1. This is equivalent to saying that the prime factorizations of a and b have no

prime factor in common. When this is the case we say that a and b are coprime. An

alternative terminology is to say that a and b are relatively prime.

Proof: From the way the Farey diagram is constructed, each labeled vertex a/b is

joined to some other labeled vertex c/d by an edge of the diagram. By the easier half

of Proposition 1.1 we have ad − bc = ±1. This implies that a and b are coprime

since any common divisor of a and b must divide the products ad and bc , hence

also the difference ad− bc = ±1, but the only divisors of ±1 are ±1. ⊔⊓

Proposition 1.1 can also be used to prove another basic fact about the Farey dia-

gram:

Proposition 1.3. Every fraction p/q in lowest terms occurs as the label on some

vertex in the Farey diagram.

Proof: We may assume p and q are nonzero since 0/1 and 1/0 certainly occur as labels

in the diagram. Since the negative labels in the diagram are just the negatives of the

positive labels, we can assume p and q are in fact positive. It will suffice to show that

if p and q are coprime, then there is an edge in the diagram whose endpoints are

labeled p/q and r/s for some integers r and s . By Proposition 1.1 this is equivalent

to the existence of integers r and s such that ps − qr = ±1.

Consider a matrix
(
x
p
y
q

)
where the integers x and y are yet to be determined.

In the proof of Proposition 1.1 there was a procedure for repeatedly subtracting the

column with smaller second entry from the column with larger second entry until a

matrix with equal second entries is obtained. Subtracting one column from the other

does not affect coprimeness of the two second entries, so when the procedure is ap-

plied to a matrix
(
x
p
y
q

)
with p and q coprime, the result is a matrix whose second

entries are equal and coprime, so these entries must be 1. Now let us choose a matrix

of determinant ±1 whose lower two entries are 1, say the matrix
(

1
1

0
1

)
. If we start

with this matrix and apply the reverse of the sequence of operations performed on(
x
p
y
q

)
to get 1’s in the second row, the resulting sequence of operations of adding

one column to the other converts
(

1
1

0
1

)
into a matrix

(
r
p
s
q

)
of the same determi-

nant ±1. This means that we have found integers r and s such that rq − ps = ±1,

or equivalently ps − qr = ±1. ⊔⊓
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Implicit in this proof is a method for solving Diophantine equations of the form

px − qy = ±1 for any two given coprime positive integers p and q . In Section 2.3

we will make this procedure explicit and streamline it to be more efficient.

Exercises

1. There is another version of the Farey diagram in which the vertex labeled p/q is

placed at the point (q,p) in the plane, so p/q is the slope of the line through the

origin and (q,p) . The edges of this new Farey diagram are straight line segments

connecting the pairs of vertices that are connected in the original Farey diagram. For

example there is a triangle with vertices (1,0) , (0,1) , and (1,1) corresponding to the

big triangle in the upper half of the circular Farey diagram. With this model of the

Farey diagram the operation of forming the mediant of two fractions just corresponds

to standard vector addition (a, b)+ (c, d) = (a+ c, b + d) .

What you are asked to do in this problem is just to draw the portion of the new

Farey diagram consisting of all the triangles whose vertices (q,p) satisfy 0 ≤ q ≤ 5

and 0 ≤ p ≤ 5. Note that since fractions p/q labeling vertices are always in lowest

terms, the points (q,p) such that q and p have a common divisor greater than 1 are

not vertices of the diagram.

2. Consider a vertex of the Farey diagram labeled a/b with b > 1. Show that of all

the labels on vertices connected to the a/b vertex by an edge of the diagram, exactly

two have denominator smaller than b .

3. If a/b , c/d , and e/f are fractions in lowest terms such that e/f is the mediant of

a/b and c/d , is it necessarily true that there is a triangle in the Farey diagram with

vertices a/b , c/d , and e/f ? Give either a proof or a counterexample.

4. (a) Reduce each of the matrices
(

7
16

3
7

)
and

(
67
24

14
5

)
to either

(
1
0

0
1

)
or

(
0
1

1
0

)
by

repeatedly subtracting one column from the other as in the proof of Proposition 1.1.

(b) Use Proposition 1.1 to show that this can be done for any matrix
(
a
b
c
d

)
with non-

negative entries and determinant ±1.

5. Determine whether the following statement is always true: If a/b <
a′/b′ and c/d <

c′/d′ then the mediant of a/b and c/d is less than the mediant of a
′
/b′ and c′/d′.
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1.2 Farey Series

We can build the set of rational numbers by starting with the integers and then

inserting in succession the halves,

thirds, fourths, fifths, sixths, and

so on. Let us look at what happens

if we restrict to rational numbers

between 0 and 1. Starting with 0

and 1 we first insert 1/2 , then 1/3

and 2/3 , then 1/4 and 3/4 , skipping

2/4 which we already have, then in-

serting 1/5 , 2/5 , 3/5 , and 4/5 , then

1/6 and 5/6 , etc. A natural way to

depict this way of listing rational numbers between 0 and 1 is to place the terms

with equal denominators in successive rows, with line segments connecting each new

term to its two nearest neighbors among the terms in the previous rows as shown in

the figure for denominators up to 7. Inspecting the figure, it appears that each new

term is the mediant of its two neighbors, and we will show that in fact this always

happens. This means that we are just constructing a straight-line version of the part

of the Farey diagram between 0/1 and 1/1 .

The discovery of this curious mediant property in the early 1800s was initially

attributed to a geologist and amateur mathematician named Farey, although it turned

out that he was not the first person to have noticed it. In spite of this confusion, the

sequence of fractions a/b between 0 and 1 with denominator less than or equal to a

given number n is called the nth Farey series Fn . For example, here is F7 :

0

1

1

7

1

6

1

5

1

4

2

7

1

3

2

5

3

7

1

2

4

7

3

5

2

3

5

7

3

4

4

5

5

6

6

7

1

1

These numbers trace out the up-and-down path across the bottom of the preceding

figure. For the next Farey series F8 we would insert 1/8 between 0/1 and 1/7 , 3/8

between 1/3 and 2/5 , 5/8 between 3/5 and 2/3 , and finally 7/8 between 6/7 and 1/1 .

The mediant property of the Farey series Fn holds not just when each new term is

added as described above, but in fact for every three consecutive terms of the series.

For example in F7 , the mediant of 1/5 and 2/7 is 3/12 =
1/4 , so the mediant fraction

must be reduced to lowest terms when the middle of the three denominators is not

greater than the other two. This extended mediant property of Farey series will be

deduced from a more general fact about mediants later in this section.
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A more compact version of the preceding diagram that puts the part of the Farey

diagram between 0 and 1 into a square is

shown in the figure at the right. This can

be constructed in stages as indicated in the

sequence of figures below. Starting with a

square, one first adds its diagonals and a

vertical line from their intersection point

down to the bottom edge of the square.

The vertical line divides the region below

the shaded triangle into two quadrilaterals.

Each quadrilateral has one of its diagonals

already present, and for the second stage

of the construction we add the other diag-

onal and drop a vertical line from the in-

tersection point of the two diagonals down

to the bottom edge of the square. The pro-

cess is then repeated for each subsequent step, adding a second diagonal in each

unshaded quadrilateral and then a vertical line from the intersection point of the two

diagonals down to the bottom edge of the square.

Let us choose the square to lie in in the upper halfplane with sides of length 1,

with the bottom edge of the square along the x-axis and the lower left corner of the

square at the origin. We then use the mediant rule to label the vertices of the shaded

triangles as we proceed downward in the square, starting with the labels 0/1 and 1/1

at the upper left and right corners of the square. The positions of the vertices within

the square can be described very simply:

The vertex labeled a/b is located at the point
(
a/b ,

1/b
)
.

This is obviously true for the vertices labeled 0/1 and 1/1 at the upper corners of the

square, and also for the vertex labeled 1/2 at the centerpoint
(
1/2,

1/2

)
of the square.

For the remaining vertices we proceed by induction downward in the diagram. Each

step of the induction is a special case of the following geometric characterization of

mediants:
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For any two fractions a/b and c/d consider a

quadrilateral in the xy-plane with vertices at

the points shown in the figure at the right. Then

the diagonals of the quadrilateral intersect at(
a+c/b+d,

1/b+d
)
. Thus the mediant of a/b and

c/d is the x-coordinate of the intersection point

of the diagonals.

To verify this let us first show that
(
a+c/b+d,

1/b+d
)

is on the diagonal from
(
a/b,0

)

to
(
c/d,

1/d
)
. To do this it suffices to show that the line segments from

(
a/b,0

)

to
(
a+c/b+d,

1/b+d
)

and from
(
a+c/b+d,

1/b+d
)

to
(
c/d, 1/d

)
have the same slope.

These slopes are

1/b+d
a+c/b+d −

a/b
=

b

b(a+ c)− a(b + d)
=

b

bc − ad

and
1/d −

1/b+d
c/d −

a+c/b+d
=

b + d− d

c(b + d)− d(a+ c)
=

b

bc − ad

so they are equal. The same argument works for the other diagonal by interchanging

a/b and c/d . Thus the diagonals intersect at the point
(
a+c/b+d,

1/b+d
)
.

Note that the denominator bc −ad in the slope formulas above is ±1 when a/b

and c/d are the endpoints of an edge of the Farey diagram. Thus each diagonal line

in the square Farey diagram has integer slope, and this integer is, up to sign, the

denominator of the rational number where the line meets the x-axis.

The fact that the y-coordinate of the vertex labeled a/b in the square diagram is

1/b implies that the successive Farey series can be obtained by taking the vertices that

lie above the line y = 1/2 , then the vertices above y = 1/3 , then above y = 1/4 , and

so on. This explains why each new term inserted when Fn is enlarged to Fn+1 is the

mediant of its two neighbors in Fn . We see also that at most one new term of Fn+1 is

inserted between any two adjacent terms of Fn since there cannot be two triangles in

the diagram with the same upper edge but different lower vertices.

From the geometric interpretation of mediants given above we can deduce a gen-

eral fact about mediants:

The mediant of two fractions a/b and c/d is closer to the fraction with larger

denominator, unless the two denominators are equal in which case the mediant

is halfway between the two fractions.

This can be seen by comparing the diagonals of the quadrilateral

for a/b and c/d with the diagonals of the rectangle obtained by

moving one of the upper two vertices of the quadrilateral vertically

to the same height as the other upper vertex.
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The following general fact justifies the earlier assertion that each term in the Farey

series Fn is the mediant of the two adjacent terms.

For rational numbers a/b <
c/d <

e/f , if there are edges in the Farey diagram

joining a/b to c/d and c/d to e/f , then c/d is the mediant of a/b and e/f reduced

to lowest terms.

To see this we compute the mediant a+e/b+f . The assumption that there is an edge

joining a/b and c/d means that ad − bc = ±1, so if a/b < c/d we have ad < bc so

ad−bc = −1 and hence bc −ad = 1. Similarly, if there is an edge joining c/d to e/f

we have de− cf = 1. From these equations we have:

a = ade− acf b = bde− bcf

e = bce− ade f = bcf − adf

hence
a+ e

b + f
=
c(be − af)

d(be− af)
=
c

d

Note that in the last step, the fraction c/d is in lowest terms since we assumed c/d is

a vertex of the Farey diagram, and the factor be − af that we canceled to obtain c/d

is, up to sign, the determinant of the matrix
(
a
b
e
f

)
associated to the pair of fractions

a/b and e/f , and this determinant is ±1 exactly when a/b and e/f are joined by an

edge in the diagram.

As an example, all the fractions m ---1/m are connected to 1/1 in the Farey diagram

as are the fractions n+1/n on the other side of 1/1 , and the mediant of m ---1/m and

n+1/n is m+n/m+n =
1/1 . Here the number be − af that is being canceled to get

a fraction in lowest terms is m(n + 1)− (m − 1)n =m + n which is the number of

triangles in the Farey diagram between the edges from 1/1 to m ---1/m and n+1/n .

We can form a linear version of the full Farey diagram by placing copies of the

square diagram we have been considering side by side along the x-axis:

Here the vertical segments in the horizontal strip of squares are not part of the result-

ing Farey diagram, which consists just of the triangles with nonvertical edges, along

with the infinite “triangles” above the strip with a vertex at 1/0 . The original halfplane

Farey diagram can be obtained from this linear Farey diagram by shrinking each ver-
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tical segment in the horizontal strip down to its lower endpoint while bending each

straight edge of a triangle into a semicircle with endpoints on the x-axis.

Ford Circles

Another version of the Farey diagram can be constructed from an array of circles

in the upper halfplane tangent to the x-axis and to each other as in the following

figure:

This arrangement of tangent circles can be built in stages, starting with circles of

diameter 1 tangent to the x-axis at the integer points. At the next stage a smaller

circle is inserted in each gap between adjacent pairs of circles from the first stage.

This creates new gaps, and one then puts a still smaller circle in each of these gaps.

The process can then be repeated indefinitely all along the x-axis.

If we connect the centers of each pair of tangent circles by a line segment passing

through the point of tangency, we obtain a pattern of triangles that is combinatorially

equivalent to the pattern of triangles in the linear Farey diagram, but compressed

closer to the x-axis. The vertices of these triangles are the centers of the various

tangent circles, and we can label these centers by rational numbers, starting with an

integer label n/1 at the center of the large circle tangent to the x-axis at the point n ,

and then labeling all the other centers by applying the mediant rule repeatedly.

The surprising thing about this construction is that the circle whose center is

labeled a/b is tangent to the x-axis at exactly the point a/b on the x-axis. This can

be verified as follows. For an edge of the Farey diagram with endpoints labeled a/b and

c/d let us draw two circles tangent to each other and

tangent to the x-axis at the points a/b and c/d . Let

the radii of these two circles be r and s respectively.

Note that r and s are not uniquely determined by

a/b and c/d . In fact we can choose r arbitrarily and

then this determines s , with s becoming small as r

becomes large, and vice versa. We can find a formula

for how r and s are related by applying the Pythagorean theorem to the right triangle
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shown in the figure. The horizontal side of this triangle has length
∣∣c/d − a/b

∣∣ and

the vertical side has length
∣∣r − s

∣∣ . The condition for the two circles to be tangent is

that the hypotenuse of the triangle has length r + s . Thus we have:

(r − s)2 +

(
c

d
−
a

b

)2

= (r + s)2

This simplifies to: (
bc − ad

bd

)2

= 4rs

Since we assumed the fractions a/b and c/d were the endpoints of an edge in the

Farey diagram, we have ad − bc = ±1 so the preceding equation simplifies further

to
( 1
bd

)2
= 4rs . The easiest way to assure that this holds is to let r = 1/2b2 and

s = 1/2d2 , so that r depends only on a/b and s depends only on c/d . Thus we

are choosing the diameter of each circle to be the reciprocal of the square of the

denominator of the fraction where the circle is tangent to the x-axis. This is consistent

with how we chose the initial large circles tangent to the x-axis at integer points.

Then when we build the Farey diagram inductively by adding more and more vertices

labeled according to the mediant rule, each new vertex labeled a+c/b+d between

vertices labeled a/b and c/d is the center of a circle of diameter 1/(b+d)2 tangent to

the x-axis at a+c/b+d and tangent to each of the two circles labeled a/b and c/d of

diameters 1/b2 and 1/d2 that are tangent to the x-axis at a/b and c/d .

The circles tangent to the x-axis constructed in this way are called Ford circles

after their discoverer L. R. Ford. From the formula for their diameters we see that the

Ford circles whose diameter is greater than a fixed number are just the ones associated

to the fractions in a Farey series, if we restrict attention to the circles tangent to the

x-axis at points between 0 and 1.

Another very nice feature of Ford circles is that when we superimpose them on

the upper halfplane Farey diagram, the semicircles of the Farey diagram intersect the

Ford circles orthogonally at the points of tangency of the Ford circles:

The fact that the circles and semicircles intersect orthogonally at the tangency points

of the circles can be verified by considering the tangent lines to the circles at the points

where two circles are tangent. The key fact is that for any two nonparallel tangent
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lines to a circle, the distances from the points of tan-

gency to the intersection point of the two tangent

lines are equal. This is because reflecting across the

radial line through the intersection point takes one

tangent line to the other.

Exercises

1. Compute the Farey series F10 .

2. Draw a figure showing how Ford circles are positioned in a circular Farey diagram

by the following procedure. Start with a circle C of radius 1 which will be the outer

boundary of the Farey diagram. Next, draw two tangent circles of radius 1/2 inside C

and tangent to C at two opposite points of C . Label these two tangency points 1/0 and

0/1 . Now continue drawing smaller circles inside C with the same tangency patterns

as the Ford circles in the upper halfplane Farey diagram, and label the tangency points

of these circles with C according to the mediant rule. After a number of these circles

have been drawn, superimpose the semicircles of the Farey diagram itself.

3. Suppose two Ford circles tangent to the x-axis at points a/b and c/d are tangent

to each other. Show that the point of tangency between the two circles is the point

(
ab + cd

b2 + d2
,

1

b2 + d2

)

so in particular the coordinates of this point are rational. Hint : What proportion of

the way along the line segment joining the two centers is the point of tangency? This

same proportion will apply to x-coordinates and y-coordinates separately.
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Continued fractions are expressions of the following sort:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2
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+

−−−
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2
+

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−
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1

1
3
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+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

The numerators in these two examples are all 1, and we will only be considering

continued fractions of this type, although there are situations outside the scope of

this book where other numerators are allowed.

To compute the value of a continued fraction one starts in the lower right corner

and works one’s way upward. For example, in the continued fraction for 7/16 one

starts with 3+ 1/2 =
7/2 , then taking 1 over this gives 2/7 , and adding 2 to this gives

16/7 , and finally 1 over this gives 7/16 . In the case of the continued fraction for 67/24

the fractions arising by this process are 5/4 , 4/5 , 19/5 , 5/19 , 24/19 , 19/24 , and finally

67/24 . As we will see, there is a fairly simple way to express every rational number as

a continued fraction.

The main theme of this chapter will be the close relationship between continued

fractions and the Farey diagram. For example, the fact that all rational numbers occur

as labels on vertices in the Farey diagram is a reflection of the fact that every rational

number has an expression as a continued fraction. In fact the continued fraction for

a rational number p/q will tell how to locate the vertex labeled p/q in the diagram,

and conversely, from the location of the vertex p/q one can read off the continued

fraction for p/q .

We will also consider continued fractions with infinitely many terms extending

downward to the right. These will give expressions for irrational numbers, somewhat

like expressing irrational numbers as infinite decimals. Continued fractions have the

advantage that rational numbers are expressible as finite continued fractions whereas

the decimal representations for rational numbers are not generally finite but are in-

stead just eventually periodic. Infinite continued fractions that are eventually periodic

correspond to a special class of irrational numbers, those that are roots of quadratic

equations with integer coefficients, like
√

2. Thus continued fractions are better than

decimals in some ways, but on the other hand simple operations like addition and

multiplication of rational numbers do not have nice descriptions in terms of contin-
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ued fractions. In spite of these limitations continued fractions are quite useful in

Number Theory. Among other things, they can be used to solve certain Diophantine

equations including linear Diophantine equations, as we will see in Section 2.3.

2.1 Finite Continued Fractions

The continued fractions we will be con-

sidering have the form shown at the right.

The numbers ai are assumed to be positive integers

except for a0 which can be any integer, possibly negative or

zero. When a0 is zero it can be omitted from the formula. To write a

continued fraction in more compact form on a single line, we will often write it as

p/q = a0 +
1
a1
+ 1

a2
+ · · · + 1

an
with diagonal arrows to indicate the extended

horizontal bars in the previous notation, for example 7/16 =
1

2 +
1

3 +
1

2 and

67/24 = 2 + 1
1 +

1
3 +

1
1 +

1
4 . An even more concise notation that is sometimes

used is [a0 ; a1, a2, · · · , an] , or just [a1, a2, · · · , an] when there is no a0 term. How-

ever, we will use the more suggestive arrow notation in this book.

To compute the continued fraction for a given rational number, one starts in the

upper left corner and works one’s way downward, as the following example shows:

The key steps are the equations 67/24 = 2+ 19/24 , 24/19 = 1+ 5/19 , 19/5 = 3+ 4/5 , and

5/4 = 1 + 1/4 . If we clear fractions in each of these equations we obtain the first four

of the five equations at the right which show a sequence

of repeated divisions starting with a given pair of positive

integers, 67 and 24 in this case. One first divides the

smaller number into the larger to obtain a quotient and a

remainder which is smaller than the divisor. Then at each

successive step one divides the previous remainder into

the previous divisor. The process stops when one obtains a remainder of zero. This

process is known as the Euclidean algorithm. The numbers in the shaded box are the

quotients of the successive divisions and are sometimes called the partial quotients.

These are the numbers ai in the continued fraction for 67/24 .
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One of the classical uses for the Euclidean algorithm is to find the greatest com-

mon divisor of two given numbers. If one applies the algorithm to two numbers

p and q , dividing the smaller into the larger, then the remainder into the first divi-

sor, and so on, then the greatest common divisor of p and

q turns out to be the last nonzero remainder. For exam-

ple, starting with p = 72 and q = 201 the calculation is

shown at the right, and the last nonzero remainder is 3,

which is the greatest common divisor of 72 and 201. (In

fact the fraction 201/72 equals 67/24 , which explains why

the successive quotients for this example are the same as in the preceding example.)

It is easy to see from the displayed equations why 3 has to be the greatest common

divisor of 72 and 201, since from the first equation it follows that any divisor of 72

and 201 must also divide 57, then the second equation shows it must divide 15, the

third equation then shows it must divide 12, and the fourth equation shows it must

divide 3, the last nonzero remainder. Conversely, if a number divides the last nonzero

remainder 3, then the last equation shows it must also divide 12, and the next-to-last

equation then shows it must divide 15, and so on until we conclude that it divides all

the numbers not in the shaded rectangle, including the original two numbers 72 and

201. The same reasoning applies in general.

A more obvious way to try to compute the greatest common divisor of two num-

bers would be to factor each of them into a product of primes, then look to see which

primes occurred as factors of both, and to what power. But to factor a large number

into its prime factors is a very laborious and time-consuming process. For example,

even a large computer would have a hard time factoring a number with a hundred or

more digits into primes, so it would not be feasible to find the greatest common divi-

sor of a pair of numbers of this size in this way. However, the computer would have

no trouble applying the Euclidean algorithm to find their greatest common divisor.

Having seen what continued fractions are, let us now see what they have to do

with the Farey diagram. Some examples will illustrate this best, so let us first look

at the continued fraction for 9/31 which is 1
3 +

1
2 +

1
4 . This has 3,2,4 as its

sequence of partial quotients, and we use these three numbers to build a strip of

3+ 2+ 4 triangles grouped into “fans” of 3, 2, and 4 triangles:

Now we begin labeling the vertices of this strip. On the left edge we start with the

labels 1/0 and 0/1 . Then we use the mediant rule for computing the third label of each
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triangle in succession as we move from left to right in the strip. Thus we insert, in

order, the labels 1/1 , 1/2 , 1/3 , 1/4 , 2/7 , 3/10 , 5/17 , 7/24 , and finally 9/31 .

It may seem like just an accident that the final label is the fraction 9/31 that we

started with since the continued fraction for 9/31 is computed from the equations

31/9 = 3 + 4/9 and 9/4 = 2 + 1/4 and these numbers have nothing to do with the

fractions labeling the vertices along the strip before the final label 9/31 miraculously

appears. Nevertheless, we will see in Theorem 2.1 that what happened in this example

always happens, at least for fractions p/q between 0 and 1. For fractions outside this

interval the procedure works if we modify it by replacing the numerator 0 of the label

0/1 with a0 , the initial integer in the continued fraction p/q = a0+
1
a1
+· · ·+ 1

an
.

Thus 0/1 is replaced by a0/1 . This is illustrated by the 67/24 example:

For comparison, here is the corresponding strip for the reciprocal, 24/67 :

In the strip of triangles for a fraction p/q there is a zigzag path from 1/0 to p/q

that we have indicated by the heavily shaded edges. The labels on the vertices that this

zigzag path passes through are the fractions that occur as the values of successively

longer initial segments of the continued fraction, the continued fractions formed by

the terms to the left of each plus sign in

a0+
1
a1
+ 1

a2
+· · ·+ 1

an
. This is illus-

trated at the right for the example of 24/67 .

These fractions are called the convergents

for the given fraction. Thus the conver-

gents for 24/67 are 1/2 , 1/3 , 4/11 , 5/14 , and

24/67 itself. The figure also shows the val-

ues of the terminal segments, the terms to

the right of each plus sign. These are the

fractions one computes in order to find

the value of the continued fraction.
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It is interesting to see what the zigzag paths corresponding to continued fractions

look like in the upper halfplane Farey diagram. The next figure shows the simple

example of the continued fraction for 3/8 . We can see here that the five triangles

of the strip correspond to the four curvilinear triangles lying directly above 3/8 in

the Farey diagram, plus the fifth “triangle” extending upward to infinity, bounded on

the left and right by the vertical lines above 0/1 and 1/1 , and bounded below by the

semicircle from 0/1 to 1/1 .

This example is typical of the general case, where the zigzag path for a continued

fraction p/q = a0 +
1
a1
+ · · · + 1

an
becomes a “pinball path” in the Farey diagram,

starting down the vertical line from 1/0 to a0/1 , then turning left across a1 triangles,

then right across a2 triangles, then left across a3 triangles, continuing to alternate

left and right turns until reaching the final vertex p/q . Two consequences of this are:

The convergents are alternately smaller than and greater than p/q . The conver-

gents to the left of p/q are getting successively closer to p/q from the left and

the convergents to the right of p/q are getting successively closer to p/q from

the right. We will see later in this section that in fact each convergent is closer to

p/q than the previous one on the opposite side of p/q .

The triangles that form the strip of triangles for p/q are exactly the triangles in

the Farey diagram that lie directly above the point p/q on the x-axis. In other

words, the strip of triangles for p/q consists of the triangles that the vertical line

through the vertex p/q crosses.

Here is a general statement describing the relationship between continued frac-

tions and the Farey diagram that we have observed in the preceding examples:

Theorem 2.1. The convergents for a continued fraction p/q = a0+
1
a1
+· · ·+ 1

an
are the vertices along a zigzag path consisting of a finite sequence of edges in the

Farey diagram, starting at 1/0 and ending at p/q . The path starts along the edge

from 1/0 to a0/1 , then turns left across a fan of a1 triangles, then right across a

fan of a2 triangles, etc., alternating left and right turns and finally ending at p/q .
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Proof: The continued fraction p/q = a0 +
1
a1
+ · · · + 1

an
determines a strip of

triangles:

We will show that the label pn/qn on the final vertex in this strip is equal to p/q ,

the value of the continued fraction. Replacing n by i , we conclude that this holds

also for each initial seqment a0 +
1
a1
+ · · ·+ 1

ai
of the continued fraction. This is

just saying that the vertices pi/q i along the strip are the convergents to p/q , which

is what the theorem claims.

Each successive vertex label pi/q i along the zigzag path for the continued frac-

tion p/q = a0 +
1
a1
+ · · · + 1

an
is computed in terms of the two preceding vertex

labels according to the following formula:

pi
qi
=
aipi−1 + pi−2

aiqi−1 + qi−2

This is because, as one can see in the figure above, the mediant rule is being applied

ai times, “adding” pi−1/q i−1
to the previously obtained fraction each time until the

next label pi/q i is obtained.

To prove that pn/qn =
p/q we will use 2 × 2 matrices. Consider the following

product:

P =

(
1 a0

0 1

)(
0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)

We can multiply this product out starting either from the left or from the right. Sup-

pose first that we multiply starting at the left. The two columns of the first matrix

give the two fractions 1/0 and a0/1 labeling the left edge of the strip of triangles.

Multiplying the first matrix by the second matrix gives:
(

1 a0

0 1

)(
0 1

1 a1

)
=

(
a0 1+ a0a1

1 a1

)
=

(
p0 p1

q0 q1

)

The two columns here give the fractions at the ends of the second edge of the zigzag

path. The same thing happens for subsequent matrix multiplications, as multiplying

by the next matrix in the product takes the matrix corresponding to one edge of the

zigzag path to the matrix corresponding to the next edge:
(
pi−2 pi−1

qi−2 qi−1

)(
0 1

1 ai

)
=

(
pi−1 pi−2 + aipi−1

qi−1 qi−2 + aiqi−1

)
=

(
pi−1 pi
qi−1 qi

)

In the end, when all the matrices have been multiplied, we obtain the matrix corre-

sponding to the last edge in the strip from pn−1/qn−1
to pn/qn . Thus the second
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column of the product P is
(
pn
qn

)
, and what remains to show is that this equals

(
p
q

)

where p/q is the value of the continued fraction a0 +
1
a1
+ · · · + 1

an
.

The value of the continued fraction a0+
1
a1
+· · ·+ 1

an
is computed by working

from right to left. If we let ri/s i be the value of the tail 1
ai
+ 1

ai+1
+ · · ·+ 1

an
of

the continued fraction, then we have:

rn
sn
=

1

an
,

ri
si
=

1

ai +
ri+1

si+1

=
si+1

aisi+1 + ri+1

, and
p

q
= a0 +

r1

s1
=
a0s1 + r1

s1

Expressed in terms of matrices these equations become:
(
rn
sn

)
=

(
1

an

)
,

(
0 1

1 ai

)(
ri+1

si+1

)
=

(
si+1

ri+1 + aisi+1

)
=

(
ri
si

)

and

(
1 a0

0 1

)(
r1

s1

)
=

(
r1 + a0s1

s1

)
=

(
p
q

)

This means that when we multiply out the product P starting from the right, the

second columns will be successively
(
rn
sn

)
,
(
rn−1
sn−1

)
, · · · ,

(
r1
s1

)
, and finally

(
p
q

)
. We

have already shown that the second column of P is
(
pn
qn

)
, so p/q = pn/qn and the

proof is complete. ⊔⊓

An interesting fact that can be deduced from the preceding proof is that for a

continued fraction 1
a1
+· · ·+ 1

an
with no initial integer a0 , if we reverse the order

of the numbers ai , this leaves the denominator unchanged. For example:

1
2+

1
3+

1
4 =

13

30
and 1

4+
1

3+
1

2 =
7

30

To see why this must always be true we use the operation of transposing a matrix to

interchange its rows and columns. For a 2×2 matrix this just amounts to interchang-

ing the upper-right and lower-left entries, so the transpose of a matrix A =
(
a
c
b
d

)
is

AT =
(
a
b
c
d

)
. Transposing a product of matrices reverses the order of the factors, so

one has (AB)T = BTAT as the reader can check by direct calculation. In the product
(

0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)
=

(
pn−1 pn
qn−1 qn

)

the individual matrices on the left side of the equation are symmetric with respect to

transposition, so the transpose of the product is obtained by just reversing the order

of the factors: (
0 1

1 an

)(
0 1

1 an−1

)
· · ·

(
0 1

1 a1

)
=

(
pn−1 qn−1

pn qn

)

Thus we see that reversing the order of the terms a1, · · · , an leaves the denominator

qn unchanged, as claimed.

There is also a fairly simple relationship between the numerators. In the example

of 13/30 and 7/30 we see that the product of the numerators, 91, is congruent to

1 modulo the denominator. In the general case the product of the numerators is
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pnqn−1 and this is congruent to (−1)n+1 modulo the denominator qn . To verify this,

we note that the determinant of each factor
(

0
1

1
a i

)
is −1 so since the determinant

of a product is the product of the determinants, we have pn−1qn − pnqn−1 = (−1)n ,

which implies that pnqn−1 is congruent to (−1)n+1 modulo qn .

Exercises

1. (a) Compute the values of the continued fractions 1
1 +

1
3 +

1
5 +

1
7 and

1
1 +

1
1 +

1
1 +

1
1 +

1
1 +

1
2 .

(b) Compute the continued fraction expansions of 19/44 and 101/1020 .

(c) Draw the strips of triangles corresponding to the continued fractions in parts (a)

and (b).

2. (a) Compute the continued fraction for 38/83 and display the steps of the Euclidean

algorithm for 38 and 83 as a sequence of equations involving only integers.

(b) For the same number 38/83 compute the associated strip of triangles grouped into

fans, including the labeling of the vertices of all the triangles.

(c) Take the continued fraction 1
a1
+ 1

a2
+· · ·+ 1

an
you got in part (a) and reverse

the order of the numbers ai to get a continued fraction 1
an
+ 1

an−1
+ · · · + 1

a1
.

Compute the value p/q of this continued fraction, and also compute the strip of tri-

angles for this fraction p/q . What is the relationship between p/q and 38/83?

3. Let pn/qn be the value of the continued fraction 1
a1
+ 1

a2
+ · · · + 1

an where

each of the n terms ai is equal to 2. Thus p1/q1
= 1/2 , p2/q2

= 1
2+

1
2 =

2/5 , etc.

(a) Find equations expressing pn and qn in terms of pn−1 and qn−1 , and use these

to write down the values of pn/qn for n = 1,2,3,4,5,6,7.

(b) Compute the strip of triangles for p7/q7
.

4. (a) A rectangle with sides

of length 13 and 48 can be

partitioned into squares in

the way shown in the figure

at the right. Determine the

lengths of the sides of all the squares, and relate the numbers of squares of each size

to the continued fraction for 13/48 .

(b) Draw the analogous figure decomposing a rectangle of sides 19 and 42 into

squares, and relate this to the continued fraction for 19/42 .

5. This exercise is intended to illustrate the proof of Theorem 2.1 in the concrete case

of the continued fraction 1
2 +

1
3 +

1
4 +

1
5 .

(a) Write down the product A1A2A3A4 =
(

0
1

1
a1

)(
0
1

1
a2

)(
0
1

1
a3

)(
0
1

1
a4

)
associated to

1
2 +

1
3 +

1
4 +

1
5 .



Section 2.2 — Infinite Continued Fractions 43

(b) Compute the four matrices A1 , A1A2 , A1A2A3 , A1A2A3A4 and relate these to the

edges of the zigzag path in the strip of triangles for 1
2 +

1
3 +

1
4 +

1
5 .

(c) Compute the four matrices A4 , A3A4 , A2A3A4 , A1A2A3A4 and relate these to the

successive fractions that one gets when one computes the value of 1
2+

1
3+

1
4+

1
5 ,

namely 1
5 , 1

4 +
1

5 , 1
3 +

1
4 +

1
5 , and 1

2 +
1

3 +
1

4 +
1

5 .

6. Compute the strip of triangles corresponding to the continued fraction for 7/19 and

compare this with the sequence of matrices reducing
(

3
8

7
19

)
to
(

1
0

0
1

)
by a sequence of

operations subtracting one column from the other. (See the proof of Proposition 1.1.)

7. Show that the continued fraction for a rational number is unique except for re-

placing a final term 1
an

by 1
an ---1 +

1
1 when an > 1. For example 1

3 +
1

5 =
1

3 +
1

4 +
1

1 .

2.2 Infinite Continued Fractions

We have seen that all rational numbers can be expressed as continued fractions

a0 +
1
a1
+ 1

a2
+ · · · + 1

an
. To complete the picture we will see that irrational

numbers can be represented as continued fractions with an infinite number of terms,

of the form a0+
1
a1
+ 1

a2
+ 1

a3
+· · · . A simple example is 1

1+
1

1+
1

1+· · · .

This corresponds to an infinite strip of triangles in the Farey diagram:

Here the vertex labels along the zigzag path after the initial 1/0 are the ratios of

successive terms of the famous Fibonacci sequence 0,1,1,2,3,5,8,13,21, · · · where

each number after the initial 0 and 1 is the sum of its two predecessors.

The way the zigzag path looks in the up-

per halfplane Farey diagram is shown in the

figure at the right. After the initial vertical

edge from 1/0 to 0/1 this path consists of

an infinite sequence of semicircles, each one

shorter than the preceding one and sharing

a common endpoint. The left endpoints of

the semicircles form an increasing sequence

of numbers which have to be approaching a
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certain limiting value x . We know x has to be finite since it is certainly less than

each of the right-hand endpoints of the semicircles, the convergents 1/1,
2/3,

5/8 , · · · .

Similarly, the right endpoints of the semicircles form a decreasing sequence of num-

bers approaching a limiting value y greater than each of the left-hand endpoints

0/1,
1/2,

3/5 , · · · . Obviously x ≤ y . Is it possible that x is not equal to y ? If this

happened, the infinite sequence of semicircles would be approaching the semicircle

from x to y . Above this semicircle there would then be an infinite number of semi-

circles, all the semicircles in the infinite sequence. Between x and y there would

have to be a rational number p/q since there is always a rational number between

any two real numbers, so above p/q there would be an infinite number of semicircles,

hence an infinite number of triangles in the Farey diagram. But we know that there

are only finitely many triangles above any rational number p/q , namely the triangles

that appear in the strip for the continued fraction for p/q . This contradiction shows

that x has to be equal to y . Thus the sequence of convergents along the edges of the

infinite strip of triangles converges to a unique real number x .

This argument works for arbitrary infinite continued fractions, so we have shown

the following general result:

Proposition 2.2. For every infinite continued fraction a0+
1
a1
+ 1

a2
+ 1

a3
+ · · ·

the convergents converge to a unique limit.

This limit is by definition the value of the infinite continued fraction. This is

similar to the situation for infinite decimals, where the value of an infinite decimal is

the limit of the values of its finite initial segments.

As a complement to the preceding proposition we have:

Proposition 2.3. Every irrational number has an expression as an infinite continued

fraction, and this continued fraction is unique.

Proof: In the upper halfplane Farey diagram consider the vertical line L going upward

from a given irrational number x on the x-axis. The lower endpoint of L is not a

vertex of the Farey diagram since x is irrational. Thus as we move downward along L

we cross a sequence of triangles, entering each triangle by crossing its upper edge and

leaving the triangle by crossing one of its two lower edges at a point between the two

endpoints of this edge. When we exit one triangle, we are entering another triangle

so the sequence of triangles and edges we cross must be infinite. The left and right

endpoints of the edges in the sequence must be approaching the single point x by

the argument we gave earlier, so the edges themselves are approaching x . It cannot

happen that an infinite number of successive edges in the sequence have a common

vertex since these edges would then be approaching this vertex, which would mean

that x was rational. Thus the triangles crossed by the line L form an infinite strip

consisting of an infinite sequence of fans with their pivot vertices on alternate sides

of the strip. The zigzag path along this strip then gives a continued fraction for x .
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For the uniqueness, we have seen that an infinite continued fraction for x cor-

responds to a zigzag path in the infinite strip of triangles lying above x . This set

of triangles is unique so the strip is unique, and there is only one path in this strip

that starts at 1/0 and then does left and right turns alternately, starting with a left

turn. The initial turn must be to the left because the first two convergents are a0 and

a0+
1/a1

, with a0 +
1/a1

> a0 since a1 > 0. After the path traverses the initial edge

from 1/0 to a0/1 no subsequent edge of the path can be in the border of the strip

since this would entail two successive left turns or two successive right turns. ⊔⊓

From the preceding arguments we can see fairly explicitly why the triangles in the

upper halfplane Farey diagram completely cover the upper halfplane, so every point

(x,y) with y > 0 lies either in the interior of some triangle or on the common edge

between two triangles. To see this, consider the vertical line L in the upper halfplane

through the given point (x,y) . If x is an integer then (x,y) is on one of the vertical

edges of the diagram, so we can assume x is not an integer and hence L is not one

of the vertical edges of the diagram. The line L will then be contained in the strip of

triangles corresponding to the continued fraction for x . This is a finite strip if x is

rational and an infinite strip if x is irrational. In either case the point (x,y) , being

in L , will be in one of the triangles of the strip or on an edge separating two triangles

in the strip.

Periodic and Eventually Periodic Continued Fractions

Now that we have an exact correspondence between infinite continued fractions

and irrational numbers, there are two natural questions that come to mind: Given an

infinite continued fraction, how can one compute its value, and conversely, how can

one find the infinite continued fraction for a given irrational number? These questions

have very nice answers for a special class of irrational numbers, the numbers whose

continued fractions have a pattern that repeats periodically from some point onward,

as for example:

1
2 +

1
4 +

1
3 +

1
5 +

1
7 +

1
3 +

1
5 +

1
7 +

1
3 +

1
5 +

1
7 + · · ·

This includes the case that the whole continued fraction is periodic, for example:

1
3 +

1
5 +

1
7 +

1
3 +

1
5 +

1
7 +

1
3 +

1
5 +

1
7 + · · ·

A more concise notation is to write a bar over a block of terms in a continued fraction

that repeats infinitely often. Thus the two continued fractions above can be written

as:

1
2 +

1
4 +

1
3 +

1
5 +

1
7 and 1

3 +
1

5 +
1

7

The value of a periodic or eventually periodic continued fraction can be computed

by simple algebraic manipulations, as we illustrate now by finding the value of the
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continued fraction 1
1 =

1
1 +

1
1 +

1
1 + · · · involving Fibonacci numbers that we

looked at earlier. Suppose we set x = 1
1 +

1
1 +

1
1 + · · · . Then if we take the

reciprocals of both sides of this equation we get 1/x = 1+ 1
1 +

1
1 +

1
1 + · · · . The

right side of this equation is just 1+ x , so we can easily solve for x :

1

x
= 1+ x

x2 + x − 1 = 0

x =
(
−1±

√
5
)
/2

We know x is positive, so this rules out the negative root and we are left with the final

value x =
(
−1+

√
5
)
/2. The reciprocal 1/x = 1+ x =

(
1+

√
5
)
/2 ≈ 1.618 is known

as the golden ratio because of its many interesting and beautiful properties.

As another example let us find the value of 1
3 +

1
1 +

1
2 . To do this we first

find the value of the periodic part, so we set:

x = 1
1+

1
2 =

1
1+

1
2+

1
1+

1
2+

1
1+

1
2+ · · ·

Taking reciprocals, we get:

1

x
= 1+ 1

2+
1

1+
1

2+
1

1+
1

2+ · · ·

Subtracting 1 from both sides gives:

1

x
− 1 = 1

2+
1

1+
1

2+
1

1+
1

2+ · · ·

The next step will be to take reciprocals of both sides, so before doing this we rewrite

the left side as 1---x/x . Then taking reciprocals gives:

x

1− x
= 2+ 1

1+
1

2+
1

1+
1

2+ · · ·

= 2+ x

Thus we have x/1---x = 2+x which simplifies to the quadratic equation x2+2x−2 = 0

with roots x = −1±
√

3. Again the negative root is discarded and we get x = −1+
√

3.

From this we can determine the value of the original continued fraction 1
3+

1
1 +

1
2

which is 1/(3+ x) = 1/
(
2+

√
3
)
= 2−

√
3.

Let us consider now the complementary question of how the continued fraction

for a given irrational number can be computed. Recall first how the continued fraction

a0+
1
a1
+ 1

a2
+· · ·+ 1

an
for a rational number is computed, as in the example of

67/24 = 2+ 1
1+

1
3+

1
1+

1
4 earlier in the chapter. We first write 67/24 = 2+ 19/24

which gives a0 = 2, then we write 24/19 = 1 + 5/19 so a1 = 1, then 19/5 = 3 + 4/5 so

a2 = 3, then 5/4 = 1+1/4 so a3 = 1 and finally 4/1 = 4+0 so a4 = 4. This finishes the

process and we have 67/24 = a0+
1
a1
+ 1

a2
+ 1

a3
+ 1

a4
= 2+1

1+
1

3+
1

1+
1

4 .
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In summary, the steps are:

(1) Write the given number x as x = a0 + r1 where a0 is an integer and 0 ≤ r1 < 1.

(2) Write 1/r1
as 1/r1

= a1 + r2 where a1 is an integer and 0 ≤ r2 < 1.

(3) Write 1/r2
as 1/r2

= a2 + r3 where a2 is an integer and 0 ≤ r3 < 1.

And so on, repeatedly.

If x is a rational number, the “remainders” ri are rational numbers with decreas-

ing denominators until we reach a remainder rn which is zero and the process stops

after finitely many steps. We can apply the same procedure if x is irrational, but in

this case the equations defining the remainders ri show that each successive ri must

be irrational and in particular nonzero. Thus the process goes on forever, yielding an

infinite continued fraction.

One can see this is the continued fraction for x by the following argument. Sup-

pose the continued fraction for x is a0+
1
a1
+1

a2
+· · · . We can write this continued

fraction as a0 + r1 for r1 =
1
a1
+ 1

a2
+ · · · . This r1 is a number strictly between

0 and 1 since the convergents for r1 all lie between 0 and 1 and r1 lies between

any two of its successive convergents. Thus we have x = a0 + r1 with 0 < r1 < 1

so a0 is the largest integer less than x . Inverting r1 =
1
a1
+ 1

a2
+ · · · gives

1/r1
= a1+

1
a2
+ 1

a3
+· · · . The preceding argument can now be repeated with 1/r1

in place of x to get 1/r1
= a1 + r2 with r2 =

1
a2
+ 1

a3
+ · · · and 0 < r2 < 1. Then

one repeats with 1/r2
in place of 1/r1

, and so on.

However, there are a couple subtle points in this argument that are somewhat

hidden by the notation. (These subtle points were also lurking in the background in the

earlier calculations of the values of the continued fractions 1
1 and 1

3+
1

1 +
1

2 .)

First, we defined x and r1 to be the infinite continued fractions a0+
1
a1
+ 1

a2
+· · ·

and 1
a1
+ 1

a2
+ · · · and then said that x = a0 + r1 . For finite continued fractions

this is true because they are evaluated from right to left, so the last step in evaluating

a0 +
1
a1
+ 1

a2
+ · · · + 1

an
is to add a0 to 1

a1
+ 1

a2
+ · · · + 1

an
. Infinite

continued fractions cannot be evaluated from right to left since there is no right end

to start the evaluation. Instead they are evaluated from left to right as the limit of the

sequence of convergents. The convergents are the values of finite continued fractions,

and for these the desired result holds so the convergents for a0 +
1
a1
+ 1

a2
+ · · ·

are obtained by adding a0 to the convergents for 1
a1
+ 1

a2
+ · · · . Adding a fixed

number a0 to each term of a convergent sequence of numbers adds a0 to the limit

of the sequence, so the result holds for infinite continued fractions as well as finite

continued fractions.

A similar issue arises when we said that the continued fraction for the reciprocal

1/r1
of r1 =

1
a1
+ 1

a2
+· · · is a1+

1
a2
+· · · . Again this is correct for finite contin-

ued fractions since they are evaluated from right to left, so if one stops the evaluation

of 1
a1
+ 1

a2
+ · · · + 1

an
before the last step of inverting a1 +

1
a2
+ · · · + 1

an
one has the reciprocal of 1

a1
+ 1

a2
+ · · · + 1

an
. Thus the convergents for the
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infinite continued fraction 1
a1
+ 1

a2
+ · · · are the reciprocals of the convergents

for a1 +
1
a2
+ · · · so the limits of the convergents for the two infinite continued

fractions will also be reciprocals of each other.

Here is how the procedure works for computing the continued fraction for
√

2 :

(1)
√

2 = 1+ (
√

2−1) where a0 = 1 since
√

2 is between 1 and 2. Thus r1 =
√

2−1.

(2) 1/r1
= 1/

√
2 ---1 =

1/
√

2 ---1·
√

2 +1/
√

2 +1 =
√

2+1 which is between 2 and 3 so we have

1/r1
= 2+ (

√
2− 1) with a1 = 2 and r2 =

√
2− 1.

Notice that something unexpected has happened: The remainder r2 =
√

2−1 is exactly

the same as the previous remainder r1 . There is then no need to do the calculation

of 1/r2
since we know it will have to be

√
2 + 1. This means that when we continue

with step (3), this will be exactly the same as step (2), and the same will be true for

all subsequent steps. Thus we can immediately write down the continued fraction

for
√

2 : √
2 = 1+ 1

2+
1

2+
1

2+ · · ·

We can check this calculation by finding the value of the continued fraction in the

same way that we did earlier for 1
1+

1
1+

1
1+· · · . It suffices to compute the value

of 1
2 +

1
2 +

1
2 + · · · and then add 1. We set x = 1

2 +
1

2 +
1

2 + · · · and then

take reciprocals to get 1/x = 2+1
2+

1
2+

1
2+· · · = 2+x . From 1/x = 2+x we get

the quadratic equation x2 + 2x − 1 = 0 with roots x = −1±
√

2. Since x is positive

we can discard the negative root. Thus we have −1 +
√

2 = 1
2 +

1
2 +

1
2 + · · · .

Adding 1 to both sides of this equation gives the continued fraction for
√

2.

We can compute the continued fraction for
√

3 by the same method as for
√

2,

but something slightly different happens:

(1)
√

3 = 1+ (
√

3− 1) with a0 = 1 since
√

3 is between 1 and 2. Thus r1 =
√

3− 1.

(2) 1/r1
= 1/

√
3 ---1 =

1/
√

3 ---1·
√

3 +1/
√

3 +1 =
√

3 +1/2 . This is between 1 and 2 since its

numerator
√

3+ 1 is between 2 and 3. Thus a1 = 1 and
√

3 +1/2 = 1+
(√

3 ---1/2

)

with r2 =
√

3 ---1/2 .

(3) 1/r2
= 2/

√
3 ---1 =

2/
√

3 ---1·
√

3 +1/
√

3 +1 =
√

3 + 1 = 2 + (
√

3 − 1) with a2 = 2 and

r3 =
√

3− 1.

Now the remainder r3 =
√

3− 1 is the same as r1 , so instead of the same step being

repeated infinitely often as happened for
√

2, the same two steps will repeat infinitely

often. Thus we have computed the continued fraction for
√

3 :

√
3 = 1+ 1

1+
1

2+
1

1+
1

2+
1

1+
1

2+ · · ·

This agrees with our earlier calculation of the value of 1
1+

1
2 to be −1+

√
3.

It is true in general that for every positive integer n that is not a square, the

continued fraction for
√
n has the form a0 +

1
a1
+ 1

a2
+ · · · + 1

ak
. The length
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of the period (the repeating block) can be large even for fairly small values of n , for

example:
√

46 = 6+ 1
1 +

1
3 +

1
1 +

1
1 +

1
2 +

1
6 +

1
2 +

1
1 +

1
1 +

1
3 +

1
1 +

1
12

This example illustrates two other curious facts about the continued fraction for an

irrational number
√
n :

The last term of the period (12 in the example above) is always twice the first

term a0 (the initial 6).

If the last term of the period is omitted, the preceding terms in the period form

a palindrome, reading the same backwards as forwards.

We will see in Section 4.2 how these two properties follow from certain symmetry

properties of the infinite strip of triangles in the Farey diagram associated to the

continued fraction for
√
n .

It is natural to ask exactly which irrational numbers have continued fractions that

are periodic or eventually periodic. The answer is given by:

Lagrange’s Theorem. The irrational numbers whose continued fractions are even-

tually periodic are exactly the numbers of the form a + b
√
n where a and b are

rational numbers, b 6= 0 , and n is a positive integer that is not a square.

These numbers a + b
√
n are called quadratic irrationals because they are roots

of quadratic equations with integer coefficients. The easier half of the theorem is the

statement that the value of an eventually periodic infinite continued fraction is always

a quadratic irrational. This can be proved by showing that the method we used for

finding a quadratic equation satisfied by an eventually periodic continued fraction

works in general. Rather than following this purely algebraic approach, however, we

will develop a more geometric version of the procedure in the next chapter, so we

will wait until then to give the argument that proves this half of Lagrange’s Theorem,

in Proposition 3.4. The more difficult half of the theorem is the assertion that the

continued fraction expansion of every quadratic irrational is eventually periodic. It

is not at all apparent from the examples of
√

2 and
√

3 why this should be true in

general, but in Chapters 4 and 5 we will develop some theory that will make it clear,

with the actual proof being given in Proposition 4.1 and Theorem 5.2. Along the way

we will also develop more efficient methods for computing the continued fraction for

a quadratic irrational and for computing the value of an eventually periodic infinite

continued fraction.

What can be said about the continued fraction expansions of irrational numbers

that are not quadratic, such as
3
√

2, π , or e , the base for natural logarithms? It

happens that e has a continued fraction whose terms have a very nice pattern, even

though they are not periodic or eventually periodic:

e = 2 + 1
1+

1
2+

1
1 +

1
1+

1
4+

1
1 +

1
1+

1
6+

1
1 + · · ·
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Thus the terms are grouped by threes with successive even numbers as middle de-

nominators. Even simpler are the continued fractions for certain numbers built from

e that have arithmetic progressions for their denominators:

e− 1

e+ 1
= 1

2+
1

6+
1

10+
1

14+ · · ·

e2 − 1

e2 + 1
= 1

1+
1

3+
1

5+
1

7+ · · ·

The continued fractions for e and (e − 1)/(e + 1) were discovered by Euler in 1737

while the formula for (e2 − 1)/(e2 + 1) was found by Lambert in 1766 as a special

case of a slightly more complicated formula for (ex − 1)/(ex + 1) .

For
3
√

2 and π , however, the continued fractions have no known pattern. For π

the continued fraction begins:

π = 3+ 1
7+

1
15+

1
1+

1
292+ · · ·

Here the first four convergents are 3, 22/7 , 333/106 , and 355/113 . We recognize 22/7 as

the familiar approximation 31/7 to π . The convergent 355/113 is a particularly good

approximation to π since its decimal expansion begins 3.14159282 whereas π =

3.14159265 · · ·. It is no accident that the convergent 355/113 obtained by truncating

the continued fraction just before the 292 term gives a good approximation to π

since it is a general fact that a convergent immediately preceding a large term in the

continued fraction always gives an especially good approximation. This is because the

next edge in the zigzag path will be rather small when viewed in the upper halfplane

Farey diagram since it is the lower edge of a fan with a large number of triangles, and

the value of the continued fraction lies somewhere between the two ends of this small

edge.

It is easy to calculate an initial string of terms in the continued fraction for π

using a reasonably capable calculator if one knows the decimal expansion of π with

enough accuracy. One just repeats the two steps of subtracting the integer part and

inverting, preferably using the calculator’s 1/x button. For example, starting with

3.1415926535 one can get the initial segment 3+ 1
7 +

1
15 +

1
1 +

1
292 this way.

People who like computational challenges have used computers to find large numbers

of terms of the continued fraction for π , more than a billion terms in fact.

There are nice continued fractions for π if one allows numerators larger than 1,

as in the following formula discovered by Euler:

π = 3 + 12

6 +
32

6 +
52

6 +
72

6 + · · ·

However, it is the continued fractions with numerator 1 that have the best properties,

so we will not consider the more general sort in this book.

Convergents as Rational Approximations

Let us explore in a little more detail how the convergents in the continued fraction

for an irrational number x give good rational approximations to x .



Section 2.2 — Infinite Continued Fractions 51

As an example, consider the case x =
√

2 = 1+1
2 . It is a little easier to compute

the convergents for 2 + 1
2 = 1 +

√
2 and then subtract 1 from each of these. For

2+ 1
2 +

1
2 +

1
2 + · · · the convergents are:

2

1

5

2

12

5

29

12

70

29

169

70

408

169

985

408
· · ·

The sequence of numbers 1,2,5,12,29,70,169, · · · generating these fractions can

be constructed in a way somewhat analogous to the Fibonacci sequence, except that

each number is twice the preceding number plus the number before that. This is

because each convergent is obtained from the previous one by inverting the fraction

and adding 2, and therefore the next convergent after

a/b is 2+ b/a =
2a+b/a .

Subtracting 1 from each of the fractions in the list

displayed above, we obtain the convergents for
√

2 as

shown at the right. Notice that once an initial string of

digits in the decimal expansions of the convergents oc-

curs twice in succession, then this string is unchanged

from then on. This is because for any two successive

convergents, all subsequent convergents lie between

these two since the convergents occur along a zigzag

path in the Farey diagram. This is true generally for all

infinite continued fractions.

√
2 = 1.41421356 · · ·

1/1 = 1.00000000 · · ·

3/2 = 1.50000000 · · ·

7/5 = 1.40000000 · · ·

17/12 = 1.41666666 · · ·

41/29 = 1.41379310 · · ·

99/70 = 1.41428571 · · ·

239/169 = 1.41420118 · · ·

577/408 = 1.41421568 · · ·

Information about how well an irrational number is approximated by the con-

vergents in its continued fraction can be deduced from the geometry of Ford circles,

which were introduced at the end of Chapter 1. Here is one general statement that

can be made:

Each convergent p/q in the continued fraction for an irrational number x is within

1/q2 of x , so
∣∣x − p/q

∣∣ < 1/q2 .

For example, if a convergent has a denominator of 100 or greater then the convergent

approximates x to within 1/10000 . Thus the approximation 239/169 to
√

2 must be

accurate to four decimal places.

To justify the 1/q2 estimate, suppose the convergent p/q is connected to the

next convergent r/s by an edge of the zigzag path.

We then have s ≥ q so the Ford circle Cp/q at p/q ,

which has diameter 1/q2 , is at least as large as the

Ford circle Cr/s . The number x lies between p/q

and r/s , so its distance to p/q is less than twice the

radius 1/2q
2 of Cp/q . In other words this distance

is less than 1/q2 , as claimed.
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For many convergents the estimate 1/q2 can be improved by a factor of 2 :

At least one convergent p/q out of every two successive convergents to x is within

1/2q
2 of x .

We can see this from the previous figure. For x to be within 1/2q
2 of p/q means that

x is a point in the projection of the interior of Cp/q to the x-axis, and similarly for

r/s and Cr/s . Since x lies between p/q and r/s , it must be in at least one of these

two projections, except possibly in the case that q = s (which can only happen when

q and s are 1) when the midpoint of the interval between p/q and r/s is not in the

projection of the interior of either Cp/q or Cr/s . But this midpoint is a rational number

so it cannot be x .

Next we have a very strong optimality statement about the convergents to an

irrational number x :

If p/q is a convergent in the continued fraction for x then no rational number

with denominator less than or equal to q is closer to x than p/q is.

To see why this is true consider two consecutive convergents p/q and r/s as before,

and let t/u be any rational number with u ≤ q , so Ct/u is at least as large as Cp/q .

The circle Ct/u is either disjoint from or tangent to Cp/q and Cr/s . Clearly t/u cannot

be between p/q and r/s since there is no room to fit the large circle Ct/u there. If t/u

is on the opposite side of p/q from r/s then t/u would be farther from x than p/q

is, so t/u would not be a closer approximation to x than p/q is.

The remaining possibility is that t/u is on the opposite side of r/s from p/q . Let

C be any circle in the upper halfplane with the same geometric properties as Ct/u ,

namely, C is tangent to the x-axis at a point z on the opposite side of r/s from p/q ,

C is either disjoint from or tangent to Cp/q and Cr/s , and C is at least as large as

Cp/q .

We wish to show that z is farther from x than p/q is. Sliding C along the x-axis

farther from r/s moves z farther from x so we may assume C touches either Cp/q

or Cr/s . Then increasing the size of C while keeping it tangent to Cp/q or Cr/s also

moves z farther from x so we may assume C has the same size as Cp/q . It is then

evident that z is farther from x than p/q is, finishing the argument.
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The last fact we will deduce from the diagram of Ford circles is that the conver-

gents converge monotonically. We know that the convergents to the left of x are

getting steadily closer to x , and the same is true for the convergents to the right.

And in fact:

Each convergent in the continued fraction for x is closer to x than the previous

convergent.

To verify this, suppose that p/q and r/s are two consecutive convergents to x , so we

wish to show that x is closer to r/s than to p/q . Consider the next convergent t/u after

r/s . The circle Cr/s is tangent to both Cp/q and Ct/u , while Ct/u is either tangent to

Cp/q or Ct/u is one of the other Ford circles tangent

to Cr/s farther from Cp/q . The point x lies between

r/s and t/u so to show that x is closer to r/s than

to p/q it will suffice to consider just the case that

Ct/u is tangent to Cp/q . Then t/u is the mediant of

p/q and r/s so as we saw in Section 1.2, t/u is closer

to r/s than to p/q since s ≥ q , or possibly t/u is

equidistant from r/s and p/q if s = q . In either case, since x lies between t/u and

r/s , it must then be closer to r/s than to p/q , which is what we wanted to show.

Doubly Infinite Strips

We have been considering strips of triangles in the Farey diagram consisting of

fans, each fan having a finite number of triangles and each fan intersecting the next

along an edge of a zigzag path in the strip. For finite continued fractions the strip

has finitely many fans, while for infinite continued fractions the strip has an infinite

sequence of fans at one end. In later chapters we will often be considering strips

that extend infinitely far at both ends. We can think of these strips as being “doubly

infinite” since they are infinite in both directions.

To see how such a doubly infinite strip lies in the upper halfplane model of the Farey

diagram, let L be a line running down the middle of the strip from end to end. Viewing

L as a path in the upper halfplane model of the Farey diagram, L cannot cross only

vertical edges, the edges with one end at 1/0 , otherwise the strip would consist of a

single infinite fan, which is not allowed as an infinite strip. Thus L must cross some

semicircular edges. As we move along L crossing such a semicircular edge in the

downward direction into the adjacent triangle, the next edge that L crosses will be one

of the other two shorter semicircular edges of this triangle, moving downward again.

All subsequent crossings will then be downward as well. The semicircles crossed are

becoming smaller and smaller with diameters approaching zero, as we saw in our
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initial discussion of infinite continued fractions, and there is a unique limiting point

α on the x-axis for this end of the strip of triangles. This is the unique point that lies

between the two endpoints of each semicircular edge crossed by L on its downward

path.

Consider the vertical line Vα going upward from α . Near its lower end Vα will

pass through triangles of the strip. If the whole line Vα does not stay entirely within

the strip as we move upward, it will eventually leave the strip by crossing the upper

semicircular edge of a triangle T of the strip as in the figure on the left below.

In this case the line L , which passes through the same upward sequence of triangles

as Vα until reaching T , must exit T by turning and crossing the other smaller semi-

circular edge of T in the downward direction. After crossing this edge, L will then

continue downward forever, passing through all the triangles of the other end of the

strip and limiting on an irrational number β . The vertical line Vβ going upward from

β will pass through the same set of triangles until reaching the triangle T where it

will also exit the strip by crossing the upper edge of T . We can then deform L so

that it consists of the parts of Vα and Vβ below T joined by a bending arc within T .

Notice that the vertex 1/0 is not a vertex of the strip in this case.

The other possibility is that Vα stays in the strip forever as we move upward, so

eventually it lies in a triangle Tα of the strip having 1/0 as a vertex as in the figure on

the right above. One end of the line L runs parallel to Vα until it reaches Tα , then

it turns right or left to cross a finite number of other triangles having 1/0 as a vertex

before turning downward to cross the lower edge of one of these triangles Tβ . After

this it will travel monotonically downward, limiting on an irrational number β in the

x-axis. We can deform L to consist of parts of Vα and the vertical line Vβ through

β , joined by an arc crossing from Tα to Tβ .

One conclusion we can draw from this analysis of the infinite strip is that its

endpoints α and β cannot be the same number. This can be seen from the two figures

above where in the first figure α and β lie below the two different lower edges of the

triangle T , and in the second figure α and β lie below the two different triangles Tα

and Tβ with a vertex at 1/0 .

Another consequence is that the labels x/y on the vertices along the infinite strip

must have denominators y approaching infinity at the ends of the strip and numer-
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ators x approaching either +∞ or −∞ depending on the sign of the endpoint α or

β being approached. This is because the labels are given by repeated applications of

the mediant rule as we move vertically down either end of L toward α or β so |x|

and y always increase as each new triangle is added to the strip. (Near the ends of

the strip the labels x/y are approaching α or β so neither x nor y is 0.)

We can also deduce that for each pair of distinct irrationals α and β there is a

unique infinite strip in the Farey diagram whose ends converge to α and β . This is

because α and β determine the vertical lines Vα and Vβ in the figures, and these

determine the triangles T or Tα and Tβ since in the case that α and β lie in the same

interval in the x-axis between consecutive integers, T is the smallest triangle of the

Farey diagram whose projection to the x-axis contains both α and β , while in the

case that α and β lie in different intervals between consecutive integers, the triangles

Tα and Tβ are the triangles with vertex 1/0 that project to these two intervals.

A nice way to construct an infinite strip joining any two irrationals α and β is

to take all the triangles in the Farey diagram that meet the semicircle in the upper

halfplane with endpoints α and β . This semicircle can cross an edge of the Farey

diagram only once since if two semicircles in the upper halfplane with endpoints

on the x-axis intersect in more than one point, they must coincide. Nor can two

semicircles with endpoints on the x-axis be tangent unless the point of tangency is

one of the endpoints, but this does not happen here since α and β are irrational while

the endpoints of edges of the Farey diagram are rational. From these observations we

see that if the semicircle from α to β intersects a triangle of the Farey diagram, then

it crosses this triangle from one edge to another edge. The semicircle cannot cross an

infinite number of triangles having a common vertex, otherwise the semicircle would

contain points arbitrarily close to the common vertex, which is impossible since the

common vertex cannot be either of the irrational numbers α and β . Thus the union

of all the triangles crossed by the semicircle is an infinite strip.

We have seen that an infinite strip is uniquely determined by its endpoints, so

this implies that the semicircle from α to β crosses exactly the same triangles as the

line we constructed earlier consisting of two vertical segments joined at the top by

a 180 degree bend. This may seem odd at first glance, but what it means is that the

height of the vertical segments cannot be too large compared to the distance between

them.

The construction of a strip connecting two irrational numbers α and β via the

semicircle with endpoints α and β works equally well when α or β is rational, but

in this case the strip has only a finite number of triangles at a rational end. A very

special case is when α and β are the endpoints of an edge of the Farey diagram, when

the strip degenerates to just this edge.

The doubly infinite strips we will be most interested in are the ones that are

periodic along their whole length. As we will see, the irrational numbers α and β
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at the ends of such a strip will be the two roots of a quadratic equation with integer

coefficients.

Exercises

1. Compute the values of the following infinite continued fractions:

(a) 1
4

(b) 1
n for an arbitrary positive integer n

(c) 1
2 +

1
3 and 1

1 +
1

2 +
1

3

(d) 1
1 +

1
2 +

1
1 +

1
6 and 1

1 +
1

4 +
1

1 +
1

2 +
1

1 +
1

6

(e) 1
2 +

1
3 +

1
5

2. (a) Compute the continued fractions for
√

5 and
√

23.

(b) Using the continued fraction for
√

5, find the first convergent which gives a rational

approximation to
√

5 accurate to four decimal places.

3. Compute the continued fractions for
√
n2 + 1 and

√
n2 +n where n is an arbitrary

positive integer.

2.3 Linear Diophantine Equations

As an application of continued fractions let us see how they can be used to solve

linear Diophantine equations ax + by = n , where a , b , and n are integers and the

solutions are required to be integers as well. We can assume a , b , and n are nonzero,

otherwise the equation is rather trivial. Changing the signs of x or y if necessary, we

can rewrite the equation in the form ax − by = n where a and b are both positive.

Solving this equation means finding multiples of a and b that differ by n .

If a and b have greatest common divisor d > 1, then since d divides a and b

it must divide ax − by , so d must divide n if the equation ax − by = n is to have

any solutions at all. If d does divide n we can divide both sides of the equation by

d to get a new equation having the same solutions but with the new coefficients a

and b coprime. For example, the equation 6x − 15y = 21 reduces in this way to the

equation 2x − 5y = 7. Thus we can assume from now on that a and b are coprime.

We will show that solutions always exist in this case, in fact infinitely many solutions,

and we will see how to compute them.

To find a solution of ax − by = n it suffices to do the case n = 1 since if we

have a solution of ax − by = 1, we can multiply x and y by n to get a solution of

ax − by = n . For example, for the equation 2x − 5y = 1 the smallest multiple of 2
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that is one greater than a multiple of 5 is 2·3 > 5·1, so a solution of 2x − 5y = 1 is

(x,y) = (3,1) . A solution of 2x − 5y = 7 is then (x,y) = (21,7) .

The idea for solving ax − by = 1 when a and b are coprime is to utilize the

criterion from Proposition 1.1 that the Farey diagram contains an edge joining a/b

to c/d exactly when ad − bc = ±1. In the case that ad − bc = +1 a solution of

ax−by = 1 is then (x,y) = (d, c) , and when ad−bc = −1 a solution of ax−by = 1

is (x,y) = (−d,−c) .

For a given coprime pair of positive integers a and b we can compute the con-

tinued fraction for a/b and the corresponding strip of triangles in the Farey diagram

from 1/0 to a/b . The last edge in the zigzag path in this strip connects a fraction

c/d to a/b , so we have ad − bc = ±1. Since c/d is the next to last vertex along the

zigzag path, the continued fraction for c/d is obtained from the continued fraction

for a/b by omitting the last term. From this truncated continued fraction we can then

compute c/d and hence a solution of ax − by = 1.

As an example, let us solve 67x − 24y = 1. The continued fraction for 67/24 is

2 + 1
1 +

1
3 +

1
1 +

1
4 . Omitting the last term gives

2 + 1
1 +

1
3 +

1
1 which equals 14/5 . Thus we have

67·5− 24·14 = ±1. The sign can be determined by ob-

serving that 67/24 lies to the right of 14/5 in the circular

Farey diagram so 67/24 <
14/5 , hence 67·5 < 24·14 and

therefore 67·5− 24·14 = −1. Thus we obtain the solution (x,y) = (−5,−14) .

The fact that 67/24 lies to the right of 14/5 in the Farey diagram is a consequence

of the strip of triangles having an even number of fans. With an odd number of fans

the situation would be reversed. The number of fans is the number of terms in the

continued fraction after the initial integer, so we see that it is not really necessary to

draw the strip of triangles to figure out the correct sign.

Another way to determine the sign without using the diagram is by computing

67·5− 24·14 mod 10 to see whether we get +1 or −1 mod 10. Computing mod 10

means ignoring all but the last digit, so we get 7·5 − 4·4 = 19 ≡ −1 mod 10 and

hence the sign is negative.

We can get other solutions to 67x − 24y = 1 by using other edges of the Farey

diagram with endpoint 67/24 instead of the edge from 14/5 . For example we could

use the edge to 67/24 in the lower border of the strip of triangles. By the mediant

rule this edge joins 53/19 to 67/24 , so we have 67·19 − 24·53 = ±1 and this time

the plus sign is correct, giving the solution (x,y) = (19,53) . All the other edges

connected to 67/24 are obtained by repeatedly “adding” 67/24 either to 14/5 for edges

above 67/24 , or to 53/19 for edges below 67/24 . In the former case these are the edges

leading to the fractions 14+67k/5+24k for positive integers k , and in the latter case

they are the edges to 53+67k/19+24k for positive integers k . Notice that if we let k be

negative in one of these formulas, we get the fractions given by the other formula. For
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example in 53+67k/19+24k the values k = −1,−2, · · · give the fractions ---14/---5 =
14/5 ,

---81/---29 =
81/29 , · · · which are the values of 14+67k/5+24k for k = 0,1, · · · . This

means that the general solution of 67x − 24y = 1 is (x,y) = (19 + 24k,53+ 67k)

for arbitrary integers k . Alternatively, we could write the general solution as (x,y) =

(−5− 24k,−14− 67k) or as (x,y) = (−5+ 24k,−14+ 67k) since k can be replaced

by −k .

This example illustrates a general fact:

Proposition 2.4. For coprime integers a and b , if one solution of ax − by = n

is (x,y) = (p, q) then the general solution is (x,y) = (p + bk, q + ak) for k an

arbitrary integer.

Here we do not need to assume a and b are positive, so by changing the sign of

b we can write the equation as ax + by = n with general solution (p − bk, q + ak) ,

or alternatively as (p + bk, q − ak) .

Proof: One solution (x,y) = (p, q) of ax−by = n is given. For an arbitrary solution

(x,y) we look at the difference (x − p,y − q) which we denote as (x0, y0) . This

satisfies ax0 − by0 = 0, or in other words, ax0 = by0 . Since a and b are coprime,

the equation ax0 = by0 must have the form a(bk) = b(ak) for some integer k ,

with x0 = bk and y0 = ak . Hence every solution of ax − by = n has the form

(x,y) = (p + x0, q + y0) = (p + bk, q + ak) . It is easy to check that these formulas

for x and y give solutions to ax − by = n for all values of k . ⊔⊓

The Diophantine equation ax−by = n can be interpreted as a congruence condi-

tion by rewriting it as ax−n = by which implies that ax ≡ n mod b . Conversely, if

ax ≡ n mod b then this means that ax−n = by for some integer y , so ax−by = n .

Thus a solution (x,y) of ax − by = n gives a solution x of ax ≡ n mod b , and

a solution x of ax ≡ n mod b gives a solution (x,y) of ax − by = n since this

equation allows y to be computed from a , b , n , and x if b is nonzero.

The special case ax−by = 1 is equivalent to ax ≡ 1 mod b which says that x is

a multiplicative inverse to a mod b . We know that ax−by = 1 has a solution exactly

when a and b are coprime, so this means that a has a multiplicative inverse mod b

exactly when a is coprime to b . For example the congruence classes mod 15 that

are coprime to 15 are 1,2,4,7,8,11,13,14 and we can find multiplicative inverses

for each of these by observing that the products 1·1, 2·8, 4·4, 7·13, 11·11, and

14·14 are each congruent to 1 mod 15. Thus the numbers 1,4,11, and 14 are their

own inverses mod 15 while the other inverses occur in pairs, the pair 2,8 and the

pair 7,13. We could shorten these calculations by noting that if ax ≡ 1 mod b then

(−a)(−x) ≡ 1 mod b , so for example 2·8 ≡ 1 mod 15 implies (−2)(−8) ≡ 1 mod 15

or in other words 13·7 ≡ 1 mod 15. Similarly 4·4 ≡ 1 mod 15 implies 11·11 ≡ 1

mod 15.
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The function which assigns to each positive integer n the number of congruence

classes mod n of numbers coprime to n is called the Euler phi function ϕ(n) . Thus

in the preceding example of multiplicative inverses mod 15 we have ϕ(15) = 8 from

the eight numbers 1,2,4,7,8,11,13,14. Later in this section we will obtain a formula

for ϕ(n) .

Linear Diophantine equations with more than two variables can be solved by re-

duction to the case of two variables. Consider for example a three-variable equation

ax + by + cz = n . Any number that divides all three coefficients a,b, c must also

divide n if a solution is to exist, and in this case we can simplify the equation by

dividing it by the greatest common divisor of a , b , and c , so we may as well assume

that the greatest common divisor of a , b , and c is 1.

As an example that is typical of the general case for three variables, consider the

equation 6x + 10y + 15z = 7. Here the greatest common divisor of 6, 10, and 15

is 1, although when taken two at a time they have larger common divisors: 2 for 6

and 10, 3 for 6 and 15, and 5 for 10 and 15.

The idea for solving 6x+10y+15z = 7 is to write it first as 2(3x+5y)+15z = 7

and then to rewrite this as the two equations 3x + 5y = w and 2w + 15z = 7. The

first equation 3x + 5y = w has solutions for every w since 3 and 5 are coprime,

and we can find the solutions by first solving 3x+5y = 1 and then multiplying these

solutions by w . Since the coefficients 3 and 5 are so small, we can find a solution

of 3x + 5y = 1 by inspection rather than computing continued fractions, and we

see that (x,y) = (2,−1) is a solution. Then (x,y) = (2w,−w) is a solution of

3x + 5y = w . Applying Proposition 2.4, the general solution of 3x + 5y = w can

therefore be written as (x,y) = (2w + 5s,−w − 3s) for s an arbitrary integer.

Next we solve 2w+15z = 7. A solution of 2w+15z = 1 is (w, z) = (8,−1) so a

solution of 2w + 15z = 7 is (w, z) = (56,−7) . The general solution of 2w + 15z = 7

is then (w, z) = (56+ 15t,−7− 2t) for arbitrary integers t . Alternatively, we could

notice that 2w + 15z = 7 has the simpler solution (w, z) = (−4,1) , obtained either

by inspection or by letting t = −4 in the pair (56+ 15t,−7− 2t) . Hence the general

solution of 2w + 15z = 7 can also be written as (w, z) = (−4+ 15t,1− 2t) .

Using (w, z) = (−4 + 15t,1 − 2t) we now substitute w = −4 + 15t into the

earlier formula (x,y) = (2w+5s,−w−3s) to obtain the final answer in terms of the

arbitrary intgers s and t :

(x,y, z) = (2(−4+ 15t)+ 5s,−(−4+ 15t)− 3s,1− 2t)

= (−8+ 5s + 30t,4− 3s − 15t,1− 2t)

In the spirit of Proposition 2.4 we can say that a particular solution of 6x+10y+15z =

7 is (−8,4,1) , obtained by setting s = t = 0, and the general solution is obtained

by adding this particular solution to (5s + 30t,−3s − 15t,−2t) which is the general

solution of the associated equation 6x + 10y + 15z = 0 with right side zero.
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The situation for equations with more variables is similar to what happened in

this example, with an equation in n variables breaking up into n − 1 equations in

two variables. Each of these has solutions depending on an integer parameter, so the

solutions of the n-variable equation depend on n− 1 independent parameters.

The Chinese Remainder Theorem

We can apply what we have learned about linear Diophantine equations to derive

a general fact about congruences often referred to as the Chinese Remainder Theorem

since it was used in ancient Chinese manuscripts to solve mathematical puzzles of a

certain type. Here is the statement:

Proposition 2.5. A collection of congruence conditions

x ≡ a1 mod m1

x ≡ a2 mod m2

· · ·

x ≡ ak mod mk

always has a simultaneous solution provided that no two of the moduli mi have a

common divisor greater than 1 , and in this case the collection of all solutions forms

a single congruence class modulo the product m1 · · ·mk .

Without the hypothesis that the various moduli mi are coprime there may not

be a common solution. For example the two congruences x ≡ 5 mod 6 and x ≡ 7

mod 15 have no common solution since the first congruence implies x ≡ 2 mod 3

while the second congruence implies x ≡ 1 mod 3. Here we are using the following

general fact about congruences that will be used often:

If a congruence a ≡ b holds mod n then it holds mod d for each divisor d of n .

This is true because if n divides a− b then so does d for each divisor d of n .

Proof of Proposition 2.5: Let us first prove the existence of a common solution x

when there are just two congruences x ≡ a1 mod m1 and x ≡ a2 mod m2 . In

this case the desired number x will have the form x = a1 + x1m1 = a2 + x2m2 for

some pair of yet-to-be-determined numbers x1 and x2 . We can rewrite the equation

a1+x1m1 = a2 +x2m2 as m1x1−m2x2 = a2−a1 . We know that this equation has

a solution (x1, x2) with integers x1 and x2 whenever m1 and m2 are coprime. This

is obtained by first finding integers n1 and n2 such that m1n1+m2n2 = 1 and then

multiplying this equation by a2−a1 to get (a2−a1)m1n1+(a2−a1)m2n2 = a2−a1 .

Then in the equation m1x1 −m2x2 = a2 − a1 we may choose x1 = (a2 − a1)n1 and
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x2 = (a2 − a1)(−n2) . Thus we have:

x = a1 + x1m1

= a1 +m1(a2 − a1)n1

= a1(1−m1n1)+ a2m1n1

= a1m2n2 + a2m1n1 since 1−m1n1 =m2n2

Summarizing, we have the solution x = a1m2n2 +a2m1n1 where n1 and n2 satisfy

m1n1 +m2n2 = 1.

For a system of more than two congruences we may suppose by induction on

the number of congruences that we have a number x = a satisfying all but the last

congruence x ≡ ak mod mk . From the preceding paragraph we know that a number x

exists satisfying the two congruences x ≡ a mod m1 · · ·mk−1 and x ≡ ak mod mk

since m1 · · ·mk−1 and mk are coprime. This gives the desired solution to all k

congruences x ≡ ai mod mi since x ≡ a mod m1 · · ·mk−1 implies x ≡ a mod mi

for each i < k , and a ≡ ai mod mi for each i < k by the inductive hypothesis.

Now we show that all the different solutions of the given set of congruences form

a single congruence class mod m1 · · ·mk . If x and y are two solutions then the dif-

ference x−y is congruent to 0 mod each of the numbers m1, · · · ,mk , which means

that it is divisible by each mi and hence by their product since they have no common

factors. Thus x ≡ y mod m1 · · ·mk , which shows that all the solutions lie in a single

congruence class mod m1 · · ·mk . Moreover every number in this congruence class is

a solution since if x is one solution and y ≡ x mod m1 · · ·mk then y ≡ x mod mi

for each i , so x ≡ ai mod mi implies y ≡ ai mod mi . ⊔⊓

As an illustration of the method in this proof let us find all numbers that are

congruent to 7 mod 9 and to 8 mod 11. First we find a solution of 9n1 + 11n2 = 1

by the earlier methods. One such solution is (n1, n2) = (5,−4) . The formula x =

a1m2n2+a2m1n1 then gives x = −7·11·4+8·9·5 = −308+360 = 52. We are free

to change this by adding any multiple of 9·11, so the general solution is 52+99t for

arbitrary integers t . If we were to modify the problem by adding a third congruence

condition such as x ≡ 4 mod 7 then we would just be solving the two congruences

x ≡ 52 mod 99 and x ≡ 4 mod 7 by the same method.

There is a geometric picture that gives a way of visualizing what the Chinese

Remainder Theorem is saying. Consider the case of two simultaneous congruences

x ≡ a mod m and x ≡ b mod n where m and n are coprime. We can then label

the mn unit squares in an m×n rectangle by the numbers 1,2,3, · · · starting in the

lower left corner and continuing upward to the right at a 45 degree angle as shown in

the following figure for the case of a 9× 4 rectangle:
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Whenever we run over the top edge, we jump back to the bottom in order to continue,

and when we reach the right edge, we jump back to the left edge. This amounts

to taking congruence classes mod m horizontally and mod n vertically. What the

Chinese Remainder Theorem says is that when m and n are coprime, each unit square

in the m×n rectangle is labeled exactly once by a number from 1 to mn . (Without

the coprimeness some squares would have no labels while others would have multiple

labels.) The figure thus illustrates that specifying a congruence class mod mn is

equivalent to specifying a pair of congruence classes mod m and mod n via the

projections onto the two axes.

For the case of three simultaneous congruences there is an analogous picture with

a three-dimensional rectangular box partitioned into unit cubes. More generally, for

k congruences one would be dealing with a k-dimensional box.

A common situation for applying the Chinese Remainder Theorem is to start

with a number n factored as n = p
r1

1 · · ·p
rk
k for distinct primes p1, · · · , pk , so that

a congruence x ≡ a mod n is equivalent to a set of k congruences x ≡ ai mod p
ri
i .

If we add the condition that each ai is not divisible by the corresponding prime pi

then a simultaneous solution x = a for all k congruences must be coprime to n since

a ≡ ai mod p
ri
i implies a ≡ ai mod pi and we assume ai is nonzero mod pi so

a is also nonzero mod pi . Conversely, if a is coprime to n and satisfies a set of

congruences a ≡ ai mod p
ri
i and hence a ≡ ai mod pi , then ai must be nonzero

mod pi since a is. Thus congruence classes mod n of numbers a coprime to n

are equivalent to congruence classes mod p
ri
i of numbers ai coprime to pi , one for

each i .

In the geometric picture for the case k = 2 with a rectangular array of unit

squares, if we require a1 to be coprime to p1 then we are omitting the numbers

in certain vertical columns of squares, the columns whose horizontal coordinate is a

multiple of p1 . Similarly, when we require a2 to be coprime to p2 we omit the num-

bers in the horizontal rows whose vertical coordinate is a multiple of p2 . The numbers

in the boxes that are not omitted are then the numbers coprime to n = p
r1

1 p
r2

2 . Here

is the picture for the case n = 32·22 :
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Here the 12 unshaded squares are what is left after columns 3, 6, and 9 are excluded

along with rows 2 and 4. In other words we delete multiples of 2 and 3, leaving the

numbers 1,5,7,11,13,17,19,23,25,29,31,35 as the numbers less than 36 that are

coprime to 36.

In the corresponding three-dimensional picture for k = 3 we would be omitting

the cubes in certain slices parallel to the three coordinate planes, and similarly for

k > 3.

The Euler Phi Function

We can now obtain a formula for the Euler phi function ϕ(n) which counts the

number of congruence classes mod n of integers coprime to n . The arguments above

show that ϕ(n) = ϕ(p
r1

1 ) · · ·ϕ(p
rk
k ) when n = p

r1

1 · · ·p
rk
k for distinct primes pi .

For a prime p we have ϕ(pr ) = pr − pr−1 = pr−1(p − 1) since we are counting how

many numbers remain from 1,2,3, · · · , pr after we delete p,2p,3p, · · · , (pr−1)p =

pr . Thus we have a formula for ϕ(n) :

ϕ(n) = p
r1−1
1 (p1 − 1)p

r2−1
2 (p2 − 1) · · ·p

rk−1
k (pk − 1)

= n

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·

(
pk − 1

pk

)

If we omit the factor n from this last product, the remaining product of the terms

(pi ---1)/pi tells what proportion of the numbers less than n are coprime to n . Notice

that this does not depend on the exponents ri . For example ϕ(36) = ϕ(4)ϕ(9) =

2·6 = 12, which is 1/2·
2/3 =

1/3 times 36, in agreement with the preceding figure.

The way that ϕ(n) varies with n is rather erratic since the prime factorizations

of adjacent numbers are not related. For example we have ϕ(1000) = ϕ(2353) =

22(2− 1)52(5− 1) = 400, in agreement with the fact that the numbers coprime to 2

and 5 are the numbers with last digit 1, 3, 7, or 9, which means four out of every ten

numbers or 400 out of the first 1000 numbers. For the adjacent numbers 999 and

1001 we have ϕ(999) = ϕ(33·37) = 18·36 = 648 and ϕ(1001) = ϕ(7·11·13) =

6·10·12 = 720.
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An Example with a Quadratic Diophantine Equation

The Chinese Remainder Theorem can be applied to give an example of a Dio-

phantine equation that has a solution mod n for each positive integer n but does not

have an actual integer solution. The example is the equation 2x2 + 7y2 = 1. This

obviously has no integer solutions, although it does have rational solutions such as

(x,y) =
(
1/3,

1/3

)
and

(
3/5,

1/5

)
. We can use either of these rational solutions to get

a solution mod n for certain values of n in the following way. Let us take the solu-

tion
(
3/5,

1/5

)
for example. This rational solution will give an integer solution mod n

provided that 5 has a multiplicative inverse “1/5” mod n . For example for n = 14 a

multiplicative inverse for 5 is 3 since 5·3 ≡ 1 mod 14. If we multiply the equation

2
(
3/5

)2
+ 7

(
1/5

)2
= 1 by 52 to get 2·32 + 7·12 = 52 and then multiply by 32 , the

inverse of 52 mod 14, we get 2·92 + 7·32 ≡ 1 mod 14.

This argument gives a solution of 2x2 + 7y2 ≡ 1 mod n whenever 5 has a

multiplicative inverse mod n . As we saw earlier in this section, this happens whenever

5 is coprime to n , which means that 5 does not divide n . Similarly, using the other

rational solution
(
1/3,

1/3

)
we can solve 2x2 + 7y2 = 1 mod n whenever 3 does not

divide n by finding a multiplicative inverse for 3 mod n .

There remains the possibility that n is divisible by both 3 and 5, and this is where

the Chinese Remainder Theorem will be used. Consider for example the case n = 30.

We can factor this as 5·6 where one factor is not divisible by 3 and the other is not

divisible by 5. By the method above we can obtain a solution of 2x2+7y2 ≡ 1 mod 5

from
(
1/3,

1/3

)
using 3·2 ≡ 1 mod 5 so

(
1/3,

1/3

)
becomes (2,2) . For 2x2 + 7y2 ≡

1 mod 6 we use
(
3/5,

1/5

)
and the fact that 5·5 ≡ 1 mod 6 so

(
3/5,

1/5

)
becomes

(3·5,5) ≡ (3,5) mod 6. Thus we want to find (x,y) with (x,y) ≡ (2,2) mod 5

and (x,y) ≡ (3,5) mod 6. This we do by two applications of the Chinese Remainder

Theorem, once for x and once for y . We use the earlier formula a1m2n2 +a2m1n1

where 5n1 + 6n2 = 1 so n1 = −1 and n2 = 1. This yields x = 2·6·1− 3·5·1 = −3

and y = 2·6·1− 5·5·1 = −13. Thus 2(−3)2+ 7(−13)2 ≡ 1 mod 5 and mod 6. This

implies the congruence also holds mod 30 since the difference 2(−3)2+ 7(−13)2−1

is divisible by 5 and by 6, hence by 30 since 5 and 6 are coprime. This method

for the case n = 30 works for any n divisible by 3 and 5 since any such n can be

factored as n = kl where k is not divisible by 3 and l is not divisible by 5.

One might ask how rational solutions of 2x2 + 7y2 = 1 such as
(
1/3,

1/3

)
and(

3/5,
1/5

)
can be found. Rational solutions of 2x2 + 7y2 = 1 are equivalent to integer

solutions of 2x2 + 7y2 = z2 , so we are looking for integers x and y such that

2x2+7y2 is a square. This is a special case of the general problem of solving quadratic

Diophantine equations ax2 + bxy + cy2 = n which will be a central theme of the

book starting in Chapter 4.
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A Digression on Rational Points on Quadratic Curves

A key point in the preceding example was the existence of rational solutions of

2x2 + 7y2 = 1, which correspond to rational points on the curve 2x2 + 7y2 = 1,

so let us consider now the general problem of determining when a quadratic curve

ax2 + bxy + cy2 = d contains rational points. Here a , b , c , and d are rational

numbers but there is no loss of generality in assuming they are integers since we can

multiply the equation by a common denominator for a , b , c , and d if they are not

all integers.

The first step is to reduce to the case that b = 0. If a ≠ 0 we can write:

ax2 + bxy + cy2 = a
(
x +

b

2a
y
)2
+
(
c −

b2

4a

)
y2

Then if we change variables to X = x + b/2ay and Y = y this converts the equation

ax2 + bxy + cy2 = d into the equation aX2 + c′Y 2 = d for c′ = c − b
2
/4a . Rational

values of x and y give rational values for X and Y , and conversely rational values for

X and Y give rational values for x and y since the change of variables is reversible,

with x = X−b/2aY and y = Y . If a = 0 and c ≠ 0 we can change variables as above

but with a and c reversed. If both a and c are 0 the equation is bxy = d which

always has rational solutions if b ≠ 0.

Thus it suffices to determine whether curves ax2+by2 = c have rational points.

Again we can multiply through by a common denominator to make a , b , and c in-

tegers. We assume a , b , and c are nonzero to avoid trivial cases. To have solutions

we obviously need to assume that a and b do not have one sign and c the opposite

sign.

If rational numbers x and y satisfy ax2 + by2 = c we can put them over a

common denominator and write them as quotients X/Z and Y/Z for integers X,Y ,Z ,

and then the equation becomes aX2 + bY 2 = cZ2 for which we are seeking integer

solutions (X, Y ,Z) . With three variables instead of two it may appear that we have

made the problem more complicated, but an advantage of the new equation is that

it is homogeneous in the sense that all three terms have the same degree, namely 2.

This means that if (X, Y ,Z) is a solution, then so is (kX, kY , kZ) for any constant k .

In particular, rational solutions can always be converted to integer solutions. The

homogeneous equation has the trivial solution (0,0,0) but this is not very interesting

so we will always exclude this trivial solution. In fact we will need solutions with Z ≠ 0

to get actual points (x,y) = (X/Z,Y/Z) on the curve ax2 + by2 = c .

Thus we are asking when an equation ax2 + by2 = cz2 has an integer or ratio-

nal solution (x,y, z) ≠ (0,0,0) . There are a few preliminary simplifications in the

coefficients a,b, c that can be made. Suppose first that a factors as a′d2 for some

integers a′ and d > 1. The equation can then be written as a′(dx)2 + by2 = cz2 ,

and finding rational solutions of ax2 + by2 = cz2 is equivalent to finding rational

solutions of a′x2 + by2 = cz2 . Square factors of b and c can be absorbed into y2
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and z2 in the same way. Thus there is no loss of generality in assuming that each

of the coefficients a,b, c in ax2 + by2 = cz2 is squarefree, that is, has no square

factors greater than 1.

If all three coefficients a,b, c have a common prime factor p we can of course

divide the equation by p to get a simpler equation. Repeating this step, we may

assume no prime p divides all three coefficients. If p divides two of the coefficients,

say a = pa′ and b = pb′ , we can still simplify the equation by multiplying it by p

to get a′(px)2 + b′(py)2 = pcz2 which can be written as a′x2 + b′y2 = pcz2 by

absorbing p into x and y , and this is a simpler equation in that |abc| has decreased

by a factor of p . The new equation still has squarefree coefficients since we could

assume that the divisor p of a and b was not also a divisor of c . By the same

reasoning we can arrange also that a and c are coprime and b and c are coprime,

with all three coefficients still squarefree.

Now we have Legendre’s Theorem as described in Chapter 0:

Theorem 2.6. An equation ax2 + by2 = cz2 with a , b , and c squarefree coprime

nonzero integers has an integer solution (x,y, z) ≠ (0,0,0) exactly when the fol-

lowing conditions are satisfied : ac is a square mod b , bc is a square mod a , −ab

is a square mod c , and a and b do not both have the opposite sign from c .

A more symmetric statement could be obtained by changing the sign of c and

writing the equation as ax2+by2+cz2 = 0. Then the conditions would be that −ac

is a square mod b , −bc is a square mod a , −ab is a square mod c , and the three

coefficients a,b, c do not all have the same sign.

Proof: First we show that these congruence conditions must be satisfied if a solution

exists. Suppose that we have a solution (x,y, z) ≠ (0,0,0) of ax2 + by2 = cz2 . We

can assume each pair of x,y, z is coprime since for example if a prime p divides

x and y then p2 divides ax2 + by2 hence it divides cz2 , which implies p divides

z since c is squarefree. Then the solution (x,y, z) could be simplified by dividing

by p .

The equation ax2+by2 = cz2 implies that ax2 ≡ cz2 mod b . After multiplying

this congruence by c we get acx2 ≡ c2z2 mod b . Now, x and b are coprime since

any prime dividing both would divide ax2 + by2 = cz2 and so would divide c or z ,

neither of which is possible since b and c are coprime and x and z are coprime. Since

x is coprime to b it has a multiplicative inverse mod b . Multiplying the congruence

acx2 ≡ c2z2 mod b by the square of this inverse, we conclude that ac is a square

mod b . In the same way we see that bc is a square mod a and −ab is a square

mod c .

The converse is considerably harder to prove, so let us first outline what the

strategy will be. We will use the more symmetric equation ax2 + by2 + cz2 = 0. If



Section 2.3 — Linear Diophantine Equations 67

the left side of this equation could be factored as

ax2 + by2 + cz2 =
(
a1x + b1y + c1z

)(
a2x + b2y + c2z

)

with all coefficients integers, then finding a solution of ax2 + by2 + cz2 = 0 would

be rather easy since we would just have to solve the linear Diophantine equation

obtained by setting either factor equal to 0. However, factorizations like this rarely

exist. Instead we will show that the congruence conditions in the theorem guarantee

that there is a factorization modulo a suitable number n , namely n = abc . What this

means concretely is that if one multiplies out the product of the two linear factors on

the right in the displayed equation above, then the coefficients of the x2 , y2 , and z2

terms will be congruent to a , b , and c mod n and the coefficients of the xy , yz ,

and xz terms will be 0 mod n . A solution of either congruence aix + biy + ciz ≡

0 mod abc , say a1x + b1y + c1z ≡ 0 mod abc , will then give a solution of the

congruence ax2 + by2 + cz2 ≡ 0 mod abc .

The next step in the proof will be to show that a solution (x,y, z) of the congru-

ence a1x+b1y+c1z ≡ 0 mod abc can be chosen so that the value of ax2+by2+cz2

is a fairly small multiple of abc , in fact either 0 or ±abc . The last step in the proof

will then be a rather subtle trick to convert a solution of ax2 + by2 + cz2 = ±abc

into a solution of ax2 + by2 + cz2 = 0.

Now we begin to fill in details. To factor ax2+by2+cz2 mod abc we first factor

it mod a , b , and c separately. To factor it mod a we just need to factor by2 + cz2

mod a . Multiplying by2+cz2 by b gives b2y2+bcz2 . We are assuming that −bc is a

square mod a so we have −bc ≡ r 2 mod a for some integer r . Then b2y2+bcz2 ≡

b2y2 − r 2z2 mod a with b2y2 − r 2z2 factoring as (by + rz)(by − rz) . Since b

is coprime to a it has an inverse b−1 mod a so after multiplying the congruence

b2y2+ bcz2 ≡ (by + rz)(by − rz) mod a by b−1 we have the desired factorization

by2 + cz2 ≡ (y + b−1rz)(by − rz) mod a . Thus there is a factorization mod a

of ax2 + by2 + cz2 as a product (a1x + b1y + c1z)(a2x + b2y + c2z) where the

coefficients a1 and a2 happen to be 0, but this will not be significant for the rest of

the argument.

In the same way there are similar factorizations of ax2 + by2 + cz2 mod b and

mod c , with possibly different coefficients a1, b1, c1, a2, b2, c2 of the linear factors.

The Chinese Remainder Theorem, applied once for each of the six coefficients, implies

that there is a single choice for the coefficients that works mod a , b , and c simulta-

neously. Since a , b , and c are coprime, the factorization then holds mod abc .

We will be interested in triples (x,y, z) of integers satisfying three inequalities

0 ≤ x < α 0 ≤ y < β 0 ≤ z < γ (∗)

for positive real numbers α , β , and γ that are not necessarily integers. To count

how many triples (x,y, z) satisfy (∗) let λ(α) be the number of integers x with
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0 ≤ x < α , so λ(α) = α if α is an integer and λ(α) = 1+ ⌊α⌋ if α is not an integer,

where ⌊α⌋ is the largest integer less than or equal to α . Thus λ(α) > α if α is not

an integer. The number of triples (x,y, z) satisfying (∗) is then λ(α)λ(β)λ(γ) .

If λ(α)λ(β)λ(γ) > |abc| there must exist two different triples (x′, y ′, z′) and

(x′′, y ′′, z′′) satisfying (∗) such that a1x
′ + b1y

′ + c1z
′ ≡ a1x

′′ + b1y
′′ + c1z

′′

mod abc . The triple (x,y, z) = (x′−x′′, y ′−y ′′, z′−z′′) ≠ (0,0,0) will then satisfy

a1x + b1y + c1z ≡ 0 mod abc . The triple
(
|x|, |y|, |z|

)
will also satisfy (∗) so

x2 < α2 , y2 < β2 , and z2 < γ2 .

For the triple (x,y, z) we have ax2 + by2 + cz2 ≡ 0 mod abc from the factor-

ization of ax2 + by2 + cz2 mod abc . Since a , b , and c do not all have the same

sign, we can assume two are positive and one is negative by multiplying the equation

by −1 if necessary. After a possible permutation of the coefficients we can assume

that a > 0, b > 0, and c < 0. Since x2 < α2 , y2 < β2 , and z2 < γ2 we then have:

cγ2 < cz2 ≤ ax2 + by2 + cz2 ≤ ax2 + by2 < aα2 + bβ2

If we choose α =
√
|bc| , β =

√
|ac| , and γ =

√
|ab| then these inequalities give the

inequalities −|abc| < ax2+by2+cz2 < 2|abc| . Since ax2+by2+cz2 ≡ 0 mod |abc|

we must therefore have either ax2 + by2 + cz2 = 0 or ax2 + by2 + cz2 = |abc| .

The chosen values for α , β , and γ also give αβγ = |abc| so the earlier hypothesis

λ(α)λ(β)λ(γ) > |abc| becomes λ(α)λ(β)λ(γ) > αβγ which is satisfied unless α ,

β , and γ are all integers. Since a , b , and c are coprime and squarefree, α , β ,

and γ are all integers only when a , b , and c are ±1, but in this case the equation

ax2 + by2 + cz2 = 0 is just x2 +y2 − z2 = 0 which has obvious integer solutions.

All that remains is to deal with the possibility ax2 + by2 + cz2 = |abc| , so

ax2 + by2 + cz2 = −abc . Rewriting this equation as ax2 + by2 + c(z2 + ab) = 0,

we would like to convert it into an equation of the form aX2 + bY 2 + cZ2 = 0. This

suggests that we multiply the equation by z2 + ab to get a term cZ2 = c(z2 + ab)2 .

Multiplying ax2 + by2 by z2 + ab , we have:

(ax2 + by2)(z2 + ab) = ax2z2 + a2bx2 + by2z2 + ab2y2

= a(xz + by)2 + b(yz − ax)2

Thus we have a solution of aX2 + bY 2 + cZ2 = 0, and this is not the trivial solution

(0,0,0) since Z = z2 + ab > 0. ⊔⊓

To apply Legendre’s Theorem one needs to be able to determine which numbers

are squares modulo a given number n . The brute force approach is just to com-

pute all the possible squares. For example for n = 15 the numbers mod 15 are

0,±1,±2,±3,±4,±5,±6, and ±7 so the squares mod 15 are obtained by squaring

these to get 0,1,4,9,16 ≡ 1,25 ≡ 10,36 ≡ 6, and 49 ≡ 4. Thus only six of the fifteen

congruence classes mod 15 are squares mod 15, namely 0,1,4,6,9, and 10. This

approach becomes tedious for large values of n , but in Section 6.2 we will develop
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more efficient methods for determining whether a number m is a square mod n ,

which turns out to be quite a subtle question.

Exercises

1. (a) Find all integer solutions of the equations 40x + 89y = 1 and 40x + 89y = 5.

(b) Find another equation ax + by = 1 with integer coefficients a and b that has an

integer solution in common with 40x + 89y = 1. Hint : Use the Farey diagram.

2. Find all integers x satisfying the congruence 31x ≡ 1 mod 71, and then do the

same for the congruence 31x ≡ 10 mod 71. Are the solutions unique mod 71, i.e.,

unique up to adding multiples of 71?

3. Find all integer solutions of the equation 9x + 12y + 20z = 4, and do this more

generally for 9x + 12y + 20z = n .

4. Find all solutions of the simultaneous congruences x ≡ 6 mod 13 and x ≡ 7

mod 18.

5. Show that for the Euler phi function the values ϕ(n) approach infinity as n ap-

proaches infinity. In other words, show that for each number N > 0 there are only

finitely many numbers n with ϕ(n) < N .

6. For each n ≤ 10 determine which numbers are squares mod n by direct calculation.

7. Determine which curves ax2 + by2 = c contain rational points for each triple of

coprime integers a,b, c chosen from the numbers 1,2,3,5. When rational points

exist, find a specific one.
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A notable feature of the various versions of the Farey diagram is their symmetry.

For the circular Farey diagram the symmetries are the reflections across the horizontal

and vertical axes and the 180 degree rotation about the center. For the upper half-

plane Farey diagram there are symmetries that translate the diagram by any integer

distance to the left or the right, as well as reflections across certain vertical lines, the

vertical lines through an integer or half-integer point on the x-axis. The Farey diagram

could also be drawn to have 120 degree rotational symmetry and three reflectional

symmetries.

Our purpose in this chapter is to study all possible symmetries of the Farey diagram,

where we interpret the word “symmetry” in a broader sense than the familiar meaning

from Euclidean geometry. For our purposes, symmetries will be invertible transfor-

mations that take vertices to vertices, edges to edges, and triangles to triangles. There

are simple algebraic formulas for these more general symmetries, and these formulas

lead to effective means of calculation. An application in this chapter will be to comput-

ing the values of periodic or eventually periodic continued fractions, and symmetries

of the diagram will play key roles in later chapters as well.

3.1 Linear Fractional Transformations

Our first goal will be to find formulas for all the symmetry transformations of

the Farey diagram. The formulas will specify where each vertex is sent so they will

have the form T
(
x/y

)
= x′/y′. It is easy to write down such formulas for some of

the simpler symmetries. Reflection of the circular Farey diagram across the vertical

axis sends a fraction x/y to y/x so it is the transformation T
(
x/y

)
= y/x . Reflection

across the horizontal axis is T
(
x/y

)
= ---x/y . Composing these two transformations in

either order gives a 180 degree rotation of the Farey diagram about its centerpoint, the
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transformation T
(
x/y

)
= ---y/x . For the upper halfplane Farey diagram the horizontal

translation to the right by n units is T
(
x/y

)
= x/y + n =

x+ny/y , while a leftward

translation is T
(
x/y

)
= x/y −n = x---ny/y . All these formulas work equally well for

the fraction x/y =
±1/0 with the exception of x/y ± n , where the alternative forms

x+ny/y and x---ny/y are preferable and give T
(
±1/0

)
= ±1/0 .

In these examples the transformations have the form T
(
x/y

)
= ax+by/cx+dy

for integers a,b, c, d . Another notation is to let z = x/y and then we have:

T(z) = T

(
x

y

)
=
ax + by

cx + dy
=
a
(
x/y

)
+ b

c
(
x/y

)
+ d

=
az + b

cz + d

A transformation of the type T
(
x/y

)
= ax+by/cx+dy or T(z) = az+b/cz+d is called

a linear fractional transformation since it is defined by a fraction whose numerator

and denominator are linear functions. Fractions x/y , including ±1/0 , correspond to

pairs (x,y) and from this point of view linear fractional transformations T
(
x/y

)
=

ax+by/cx+dy correspond to linear transformations T(x,y) = (ax + by, cx + dy) .

In matrix notation this becomes T
(
x
y

)
=
(
a
c
b
d

)(
x
y

)
=
(
ax+by
cx+dy

)
.

Linear fractional transformations T
(
x/y

)
= ax+by/cx+dy that give symmetries

of the Farey diagram must take vertices to vertices and edges to edges, so let us see

what this means for the coefficients a,b, c, d , which we will always assume are inte-

gers. Vertices of the Farey diagram are fractions p/q in lowest terms, including ±1/0 ,

with p/q determining the same vertex as ---p/---q . This ambiguity causes no problem

for linear fractional transformations T
(
x/y

)
= ax+by/cx+dy since ax+by/cx+dy =

---ax---by/---cx---dy so T
(
p/q

)
= T

(
---p/---q

)
. For T to take vertices to vertices means that

for a fraction p/q in lowest terms we would like T
(
p/q

)
= ap+bq/cp+dq to be in low-

est terms as well. For T to take edges to edges means that if
〈
p/q ,

r/s
〉

is an edge

we want
〈
ap+bq/cp+dq ,

ar+bs/cr+ds
〉

to be an edge also. In matrix terms this last

condition is saying that if
(
p
q
r
s

)
has determinant ±1 then

(
ap+bq
cp+dq

ar+bs
cr+ds

)
, which is

the product
(
a
c
b
d

)(
p
q
r
s

)
, should also have determinant ±1. It is a general fact that

the determinant of the product of two matrices is the product of the determinants of

the two matrices. (For 2 × 2 matrices this is easy to check by a direct calculation.)

Thus for
(
ap+bq
cp+dq

ar+bs
cr+ds

)
to have determinant ±1 when

(
p
q
r
s

)
has determinant ±1

the exact condition we need is that
(
a
c
b
d

)
should have determinant ±1.

Proposition 3.1. If the matrix
(
a
c
b
d

)
with integer entries has determinant ±1 then

the associated linear fractional transformation T
(
x/y

)
= ax+by/cx+dy takes ver-

tices in the Farey diagram to vertices in the diagram and it takes each pair of

vertices that are joined by an edge to another pair of vertices that are joined by an

edge.

It follows that T must take triangles in the diagram to triangles in the diagram

since triangles correspond to sets of three vertices, any two of which are the endpoints

of an edge.
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Proof: We have shown that if
〈
p/q ,

r/s
〉

is an edge of the Farey diagram then so is〈
T
(
p/q

)
, T
(
r/s
)〉

when the matrix of T has determinant ±1. This implies that T takes

vertices to vertices since each vertex p/q is an endpoint of some edge
〈
p/q , r/s

〉
,

so T
(
p/q

)
is an endpoint of the edge

〈
T
(
p/q

)
, T
(
r/s
)〉

and therefore the fraction

T
(
p/q

)
= ap+bq/cp+dq is in lowest terms. ⊔⊓

We will use the notation LF(Z) for the set of all linear fractional transformations

T
(
x/y

)
= ax+by/cx+dy with coefficients a,b, c, d in Z such that the matrix

(
a
c
b
d

)

has determinant ±1. (Here Z is the set of integers.)

Changing a matrix
(
a
c
b
d

)
to its negative −

(
a
c
b
d

)
=
(

---a
---c

---b
---d

)
produces the same

linear fractional transformation since ---ax---by/---cx---dy =
ax+by/cx+dy . This is in

fact the only way that different matrices with integer entries and determinant ±1 can

give the same linear fractional transformation, by the following argument. The trans-

formation T
(
x/y

)
= ax+by/cx+dy takes 1/0 to a/c and 0/1 to b/d so T determines

each column of
(
a
c
b
d

)
up to a sign. Changing the sign of both columns gives the

same transformation so the only question is whether changing the sign of one col-

umn could give the same transformation. Changing the sign of the first column has

the same effect as changing the sign of the second column since changing the sign of

both columns gives the same transformation. So suppose that we change the sign of

the second column, changing ax+by/cx+dy to ax---by/cx---dy . If we apply these two

transformations to 1/1 we get a+b/c+d and a ---b/c ---d . These fractions are in lowest

terms by the previous proposition, so if they give the same vertex of the Farey diagram

we would have either a+ b = a−b and c +d = c −d , hence b = 0 and d = 0, or we

would have a+ b = b − a and c + d = d− c , hence a = 0 and c = 0. In either case

the condition ad − bc = ±1 is violated. Thus we see that changing the sign of only

one column of
(
a
c
b
d

)
gives a different transformation, finishing the argument.

If we are given two linear fractional transformations T
(
x/y

)
= ax+by/cx+dy and

S
(
x/y

)
= ex+fy/gx+hy then we can compose them to get another linear fractional

transformation:

T
(
S
(
x/y

))
=
a(ex + fy)+ b(gx + hy)

c(ex + fy)+ d(gx + hy)
=
(ae+ bg)x + (af + bh)y

(ce+ dg)x + (cf + dh)y

The matrix of this transformation is just the product
(
a
c
b
d

)(
e
g
f
h

)
=
(
ae+bg
ce+dg

af+bh
cf+dh

)
,

so composition of linear fractional transformations corresponds to matrix multipli-

cation. It follows that if T and S are in LF(Z) then so is their composition TS , which

is also referred to as their product.

A transformation T in LF(Z) has an inverse T−1 in LF(Z) because the inverse

of a 2× 2 matrix is given by the formula

(
a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)
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so if a,b, c, d are integers with ad−bc = ±1 then the inverse matrix also has integer

entries and determinant ±1. When computing the inverse of a transformation in

LF(Z) the factor 1/ad ---bc can be ignored since it is ±1 and replacing a matrix by its

negative gives the same linear fractional transformation, as we observed above.

For a matrix A =
(
a
c
b
d

)
the key property of its inverse A−1 is that both products

AA−1 and A−1A are equal to the identity matrix
(

1
0

0
1

)
, corresponding to the identity

transformation I
(
x/y

)
= x/y . Thus for any transformation T in LF(Z) we have

TT−1 = I and T−1T = I . The formula T−1T = I implies that T gives a one-to-

one transformation of vertices since if two vertices v1 and v2 have the same image

T(v1) = T(v2) then we must have T−1(T(v1)
)
= T−1(T(v2)

)
so v1 = v2 and hence

T cannot send two different vertices to the same vertex, which means it is one-to-one

as a transformation from vertices to vertices. Also, the formula TT−1 = I implies

that every vertex v1 is the image T(v2) of some vertex v2 since we can write v1 =

T
(
T−1(v1)

)
and let v2 = T

−1(v1) . The same reasoning applies not just for vertices

but also for edges and triangles. Thus T can never send two edges to the same edge

or two triangles to the same triangle, and every edge or triangle is the image of some

edge or triangle.

Orientations

Transformations in LF(Z) can be divided into two types according to whether

they preserve or reverse the orientations of triangles. A triangle

in the Farey diagram can be oriented either clockwise or coun-

terclockwise by choosing either a clockwise or counterclockwise

ordering of its three vertices. Thus if the vertices are v1, v2, v3

then this ordering of the vertices determines one orientation as

in the figures at the right. This is the same orientation as when

the vertices are ordered v2, v3, v1 or v3, v1, v2 . The other three

orderings determine the opposite orientation.

A transformation T in LF(Z) takes each triangle to another triangle in a way that

either preserves the two possible orientations or reverses them:

If a transformation preserves the orientation of one triangle, it has to preserve the

orientation of the three adjacent triangles, and then of the triangles adjacent to these,

and so on for all the triangles. Similarly, if the orientation of one triangle is reversed,

then the orientations of all triangles are reversed. For example, reflection of the cir-
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cular Farey diagram across its horizontal or vertical axis reverses the orientation of

all triangles, while a 180 degree rotation of the diagram preserves the orientation of

all triangles. A translation of the upper halfplane diagram by any number of units

left or right preserves orientations of triangles while a reflection across a vertical line

through an integer or half-integer point on the x-axis reverses orientations.

As we have seen, the matrix
(
a
c
b
d

)
corresponding to a linear fractional transfor-

mation ax+by/cx+dy is unique up to multiplication by −1. The determinant ad−bc

does not change when each of a,b, c, d is changed to its negative, so each transfor-

mation in LF(Z) has a well-defined determinant, either +1 or −1. The sign has a

geometric interpretation:

Proposition 3.2. An orientation-preserving transformation in LF(Z) has determi-

nant +1 and an orientation-reversing transformation has determinant −1 .

Proof: Consider a transformation T
(
x/y

)
= ax+by/cx+dy in LF(Z) associated to a

matrix
(
a
c
b
d

)
. If we multiply one column of the matrix by −1 this changes the sign

of the determinant. Let us check that it also changes whether T preserves or reverses

orientation. Changing the sign of one column changes where T takes the triangle〈
1/0 ,

0/1 ,
1/1

〉
from

〈
a/c ,

b/d ,
a+b/c+d

〉
to

〈
a/c ,

b/d ,
a ---b/c ---d

〉
. These two triangles

are different as we saw earlier, so they lie on opposite sides of the edge
〈
a/c ,

b/d
〉

and hence have opposite orientations. Thus the validity of the proposition for the

transformation T is unaffected by changing one column of
(
a
c
b
d

)
to its negative.

Applying this fact, we can arrange that c ≥ 0 and d ≥ 0 by multiplying columns

by −1 if necessary. If c = 0 the condition ad− bc = ±1 implies a = ±1 and d = 1

(since d ≥ 0), and then by multiplying the first column by −1 if necessary we can

arrange that a = 1 so the matrix is
(

1
0
b
1

)
. This matrix has determinant +1 and the

associated transformation sends the triangle
〈

1/0 ,
0/1 ,

1/1

〉
to
〈

1/0 ,
b/1 ,

b+1/1

〉
so it pre-

serves orientation. Similarly, if d = 0 we can assume the matrix is
(
a
1

1
0

)
with deter-

minant −1 and the associated transformation takes
〈

1/0 ,
0/1 ,

1/1

〉
to
〈
a/1 ,

1/0 ,
a+1/1

〉

so it reverses orientation.

Thus we have reduced to the case that c > 0 and d > 0. The transformation

T takes the triangle
〈

1/0 ,
0/1 ,

1/1

〉
to

〈
a/c ,

b/d ,
a+b/c+d

〉
whose third vertex is the

mediant of the first two. The edge
〈
a/c ,

b/d
〉

lies in either the upper or lower half of

the circular Farey diagram, and in either case the orientation of
〈
a/c ,b/d ,a+b/c+d

〉

given by the ordering of its vertices is the same as the orientation of
〈

1/0 ,
0/1 ,

1/1

〉

exactly when a/c > b/d . Since c > 0 and d > 0 the inequality a/c > b/d is equivalent

to ad− bc > 0. Thus T is orientation-preserving exactly when ad− bc = +1. ⊔⊓

In what follows, when we say that a transformation T in LF(Z) takes a triangle〈
p/q , r/s , t/u

〉
to a triangle

〈
p′/q′, r

′
/s′, t

′
/u′

〉
we will mean that T

(
p/q

)
= p

′
/q′, T

(
r/s
)
=

r ′/s ′, and T
(
t/u

)
= t

′
/u′ so T preserves the order of the vertices. Similarly, when we say



Section 3.1 — Linear Fractional Transformations 75

that T takes an edge
〈
p/q ,

r/s
〉

to an edge
〈
p′/q′,

r ′/s′
〉

we will mean that T
(
p/q

)
= p

′
/q′

and T
(
r/s
)
= r

′
/s′.

Proposition 3.3. (a) For any two triangles
〈
p/q , r/s , t/u

〉
and

〈
p′/q′, r

′
/s′, t

′
/u′

〉
in the

Farey diagram there is a unique transformation in LF(Z) taking
〈
p/q ,

r/s ,
t/u

〉
to〈

p′/q′,
r ′/s′,

t′/u′
〉
.

(b) For any two edges
〈
p/q ,

r/s
〉

and
〈
p′/q′,

r ′/s′
〉

there is a unique orientation-

preserving transformation in LF(Z) taking
〈
p/q ,

r/s
〉

to
〈
p′/q′,

r ′/s′
〉
.

Proof: For a given pair of edges
〈
p/q , r/s

〉
and

〈
p′/q′, r

′
/s′
〉

let T1 be the transforma-

tion with matrix
(
p
q
r
s

)
and let T2 be the transformation with matrix

(
p′

q′
r ′

s′

)
, so T1

takes
〈

1/0 ,
0/1

〉
to
〈
p/q ,

r/s
〉

and T2 takes
〈

1/0 ,
0/1

〉
to
〈
p′/q′,

r ′/s′
〉

. The composition

T = T2T
−1
1 then takes

〈
p/q ,

r/s
〉

to
〈
p′/q′,

r ′/s′
〉

. Hence T takes
〈
p/q ,

r/s ,
t/u

〉
to either〈

p′/q′,
r ′/s′,

t′/u′
〉

or the other triangle
〈
p′/q′,

r ′/s′,
t′′/u′′

〉
having

〈
p′/q′,

r ′/s′
〉

as an edge.

For one of these two possibilities T is orientation-preserving and for the other T is

orientation-reversing. We can change whether T preserves or reverses orientation by

changing the signs in one column of the matrix of T1 or T2 . Thus we can arrange that

T takes
〈
p/q ,

r/s ,
t/u

〉
to
〈
p′/q′,

r ′/s′,
t′/u′

〉
.

A transformation in LF(Z) taking
〈
p/q , r/s , t/u

〉
to

〈
p′/q′, r

′
/s′, t

′
/u′

〉
is unique

since it must take the three triangles sharing an edge with
〈
p/q ,

r/s ,
t/u

〉
to the three

triangles sharing the corresponding edges with
〈
p′/q′,

r ′/s′,
t′/u′

〉
, and then this deter-

mines where the next layer of six triangles sharing an edge with the three triangles

adjacent to
〈
p/q ,

r/s ,
t/u

〉
are sent, and so on until all triangles are accounted for.

For part (b) we have found a product T2T
−1
1 taking

〈
p/q ,

r/s
〉

to
〈
p′/q′,

r ′/s′
〉

, and if

this product is orientation-reversing, we can make it orientation-preserving by chang-

ing the sign of one column of the matrix of T1 or T2 . An orientation-preserving

transformation taking
〈
p/q ,

r/s
〉

to
〈
p′/q′,

r ′/s′
〉

is unique since if it preserves orienta-

tions this determines where it sends the two triangles adjacent to
〈
p/q , r/s

〉
and then

uniqueness follows from the uniqueness in part (a). ⊔⊓

Reflections, Rotations, and Pivoting Transformations

In the remainder of this section we will describe five fairly simple types of sym-

metries of the Farey diagram given by elements of LF(Z) . Two other slightly more

complicated types of symmetries will be described in the next section where they arise

in connection with continued fractions.

(1) The diagram can be reflected across any of its edges, leaving this edge fixed and in-

terchanging the two triangles adjacent to it. This then determines where all the other

triangles are sent. The simplest case is reflection across
〈

1/0 ,
0/1

〉
, the transformation

T
(
x/y

)
= ---x/y . To obtain a reflection across an arbitrary edge

〈
a/b ,

c/d
〉

, let S be

the transformation with matrix
(
a
b
c
d

)
. The composition STS−1 sends

〈
a/b , c/d

〉
first

to
〈

1/0 ,
0/1

〉
by S−1 , then T leaves this edge fixed, then S sends it back to

〈
a/b ,

c/d
〉

.
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Thus STS−1 leaves
〈
a/b ,

c/d
〉

fixed so STS−1 is either the identity transformation or

reflection across
〈
a/b ,

c/d
〉

. The transformations S and S−1 either both preserve ori-

entation or both reverse orientation, while T reverses orientation, so STS−1 reverses

orientation and is therefore reflection across the edge
〈
a/b ,

c/d
〉

. Its matrix can easily

be computed:

(
a c
b d

)(
−1 0

0 1

)(
d −c
−b a

)
=

(
−a c
−b d

)(
d −c
−b a

)
=

(
−ad− bc 2ac
−2bd ad+ bc

)

For example, the matrix giving reflection across
〈

1/1 ,
1/2

〉
is
(

---3
---4

2
3

)
. This can be

checked by noting that its determinant is −1 and it fixes 1/1 and 1/2 .

(2) The diagram can also be reflected across an

arc perpendicular to any of its edges, any of the

dotted arcs in the figure at the right. Each of the

two triangles this arc crosses is then sent to it-

self by a reflection that interchanges the two

vertices at the ends of the given edge and fixes

the two vertices at the endpoints of the dotted

arc crossing the edge. A special case is reflec-

tion across the vertical axis of the circular Farey

diagram, T
(
x/y

)
= y/x . Reflection across an

arc perpendicular to an edge
〈
a/b ,

c/d
〉

can be

realized as STS−1 with S having matrix
(
a
b
c
d

)
as before since STS−1 then inter-

changes a/b and c/d and is orientation-reversing. It is not hard to compute the matrix

of STS−1 and we leave this as an exercise.

(3) The diagram can be rotated 180 degrees about the midpoint of any edge, inter-

changing the two adjacent triangles. This rotation is the composition of the reflection

across this edge and the reflection across the arc perpendicular to the edge. Rotation

about the midpoint of
〈

1/0 ,
0/1

〉
is T

(
x/y

)
= ---y/x so rotation about the midpoint of

an edge
〈
a/b ,

c/d
〉

is STS−1 with the same S as before since STS−1 interchanges the

endpoints of
〈
a/b ,

c/d
〉

and is orientation-preserving.

(4) The diagram can be rotated by 120 degrees in either direction about the center-

point of any triangle, the point of intersection of the three dotted arcs that cross the

triangle in the figure above. In particular this rotates the triangle itself about its cen-

terpoint. A simple case is the rotation of the triangle
〈

1/0 ,
0/1 ,

1/1

〉
by 120 degrees

counterclockwise. This is given by the transformation T
(
x/y

)
= y/y ---x with matrix(

0
---1

1
1

)
which has determinant 1 and takes the edge

〈
1/0 ,

0/1

〉
to

〈
0/1 ,

1/1

〉
. For ro-

tation of an arbitrary triangle
〈
a/b ,

c/d ,
e/f

〉
we may assume its vertices have been

ordered to give it a counterclockwise orientation, so the transformation S with ma-

trix
(
a
b
c
d

)
takes

〈
1/0 ,

0/1 ,
1/1

〉
to this triangle. Then STS−1 rotates

〈
a/b , c/d , e/f

〉
by
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120 degrees counterclockwise since it is orientation-preserving and takes
〈
a/b ,

c/d
〉

to
〈
c/d ,

e/f
〉

. Again the matrix for STS−1 could easily be computed.

(5) The diagram can be pivoted about any vertex v . If the vertices joined to v by

edges are labeled vi for all integers i , with vi joined to vi+1 by an edge, then there

is a pivoting transformation T sending each triangle
〈
v,vi , vi+1

〉
to the next trian-

gle
〈
v,vi+1, vi+2

〉
. The powers Tn are then also pivoting transformations sending〈

v,vi , vi+1

〉
to

〈
v,vi+n , vi+n+1

〉
where n can be any nonzero integer, positive or

negative. (When n = 0 one just has the identity transformation sending each vertex

to itself.) For example, horizontal translation of the upper halfplane Farey diagram by

any number of units to the right or left amounts to pivoting about the vertex 1/0 . The

transformation Tn pivoting n steps counterclockwise about 1/0 has matrix
(

1
0
n
1

)
.

For an arbitrary vertex a/b , if S is an orientation-preserving transformation taking

1/0 to a/b then S takes the infinite fan of triangles containing 1/0 to the infinite fan

containing a/b , so STnS
−1 will pivot n steps counterclockwise about a/b . The dif-

ferent choices for S have matrices
(
a
b
c
d

)
with ad− bc = 1, so STnS

−1 has matrix

(
a c

b d

)(
1 n

0 1

)(
d −c
−b a

)
=

(
a na+ c
b nb + d

)(
d −c
−b a

)
=

(
1−nab na2

−nb2 1+nab

)

where for the last equality we use the fact that ad−bc = 1. Note that c and d do not

appear in the final answer, reflecting the fact that the pivoting transformation only

depends on the pivot vertex a/b and n . For example when a/b =
0/1 we get the matrix(

1
---n

0
1

)
for pivoting n steps counterclockwise about 0/1 .

Exercises

1. Find a formula for the linear fractional transformation that rotates the triangle〈
0/1 ,

1/2 ,
1/1

〉
to
〈

1/1 ,
0/1 ,

1/2

〉
.

2. Find the two orientation-reversing linear fractional transformations that take the

edge
〈

1/2 ,
1/3

〉
to itself, possibly interchanging its two ends.

3. Find a formula for the linear fractional transformation that reflects the upper half-

plane version of the Farey diagram across the vertical line x = 3/2 .

4. Compute the matrix of the transformation that reflects the Farey diagram across

an arc perpendicular to an edge
〈
a/b ,

c/d
〉

. Do the same for the 180 degree rota-

tion about the centerpoint of this edge, and for the 120 degree rotation of a triangle〈
a/b , c/d , e/f

〉
.

5. Express the transformation T
(
x/y

)
= ---y/x in four different ways as a composition

of three pivoting transformations about 1/0 or 0/1 .

6. (a) Find all the transformations in LF(Z) that fix the vertex 1/0 , that is, take this

vertex to itself.
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(b) Find all the transformations in LF(Z) that fix 0/1 .

(c) Determine which of the transformations in (a) and (b) are reflections and describe

these reflections.

(d) Show that if the transformation T fixes x/y then STS−1 fixes S
(
x/y

)
.

(e) Find all the transformations in LF(Z) that fix 1/1 . Check that T
(
x/y

)
= y/x is

among the transformations you have found.

3.2 Translations and Glide Reflections

Linear fractional transformations can be used to compute the values of periodic

or eventually periodic infinite continued fractions, and to see that these values are al-

ways quadratic irrational numbers. To illustrate this, consider the periodic continued

fraction 1
2 +

1
3 +

1
1 +

1
4 . The associated periodic strip in the Farey diagram can

be extended to give an infinite strip that is periodic in both directions:

We would like to find a linear fractional transformation that gives the rightward trans-

lation of this strip that exhibits the periodicity. The only possibility is the transfor-

mation with matrix
(

4
9

19
43

)
since this sends the edge

〈
1/0 ,

0/1

〉
to

〈
4/9 ,

19/43

〉
and is

orientation-preserving since the matrix has determinant 1 in view of the inequality

4/9 >
19/43 . This inequality can be verified either by a calculation or by visualizing

how the strip lies inside the circular Farey diagram, with the part of the strip to the

right of the edge
〈

1/0 ,
0/1

〉
lying in the upper half of the diagram.

To see that the transformation T with matrix
(

4
9

19
43

)
really does translate the

strip along itself we can argue as follows. Let us label the ten triangles between the

edges
〈

1/0 ,
0/1

〉
and

〈
4/9 ,

19/43

〉
as t1, t2, · · · , t10 from left to right, and then continue

this labeling with the subsequent triangles t11, t12, · · · to the right. We can build the

part of the strip to the right of the edge
〈

1/0 ,
0/1

〉
by starting with this edge and first

adding the vertex v1 just to the right of 1/0 to form the triangle t1 , then adding

the vertex v2 to form t2 , and so on repeatedly, adding successive vertices vi on

one border of the strip or the other to form the successive triangles ti . Since T is

orientation-preserving and takes
〈

1/0 ,
0/1

〉
to
〈

4/9 ,
19/43

〉
it must take the triangle t1

to the triangle t11 just to the right of the edge
〈

4/9 ,
19/43

〉
, so T takes v1 to v11 . The

triangle t2 must then be taken to t12 so v2 is taken to v12 . In the same way we have

T(ti) = ti+10 and T(vi) = vi+10 for all i ≥ 1 so T translates the right half of the
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strip along itself. For the left half of the strip we can apply similar reasoning to T−1 .

Thus T−1 sends t10 to the triangle just to the left of
〈

1/0 ,
0/1

〉
, then it sends t9 to the

second triangle to the left of
〈

1/0 ,
0/1

〉
, and so on. We conclude from all this that T is

indeed a translation of the strip along itself.

The fractions labeling the vertices along the zigzag path in the strip moving to-

ward the right are the convergents to 1
2 +

1
3 +

1
1 +

1
4 . Call these convergents

z1, z2, · · · and their limit z . When we apply the translation T we are taking each

convergent to a later convergent in the sequence, so both the sequence {zn} and the

sequence {T(zn)} converge to z . On the other hand the sequence {T(zn)} converges

to T(z) since this is just saying that 4zn +19/9zn +43 converges to 4z+19/9z+43 as zn

converges to z . Thus we have T(z) = z .

In summary, what we have just argued is that the value z of the periodic continued

fraction 1
2 +

1
3 +

1
1 +

1
4 satisfies the equation T(z) = z , which is saying that

z is a fixed point of the transformation T . Since T(z) = 4z+19/9z+43 the equation

T(z) = z becomes 4z+19/9z+43 = z which simplifies to 9z2+39z−19 = 0. The roots

of this equation are given by the quadratic formula:

z =
−39±

√
392 + 4·9·19

18
=
−39± 3

√
132 + 4·19

18
=
−13±

√
245

6
=
−13± 7

√
5

6

The positive root is the one that the right half of the infinite strip converges to, so we

have determined the value of the continued fraction:

1
2+

1
3+

1
1+

1
4 =

−13+ 7
√

5

6

The other root (−13− 7
√

5)/6 has an interpretation in terms of the diagram as well:

It is the limit of the numbers labeling the vertices of the zigzag path moving off to the

left rather than to the right. This follows by the same sort of argument as above.

A periodic continued fraction with period of odd length has an associated infinite

strip with a different type of symmetry. As an example, consider 1
1 +

1
2 +

1
3 .

Here the associated strip is:

This strip is taken to itself by a transformation that takes
〈

1/0 ,
0/1

〉
to

〈
2/3 ,

7/10

〉
by

combining a translation along the strip with reflection across the horizontal axis of

the strip. A transformation of this type is called a glide reflection. The only linear

fractional transformation that could realize this glide reflection is the transformation

with matrix
(

2
3

7
10

)
since this takes

〈
1/0 ,

0/1

〉
to
〈

2/3 ,
7/10

〉
and is orientation-reversing

as its determinant is −1. To check that this transformation gives a glide reflection

of the strip one can argue as in the preceding example that each successive triangle
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to the right or left of
〈

1/0 ,
0/1

〉
is moved along the strip in the same way that the

glide reflection moves it, keeping in mind that orientations are now being reversed

by both the glide reflection and the linear fractional transformation. This reasoning

shows more generally that the translation or glide reflection symmetry of any periodic

infinite strip in the Farey diagram can be realized by a linear fractional transformation.

Just as in the preceding example the value of the continued fraction can be deter-

mined by solving the equation T(z) = z where T is now the glide reflection. Thus we

have 2z+7/3z+10 = z which simplifies to 3z2 + 8z − 7 = 0 with roots (−4 ±
√

37)/3.

The positive root gives the value of the continued fraction:

1
1+

1
2+

1
3 =

−4+
√

37

3

Continued fractions that are only eventually periodic can be treated in a similar

fashion. For example, consider 1
2+

1
2+

1
1 +

1
2 +

1
3 . The corresponding infinite

strip is:

In this case if we discard the triangles corresponding to the initial nonperiodic part of

the continued fraction, 1
2+

1
2 , and then extend the remaining periodic part in both

directions, we obtain a periodic strip that is carried to itself by the glide reflection T

taking
〈

1/2 ,
2/5

〉
to
〈

8/19 ,
27/64

〉
:

We can compute T as a composition of two transformations realizing the two-step

combination
〈

1/2 ,
2/5

〉
→

〈
1/0 ,

0/1

〉
→

〈
8/19 ,

27/64

〉
. Thus we consider the product

(
8 27

19 64

)(
1 2

2 5

)−1

=

(
8 27

19 64

)(
5 −2

−2 1

)
=

(
−14 11

−33 26

)

so we have T(z) = ---14z+11/---33z+26 . This transformation has determinant −1 so it

is the glide reflection we want. Now we solve T(z) = z , or ---14z+11/---33z+26 = z ,

which reduces to 33z2 − 40z + 11 = 0 with roots z = (20±
√

37)/33. Both roots are

positive, and we want the smaller one, (20 −
√

37)/33, because along the top edge

of the periodic strip the numbers decrease as we move to the right approaching the

smaller root and they increase as we move to the left approaching the larger root.

Thus we have:

1
2+

1
2+

1
1+

1
2+

1
3 =

20−
√

37

33
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Notice that
√

37 occurs in both this example and the preceding one where we

computed the value of 1
1 +

1
2 +

1
3 . The explanation for this is that to get from

1
1 +

1
2 +

1
3 to 1

2+
1

2+
1

1 +
1

2 +
1

3 one adds 2 and inverts, then adds 2 and

inverts again, and each of these operations of adding an integer or taking the recip-

rocal takes place within the set Q(
√

37) of all numbers of the form a+ b
√

37 with a

and b rational. More generally, this argument shows that any eventually periodic con-

tinued fraction whose periodic part is 1
1 +

1
2 +

1
3 has as its value some number

in Q(
√

37) . However, not all irrational numbers in Q(
√

37) have eventually periodic

continued fractions with periodic part 1
1 +

1
2 +

1
3 . For example, the continued

fraction for
√

37 itself is 6+1
12 , with a different periodic part. (This can be checked

by computing the value of this continued fraction by the method above.)

The procedure we have used in these examples works in general for any irrational

number z whose continued fraction is eventually periodic. From the periodic part of

the continued fraction one constructs a periodic infinite strip in the Farey diagram,

where the periodicity is given by a transformation T(z) = az+b/cz+d in LF(Z) , with

T either a translation or a glide reflection of the strip. As we argued in the first

example, the number z satisfies the equation T(z) = z . This becomes the quadratic

equation az + b = cz2 + dz with integer coefficients, or in more standard form,

cz2+ (d−a)z−b = 0. We would like to apply the quadratic formula to find the roots

of this equation, but in order to do this the coefficient c must be nonzero. Suppose on

the contrary that c was zero. Then the determinant condition ad − bc = ±1 would

force a to be ±1, and then from the first column of the matrix
(
a
c
b
d

)
=
(
±1
0
b
d

)

we see that T would take the vertex ±1/0 of the Farey diagram to itself. However a

translation or glide reflection symmetry of a periodic infinite strip cannot take any

vertex to itself since no vertex along the strip is taken to itself, and the other vertices

lie in the complement of the strip which consists of disjoint pieces, each containing

all the vertices lying on one side of an edge in the border of the strip, and a translation

or glide reflection of the strip takes each of these pieces to a different piece.

Knowing that c is nonzero, we can apply the quadratic formula to deduce that

the roots of the equation cz2 + (d−a)z− b = 0 have the form A+ B
√
n with A and

B rational numbers and n an integer. We know that the real number z defined by

the given continued fraction is a root of the equation so n cannot be negative, and it

cannot be a square since z is irrational.

Thus we have an argument that proves one half of Lagrange’s Theorem:

Proposition 3.4. A real number whose continued fraction is periodic or eventually

periodic is a quadratic irrational.

The converse statement that the continued fraction for every quadratic irrational

is periodic or eventually periodic will be proved in Proposition 4.1 and Theorem 5.2.
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As we saw above, the equation T(z) = z for a fixed point of a transforma-

tion T(z) = az+b/cz+d in LF(Z) is cz2 + (d − a)z − b = 0. This has roots z =
a−d±

√
(d−a)2+4bc
2c . If we let ad − bc = ε = ±1 then bc = ad − ε and the roots can

be rewritten as z =
a−d±

√
(a+d)2−4ε
2c . The discriminant δ = (a + d)2 − 4ε determines

the nature of the roots. If δ > 0 there are two real roots, the situation we have been

considering for translations and glide reflections. If δ = 0 the two roots coalesce to

a single root, the rational number a ---d/2c . And if δ < 0 there are no real roots, only

complex roots. Thus the numbers a+d and ε determine how many fixed points there

are.

The number a+d is called the trace of the matrix
(
a
c
b
d

)
. A matrix

(
a
c
b
d

)
and its

negative −
(
a
c
b
d

)
determine the same transformation in LF(Z) , and changing a matrix

to its negative changes the sign of the trace, so only the absolute value of the trace

is well defined for elements of LF(Z) . We will usually assume the sign of a matrix is

chosen to make the trace nonnegative.

Proposition 3.5. The various types of transformations in LF(Z) are distinguished

by their determinants and traces according to the following table :

determinant trace

180 degree rotation +1 0

120 degree rotation +1 1

pivot +1 2

translation +1 > 2

reflection −1 0

glide reflection −1 > 0

The identity transformation
(

1
0

0
1

)
of trace 2 fits into this scheme by regarding

it as a pivoting transformation
(

1
0
n
1

)
or
(

1
n

0
1

)
with n = 0.

Proof: A general fact about the trace is that trace(AB) = trace(BA) for matrices A

and B . This can be checked by a direct calculation which we leave to the reader.

A consequence is that trace(ABA−1) = trace(B) since the traces of (AB)A−1 and

A−1(AB) are equal.

We can apply this to get four of the six rows in the table as follows. As we saw

in the previous section, every 180 degree rotation can be expressed as STS−1 for

T
(
x/y

)
= ---y/x and S some element of LF(Z) . The matrix of T is

(
0
1

---1
0

)
with trace

0 so this is also the trace of STS−1 . This gives the first row of the table. For the second

row we argue in the same way using T
(
x/y

)
= y/y ---x with matrix

(
0

---1
1
1

)
of trace 1.

This is a 120 degree rotation counterclockwise, and for the 120 degree rotation in

the opposite direction we use the matrix
(

0
---1

1
1

)−1
=
(

1
1

---1
0

)
which has the same trace.

For pivoting transformations we use a matrix
(

1
0
n
1

)
of trace 2. For the two kinds of

reflections we use
(

---1
0

0
1

)
and

(
0
1

1
0

)
of trace 0.
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Translations have two distinct fixed points so the discriminant (a+d)2−4 of the

quadratic equation for the fixed points must be positive, which means |a + d| > 2.

Since we are taking traces to be nonnegative this condition becomes a + d > 2. For

glide reflections the discriminant of the fixed point equation is (a + d)2 + 4 which

is always positive. However, a + d cannot be 0, otherwise the discriminant would

be 4, a square, so the fixed points would be rational, but the fixed points of a glide

reflection are irrational. Thus a+ d > 0 for a glide reflection. ⊔⊓

All combinations of trace and determinant can be realized using the simple ma-

trices
(

0
1

---1
n

)
and

(
0
1

1
n

)
of trace n and determinant ±1. An exercise at the end of

this section is to determine exactly what these transformations of the Farey diagram

look like.

Proposition 3.6. Every symmetry of the Farey diagram is of one of the six types

listed in the previous table.

From this it follows that one can determine the type of any given transformation

by computing its determinant and trace. This proposition will not be needed later in

the book, but the proof is not very difficult so we give it here as a small digression.

Proof: Consider a symmetry T that is not the identity. If T takes a triangle to itself,

T must be rotation or reflection of this triangle and hence of the whole Farey diagram.

Similarly, if T takes an edge to itself then T must be a rotation or reflection of this

edge and hence of the whole diagram. Likewise, if T takes a vertex to itself then T

must be a pivoting transformation about this vertex or a reflection fixing this vertex.

If T takes no triangle, edge, or vertex to itself, we will show that T takes some

infinite strip to itself by a translation or a glide reflection. As motivation, observe

first that if T is in fact a translation or glide reflection along an infinite strip then the

triangles in this strip can be labeled sequentially ti for integers i in such a way that

there is a positive number n with T(ti) = ti+n for all i , and to get from an interior

point of ti to an interior point of ti+n one crosses n edges. Let us define the distance

between two triangles in the diagram to be the minimum number of edges that must

be crossed to get from an interior point of one triangle to an interior point of the other

triangle. Thus the distance from ti to tj is |i − j| . For any triangle t that is not in

the strip, the distance from t to T(t) is greater than n since it is n+ 2k where k is

the distance from t to the closest triangle in the strip. The strip therefore consists of

the triangles that are moved the minimum distance by T .

Now let T be a symmetry taking no triangle, edge, or vertex to itself. The distance

from each triangle t to T(t) is then greater than zero. Choose a triangle t0 such that

the distance from t0 to T(t0) is the minimum distance that any triangle is moved

by T . (These distances are positive integers so there must be a smallest one.) Let n

be the distance from t0 to T(t0) , so n ≥ 1, and let t0, t1, · · · , tn be the sequence of

triangles in the finite strip joining t0 to T(t0) = tn . The triangle t1 has an edge in
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common with t0 so T(t1) has an edge in common with tn . The triangle T(t1) cannot

be tn−1 since if n > 1 then the distance between t1 and tn−1 is less than n , while

if n = 1 and T(t1) = t0 then T would take the edge between t0 and t1 to the edge

between T(t0) and T(t1) , which is the same edge, contrary to the assumption that T

takes no edge to itself. Thus T(t1) is not tn−1 in both cases so T(t1) must be one

of the other two triangles adjacent to tn . Let tn+1 be this triangle, so T(t1) = tn+1 .

The distance from t1 to tn+1 is at most n since t1, t2, · · · , tn+1 is a chain joining t1

to tn+1 . Hence the distance from t1 to tn+1 must equal n since n is the minimum

distance that any triangle is moved.

Now we repeat this argument with the chain t0, · · · , tn replaced by t1, · · · , tn+1

to find the next triangle tn+2 . Further repetitions give triangles ti for all integers

i ≥ 0. To extend the sequence backwards by triangles t−1, t−2, · · · we apply the same

procedure to T−1 , starting with the reversed chain tn, tn−1, · · · , t0 , using the fact

that T−1 also takes no triangle, edge, or vertex to itself if T does not. Thus we obtain

triangles ti for all integers i , with T(ti) = ti+n for all i . Each ti shares an edge

with its neighbors ti−1 and ti+1 but is not equal to either of them, nor are ti−1 and

ti+1 equal. In fact no two of the triangles ti are equal, otherwise there would be a

finite sequence of them returning to the same triangle, but this is impossible since

each edge in the Farey diagram divides the diagram into two pieces that intersect only

along that edge.

Having found an infinite strip that is taken to itself by T with T(ti) = ti+n for

all i , it follows that the strip must be periodic with T either a translation or glide

reflection of this strip. ⊔⊓

Factoring Translations and Glide Reflections

Let us show how translations and glide reflections can be realized as products

of simpler transformations. Consider a transformation in LF(Z) defined by a matrix(
a
c
b
d

)
whose entries a,b, c, d are all positive. There is then a strip in the upper half of

the circular Farey diagram having the edges
〈

1/0 ,
0/1

〉
and

〈
a/c ,

b/d
〉

at its two ends.

This strip must contain at least two fans, otherwise one of the fractions a/c or b/d

would be 1/0 or 0/1 , contrary to the assumption that all four entries of the matrix are

positive. One possible configuration for the strip is the following:

Here the first fan in the strip opens upward and the last fan opens downward, but
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there are three other possibilities depending on whether the first and last fans open

upward or downward. If a/c >
b/d as in the figure, then ad− bc = +1 so the trans-

formation with matrix
(
a
c
b
d

)
is orientation-preserving. This transformation takes the

edge
〈

1/0 ,
0/1

〉
to
〈
a/c ,

b/d
〉

so it must in fact be a translation of the infinite periodic

strip obtained by extending the finite strip from
〈

1/0 ,
0/1

〉
to

〈
a/c ,b/d

〉
periodically

in both directions.

We can move the edge
〈

1/0 ,
0/1

〉
to

〈
a/c ,

b/d
〉

by a sequence of pivoting trans-

formations, one for each fan. One first pivots the edge
〈

1/0 ,
0/1

〉
across a fan of a1

triangles to the second edge of the zigzag path, then this edge is pivoted across the

a2 triangles in the second fan to the next edge of the zigzag path, and so on until we

reach the right edge
〈
a/c ,

b/d
〉

. These pivotings are alternately in the clockwise and

counterclockwise direction, and the simplest pivotings of these two types are given

by matrices
(

1
n

0
1

)
and

(
1
0
n
1

)
with n > 0, pivoting n steps clockwise about 0/1 or

counterclockwise about 1/0 in the two cases. For the configuration of fans shown in

the figure, let us consider the following product:
(

1 0

a1 1

)(
1 a2

0 1

)(
1 0

a3 1

)(
1 a4

0 1

)
· · ·

(
1 0

ak−1 1

)(
1 ak
0 1

)

These matrices determine pivoting transformations that alternate between clockwise

and counterclockwise as they should, with the number of steps being a1, a2, · · · , ak

as we want. However there seem to be two things wrong with this product. First, the

order of the terms appears to be backwards since when we compose transformations

we proceed from right to left, so this product would first pivot ak steps, then ak−1

steps, and so on, whereas we want to move the edge
〈

1/0 ,
0/1

〉
across the strip by

first pivoting a1 steps, then a2 steps, and so on. The other problem is that each

pivoting transformation in the product is pivoting about either 0/1 or 1/0 whereas the

pivotings that move the
〈

1/0 ,
0/1

〉
edge across the strip are pivoting about a sequence

of different vertices.

Surprisingly enough, these two problems cancel each other out, and the product

displayed above is actually correct and does equal
(
a
c
b
d

)
. To see why, suppose we

superimpose a copy of the strip on top of the circular Farey diagram, but with the right

edge
〈
a/c ,

b/d
〉

lying on top of the edge
〈

1/0 ,
0/1

〉
and each triangle in the rest of the

strip lying exactly on top of a corresponding triangle in the lower half of the diagram.

If we apply the last matrix of the product to this repositioned strip, this pivots the

strip so that the next-to-last edge of the zigzag path lies on top of
〈

1/0 ,
0/1

〉
. Then

applying the next-to-last matrix in the product to the newly positioned strip pivots it

so that the third-to-last edge of the zigzag path lies on top of
〈

1/0 ,
0/1

〉
. Continuing

in this way, we end up with the left edge of the strip lying on top of
〈

1/0 ,
0/1

〉
. This

means that the product of all the matrices takes the repositioned strip back to its

original position, so the product is the translation of the infinite periodic strip by one

period and hence
〈

1/0 ,
0/1

〉
is taken to

〈
a/c ,

b/d
〉

, as we wanted.
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The other three possibilities for whether the first and last fans open upward or

downward are treated in a similar fashion. For each fan opening upward one uses a

matrix
(

1
ai

0
1

)
giving a pivoting transformation about 0/1 and for each fan opening

downward one uses a matrix
(

1
0
ai
1

)
pivoting about 1/0 .

As an example consider the matrix
(

9
29

4
13

)
which has determinant 1 and corre-

sponds to the edge
〈

9/29 ,
4/13

〉
with 9/29 >

4/13 . The corresponding strip in the Farey

diagram is obtained by computing the continued fraction 9/29 =
1

3+
1

4+
1

2 which

gives the first figure below:

From this we can read off that
(

9
29

4
13

)
=
(

1
3

0
1

)(
1
0

4
1

)(
1
2

0
1

)
. Similarly, for

(
13
4

29
9

)
we

have 29/9 = 3 + 1
4 +

1
2 as in the second figure so

(
13
4

29
9

)
=
(

1
0

3
1

)(
1
4

0
1

)(
1
0

2
1

)
. In

both these cases the first and last fans in the strip open in the same direction, so if we

extend the strip to an infinite periodic strip, this produces adjacent fans with three

and two triangles opening in the same direction, and each of these pairs of fans could

be combined to give a single fan with five triangles.

Glide reflection symmetries of infinite periodic strips cannot be expressed as

products of pivoting transformations since pivotings are orientation-preserving, but

glide reflections can be expressed as products of simple glide reflections that, like

pivotings, move an edge across a single fan but are orientation-reversing. An example

is the transformation with matrix
(

0
1

1
n

)
for an integer n > 0. This transformation

takes the edge
〈

1/0 ,
0/1

〉
to
〈

0/1 ,
1/n

〉
and is orientation-reversing, so it is a glide reflec-

tion symmetry of an infinite strip in which each fan has n triangles. A transformation

with matrix
(
n
1

1
0

)
has similar behavior, taking

〈
1/0 ,

0/1

〉
to
〈
n/1 ,

1/0

〉
.

For example, the matrix
(

4
13

9
29

)
of determinant −1 gives a glide reflection tak-

ing the left edge of the first strip in the preceding figure to the right edge. This glide

reflection is a symmetry of the infinite strip obtained by first applying the glide reflec-

tion to the given strip to get a strip twice as long, then taking the periodic extension

of this doubled strip in both directions. The corresponding factorization of
(

4
13

9
29

)

is
(

4
13

9
29

)
=
(

0
1

1
3

)(
0
1

1
4

)(
0
1

1
2

)
, as one can check by the method we used in the case of

translations of a periodic strip, placing a copy of the strip on top of the Farey diagram

with the right edge of the strip on top of the edge
〈

1/0 ,
0/1

〉
, but with the copy flipped

over since we are now dealing with a glide reflection.

More generally, for any matrix
(
a
c
b
d

)
of positive integers with determinant ±1

there is an associated strip from the edge
〈

1/0 ,
0/1

〉
to

〈
a/c ,

b/d
〉

, and we can ex-

press this matrix as a product of the basic matrices
(

1
0
n
1

)
,
(

1
n

0
1

)
,
(

0
1

1
n

)
, or

(
n
1

1
0

)
,
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by putting arrows on the edges of the zigzag path in the strip to indicate orienta-

tions of the edges, with the left edge oriented from 1/0 to 0/1 and the right edge

oriented from a/c to b/d and the intermediate edges oriented arbitrarily. These

orientations, together with the directions that the fans open, determine the factors(
1
0
n
1

)
,
(

1
n

0
1

)
,
(

0
1

1
n

)
, or

(
n
1

1
0

)
in the product representing

(
a
c
b
d

)
.

As an example, in the proof of Theorem 2.1 we made use of the following product:
(

1 a0

0 1

)(
0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)

The corresponding strip is

with the last fan on the right opening either downward as shown or possibly upward,

depending on whether n is even or odd. The first fan has both its left and right edges

oriented downward so the first matrix in the product gives the corresponding pivoting

transformation, but all the other fans have both edges oriented to the right so they

correspond to glide reflections, the other matrices in the product. If a0 = 0 the first

matrix is the identity matrix
(

1
0

0
1

)
so it can be omitted along with the first fan.

Exercises

1. Compute the value of each of the following continued fractions by first drawing the

associated infinite strip of triangles, then finding a linear fractional transformation T

in LF(Z) that gives the periodicity in the strip, then solving T(z) = z .

(a) 1
2 +

1
5 (b) 1

2 +
1

1 +
1

1

(c) 1
1 +

1
1 +

1
1 +

1
1 +

1
1 +

1
2 (d) 2+ 1

1 +
1

1 +
1

4

(e) 2+ 1
1 +

1
1 +

1
1 +

1
4 (f) 1

1 +
1

1 +
1

2 +
1

3

2. Find an infinite periodic strip of triangles in the Farey diagram such that the trans-

formation
(

0
1

1
2

)
is a glide reflection along this strip and

(
0
1

1
2

)(
0
1

1
2

)
=
(

1
2

2
5

)
is a

translation along the strip.

3. In an example in this section we computed the value of the continued fraction

1
1 +

1
2 +

1
3 to be (−4+

√
37)/3 using the infinite periodic strip of triangles associ-

ated to this continued fraction. Use the same periodic strip to compute the continued

fraction for (−4−
√

37)/3 at the opposite end of the strip.

4. Find all the elements of LF(Z) whose matrix has at least one entry equal to 0,

determine their type, and determine how they act on the Farey diagram.
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5. Express the following transformations as compositions of pivot transformations:

(a) T
(
x/y

)
= 13x+3y/69x+16y (b) T

(
x/y

)
= 10x+33y/33x+109y

6. Show that every orientation-preserving element of LF(Z) can be expressed as a

product of pivot transformations
(

1
0
n
1

)
and

(
1
n

0
0

)
.
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Finding Pythagorean triples is answering the question of when the sum of two

squares is equal to a square. This leads naturally to the broader question of exactly

which numbers are sums of two squares. Thus one asks, when does an equation

x2+y2 = n have integer solutions, and how can one find these solutions? The brute

force approach of simply plugging in values for x and y leads to the following list

of all solutions for n ≤ 50 (apart from interchanging x and y ):

1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 = 22 + 22, 9 = 32 + 02,

10 = 32 + 12, 13 = 32 + 22, 16 = 42 + 02, 17 = 42 + 12, 18 = 32 + 32,

20 = 42 + 22, 25 = 52 + 02 = 42 + 32, 26 = 52 + 12, 29 = 52 + 22, 32 = 42 + 42,

34 = 52 + 32, 36 = 62 + 02, 37 = 62 + 12, 40 = 62 + 22, 41 = 52 + 42,

45 = 62 + 32, 49 = 72 + 02, 50 = 52 + 52 = 72 + 12

Notice that in some cases there is more than one way to write n as a sum of two

squares. Our first goal will be to describe a more efficient way to find the integer

solutions of x2+y2 = n and to display them graphically in a way that helps illuminate

their structure. The technique for doing this will work not just for the function x2+y2

but also for any function Q(x,y) = ax2+bxy + cy2 , where a , b , and c are integer

constants. Such a function Q(x,y) with at least one of the coefficients a,b, c nonzero

is called a quadratic form, or more briefly, just a form.

Solving x2 + y2 = n amounts to representing n as the sum of two squares.

More generally, solving Q(x,y) = n is called representing n by the form Q(x,y) .

So the overall goal is to solve the representation problem : Which numbers n are

represented by a given form Q(x,y) , and how does one find such representations?

Since every quadratic form Q(x,y) has Q(0,0) = 0, the pair (x,y) = (0,0) is not

very interesting, so we will always assume implicitly that (x,y) ≠ (0,0) , as we did

for the list of solutions of x2 + y2 = n above.

Before starting to describe the method for displaying the values of a quadratic

form graphically, let us make a preliminary observation: If the greatest common di-

visor of two integers x and y is d , then we can write x = dx′ , y = dy ′ , and

Q(x,y) = d2Q(x′, y ′) where the greatest common divisor of x′ and y ′ is 1. Hence

it suffices to find the values of Q on primitive pairs (x,y) , the pairs whose greatest

common divisor is 1, and then multiply these values by arbitrary squares d2 .
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In a similar way, if the coefficients a,b, c of a form Q(x,y) = ax2 + bxy + cy2

have greatest common divisor d , so a = da′ , b = db′ , and c = dc′ for integers

a′, b′, c′ whose greatest common divisor is 1, then Q(x,y) = d(a′x2+b′xy+c′y2) =

dQ′(x,y) for the form Q′(x,y) = a′x2 + b′xy + c′y2 . Multiplying all the values of

a form by a constant d is a fairly trivial operation, so for most purposes it suffices to

restrict attention to forms for which the greatest common divisor of the coefficients

is 1. Such forms are called primitive forms.

Primitive pairs (x,y) correspond almost exactly to fractions x/y in lowest terms,

the only ambiguity being that both (x,y) and (−x,−y) correspond to the same

fraction x/y =
---x/---y . However, this ambiguity does not affect the value of a quadratic

form Q(x,y) = ax2 + bxy + cy2 since Q(x,y) = Q(−x,−y) . This means that we

can regard Q(x,y) as being essentially a function f
(
x/y

)
. Notice that we are not

excluding the possibilities (x,y) = (1,0) and (x,y) = (−1,0) which correspond to

the “fractions” 1/0 and ---1/0 . There will be no need to distinguish between 1/0 and

---1/0 since Q(1,0) = Q(−1,0) .

4.1 The Topograph

We already have a nice graphical representation of rational numbers x/y along

with ±1/0 as the vertices in the Farey diagram. Here is a picture of the Farey diagram

with the so-called dual tree superimposed:
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The dual tree has a vertex in the center of each triangle of the Farey diagram, and it

has an edge crossing each edge of the Farey diagram. As with the Farey diagram, we

can only draw a finite part of the dual tree. The actual dual tree has branching that

repeats infinitely often with smaller and smaller branches.

The tree divides the interior of the large circle into regions, each of which is

adjacent to one vertex of the original diagram. We can write the value Q(x,y) in the

region adjacent to the vertex x/y . This is shown in the figure below for the quadratic

form Q(x,y) = x2+y2 , where to unclutter the picture we no longer draw the triangles

of the original Farey diagram.

For example the 13 in the region adjacent to the fraction 2/3 represents the value

22 + 32 , and the 29 in the region adjacent to 5/2 represents the value 52 + 22 .

For a quadratic form Q this picture showing the values Q(x,y) is called the

topograph of Q . It turns out that there is a very simple method for computing

the topograph from just a very small amount of initial data. This method is based

on the following arithmetic progression rule : If the values of

Q(x,y) in the four regions surrounding an edge in the tree are

p , q , r , and s as indicated in the figure at the right, then the

three numbers p , q + r , s form an arithmetic progression.

We can check this in the topograph of x2+y2 shown above. Consider for exam-

ple one of the edges separating the values 1 and 2. The values in the four regions

surrounding this edge are 1,1,2,5 and the arithmetic progression is 1,1+ 2,5. For

an edge separating the values 1 and 5 the arithmetic progression is 2,1+ 5,10. For

an edge separating the values 5 and 13 the arithmetic progression is 2,5 + 13,34.

And similarly for all the other edges.
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The arithmetic progression rule implies that the values of Q in the three regions

surrounding a single vertex of the tree determine the values in all other regions, by

starting at the vertex where the three adjacent values are known and working one’s

way outward in the dual tree. The easiest place to start for a quadratic form Q(x,y) =

ax2 + bxy + cy2 is with the three values Q(1,0) = a , Q(0,1) = c , and Q(1,1) =

a+ b + c for the three fractions 1/0 , 0/1 , and 1/1 . Here are two examples:

In the first case we start with the values 1 and 2 together with the 3 just above them.

These determine the value 9 above the 2 via the arithmetic progression 1, 2+ 3, 9.

Similarly the 6 above the 1 is determined by the arithmetic progression 2, 1 + 3,

6. Next one can fill in the 19 next to the 9 we just computed, using the arithmetic

progression 3, 2+ 9, 19, and so on for as long as one likes.

The procedure for the other form x2 − 2y2 is just the same, but here there are

negative as well as positive values. The edges that separate positive values from

negative values will be important later, so we have indicated these edges by special

shading.

Perhaps the most noticeable thing in both the examples x2 + 2y2 and x2 − 2y2

is the fact that the values in the lower half of the topograph are the same as those in

the upper half. We could have predicted in advance that this would happen because

Q(x,y) = Q(−x,y) whenever Q(x,y) = ax2 + cy2 , with no xy term. The topo-

graph for x2+y2 has even more symmetry since the values of x2+y2 are unchanged

when x and y are switched, so the topograph has left-right symmetry as well.

Given any three integers a , b , and c which are not all zero, there is always a

quadratic form whose topograph has these three numbers surrounding a vertex since

the form ax2+ (c−a−b)xy +by2 takes the values a , b , and c for (x,y) equal to

(1,0) , (0,1) , and (1,1) .
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Now let us prove the arithmetic progression rule. Let the two vertices of the Farey

diagram corresponding to the values q and r have labels x1/y1
and x2/y2

as in the

following figure:

Then by the mediant rule for labeling vertices, the labels on the p and s regions are

the fractions shown. Note that these labels are correct even when x1/y1
= 1/0 and

x2/y2
= 0/1 . For a quadratic form Q(x,y) = ax2 + bxy + cy2 we then have:

s = Q(x1 + x2, y1 +y2) = a(x1 + x2)
2 + b(x1 + x2)(y1 + y2)+ c(y1 +y2)

2

= ax2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

+ (· · ·)

Similarly, we have:

p = Q(x1 − x2, y1 −y2) = ax
2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

− (· · ·)

The omitted terms in (· · ·) are the same in both cases, namely the terms involving

both subscripts 1 and 2. If we compute p + s by adding the two formulas together,

the terms (· · ·) will cancel, leaving just p+s = (q+r)+(q+r) . This equation can be

rewritten as (q+ r)−p = s − (q+ r) , which just says that p,q+ r , s is an arithmetic

progression. ⊔⊓

Exercises

1. Draw the topograph for the form Q(x,y) = 2x2 + 5y2 , showing all the values of

Q(x,y) ≤ 60 in the topograph, with the associated fractional labels x/y . If there

is symmetry in the topograph, you only need to draw one half of the topograph and

state that the other half is symmetric.

2. Do the same for the form Q(x,y) = 2x2 + xy + 2y2 , in this case displaying all

values Q(x,y) ≤ 40 in the topograph.

3. Do the same for the form Q(x,y) = x2 −y2 , showing all the values between +30

and −30 in the topograph, but omitting the labels x/y this time.
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4. For the form Q(x,y) = 2x2 − xy + 3y2 do the following:

(a) Draw the topograph, showing all the values Q(x,y) ≤ 30 in the topograph, and

including the labels x/y .

(b) List all the values Q(x,y) ≤ 30 in order, including the values when the pair (x,y)

is not primitive.

(c) Find all the integer solutions of Q(x,y) = 24, both primitive and nonprimitive.

(And do not forget that quadratic forms always satisfy Q(x,y) = Q(−x,−y) .)

5. Find the quadratic form Q(x,y) for which Q(3,5) = Q(4,7) = Q(7,12) = 1 by

first drawing a strip in the Farey diagram containing the triangles
〈

1/0 ,
0/1 ,

1/1

〉
and〈

3/5 ,
4/7 ,

7/12

〉
(this can be done using the continued fraction for 7/12 ), then adding the

edges of the dual tree that meet these triangles, then filling in values of the topograph

starting with the given values.

4.2 Periodicity

For most quadratic forms that take on both positive and negative values, such as

x2 − 2y2 , there is another way of drawing the topograph that reveals some hidden

and unexpected properties. Looking back at the topograph we drew for x2 − 2y2

we see a zigzag path of edges separating the positive and negative values, and if we

straighten this path out to be a line, called the separator line, what we see is the

following infinitely repeated pattern:

To construct this, one can first build the separator line starting with the three values

Q(1,0) = 1, Q(0,1) = −2, and Q(1,1) = −1. Place these as shown in part (a) of the

figure below, with a horizontal line segment separating the positive from the negative

values.
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To extend the separator line one step farther to the right, apply the arithmetic progres-

sion rule to compute the next value 2 using the arithmetic progression −2,1 − 1,2.

Since this value 2 is positive, we place it above the horizontal line and insert a vertical

edge to separate this 2 from the 1 to the left of it, as in (b) of the figure. Now we

repeat the process with the next arithmetic progression 1,2− 1,1 and put the new 1

above the horizontal line with a vertical edge separating it from the preceding 2, as

shown in (c). At the next step we compute the next value −2 and place it below the

horizontal line since it is negative, giving (d). One more step produces (e) where we see

that further repetitions will produce a pattern that repeats periodically as we move to

the right. The arithmetic progression rule also implies that it repeats periodically to

the left, so it is periodic in both directions:

Thus we have the periodic separator line. To get the rest of the topograph we can then

work our way upward and downward from the separator line, as shown in the original

figure. As one moves upward from the separator line, the values of Q become larger

and larger, approaching +∞ monotonically, and as one moves downward, the values

approach −∞ monotonically. The reason for this will become clear in Section 5.1

when we discuss something called the Monotonicity Property.

An interesting property of this form x2− 2y2 that is evident from its topograph

is that its negative values are exactly the negatives of its positive values. This would

have been hard to predict from the formula x2 − 2y2 . Indeed, the similar-looking

form x2 − 3y2 no longer has this sign symmetry property, as one can see in its

straightened-out topograph:

There is a close connection between the separator line in the topograph of a

quadratic form x2 − dy2 and the infinite continued fraction for
√
d when d is a

positive integer that is not a square. In fact, we will see that the topograph can be
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used to compute the continued fraction for
√
d . As an example let us look at the case

d = 2. The relevant portion of the topograph for x2 − 2y2 is the strip along the line

separating the positive and negative values:

This is a part of the dual tree of the Farey diagram. If we superimpose the triangles

of the Farey diagram corresponding to this part of the dual tree, we obtain an infinite

strip of triangles:

Ignoring the dotted triangles to the left, the infinite strip of triangles corresponds to

the infinite continued fraction 1 + 1
2 . We saw how to compute the value of this

continued fraction in Chapter 2, but there is an easier way using the quadratic form

x2 − 2y2 . For fractions x/y labeling the vertices along the infinite strip, the corre-

sponding values n = x2 − 2y2 are either ±1 or ±2. We can rewrite the equation

x2 − 2y2 = n as
(
x/y

)2
= 2+ n/y2 . As we go farther and farther to the right in the

infinite strip, both x and y are getting larger and larger while n only varies through

finitely many values, namely ±1 and ±2, so the quantity n/y2 is approaching 0. The

equation
(
x/y

)2
= 2 + n/y2 then implies that

(
x/y

)2
is approaching 2, so x/y is

approaching
√

2. Since these fractions x/y are the convergents for the infinite con-

tinued fraction 1 + 1
2 that corresponds to the infinite strip, this implies that the

value of the continued fraction 1+ 1
2 is

√
2.

As another example, the quadratic form x2 − 3y2 can be used to compute the

continued fraction
√

3 = 1+ 1
1 +

1
2 by the same reasoning:

One can see in these two examples that it is not really necessary to draw the

strip of triangles, and one can just read off the continued fraction directly from the

periodic separator line. Let us illustrate this by considering the separator line for the
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form x2 − 10y2 shown below:

If one moves toward the right along the separator line starting at a point in the edge

separating the 1/0 region from the 0/1 region, one first encounters three edges leading

off to the right (downward), then six edges leading off to the left (upward), then six

edges leading off to the right, and thereafter six edges leading off to the left and right

alternately. This means that the continued fraction for
√

10 is 3+ 1
6 .

Here is a more complicated example showing how to compute the continued frac-

tion for
√

19 from the form x2 − 19y2 :

From this we read off that
√

19 = 4+ 1
2 +

1
1 +

1
3 +

1
1 +

1
2 +

1
8 .

In Section 5.1 we will prove that the topographs of forms x2 − dy2 always have

a periodic separator line when d is a positive integer that is not a square. As in

the examples above, this separator line always includes the edge of the topograph

separating the 1/0 and 0/1 regions since the form takes the positive value +1 at 1/0

and the negative value −d at 0/1 . In addition to being periodic, the separator line also

has mirror symmetry with respect to reflection across the vertical line through the 1/0

and 0/1 regions. This is because the form x2 − dy2 has no xy term, so replacing

x/y by ---x/y does not change the value of the form. Replacing x/y by ---x/y reflects

the circular Farey diagram across the horizontal edge from 1/0 to 0/1 , and this reflects

the periodic separator line across the vertical line through the 1/0 and 0/1 regions.

Once the separator line has symmetry with respect to this vertical line, the periodicity

forces it to have mirror symmetry with respect to an infinite sequence of vertical lines,

the dotted lines in the figure below for the form x2 − 19y2 .

The reflection lines are the translates of the initial symmetry line L by all the powers
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Tn of the periodicity transformation T , along with all the lines halfway between these

lines Tn(L) . These midlines are lines of mirror symmetry since each individual period

has mirror symmetry, as reflection across L takes the left half of the period between

L and T(L) to the right half of the period between L and T−1(L) .

Because of all these mirror symmetries along the separator line for x2 − dy2 it

follows that the continued fraction for
√
d has the form

√
d = a0 +

1
a1
+ 1

a2
+ · · · + 1

an

with two further special properties:

an = 2a0 .

The intermediate terms a1, a2, · · · , an−1 form a palindrome, reading the same

forward as backward.

Thus in
√

19 = 4+ 1
2 +

1
1 +

1
3 +

1
1 +

1
2 +

1
8 the final 8 is twice the initial 4,

and the intermediate terms 2,1,3,1,2 form a palindrome. These special properties

held also in the earlier examples, but were less apparent because there were fewer

terms in the repeated part of the continued fraction.

In some cases there is an additional kind of symmetry along the separator line,

as illustrated for the form x2 − 13y2 :

As before there is a horizontal translation giving the periodicity and there are mirror

symmetries across vertical lines, but now there is an extra glide reflection along the

strip that interchanges the positive and negative values of the form. Performing this

glide reflection twice in succession gives the translational periodicity. There are also

180 degree rotational symmetries about the points marked with dots on the separator

line, and these rotations account for the palindromic middle part of the continued

fraction: √
13 = 3+ 1

1 +
1

1 +
1

1 +
1

1 +
1

6

The fact that the periodic part has odd length corresponds to the separator line having

the glide reflection symmetry. We could rewrite the continued fraction to have a

periodic part of even length by doubling the period:

√
13 = 3+ 1

1 +
1

1 +
1

1 +
1

1 +
1

6 +
1

1 +
1

1 +
1

1 +
1

1 +
1

6

This corresponds to ignoring the glide reflection and just considering the translational

periodicity.



Section 4.2 — Periodicity 99

We have been using quadratic forms x2−dy2 to compute the continued fractions

for irrational numbers
√
d , but everything works just the same for irrational numbers√

p/q using the quadratic form qx2 −py2 in place of x2 −dy2 . Following the same

reasoning as before, if the equation qx2−py2 = n is rewritten as q
(
x/y

)2
= p+n/y2

then we see that as we move out along the periodic separator line the numbers x and

y approach infinity while n cycles through finitely many values, so the term n/y2

approaches 0 and the fractions x/y approach a number z satisfying qz2 = p , so

z =
√
p/q . This argument depends of course on the existence of a periodic separator

line, and we will prove in the next chapter that forms qx2−py2 always have a periodic

separator line if p and q are positive and the roots ±
√
p/q of qz2 − p = 0 are

irrational.

Here are some examples. For the first one we use the form 3x2−7y2 to compute

the continued fraction for
√

7/3 :

This gives
√

7/3 = 1 + 1
1 +

1
1 +

1
8 +

1
1 +

1
1 +

1
2 . For comparison, we can

compute the continued fraction for
√

3/7 from the topograph of 7x2 − 3y2 :

The separator line here is obtained from the previous one by reflecting across a hor-

izontal axis and changing the sign of the labels. These modifications correspond to

changing 3x2 − 7y2 to 3y2 − 7x2 by first interchanging x and y which reflects the

Farey diagram and hence also the topograph, and then changing the sign of the re-

sulting form 3y2 − 7x2 to get 7x2 − 3y2 . From the separator line for 7x2 − 3y2 we

then read off the continued fraction 1
1+

1
1 +

1
1 +

1
8 +

1
1 +

1
1 +

1
2 for

√
3/7.

This is the reciprocal of the previous continued fraction since
√

3/7 is the reciprocal

of
√

7/3.

For the next example we use 10x2−29y2 to compute the continued fraction for√
29/10 from the separator line:
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This gives
√

29/10 = 1 + 1
1 +

1
2 +

1
2 +

1
1 +

1
2 . The period of odd length here

corresponds to the existence of the glide reflection and 180 degree rotation symme-

tries.

As we see in these examples there are two cases:
√
p/q = a0 +

1
a1
+ 1

a2
+ · · · + 1

an
if p/q > 1

√
p/q = 1

a0
+ 1

a1
+ 1

a2
+ · · · + 1

an
if p/q < 1

The palindrome property and the relation an = 2a0 that we observed in the continued

fraction for
√
d still hold for irrational numbers

√
p/q . The key point is that the form

qx2 −py2 is unchanged when the sign of x is changed, so its topograph has mirror

symmetry with respect to reflection across a line through the 1/0 and 0/1 regions, and

this symmetry implies the special properties of the continued fraction.

One might ask whether the irrational numbers
√
p/q are the only numbers having

a continued fraction a0 +
1
a1
+ · · · + 1

an
or 1

a0
+ 1

a1
+ · · · + 1

an
satisfying

the palindrome property and the relation an = 2a0 . Here we should restrict atten-

tion only to positive irrational numbers since the numbers a0, a1, · · · , an must all be

positive. The answer is Yes, as we will see later in this section.

More generally, quadratic forms can be used to compute the continued fractions

for all quadratic irrationals. To illustrate the general method let us find the continued

fraction for (10 +
√

2)/14 which is a root of the equation 14z2 − 20z + 7 = 0. The

associated quadratic form is 14x2−20xy+7y2 , obtained by setting z = x/y and then

multiplying by y2 . We would like to find a periodic separator line in the topograph

of this form. To do this we start with the three values at 1/0 , 0/1 , and 1/1 , which are

the positive numbers 14, 7, and 1, and we then use the arithmetic progression rule

to move in a direction that leads to negative values since the separator line separates

positive and negative values of the form. In this way we are led to a separator line

which is indeed periodic:

This figure lies in the upper half of the circular Farey diagram where the fractions

x/y labeling the regions in the topograph are positive. If we follow the separator line

out to either end, the labels x/y have both x and y increasing monotonically and

approaching infinity, as a consequence of the mediant rule for labeling vertices of the

Farey diagram. Hence the values

14z2 − 20z+ 7 = 14
(
x/y

)2
− 20

(
x/y

)
+ 7 =

(
14x2 − 20xy + 7y2)/y2
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are approaching zero since the values of the numerator 14x2 − 20xy + 7y2 on the

right just cycle through a finite set of numbers repeatedly, the values of the form along

the separator line, while the denominators y2 approach infinity. Thus the labels x/y

are approaching the roots of the equation 14z2 − 20z + 7 = 0. Since we are in the

upper half of the Farey diagram, the smaller of the two roots, which is (10−
√

2)/14,

is the limit toward the right along the separator line and the larger root (10+
√

2)/14

is the limit toward the left.

To get the continued fraction for the smaller root, we follow the path in the dual

tree of the topograph that starts with the edge between 1/0 and 0/1 , then zigzags up

to the separator line, then goes out this line to the right. If we straighten this path

out it looks like the following:

The continued fraction is therefore:

10−
√

2

14
= 1

1+
1

1+
1

1+
1

1+
1

2

It is not actually necessary to redraw the straightened-out path since in the original

form of the topograph we can read off the sequence of left and right “side roads” as

we go along the path, the sequence LRLRLLRR where L denotes a side road to the

left and R a side road to the right. This sequence determines the continued fraction.

For the other root (10+
√

2)/14 the straightened-out path has the following shape:

The sequence of side roads is LRRRRLLRR so the continued fraction is

10+
√

2

14
= 1

1+
1

4+
1

2

In this example the periodic parts of the continued fractions for both roots are the

same, but in general the periodic part for one root is the reverse of the periodic part

for the other root since one is moving along the separator line in opposite directions

to get to the two roots.

We will show that the procedure in the preceding example works for all quadratic

irrational numbers, and this will prove the harder half of Lagrange’s Theorem:

Proposition 4.1. The continued fraction for every quadratic irrational is eventually

periodic.
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The proof will involve associating a quadratic form to each quadratic irrational,

and we will need to use the fact that the quadratic forms arising in this way all have

periodic separator lines. This will be proved in the next chapter, so the proof will not

be officially complete until then.

Proof: Quadratic irrationals are the numbers α = A + B
√
n for which A and B are

rational, B is nonzero, and n is a positive integer that is not a square. The first step

in the proof will be to find a quadratic equation with integer coefficients having α

as a root. From the quadratic formula we know the other root will have to be the

conjugate α = A−B
√
n , with α ≠ α since B ≠ 0. A quadratic equation having α and

α as roots is then (z−α)(z−α) = 0. Multiplied out, this becomes z2−(α+α)z+αα =

z2−2Az+ (A2−B2n) = 0 which has rational coefficients since A and B are rational.

After multiplying by a common denominator for the coefficients, this becomes an

equation az2 + bz + c = 0 with integer coefficients having α and α as roots. Here

a > 0 since it is the common denominator we multiplied by.

The polynomial az2+bz+c determines a quadratic form ax2+bxy+cy2 . This

form has two special properties:

Its topograph contains both positive and negative values. This is because the

polynomial az2+bz+c = a(z−α)(z−α) takes negative values when z is between

the two roots α and α , where the two factors in parentheses have opposite sign,

and positive values when z is greater than both roots or less than both roots, so

the two parenthetical factors have the same sign. Thus there are rational numbers

z = x/y where the left side of the equation

a
(
x/y

)2
+ b

(
x/y

)
+ c =

(
ax2 + bxy + cy2)/y2

has both signs, hence the same is true for the numerator on the right.

The topograph does not contain the value 0. To see why, suppose there is a pair

(x,y) ≠ (0,0) with ax2 + bxy + cy2 = 0. We cannot have y = 0, otherwise x

would also be 0 since a ≠ 0. Then since y ≠ 0, the displayed equation above

would say that x/y was a rational root of az2+bz+c = 0, contradicting the fact

that its roots α and α are irrational.

We will show in Theorem 5.2 that every form ax2 + bxy + cy2 with these two prop-

erties has a periodic separator line in its topograph. This corresponds to an infinite

periodic strip in the Farey diagram.

Lemma 4.2. The ends of the periodic strip in the topograph of a hyperbolic form

ax2 + bxy + cy2 are at the roots α and α of the equation az2 + bz + c = 0 .

Proof: Consider the labels x/y on the vertices along the strip. Since the denominators

y approach infinity as we go out to either end of the strip while the values of the form

ax2 +bxy + cy2 cycle through finitely many values, it follows that the values of the
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right side of the equation

a
(
x/y

)2
+ b

(
x/y

)
+ c =

(
ax2 + bxy + cy2)/y2

are approaching zero. This means that the vertex labels x/y are approaching a root

of the equation az2+bz+c = 0. In our discussion of infinite strips in Section 2.2 we

saw that the two ends of any infinite strip are at two different irrational numbers, so

the two ends of the periodic strip for the form ax2+bxy + cy2 are at the two roots

α and α of the equation az2 + bz + c = 0. ⊔⊓

With this lemma we can finish the proof of Proposition 4.1 by comparing two

infinite strips with an end at the root α of the equation az2 + bz + c = 0. One

infinite strip is the strip given by the continued fraction for α . This strip consists

of all the triangles in the upper halfplane Farey diagram that meet the vertical line

through α . This strip starts at the vertex 1/0 at the top and then moves downward

through an infinite sequence of triangles approaching α . The other infinite strip is

the one corresponding to the separator line for the form ax2+bxy+cy2 , which has

an end at α by the lemma. The ends of both strips at α eventually coincide since the

analysis of infinite strips in Section 2.2 showed that the ends of every infinite strip

eventually consist of the triangles meeting the vertical lines through the irrational

numbers at the ends of the strip. Thus the continued fraction for α is eventually

periodic since the periodic strip for ax2 + bxy + cy2 is periodic. ⊔⊓

We are now able to answer a question raised earlier in this section:

Proposition 4.3. The numbers
√
p/q are the only quadratic irrationals having con-

tinued fractions a0+
1
a1
+ · · · + 1

an
or 1

a0
+ 1

a1
+ · · · + 1

an
satisfying the

palindrome property and the relation an = 2a0 .

Proof: Consider first a continued fraction a0+
1
a1
+ · · · + 1

an
satisfying the palin-

drome property and the relation an = 2a0 . The initial a0 in this continued fraction

must be positive since it is half of the positive number an . The reciprocal of the

continued fraction a0 +
1
a1
+ · · · + 1

an
is 1

a0
+ 1

a1
+ · · · + 1

an
and the re-

ciprocal of
√
p/q is

√
q/p so it will suffice to prove the proposition just for continued

fractions of the type 1
a0
+ 1

a1
+ · · · + 1

an
.

Let 1
a0
+ 1

a1
+ · · · + 1

an
be a continued fraction satisfying the palindrome

condition and the relation an = 2a0 . We may assume n , the length of the period, is

even since doubling the period gives the continued fraction

1
a0
+ 1

a1
+ · · · + 1

an
+ 1

a1
+ · · · + 1

an

which again satisfies the palindrome condition and the “an = 2a0 ” condition, where

the new palindrome is a1 · · ·an−1ana1 · · ·an−1 which is a palindrome if a1 · · ·an−1

is a palindrome.
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The strip in the upper half of the circular Farey diagram corresponding to the con-

tinued fraction 1
a0
+ 1

a1
+ · · · + 1

an
starts at the

〈
1/0 ,

0/1

〉
edge and converges

to the value α of the continued fraction at the other end of the strip. Combining the

strip with its reflection across the
〈

1/0 ,
0/1

〉
edge gives an infinite strip with mirror

symmetry across the
〈

1/0 ,
0/1

〉
edge. This doubled strip is periodic along its entire

length by the palindrome condition and the condition an = 2a0 . The other end of

the doubled strip converges to α since we have seen that the two endpoints of a pe-

riodic strip satisfy a single quadratic equation T(z) = z where T is the periodicity

transformation. The two roots α and α of this equation are conjugates and they are

also negatives of each other by the mirror symmetry across the edge
〈

1/0 ,
0/1

〉
, so we

have α = −α . Writing α as A + B
√
m with A and B rational, the equation α = −α

becomes A − B
√
m = −A − B

√
m which implies that A = 0. Since α is positive we

then have α = B
√
m with B > 0. Thus α is the square root of the positive rational

number B2m . ⊔⊓

Another natural question one might ask is whether every periodic line in the dual

tree of the Farey is realizable as the separator line of some form. A trivial sort of

periodic line which cannot be realized is an infinite line in which all the abutting

edges lie on one side of the line. This is dual to an infinite fan in the Farey diagram

consisting of all the triangles containing a given vertex. When we say “periodic line”

we will implicitly exclude trivial lines like this.

Proposition 4.4. Every periodic line in the dual tree of the Farey diagram occurs

as the separator line for some form.

Proof: Given a periodic line, the periodicity of this line and of the corresponding

infinite strip is realized by some linear fractional transformation T . As we have seen,

the endpoints of the strip are the fixed points of T , the solutions of T(z) = z . This

can be rewritten as a quadratic equation az2 + bz + c = 0 with integer coefficients.

The coefficient a must be nonzero, otherwise we would have an equation bz + c = 0

with only one root if b ≠ 0, while if b = 0 the equation would have no roots if c ≠ 0.

If c = 0 as well as a = 0 and b = 0 the equation would degenerate to 0 = 0, meaning

that every z satisfied T(z) = z so T would be the identity transformation rather

than the periodicity transformation, a contradiction. Thus a must be nonzero, and

we may assume that a > 0 by multiplying the equation by −1 if necessary.

We claim that the the periodic line we started with is a separator line in the topo-

graph of the form ax2 + bxy + cy2 . This just means that the values of the form at

vertices along one edge of the associated periodic strip are all positive and the values

along the other edge are all negative. To see why this is so let us factor az2 + bz + c

as a(z−α)(z−α) where α and α are the roots of az2+bz+c = 0 at the ends of the

strip. From this factorization and the fact that a is positive we see that the product

a(z−α)(z−α) is negative if z is between α and α and positive if z is greater than
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both α and α or less than both α and α . (We saw this previously in the proof of

Proposition 4.1.) Taking z to be a rational number x/y , the equation

a
(
x/y

)2
+ b

(
x/y

)
+ c =

(
ax2 + bxy + cy2)/y2

implies that the form ax2 + bxy + cy2 takes negative values for x/y in the interval

between α and α and positive values for x/y outside this interval, assuming x/y ≠
1/0

so we are not dividing by 0 in the equation above.

In terms of the circular Farey diagram the roots α

and α divide the boundary circle into two arcs, with

the form taking positive values at vertices in one arc

and negative values at vertices in the other arc, with

the possible exception of the vertex 1/0 . However, this

vertex is not actually exceptional since it lies in the arc

with positive values and the form takes the value a > 0

when x/y =
1/0 . This proves what we wanted since vertices along one edge of the strip

lie in one arc and vertices along the other edge lie in the other arc. ⊔⊓

To illustrate the procedure in the preceding proof let us find a quadratic form

whose periodic separator line is the following:

The fractional labels correspond to vertices of the underlying Farey diagram, and

from these we see that the translation giving the periodicity sends 1/0 to 25/36 and 0/1

to 84/121 . The matrix of this transformation is
(

25
36

84
121

)
so it is the transformation

T(z) = 25z+84/36z+121 . The fixed points of T are determined by setting this equal

to z . The resulting equation simplifies to 36z2+96z−84 = 0 or just 3z2+8z−7 = 0.

The roots α and α of this equation az2 + bz + c = 0 are the fixed points, but we

do not actually have to compute them since we showed in the preceding proof that

the quadratic form we want is then ax2 + bxy + cy2 which in this example is just

3x2 + 8xy − 7y2 . As a check, we can compute the separator line of this form:

This provides a realization of the given periodic line as the separator line of a hyper-

bolic form. Any constant multiple of this form would also have the same separator line

since we would just be multiplying all the labels along the line by the same constant.
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We could have simplified the calculation in this example by observing that the

periodic line we started with is taken to itself by a glide reflection that moves the line

only half as far along itself as the translation T that we used. This glide reflection is

T ′(z) = 2z+7/3z+10 and it has the same fixed points as T so we could use the equation

T ′(z) = z instead of T(z) = z . Thus we have 2z+7/3z+10 = z which simplifies more

directly to 3z2 + 8z − 7 = 0, the same final equation as before.

Exercises

1. Determine the periodic separator line in the topograph for each of the following

quadratic forms. (You do not need to include the fractional labels x/y .)

(a) x2 − 7y2

(b) 3x2 − 4y2

(c) x2 + xy −y2

2. For the following quadratic forms, draw enough of the topograph, starting with

the edge separating the 1/0 and 0/1 regions, to locate the periodic separator line, and

include the separator line itself in your topograph.

(a) x2 + 3xy +y2

(b) 6x2 + 18xy + 13y2

(c) 37x2 − 104xy + 73y2

3. Using your answers in the first problem above, write down the continued fraction

expansions for
√

7, 2
√

3/3, and (−1+
√

5)/2.

4. Use a quadratic form to compute continued fractions for the following pairs of

numbers:

(a) (3+
√

6)/2 and (3−
√

6)/2

(b) (11+
√

13)/6 and (11−
√

13)/6

(c) (14+
√

7)/9 and (14−
√

7)/9

5. Compute the periodic separator line for the form x2 − 43y2 and use this to find

the continued fraction for
√

43.

6. Use the form x2 − 2n2y2 to compute the continued fraction for n
√

2 for n =

1,2,3,4,5.

7. Compute the continued fraction for
√

21 using the form x2−21y2 . Can you explain

the relationship between this continued fraction and the one for
√

7/3 computed in

this section?
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8. (a) Find a quadratic form whose periodic separator line has the following pattern:

(b) Generalize part (a) by replacing each pair of upward edges with m upward edges

and each triple of downward edges with n downward edges.

4.3 Pell’s Equation

We encountered the equation x2−dy2 = 1 briefly in Chapter 0. It is traditionally

called Pell’s equation, and the similar equation x2 − dy2 = −1 is sometimes called

Pell’s equation as well, or else the negative Pell’s equation. If d is a square then the

equations are not very interesting since in this case d can be incorporated into the y2

term, so one is looking at the equations x2 − y2 = 1 and x2 − y2 = −1, which have

only the trivial solutions (x,y) = (±1,0) for the first equation and (x,y) = (0,±1)

for the second equation since these are the only cases when the difference between

two squares is ±1. We will therefore assume that d is not a square in what follows.

It will suffice to find the solutions with x and y positive since the signs of x and y

do not affect the value of x2 − dy2 .

As an example let us look at the equation x2 − 19y2 = 1. We drew a portion of

the periodic separator line for the form x2 − 19y2 earlier, and here it is again with

some of the fractional labels x/y shown as well:

Ignoring the label 741/170 for the moment, the other fractional labels are the first few

convergents for the continued fraction for
√

19 that we computed before, which is

4 + 1
2 +

1
1 +

1
3 +

1
1 +

1
2 +

1
8 . These fractional labels are the labels on the

vertices of the zigzag path in the infinite strip of triangles in the Farey diagram, which

we can imagine being superimposed on the separator line in the figure. The fractional

label we are most interested in is the 170/39 in the upper right because this is the label

on a region where the value of the form x2 − 19y2 is 1. This means exactly that

(x,y) = (170,39) is a solution of x2 − 19y2 = 1. In terms of continued fractions,

the fraction 170/39 is the value of the initial portion 4+ 1
2+

1
1+

1
3+

1
1+

1
2 of

the continued fraction for
√

19, with the final term of the period omitted.
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Since the topograph of x2 − 19y2 is periodic along the separator line, there are

infinitely many different solutions of x2 − 19y2 = 1 along the separator line. Going

toward the left just gives the negatives ---x/y of the fractions x/y to the right, so since

we are only interested in the positive solutions it will suffice to see what happens

toward the right. One way to do this is to use the linear fractional transformation

that gives the periodicity translation toward the right. This transformation sends the

edge
〈

1/0 ,
0/1

〉
of the Farey diagram to the edge

〈
170/39 ,

741/170

〉
. Here 741/170 is the

value of the continued fraction 4+ 1
2 +

1
1 +

1
3 +

1
1 +

1
2 +

1
4 obtained from

the continued fraction for
√

19 by replacing the final number 8 in the period by one-

half of its value, 4. The figure above shows why this is the right thing to do. We then

get an infinite sequence of larger and larger positive solutions of x2 − 19y2 = 1 by

repeatedly applying the periodicity transformation with matrix
(

170
39

741
170

)
to go from

one solution to the next. For example,
(

170 741

39 170

)(
170

39

)
=

(
57799

13260

)

so the next solution of x2−19y2 = 1 after (170,39) is (57799,13260) , and we could

compute more solutions if we wanted. Obviously they are getting large rather quickly.

The two 170’s in the matrix
(

170
39

741
170

)
can hardly be just a coincidence. Notice

also that the entry 741 factors as 19·39 which hardly seems like it should be just a

coincidence either. Let us check that these numbers had to occur. In general, for the

form x2 − dy2 let us suppose that we have found the first solution (x,y) = (p, q)

after (1,0) for Pell’s equation x2 − dy2 = 1, so p2 − dq2 = 1. Then based on the

previous example we suspect that the periodicity transformation is:

T

(
x
y

)
=

(
p dq
q p

)(
x
y

)
=

(
px + dqy
qx + py

)

To check that this is correct, the main thing to verify is that T preserves the values of

the quadratic form. Substituting (px +dqy,qx +dy) for (x,y) in x2 −dy2 gives:

(px + dqy)2−d(qx + py)2

= p2x2 + 2pdqxy + d2q2y2 − dq2x2 − 2pdqxy − dp2y2

= (p2 − dq2)x2 − d(p2 − dq2)y2

= x2 − dy2 since p2 − dq2 = 1

So T does preserve the values of the form. In particular T takes regions in the to-

pograph with positive values to other such regions, and similarly for regions with

negative values, so the separator line is taken to itself. The determinant of
(
p
q
dq
p

)
is

p2 − dq2 = 1 which is positive so T preserves orientation and hence it has to be a

translation along the separator line. Since we chose (p, q) to be the first solution of

x2 − dy2 = 1 after (1,0) , it follows that T is the periodicity transformation and all

occurrences of the label 1 along the separator line are images of the one at 1/0 under
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positive or negative powers of T . (We have not actually proved yet that periodic sep-

arator lines always exist for forms x2 − dy2 , but this will be shown in Theorem 5.2.)

There are no other solutions of x2 − 19y2 = 1 besides the ones along the sep-

arator line because, as we will see in Section 5.1, the values in a topograph with a

separator line change in a monotonic fashion as one moves away from the separa-

tor line, steadily increasing toward +∞ on the positive side of the separator line and

steadily decreasing toward −∞ on the negative side. Thus the value 1 can occur only

along the separator line itself. The monotonicity property also implies that the value

−1 never appears in the topograph of x2 − 19y2 since it does not appear along the

separator line, so the negative Pell equation x2−19y2 = −1 has no integer solutions.

For an example where x2 − dy2 = −1 does have solutions, let us look again at

the earlier example of x2 − 13y2 :

The first positive solution (x,y) = (p, q) of x2 − 13y2 = −1 corresponds to the

value −1 in the middle of the figure. This is determined by the continued fraction

p/q = 3 + 1
1 +

1
1 +

1
1 +

1
1 =

18/5 , so we have (p, q) = (18,5) . The matrix(
p
q
dq
p

)
in this case is

(
18
5

65
18

)
with determinant 182 − 13·52 = −1 so this gives the

glide reflection along the periodic separator line taking 1/0 to 18/5 and 0/1 to 65/18 .

The smallest positive solution of x2 − 13y2 = +1 is obtained by applying this glide

reflection to (18,5) , which gives:
(

18 65

5 18

)(
18

5

)
=

(
324+ 325

90+ 90

)
=

(
649

180

)

Repeated applications of the glide reflection will give solutions of x2 − 13y2 = −1

and x2 − 13y2 = +1 alternately.

Exercises

1. For the quadratic form x2 − 14y2 do the following things:

(a) Draw the separator line in the topograph and compute the continued fraction for√
14.

(b) Find the smallest positive integer solutions of x2−14y2 = 1 and x2−14y2 = −1,

if these equations have integer solutions.

(c) Find the linear fractional transformation that gives the periodicity translation along

the separator line and use this to find a second positive solution of x2 − 14y2 = 1.
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(d) Determine the integers n with |n| ≤ 12 such that the equation x2−14y2 = n has

an integer solution. (Do not forget the possibility that there could be solutions (x,y)

that are not primitive.)

2. For the quadratic form x2 − 29y2 do the following things:

(a) Draw the separator line and compute the continued fraction for
√

29.

(b) Find the smallest positive integer solution of x2 − 29y2 = −1.

(c) Find a glide reflection symmetry of the separator line and use this to find the

smallest positive integer solution of x2 − 29y2 = 1.

3. Show that every positive integer that is not a square can be expressed as a quotient

n2 ---1/k2 for a suitably chosen pair of integers n and k , and in fact there are infinitely

many different choices for such a pair. Why did we exclude squares?



111

We can divide quadratic forms Q(x,y) = ax2 + bxy + cy2 with integer coef-

ficients a,b, c into four broad classes according to the signs of the values Q(x,y) ,

where as usual we restrict x and y to be integers. We will always assume at least one

of the coefficients is nonzero, so Q is not identically zero, and we will always assume

(x,y) is not (0,0) . There are four possibilities:

(I) If Q(x,y) takes on both positive and negative values but not 0 then we call

Q a hyperbolic form.

(II) If Q(x,y) takes on both positive and negative values and also the value 0 then

we call Q a 0 -hyperbolic form.

(III) If Q(x,y) takes on only positive values or only negative values then we call Q

an elliptic form.

(IV) If Q takes on the value 0 and either positive or negative values, but not both,

then Q is called a parabolic form.

The hyperbolic-elliptic-parabolic terminology is motivated in part by what the level

curves ax2 + bxy + cy2 = k are when we allow x and y to take on all real values

so that one gets actual curves. The level curves are hyperbolas in cases (I) and (II),

and ellipses in case (III). In case (IV), however, the level curves are not parabolas as

one might guess, but straight lines. From the classical perspective of conic sections

parabolas are the transitional case between hyperbolas and ellipses, but from another

viewpoint one can pass from hyperbolas to ellipses through a transitional case of a

pair of parallel lines as in the family of curves x2− cy2 = 1 which are hyperbolas for

c > 0, ellipses for c < 0, and a pair of parallel lines for c = 0. Parabolic forms are

much simpler than the other types and we will not be spending much time on them.

As we will show later in the chapter, there is an easy way to distinguish the four

types of forms ax2 + bxy + cy2 in terms of their discriminants ∆ = b2 − 4ac :

(I) If ∆ is positive but not a square then Q is hyperbolic.

(II) If ∆ is positive and a square then Q is 0-hyperbolic.

(III) If ∆ is negative then Q is elliptic.

(IV) If ∆ is zero then Q is parabolic.
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Discriminants play a central role in the theory of quadratic forms. A natural question

to ask is whether every integer occurs as the discriminant of some form, and this is

easy to answer. For a form ax2 + bxy + cy2 we have ∆ = b2 − 4ac , and this is

congruent to b2 mod 4. A square such as b2 is always congruent to 0 or 1 mod 4,

so the discriminant of a form is always congruent to 0 or 1 mod 4. Conversely, for

every integer ∆ congruent to 0 or 1 mod 4 there exists a form whose discriminant

is ∆ . The simplest ones are:

x2 − ky2 with discriminant ∆ = 4k

x2 + xy − ky2 with discriminant ∆ = 4k+ 1

Here k can be positive, negative, or zero. The forms x2−ky2 and x2+xy−ky2 are

called the principal quadratic forms of these discriminants.

5.1 The Four Types of Forms

We will analyze each of the four types of forms in turn, but before doing this let

us make a few preliminary observations that apply to all forms.

In the arithmetic progression rule controlling the labeling of the four regions

surrounding an edge of the topograph, we can label the edge

by the common increment h = (q+r)−p = s−(q+r) as in

the figure at the right. The edge can be oriented by an arrow

showing the direction in which the progression increases

by h . Changing the sign of h corresponds to changing the orientation of the edge. In

the special case that h happens to be 0 the orientation of the edge is irrelevant and

can be omitted.

The values of the increment h along the boundary of a region in the topograph

have the interesting property that they also form an arithmetic progression when all

these edges are oriented in the same direction, and the amount by which h increases

as we move from one edge to the next is 2p where p is the label on the region adjacent

to all these edges:







We will call this property the second arithmetic progression rule. To see why it holds,

start with the edge labeled h in the figure, with the adjacent regions labeled p and

q . The original arithmetic progression rule then gives the value p+ q+h in the next

region to the right. From this we can deduce that the label on the edge between the

regions labeled p and p+q+h must be h+2p since this is the increment from q to
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p+ (p+q+h) . Thus the edge label increases by 2p when we move from one edge to

the next edge to the right, so by repeated applications of this fact we see that we have

an arithmetic progression of edge labels all along the border of the region labeled p .

Another thing worth noting at this point is something that we will refer to as the

monotonicity property . This says that in the figure at

the right, if the three labels p , q , and h adjacent to

an edge are all positive, then so are the three labels

for the next two edges in front of this edge, and the

new labels are larger than the old labels. It follows

that when one continues forward going out this part

of the topograph, all the labels become monotonically

larger the farther one goes. Similarly, when the original three labels are negative, all

the labels become larger and larger negative numbers.

Next we have a very useful way to compute the discriminant of a form directly

from its topograph:

Proposition 5.1. If an edge in the topograph of a form Q(x,y) is labeled h with

adjacent regions labeled p and q , then the discriminant of Q(x,y) is h2 − 4pq .

Note that the sign of h and the orientation of the edge are irrelevant here. The

proposition implies that if the discriminant is known then any two of p , q , and |h|

determine the third.

Proof: For the given form Q(x,y) = ax2 + bxy + cy2 , the 1/0 and 0/1 regions in

the topograph are labeled a and c , and the edge in the topograph

separating these two regions has h = b since the 1/1 region is

labeled a + b + c . So the statement of the proposition is correct

for this edge. For other edges we proceed by induction, moving

farther and farther out the tree. For the induction step suppose

we have two adjacent edges labeled h and k as in the figure, and

suppose inductively that the discriminant equals h2−4pq . We have r = p+q+h , and

from the second arithmetic progression rule we know that k = h+ 2q . Then we have

k2−4qr = (h+2q)2−4q(p+q+h) = h2+4hq+4q2−4pq−4q2−4hq = h2−4pq ,

which means that the result holds for the edge labeled k as well. ⊔⊓

Elliptic Forms

Elliptic forms have fairly simple qualitative behavior, so let us look at these forms

first. Recall that we defined a form Q(x,y) to be elliptic if it takes on only positive

or only negative values at all integer pairs (x,y) 6= (0,0) . The positive and negative

cases are equivalent since one can switch from one to the other just by putting a minus

sign in front of Q . Thus it suffices to consider the case that Q takes on only positive

values, and we will always assume we are in this case whenever we are dealing with
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elliptic forms. We will also generally assume when we look at topographs of elliptic

forms that the orientations of the edges are chosen so as to give positive h -values,

unless we state otherwise.

For a positive elliptic form Q let p be the minimum positive value taken on by

Q , so Q(x,y) = p for some (x,y) ≠ (0,0) . Here (x,y) must be a primitive pair

otherwise Q would take on a smaller positive value than p . Thus there is a region

in the topograph of Q with the label p . All the edges having one endpoint at this

region must be oriented away from the region, by the arithmetic

progression rule and the assumption that p is the minimum value

of Q . The monotonicity property then implies that all edges farther

away from the p region are also oriented away from the region, and

the values of Q increase steadily as one moves away from the p

region.

For the edges making up the border of the p region we know

that the h - labels on these edges form an arithmetic progression

with increment 2p , provided that we temporarily re-orient these edges so that they

all point in the same direction. If some edge bordering the p region has the label h = 0

then the topograph has the form shown in the first figure below, with the orientations

on edges that give positive h - labels. An example of such a form is px2 + qy2 . We

call the 0-labeled edge a source edge since all other edges are oriented away from

this edge.

The other possibility is that no edge bordering the p region has label h = 0.

Then since the labels on these edges form an arithmetic progression, there must be

some vertex where the terms in the progression change sign. Thus when we orient the

edges to give positive h - labels, all three edges meeting at this vertex will be oriented

away from the vertex, as in the second figure above. We call this a source vertex since

all edges in the topograph are oriented away from this vertex.

If the three regions surrounding a source vertex are labeled p,q, r

then the fact that the three edges leading from this vertex all point

away from the vertex is equivalent to the three inequalities p < q+ r ,

q < p+r , and r < p+q . These are called triangle inequalities since they are satisfied

by the lengths of the three sides of any triangle. In the case of a source edge one of

the inequalities becomes an equality, for example r = p + q in the earlier figure with
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a source edge.

As we know, any three integers p,q, r can be realized as the three labels surround-

ing a vertex in the topograph of some form. If these are positive integers satisfying

the triangle inequalities then this vertex is the source vertex of an elliptic form since

these inequalities imply that the three edges at this vertex are oriented away from

the vertex, so the monotonicity property guarantees that all values of the form are

positive. The situation for source edges is simpler since any two positive integers p

and q determine an elliptic form with a source edge having adjacent regions labeled

p and q as in the earlier figure.

Hyperbolic Forms

The topographs of hyperbolic forms exhibit quite different behavior from the

topographs of elliptic forms since they always have a periodic separator line of the

sort that we saw in several of the examples in the previous chapter. Here is the general

statement:

Theorem 5.2. In the topograph of a hyperbolic form the edges for which the two

adjacent regions are labeled by numbers of opposite sign form a line which is

infinite in both directions, and the topograph is periodic along this line, with other

edges of the topograph leading off the line on both sides.

Proof: For a hyperbolic form Q all regions in the topograph have labels that are either

positive or negative, never zero, and there must exist two regions of opposite sign.

By moving along a path in the topograph joining two such regions we will somewhere

encounter two adjacent regions of opposite sign. Thus there must exist edges whose

two adjacent regions have opposite sign. Let us call these edges separating edges.

At an end of a separating edge the value of Q in the next region must be either

positive or negative since Q does not take the value 0 :

This implies that exactly one of the two edges at each end of the first separating edge

is also a separating edge. Repeating this argument, we see that each separating edge

is part of a line of separating edges that is infinite in both directions, and the edges

that lead off from this line are not separating edges.

The monotonicity property implies that as we move off this line of separating

edges the values of Q are steadily increasing through positive integers on the posi-

tive side and steadily decreasing through negative integers on the negative side. In

particular this means that there are no other separating edges that are not on the

initial separator line, so there is only one separator line.
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It remains to prove that the topograph is periodic along the separator line. We

can assume all the edges along the separator line are oriented in the same direction

by changing the signs of the h values if necessary. For an edge of the separator line

labeled h with adjacent regions labeled p and −q with p > 0 and q > 0, we know

that h2 + 4pq is the discriminant ∆ , by Proposition 5.1. The equation ∆ = h2 + 4pq

with p and q positive implies that ∆ is positive and furthermore that each of |h| ,

p , and q is less than ∆ . Thus there are only finitely many possible values for h , p ,

and q along the separator line since ∆ is a constant depending only on Q . It follows

that there are only finitely many possible combinations of values h , p , and q at each

edge on the separator line. Since the separator line is infinite, there must then be two

edges on the line that have the same values of h , p , and q . Since the topograph is

uniquely determined by the three labels h , p , q at a single edge, the translation of

the line along itself that takes one edge to another edge with the same three labels

must preserve all the labels on the line. This shows that the separator line is periodic.

There must be edges leading away from the separator line on both the positive

and the negative side, otherwise there would be just a single region on one side of

the line, and then the second arithmetic progression rule would say that the h labels

along the line formed an infinite arithmetic progression with nonzero increment 2p

where p is the label on the region in question. However, this would contradict the

fact that these h labels are periodic. ⊔⊓

The qualitative behavior of the topograph of a hyperbolic form away from the

separator line fits the pattern we have seen in examples. Since the separator line is

periodic the whole topograph is periodic, consisting of repeating sequences of trees

leading off from the separator line on each side, with monotonically increasing pos-

itive values of the form on each tree on the positive side of the separator line and

monotonically decreasing negative values on the negative side, as a consequence of

the monotonicity property.

Parabolic and 0-Hyperbolic Forms

The remaining types of forms to consider are parabolic forms and 0-hyperbolic

forms. These turn out to be less interesting, and they play only a minor role in the

theory of quadratic forms.

Parabolic and 0-hyperbolic forms are the forms whose topograph contains at

least one region labeled 0. By the second arithmetic progression rule, each edge

adjacent to a 0 region has the same label h , and from this it follows that the labels

on the regions adjacent to the 0 region form an arithmetic progression:
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When h = 0 the topograph has the very simple pattern shown in the following figure:

Thus the form is parabolic, taking on only positive or only negative values away from

the 0 region, depending on the sign of q . We cannot have q = 0 since we are not

allowing forms to be identically zero. An example of a form with this topograph is

Q(x,y) = qx2 , with the 0 region at x/y =
0/1 . The topograph is periodic along the 0

region since it consists of the same tree pattern repeated infinitely often.

The remaining case is that the label h on the edges bordering a 0 region is

nonzero. The arithmetic progression of values of Q adjacent to the 0 region is

then not constant, so it includes both positive and negative numbers, and hence Q is

0-hyperbolic. If the arithmetic progression includes

the value 0, this gives a second 0 region adjacent to

the first one, and the topograph is as shown at the

right. An example of a form with this topograph is

Q(x,y) = qxy , with the two 0 regions at x/y = 1/0

and 0/1 .

If the arithmetic progression of values of Q adjacent to the 0 region does not

include 0, there will be an edge separating the positive from the negative values in

the progression. We can extend this separating edge to a line of separating edges as

we did with hyperbolic forms. If this extension does not eventually terminate with a

second 0 region, the reasoning we used in the hyperbolic case would yield two edges

along this line having the same h and the same positive and negative labels on the two

adjacent regions, forcing the line to be periodic in the direction of this extension. This

in turn would force it to be periodic in both directions by the arithmetic progression

rule. But this is impossible since the line began with a 0 region at one end. Thus the

topograph contains a finite separator line connecting two 0 regions.

An example of such a form is Q(x,y) = qxy − py2 = (qx − py)y which has

the value 0 at x/y =
1/0 and at x/y =

p/q or the reduction of p/q to lowest terms

if p and q are not coprime. Here we must have |q| > 1 for the two 0 regions to be

nonadjacent. The separator line must follow the strip of triangles in the Farey diagram

corresponding to the continued fraction for p/q since the separator line is dual to a

finite strip of triangles with the vertices 1/0 and p/q at its two ends. For example,

for p/q =
2/5 the topograph of the form 5xy − 2y2 = (5x − 2y)y is shown in the

following figure:
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General Conclusions

Having described the topographs of the four types of forms, we can now deduce

the characterization of each type in terms of the discriminant:

Proposition 5.3. The four types of forms are distinguished by their discriminants,

which are negative for elliptic forms, positive nonsquares for hyperbolic forms,

positive squares for 0 -hyperbolic forms, and zero for parabolic forms.

Proof: Consider first an elliptic form Q , which we may assume takes on only positive

values since changing Q to −Q does not change the discriminant. The topograph

of Q contains either a source vertex or a source edge. For a source edge with the

label h = 0 separating regions with positive labels p and q the discriminant is ∆ =
h2−4pq = −4pq , which is negative. For a source vertex with adjacent regions having

positive labels p,q, r the edge between the p and q regions is labeled h = p+ q− r

so the discriminant can be expressed in the following way:

∆ = h2 − 4pq = (p + q − r)2 − 4pq

= p2 + q2 + r 2 − 2pq − 2pr − 2qr

= p(p − q − r)+ q(q − p − r)+ r(r − p − q)

In the last line the three quantities in parentheses are negative by the triangle inequal-

ities, so ∆ is again negative.

For a parabolic form the topograph contains a region labeled 0 bordered by edges

labeled 0, so ∆ = h2−4pq = 0. A 0-hyperbolic form has a region labeled 0 bordered

by edges all having the same nonzero label h so ∆ = h2 , a positive square.

For an edge in the separator line for a hyperbolic form the adjacent regions have

labels p and −q with p and q positive so ∆ = h2 + 4pq is positive. To see that

∆ is not a square, suppose the form is ax2 + bxy + cy2 . Here a must be nonzero,

otherwise the form would have the value 0 at (x,y) = (1,0) , which is impossible for a

hyperbolic form. If the discriminant was a square then the equation az2+bz+ c = 0

would have a rational root z = x/y with y ≠ 0 by the familiar quadratic formula

z = (−b ±
√
b2 − 4ac)/2a . Thus we would have a

(
x/y

)2
+ b

(
x/y

)
+ c = 0 and hence

ax2+bxy+cy2 = 0, so the form would have the value 0 at a pair (x,y) with y 6= 0,

which is again impossible for a hyperbolic form. ⊔⊓
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The presence or absence of periodicity in a topograph has the following conse-

quence:

Proposition 5.4. If an equation Q(x,y) = n with n ≠ 0 has one integer solution

(x,y) then it has infinitely many integer solutions when Q is hyperbolic or para-

bolic, but only finitely many integer solutions when Q is elliptic or 0 -hyperbolic.

Proof: Consider first the hyperbolic and parabolic cases. Suppose (x,y) is a solution

of Q(x,y) = n . If (x,y) is a primitive pair, then n appears in the topograph of

Q so by periodicity it appears infinitely often, giving infinitely many solutions of

Q(x,y) = n . If there is a nonprimitive solution (x,y) then it is d times a primitive

pair (x′, y ′) with Q(x′, y ′) = n/d2 . The latter equation has infinitely many solutions

(x′, y ′) by what we just showed, hence Q(x,y) = n has infinitely many solutions

(x,y) = (dx′, dy ′) .

For elliptic and 0-hyperbolic forms there is no periodicity, and the monotonicity

property implies that each number appears in the topograph at most a finite number

of times. Thus Q(x,y) = n can have only finitely many primitive solutions. If it had

infinitely many nonprimitive solutions, these would yield infinitely many primitive

solutions of equations Q(x,y) = m for certain divisors m of n . However, this is

impossible since each equation Q(x,y) = m for a fixed m can have only finitely

many primitive solutions and n has only finitely many divisors since we assume it is

nonzero. ⊔⊓

Exercises

1. (a) Find two primitive elliptic forms ax2 + cy2 that have the same discriminant

but take on different sets of values. Draw enough of the topographs of the two forms

to make it apparent that they do not have exactly the same sets of values. (Remember

that the topograph only shows the values Q(x,y) for primitive pairs (x,y) .)

(b) Do the same thing with hyperbolic forms ax2 + cy2 .

2. (a) Show the quadratic form Q(x,y) = 92x2−74xy+15y2 is elliptic by computing

its discriminant.

(b) Find the source vertex or edge in the topograph of this form.

(c) Using the topograph of this form, find all the integer solutions of 92x2 − 74xy +

15y2 = 60, and explain why your list of solutions is a complete list. (There are exactly

four pairs of solutions ±(x,y) , three of which will be visible in the topograph.)

3. Show that if a form takes the same value on two adjacent regions of its topograph,

then these regions are both adjacent to the source vertex or edge when the form is

elliptic, or both lie along the separator line when the form is hyperbolic.

4. Show that the minimum value of |h| for all the edges in the border of a given

region in the topograph of an elliptic or hyperbolic form occurs at an edge having an
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endpoint that achieves the minimum distance to the separator line or source vertex

or edge of all vertices in the border of the given region.

5. (a) Show that if a quadratic form Q(x,y) = ax2 + bxy + cy2 can be factored

as a product (Ax + By)(Cx + Dy) with A,B,C,D integers, then Q takes the value

0 at some pair of integers (x,y) 6= (0,0) , hence Q must be either 0-hyperbolic or

parabolic. Show also, by a direct calculation, that the discriminant of this form is a

square.

(b) Find a 0-hyperbolic form Q(x,y) such that Q(1,5) = 0 and Q(7,2) = 0 and draw

a portion of the topograph of Q that includes the two regions where Q(x,y) = 0.

5.2 Equivalence of Forms

In the topographs we have drawn we often omit the fractional labels x/y for the

regions in the topograph since the more important information is often just the values

Q(x,y) of the form. This leads to the idea of considering two quadratic forms to be

equivalent if their topographs “look the same” when the labels x/y are disregarded.

For a precise definition, one can say that quadratic forms Q1 and Q2 are equivalent

if there is a vertex v1 in the topograph of Q1 and a vertex v2 in the topograph of

Q2 such that the values of Q1 in the three regions surrounding v1 are equal to the

values of Q2 in the three regions surrounding v2 . For example if the values at v1 are

2,2,3 then the values at v2 should also be 2,2,3, in any order, but 2,3,3 is regarded

as different from 2,2,3. Since the three values around a vertex determine all the

other values in a topograph, having the same values at one vertex guarantees that the

topographs look the same everywhere if the labels x/y are omitted.

An alternative definition of equivalence of forms would be to say that two forms

are equivalent if there is a linear fractional transformation in LF(Z) that takes the

topograph of one form to the topograph of the other form. This is really the same

as the first definition since there is a vertex of the topograph in the center of each

triangle of the Farey diagram and we know that elements of LF(Z) are determined by

where they send a triangle, so if two topographs each have a vertex surrounded by

the same triple of numbers, there is an element of LF(Z) taking one topograph to the

other, and conversely.

A topograph and its mirror image correspond to equivalent forms since the mirror

image topograph has the same three labels around each vertex as at the corresponding

vertex of the original topograph. For example, switching the variables x and y reflects

the circular Farey diagram across its vertical axis and hence reflects the topograph of a

form Q(x,y) to the topograph of the equivalent form Q(y,x) . As another example,

the forms ax2 + bxy + cy2 and ax2 − bxy + cy2 are always equivalent since they



Section 5.2 — Equivalence of Forms 121

are related by changing (x,y) to (−x,y) , reflecting the Farey diagram across its

horizontal axis, with a corresponding reflection of the topograph.

Equivalent forms have the same discriminant since the discriminant of a form

is determined by the three numbers surrounding any vertex, as these three numbers

determine the numbers p,q,h at each edge abutting the vertex and the discriminant

is h2 − 4pq for any of these edges.

Our next goal will be to see how to compute all the different equivalence classes

of forms of a given discriminant. The method for doing this will depend on which of

the four types of forms we are dealing with.

Reduced Elliptic Forms

Let us look at elliptic forms first to see how to determine all the different equiv-

alence classes for a given discriminant in this case. As usual it suffices to consider

only the forms with positive values. At a source vertex or edge in

the topograph of a positive elliptic form Q let the smaller two of

the three adjacent values of Q be a and c with a ≤ c , and let the

edge between them be labeled h ≥ 0. The third of the three small-

est values of Q is then a + c − h . The form Q is equivalent to the

form ax2 + hxy + cy2 which has the values a , c , and a + h + c

for (x,y) = (1,0) , (0,1) , and (1,1) . Since a and c are the smallest

values of Q we have a ≤ c ≤ a + c − h , and the latter inequality is

equivalent to h ≤ a . Summarizing, we have the inequalities 0 ≤ h ≤ a ≤ c .

Thus every positive elliptic form is equivalent to a form ax2 + hxy + cy2 with

0 ≤ h ≤ a ≤ c . An elliptic form satisfying these conditions is called reduced. Two

different reduced elliptic forms with the same discriminant are never equivalent since

a and c are the labels on the two regions in the topograph where the form takes its

smallest values, and h is determined by a , c , and ∆ via the formula ∆ = h2 − 4ac

since we assume h ≥ 0.

To avoid dealing with negative numbers let us set ∆ = −D with D > 0, so the

discriminant equation becomes D = 4ac−h2 . To find all equivalence classes of forms

of discriminant −D we therefore need to find all solutions of the equation

4ac = h2 +D with 0 ≤ h ≤ a ≤ c

This equation implies that h must have the same parity as D , and we can bound the

choices for h by the inequalities 4h2 ≤ 4a2 ≤ 4ac = D + h2 which imply 3h2 ≤ D ,

or h2 ≤ D/3 . This limits h to a finite number of possibilities, and for each of these

values of h we just need to find all of the finitely many factorizations of h2 + D as

4ac with a ≤ c and h ≤ a . In particular this shows that there are just finitely many

equivalence classes of elliptic forms of a given discriminant.

As an example consider the case ∆ = −260, so D = 260. Since ∆ is even, so is h ,

and we must have h2 ≤ 260/3 so h must be 0, 2, 4, 6, or 8. The corresponding values
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of a and c that are possible can then be computed from the equation 4ac = 260+h2 ,

always keeping in mind the requirement that h ≤ a ≤ c . The possibilities are shown

in the following table:

h ac (a, c)

0 65 (1,65), (5,13)

2 66 (2,33), (3,22), (6,11)
4 69 —

6 74 —

8 81 (9,9)

As a side comment, note that the values of ac increase successively by 1,3,5,7, · · · .

This always happens when ∆ is even, so the h values are 0,2,4,6, · · · . For odd ∆
the values of h are 1,3,5,7, · · · and the increments for ac are 2,4,6,8, · · · . (Let it

be an exercise for the reader to figure out why these statements are true.)

From the table we see that every positive elliptic form of discriminant −260 is

equivalent to one of the six reduced forms x2+65y2 , 5x2+13y2 , 2x2+2xy+33y2 ,

3x2 + 2xy + 22y2 , 6x2 + 2xy + 11y2 , or 9x2 + 8xy + 9y2 , and no two of these

reduced forms are equivalent to each other. Here are small parts of the topographs

of these forms:

In the first two topographs the central edge is a source edge, and in the last four

topographs the lower vertex is a source vertex.

One might wonder what would happen if we continued the table with larger values

of h not satisfying h2 ≤ 260/3 . For example for h = 10 we would have ac = 90 so the

condition a ≤ c would force a to be 9 or less, violating the condition h ≤ a . Larger

values of h would run into similar difficulties. The condition h2 ≤ D/3 saves one the

trouble of trying larger values of h .

Cycles of Hyperbolic Forms

Next we consider hyperbolic forms of a given discriminant ∆ > 0. The topograph

of a hyperbolic form has a separator line, so for each edge in the separator line we

have the edge label h with the adjacent regions labeled p and −q for p > 0 and

q > 0. We can assume h ≥ 0 by reorienting the edge if necessary. The discriminant

equation is ∆ = h2+4pq . Since p and q are positive this implies h2 < ∆ so there are

only finitely many possibilities for h along the separator lines of forms of the given



Section 5.2 — Equivalence of Forms 123

discriminant ∆ . For each h we then look at the factorizations ∆ − h2 = 4pq . There

can be only finitely many of these, so this means there are just finitely many possible

combinations of labels h,p,−q and hence only finitely many possible separator lines.

Thus the number of equivalence classes of hyperbolic forms of a given discriminant

is finite.

As an example, let us determine all the quadratic forms of discriminant 60, up

to equivalence. Two obvious forms of discriminant 60 are x2−15y2 and 3x2−5y2 ,

whose separator lines consist of periodic repetitions of the following two patterns:

From the topographs it is apparent that these two forms are not equivalent, and also

that the negatives of these two forms, −x2 + 15y2 and −3x2 + 5y2 , give two more

inequivalent forms, for a total of four equivalence classes so far. To see whether

there are others we use the formula ∆ = 60 = h2 + 4pq relating the values p and

−q adjacent to an edge labeled h in the separator line, with p > 0 and q > 0. The

various possibilities are listed in the table below. The equation ∆ = h2+4pq implies

that h and ∆ must have the same parity, just as in the elliptic case.

h pq (p, q)

0 15 (1,15), (3,5), (5,3), (15,1)

2 14 (1,14), (2,7), (7,2), (14,1)
4 11 (1,11), (11,1)

6 6 (1,6), (2,3), (3,2), (6,1)

Each pair of values for (p, q) in the table occurs at some edge along the separator

line in one of the two topographs shown above or the negatives of these topographs.

Hence every form of discriminant 60 is equivalent to one of these four. If it had

not been true that all the possibilities in the table occurred in the topographs of the

forms we started with, we could have used these other possibilities for h , p , and q

to generate new forms px2+hxy−qy2 with new topographs, eventually exhausting

all the finitely many possibilities.

The procedure in this example works for all hyperbolic forms. One makes a list of

all the positive integer solutions of ∆ = h2+4pq , then one constructs separator lines

that realize all the resulting pairs (p, q) . The different separator lines correspond

exactly to the different equivalence classes of forms of discriminant ∆ . Each solution

(h,p, q) gives a form px2+hxy−qy2 . These are organized into cycles corresponding

to the pairs (p,−q) occurring along one of the periodic separator lines. Thus in the

preceding example with ∆ = 60 the 14 pairs (p, q) in the table give rise to the four

cycles along the four different separator lines.

A hyperbolic form ax2+bxy +cy2 belongs to one of the cycles for the discrim-

inant ∆ = b2 − 4ac exactly when a > 0 and c < 0 since a and c are the numbers p
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and −q lying on opposite sides of an edge of the separator line when (x,y) = (1,0)

and (0,1) .

If we superimpose the separator line of a hyperbolic form on the associated in-

finite strip in the Farey diagram, we see that the forms within a cycle correspond to

the edges of the Farey diagram that lie in the strip and join one border of the strip to

the other. For example, for the form 3x2 − 5y2 we obtain the following picture, with

fans of two triangles alternating with fans of three triangles:

The number of forms within a cycle can be fairly large in general. The situation can

be improved somewhat by considering only the “most important” forms in the cycle,

namely the forms that correspond to those edges in the strip that separate pairs of

adjacent fans, indicated by heavier lines in the figure above. In terms of the topograph

itself these are the edges in the separator line whose two endpoints have edges leading

away from the separator line on opposite sides. The forms corresponding to these

edges are traditionally called the reduced forms within the given equivalence class. In

the example of discriminant 60 these are the forms with (p, q) = (1,6) , (6,1) , (3,2) ,

and (2,3) . These are the forms x2+6xy−6y2 , 6x2+6xy−y2 , 3x2+6xy−2y2 , and

2x2 + 6xy − 3y2 . In this example there is just one reduced form for each cycle, but

in more complicated examples there can be any number of reduced forms in a cycle.

Note that the reduced forms do not necessarily give the simplest-looking forms, which

in this example were the original forms x2 − 15y2 and 3x2 − 5y2 along with their

negatives −x2 + 15y2 and −3x2 + 5y2 , or alternatively 15x2 −y2 and 5x2 − 3y2 .

0-Hyperbolic and Parabolic Forms

For 0-hyperbolic forms it is rather easy to determine all the equivalence classes

of forms of a fixed discriminant. As we saw in our initial discussion of 0-hyperbolic

forms, their topographs contain two regions labeled 0, and the labels on the regions

adjacent to each 0-region form an arithmetic progression with increment given by the

label on the edges bordering the 0-region. Previously we called this edge label h but

now let us change notation and call it q . We may assume q is positive by re-orienting

the edges if necessary. The discriminant is ∆ = q2 so both 0-regions must have the

same edge label q . Either one of the two arithmetic progressions determines the form

up to equivalence since two successive terms in the progression together with the 0 in

the adjacent region give the three values of the form around a vertex in the topograph.

The form qxy − py2 has discriminant q2 and has −p as one term of the arith-

metic progression adjacent to the 0-region x/y =
1/0 , namely in the region x/y =

0/1 .
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Thus every 0-hyperbolic form of discriminant q2 is equivalent to one of these forms

qxy −py2 . Arithmetic progressions with increment q can be thought of as congru-

ence classes mod q , so only the mod q value of p affects the arithmetic progression

and hence we may assume 0 ≤ p < q . The number of equivalence classes of 0-hyper-

bolic forms of discriminant q2 is therefore at most q , the number of congruence

classes mod q . However, the number of equivalence classes could be smaller since

each form has two 0 regions and hence two arithmetic progressions, which could be

the same or different. Since either arithmetic progression determines the form, if the

two progressions are the same then the topograph must have a mirror symmetry in-

terchanging the two 0-regions. This always happens for example if the two 0-regions

touch, which is the case p = 0 so the form is qxy and the mirror symmetry just in-

terchanges x and y . If we let r denote the number of forms qxy − py2 without

mirror symmetry then the number of equivalence classes of 0-hyperbolic forms of

discriminant q2 is q − r since each form without mirror symmetry has two different

arithmetic progressions giving the same form.

For parabolic forms it is even easier to describe what all the different equivalence

classes are since we have seen exactly what their topographs look like: There is a

single region labeled 0 and all the regions adjacent to this have the same label q ,

which can be any nonzero integer, positive or negative. The integer q thus determines

the equivalence class, so there is one equivalence class of parabolic forms for each

nonzero integer q , with qx2 being one form in this equivalence class. Parabolic forms

all have discriminant 0, so in this case there are infinitely many different equivalence

classes with the same discriminant. However, if we look only at primitive forms then

there are just the two classes given by the forms ±x2 .

Every parabolic form is equivalent to one of the forms qx2 by a change of vari-

ables T(x,y) = (sx+ty,ux+vy) with sv−tu = ±1, so every parabolic form factors

as q(sx + ty)2 for some pair of coprime integers s and t , with q = ±1 for primitive

forms. Similarly, every 0-hyperbolic form is equivalent to a form y(qx−py) so the

form can be written as (ux+vy)
(
q(sx+ ty)−p(ux+vy)

)
which can be simplified

to a product (Ax + By)(Cx + Dy) with A,B,C,D integers. Conversely, every form

that factors as (Ax + By)(Cx +Dy) with integer coefficients has the value 0 when

(x,y) = (−B,A) or (−D,C) so the form must be parabolic or 0-hyperbolic. Parabolic

forms are the case that the two linear factors are the same up to a constant multiple.

We have now shown how to compute all the equivalence classes of forms of a

given discriminant for each of the four types of forms. In particular we have proved

the following general fact:

Theorem 5.5. There are only a finite number of equivalence classes of forms with

a given nonzero discriminant.
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Exercises

1. (a) For positive elliptic forms of discriminant ∆ = −D , verify that the smallest

value of D for which there are at least two inequivalent forms of discriminant −D is

D = 12.

(b) If we add the requirement that all forms under consideration are primitive, then

what is the smallest D?

2. Determine all the equivalence classes of positive elliptic forms of discriminants

−67, −104, and −347.

3. Find two elliptic forms that are not equivalent but take on the same three smallest

values a < b < c .

4. Determine the number of equivalence classes of quadratic forms of discriminant

∆ = 120 and list one form from each equivalence class.

5. Do the same thing for ∆ = 61.

6. (a) Find the smallest positive nonsquare discriminant for which there is more than

one equivalence class of forms of that discriminant. (In particular, show that all

smaller discriminants have only one equivalence class.)

(b) Find the smallest positive nonsquare discriminant for which there are two inequiv-

alent forms of that discriminant, neither of which is simply the negative of the other.

7. (a) Determine all the equivalence classes of 0-hyperbolic forms of discriminant 49.

(b) Determine which equivalence class in part (a) each of the forms 7xy − py2 for

p = 0,1,2,3,4,5,6 belongs to.

5.3 The Class Number

When considering equivalence classes of forms of a given discriminant there are

further refinements that turn out to be very useful. The first involves forms whose

topographs are mirror images of each other. According to the definition we have

given, two such forms are regarded as equivalent. However, there is a more refined

notion of equivalence in which two forms are considered equivalent only if there is an

orientation-preserving transformation in LF(Z) taking the topograph of one form to

the topograph of the other. In this case the forms are called properly equivalent.

To illustrate the distinction between equivalence and proper equivalence, let us

look at the earlier example of discriminant ∆ = −260 where we saw that there were

six equivalence classes of forms:
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In the first two topographs the central edge is a source edge and in the other four

the lower vertex is a source vertex. Whenever there is a source edge the topograph

has mirror symmetry across a line perpendicular to the source edge. When there is

a source vertex there is mirror symmetry only when at least two of the three sur-

rounding values of the form are equal, as in the third and sixth topographs above,

but not the fourth or fifth topographs. Thus the mirror images of the fourth and

fifth topographs correspond to two more quadratic forms which are not equivalent to

them under any orientation-preserving transformation. With the more refined notion

of proper equivalence there are therefore eight proper equivalence classes of forms

of discriminant −260.

To obtain explicit formulas for the mirror image forms we can interchange the

coefficients a and c in ax2+bxy +cy2 , which corresponds to interchanging x and

y , reflecting the topograph across a vertical line. Alternatively we could change the

sign of b , which corresponds to changing the sign of either x or y and thus reflecting

the topograph across a horizontal line.

For a general discriminant ∆ each equivalence class of forms of discriminant ∆
gives rise to two proper equivalence classes except when the class contains forms

with mirror symmetry, in which case equivalence and proper equivalence amount to

the same thing since every orientation-reversing equivalence can be converted into

an orientation-preserving equivalence by composing with a mirror reflection. Here we

are using the fact that the only linear fractional transformations that take a topograph

to itself and reverse orientation are mirror reflections, as will be shown in Section 5.4

when we study symmetries of topographs in more detail.

Multiplying a form by an integer d > 1 does not change its essential features in

any significant way, so it is reasonable when classifying forms to restrict attention just

to primitive forms, the forms that are not proper multiples of other forms. In other

words, one considers only the forms ax2 + bxy + cy2 for which a , b , and c have

no common divisor greater than 1. The primitivity of a form is detectable just from

the numbers appearing in its topograph since all the numbers in the topograph of a

nonprimitive form are divisible by some number d > 1, and conversely if all numbers

in the topograph of a form ax2+bxy+cy2 are divisible by d then in particular a , c ,

and a+b+ c , the values at (1,0) , (0,1) , and (1,1) , are divisible by d which implies
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that b is also divisible by d so the whole form is divisible by d . Thus primitivity

is a property of equivalence classes of forms. Multiplying a form by d multiplies its

discriminant by d2 , so nonprimitive forms of discriminant ∆ exist exactly when ∆ is

a square times another discriminant. For example, when ∆ = −12 = 4(−3) one has

the primitive form x2+3y2 as well as the nonprimitive form 2x2+2xy+2y2 which

is twice the form x2 + xy +y2 of discriminant −3.

The number of proper equivalence classes of primitive forms of a given discrim-

inant is called the class number for that discriminant, where in the case of elliptic

forms one considers only the forms with positive values. The traditional notation for

the class number for discriminant ∆ is h∆ . (This h has nothing to do with the h

labels on edges in topographs.)

Since we have an algorithm for computing the finite set of equivalence classes

of forms of a given nonzero discriminant, this leads to an algorithm for computing

class numbers. When computing the table of triples (h,a, c) for elliptic forms or

(h,p, q) for hyperbolic forms we omit the nonprimitive triples since these correspond

to nonprimitive forms. Then we determine which of the remaining forms have mirror

symmetry. For elliptic forms these are the cases when one or more of the inequalities

0 ≤ h ≤ a ≤ c is an equality, as we will see in the next section. For hyperbolic forms

mirror symmetries can be detected in the separator line. Forms with mirror symmetry

count once when computing the class number, and forms without mirror symmetry

count twice. However, just having an algorithm to compute the class number h∆ does

not make it transparent how h∆ depends on ∆ , and indeed this is a very difficult

question which is still only partially understood.

Of special interest are the discriminants for which all forms are primitive. These

are called fundamental discriminants. Thus a fundamental discriminant is one which

is not a square times a smaller discriminant. For example, 8 is a fundamental dis-

criminant even though it is divisible by a square, 4, since the other factor 2 is not

the discriminant of any form, as it is not congruent to 0 or 1 mod 4. Technically

1 is a fundamental discriminant according to our definition, but we will exclude this

trivial case. Thus fundamental discriminants are never squares, so fundamental dis-

criminants appear only for elliptic and hyperbolic forms. With 1 excluded it is easy

to check that the fundamental discriminants ∆ with |∆| < 40 are 5, 8, 12, 13, 17,

20, 21, 24, 28, 29, 33, 37 and −3, −4, −7, −8, −11, −15, −19, −20, −23, −24,

−31, −35, −39.

It is not hard to give a precise characterization of the discriminants ∆ that are

fundamental. First write ∆ = 2kn with k ≥ 0 and n odd, possibly negative. If any

odd square divides n then we can factor this out of ∆ and still get a discriminant

since odd squares are congruent to 1 mod 4 so multiplying by an odd square does

not affect whether a number is 0 or 1 mod 4. The exponent k in 2k can never be

1 since this would imply ∆ ≡ 2 mod 4. If k ≥ 4 we can factor powers of 4 out of
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∆ until we have k equal to 2 or 3 and still have a discriminant. If k = 3 we cannot

factor a 4 out of ∆ since this would give the excluded case k = 1. If k = 2 we can

factor 4 = 2k out of ∆ exactly when n ≡ 1 mod 4. Finally, when k = 0 we have ∆ = n
so we must have n ≡ 1 mod 4. Thus the fundamental discriminants other than −4

and ±8 are of three types:

∆ = n with |n| a product of distinct odd primes and n ≡ 1 mod 4.

∆ = 4n with |n| a product of distinct odd primes and n ≡ 3 mod 4.

∆ = 8n with |n| a product of distinct odd primes.

Every nonsquare discriminant can be factored uniquely as ∆ = d2∆′ where ∆′ is a

fundamental discriminant and d ≥ 1. The number d is called the conductor of ∆ .

Fundamental discriminants are those whose conductor is 1. Conductors will become

important when we study the deeper properties of forms in later chapters. The class

number h∆ is always a multiple of h∆′ and there is a not-too-complicated formula

for what this multiple is, so the determination of class numbers reduces largely to the

case of fundamental discriminants. However, we will not be going into more detail on

the relationship between h∆ and h∆′ since this would lead us somewhat outside the

scope of the book.

Discriminants of Class Number 1

The question of which discriminants have class number 1 has been much studied.

This amounts to finding the discriminants for which all primitive forms are equivalent

since if all primitive forms are equivalent, they are all equivalent to the principal form

which has mirror symmetry so they are all properly equivalent to the principal form.

For elliptic forms the following nine fundamental discriminants have class num-

ber 1 : ∆ = −3, −4, −7, −8, −11, −19, −43, −67, −163

In addition there are four more which are not fundamental: −12, −16, −27, −28. It

was conjectured by Gauss around 1800 that there are no other negative discriminants

of class number 1. Over a century later in the 1930s it was shown that there is

at most one more, and then in the 1950s and 1960s Gauss’s conjecture was finally

proved completely.

Another result from the 1930s is that for each number n there are only finitely

many negative discriminants with class number n . Finding what these discriminants

are is a difficult problem, however, and so far this has been done only in the range

n ≤ 100.

The situation for positive discriminants with class number 1 is not as well un-

derstood. Computations show that there are a large number of positive fundamental

discriminants with class number 1, and it seems likely that there are in fact infinitely

many. However, this has not been proved and remains one of the most basic unsolved

problems about quadratic forms. If one allows nonfundamental discriminants then
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it is known that there are infinitely many with h∆ = 1, including for example the

discriminants ∆ = 22k+1 for k ≥ 1 and ∆ = 52k+1 for k ≥ 0.

Returning to the nine negative fundamental discriminants of class number 1, it is

easy to check in each case that all forms are equivalent. For example when ∆ = −163

and we apply the earlier algorithm to find all reduced forms we must have h odd with

h2 ≤ 163/3 so the only possibilities are h = 1,3,5,7. From the equation 4ac = 163+h2

the corresponding values of ac are 41,43,47,53 which all happen to be prime, and

since a ≤ c this forces a to be 1 in each case. But since h ≤ a this means h must

be 1, and we obtain the single quadratic form x2 + xy + 41y2 .

The corresponding polynomial x2+x+41 has a curious property discovered by

Euler: For each x = 0,1,2,3, · · · ,39 the value of x2+x+41 is a prime number. Here

are these forty primes:

41 43 47 53 61 71 83 97 113 131 151 173 197 223 251 281 313

347 383 421 461 503 547 593 641 691 743 797 853 911 971

1033 1097 1163 1231 1301 1373 1447 1523 1601

Notice that the successive differences between these primes are 2,4,6,8,10, · · · ,78

since [(x + 1)2 + (x + 1) + 41] − [x2 + x + 41] = 2(x + 1) . The next number in

the sequence after 1601 would be 1681 = 412 , not a prime. (Write x2 + x + 41 as

x(x + 1) + 41 to see why x = 40 must give a nonprime.) A similar thing happens

for the other negative fundamental discriminants of class number 1. The nontrivial

cases are listed in the table below, where D = −∆ .

D

7 x2 + x + 2 2

11 x2 + x + 3 3 5

19 x2 + x + 5 5 7 11 17

43 x2 + x + 11 11 13 17 23 31 41 53 67 83 101

67 x2 + x + 17 17 19 23 29 37 47 59 73 89 107 127 149 173 199 227 257

Satisfactory explanations are known for the occurrence of so many prime values of

these quadratic polynomials but they involve fairly deep theory. It is curious that the

lists of prime values account for all primes less than 100 except 79.

Suppose one asks about the next forty values of x2 + x + 41 after the value 412

when x = 40. The next value, when x = 41, is 1763 = 41·43, also not a prime. After

this the next two values are primes, then comes 2021 = 43·47, then four primes,

then 2491 = 47·53, then six primes, then 3233 = 53·61, then eight primes, then

4331 = 61·71, then ten primes, then 5893 = 71·83. This last number was for x = 76,

and the next four values are prime as well for x = 77, 78, 79, 80, completing the

second 40 values. But then the pattern breaks down when x = 81 where one gets

the value 6683 = 41·163. Thus, before the breakdown, not only were we getting

sequences of 2, 4, 6, 8, 10 primes but the nonprime values were the products of two

successive terms in the original sequence of prime values 41, 43, 47, 53, 61, · · · .
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All this seems quite surprising, even if the nice patterns do not continue forever. A

partial explanation can be found in the fact that the polynomial P(x) = x2 + x + 41

satisfies the identity P(40 + n2) = P(n − 1)P(n) as one can easily check, so when

n = 1,2,3, · · · we get P(41) = P(0)P(1) = 41·43, P(44) = 43·47, P(49) = 47·53,

P(56) = 53·61, etc. However this does not explain why the intervening values of P(x)

should be prime. The polynomials in the preceding table exhibit similar behavior.

Exercises

1. Compute the class number for each of the following discriminants:

(a) −23 (b) −47 (c) −71 (d) −87 (e) −92 (f) 145 (g) 148.

2. In this extended exercise the goal will be to show that the only negative even dis-

criminants with class number 1 are −4, −8, −12, −16, and −28. (Of these only −4

and −8 are fundamental discriminants.) The strategy will be to exhibit an explicit

reduced primitive form Q different from the principal form x2 + dy2 for each dis-

criminant −4d with d > 4 except d = 7. This will be done by breaking the problem

into several cases, where in each case a form Q will be given and you are to show

that this form has the desired properties, namely it is of discriminant −4d , primitive,

reduced, and different from the principal form. You should also check that the cases

considered cover all possibilities.

(a) Suppose d is not a prime power. Then it can be factored as d = ac where 1 < a < c

and a and c are coprime. In this case let Q be the form ax2 + cy2 .

(b) The form ax2 + 2xy + cy2 will work provided that d + 1 factors as d+ 1 = ac

where a and c are coprime and 1 < a < c . If d is odd, for example a power of an odd

prime, then d+1 is even so it has such a factorization d+1 = ac unless d+1 = 2n .

(c) If d = 2n the cases we need to consider are n ≥ 3 since d > 4. When n = 3 take

Q to be 3x2 + 2xy + 3y2 and when n ≥ 4 take Q to be 4x2 + 4xy + (2n−2 + 1)y2 .

(d) When d + 1 = 2n the cases of interest are n ≥ 3. When n = 3 we have d = 7

which is one of the allowed exceptions with class number 1. When n = 4 we have

d = 15 and 3x2 + 5y2 works as in part (a). When n = 5 we have d = 31 and we take

the form 5x2+4xy +7y2 . When n ≥ 6 we use the form 8x2+ 6xy + (2n−3+ 1)y2 .

3. Show that the class number for discriminant ∆ = q2 > 1 is ϕ(q) where ϕ(q) is

the number of positive integers less than q and coprime to q .

5.4 Symmetries of Forms

We have observed that some topographs are symmetric in various ways. To give

a precise meaning to this term, let us say that a symmetry of a form Q or its to-

pograph is a transformation T in LF(Z) that leaves all the values of Q unchanged,
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so Q(T(x,y)) = Q(x,y) for all pairs (x,y) . For example, every hyperbolic form

has a periodic separator line, which means there is a symmetry that translates the

separator line along itself. If T is the symmetry translating by one period in either

direction, then all the positive and negative powers of T are also translational sym-

metries. Strictly speaking, the identity transformation is always a symmetry but we

will sometimes ignore this trivial symmetry.

Some hyperbolic forms also have mirror symmetry, where the symmetry is re-

flection across a line perpendicular to the separator line. This reflector line could

contain one of the edges leading off the separator line, or it could be halfway between

two consecutive edges leading off the separator line on the same side. Both kinds of

symmetry occur along the separator line of the form x2 − 19y2 , for example:

Elliptic forms can have mirror symmetries as well, as we saw in the earlier example

∆ = −260 where two topographs had mirror symmetry across a line perpendicular to

an edge and two had symmetry across a line containing an edge.

Proposition 5.6. A number a appears on the reflector line of a mirror symmetry

of the topograph of a form Q exactly when Q is equivalent to a form ax2 + cy2

or ax2 + axy + cy2 . In both cases a divides the discriminant of Q .

In particular the principal forms x2 − ky2 and x2 +xy − ky2 have mirror sym-

metry, so there is at least one form with mirror symmetry in each discriminant.

Proof: The figures at the right show the two

types of mirror symmetries, where the reflec-

tor line is either the perpendicular bisector

of an edge of the topograph or contains an

edge of the topograph. Let a and c be the

labels on the left and right regions as in the

figures, so the reflector line passes through the a region. If the edge between the

left and right regions is labeled h then the regions above and below this edge are

labeled a + c + h and a + c − h . In the first figure the mirror symmetry forces h

to be 0 so the form is equivalent to the form ax2 + cy2 . In the second figure the

mirror symmetry forces the lower region to be labeled c and this forces h to equal a

when the edge labeled h is oriented upward. The form is then equivalent to the form

ax2 + axy + cy2 .

Conversely, the forms ax2 + cy2 and ax2 + axy + cy2 have topographs as

shown in the figures, so these topographs have mirror symmetry with the reflector
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line passing through the a region. These two forms have discriminants −4ac and

a2 − 4ac , both divisible by a . ⊔⊓

As the proof showed, reflector lines crossing an edge in the topograph corre-

spond to forms ax2+cy2 and reflector lines containing an edge correspond to forms

ax2 + axy + cy2 . For example, a form ax2 + bxy + ay2 has mirror symmetry

interchanging x and y , reflecting across the vertical axis of the circular Farey dia-

gram which contains an edge of the topograph, so this form is equivalent to a form

Ax2+Axy+Cy2 . The reflector line passes through regions of the topograph labeled

2a+b and 2a−b so A can be taken to be either 2a+b or 2a−b , with C = a since

this is the value of the form at x/y =
0/1 .

Proposition 5.7. Let a be a divisor of the discriminant ∆ that is either odd or twice

an odd number. Then there exists a form ax2+cy2 or ax2+axy+cy2 of discrimi-

nant ∆ having a in its topograph. If a is squarefree, a form of discriminant ∆ with

a in its topograph is unique up to equivalence, and a appears in the topograph

only on a reflector line of a mirror symmetry.

The conditions on the number a can be illuminated by looking at the case ∆ =
−36 where there are three equivalence classes of forms:

The first two topographs have a single reflector line while the third has two reflector

lines. The positive divisors of 36 are 1,2,3,4,6,9,12,18, and 36. The divisors that

appear in the topographs are the ones that are odd or twice an odd number, so 4, 12,

and 36 are excluded. Of the divisors that do appear, the ones that are not squarefree

are 9 and 18, and these appear in more than one topograph, and off the reflector

lines as well as on them.

Proof of Proposition 5.7: Suppose first that ∆ is even. For the given divisor a of ∆
let us first look for a form ax2+ cy2 since this has even discriminant. Thus we want

an integer c such that ∆ = −4ac . Since ∆ is even it is divisible by 4, so if a is odd

and divides ∆ then 4a divides ∆ so the desired integer c exists in this case.

Since ∆ is even it is either 8k or 8k + 4 for some integer k . If ∆ = 8k then

∆ = −4ac can again be solved for c when a is twice an odd number.
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When ∆ = 8k+ 4 and a is twice an odd number the equation ∆ = −4ac will not

have an integer solution c since −4ac is divisible by 8, so we instead look for a form

ax2+axy +cy2 . This has ∆ = a(a−4c) and we want to find an integer c such that
∆�a = a − 4c . This is equivalent to saying ∆�a ≡ a mod 4. We have a = 2(2m + 1)

so a ≡ 2 mod 4. For ∆�a , if we first divide ∆ by 2 we get 4k + 2, then dividing by

2m+1 can only change the congruence class mod 4 by a sign since odd numbers are

±1 mod 4. Thus ∆�a ≡ 2 mod 4 so the congruence ∆�a ≡ a mod 4 is satisfied. This

finished the proof of the existence of a form ax2+ cy2 or ax2+axy + cy2 when ∆
is even.

Suppose now that ∆ is odd, hence also its divisor a . Since ∆ is odd, we are

looking for a form ax2+axy + cy2 . As above, the condition for having such a form

is the congruence ∆�a ≡ a mod 4. This is satisfied since ∆ ≡ 1 mod 4 and a ≡ ±1

mod 4.

Now we turn to the second statement in the proposition where we assume a is

a squarefree divisor of ∆ . Suppose that a appears in the topograph of a form of

discriminant ∆ . If b is one of the labels on an edge of the topograph bordering the

region labeled a then we have ∆ = b2−4ac for c the label on the other region adjacent

to the b edge. Since we assume a divides ∆ = b2−4ac it must also divide b2 , and if

a is squarefree it will therefore divide b . Thus we have b =ma for some integer m .

The labels on the edges bordering the a region form an arithmetic progression with

increment 2a so these are the numbers b + 2ka as k ranges over all integers. Since

b = ma we can factor b + 2ka as (m + 2k)a . The numbers m + 2k for varying k

form an arithmetic progression consisting of all even numbers if m is even and all

odd numbers if m is odd. Thus we can choose k so that m+2k is either 0 or 1, and

hence the arithmetic progression (m+ 2k)a contains either 0 or a . This means one

of the edge labels on the border of the a region is either 0 or a .

The topograph near this edge has the

shape shown in one of the two figures at the

right. From this we see that there is a reflec-

tor line passing through the a region and

the form is equivalent to either ax2 + cy2

or ax2 + axy + cy2 .

To finish the proof we only need to see that there cannot be both a form ax2+cy2

and a form ax2 +axy + c′y2 with the same a and the same discriminant. Equating

the discriminants of these two forms, we would have −4ac = a2−4ac′ and therefore

a = 4(c′ − c) , but a would then be divisible by 4 and thus not squarefree. ⊔⊓

Symmetries of Elliptic Forms

Let us consider now what sorts of symmetries are possible in general for the vari-

ous types of forms, beginning with elliptic forms. For an elliptic form each symmetry
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must take the source vertex or edge to itself since this is where the smallest values

of the form occur. In the case of a source edge, if a symmetry does

not interchange the two ends of the source edge then the symmetry

must be either the identity or a reflection across a line containing

the source edge. If a symmetry does interchange the two ends of a

source edge then it must either be a reflection across a line perpen-

dicular to the edge or a 180 degree rotation of the topograph about

the midpoint of the edge. Referring to the figure at the right, this ro-

tation can only give a symmetry if a = c and a+b+c = a−b+c which is equivalent

to having b = 0. Thus the form is ax2 + ay2 so if it is primitive it is just x2 + y2 .

Note that multiplying any form by a constant does not affect its symmetries so there is

no harm in considering only primitive forms. For the form x2+y2 note also that this

form has both types of mirror symmetries, and the composition of these two mirror

symmetries is the 180 degree rotational symmetry.

For a source vertex, a symmetry must take this vertex to itself. If a symmetry is

orientation-preserving and not the identity then it must be a rotation about the source

vertex by either one-third or two-thirds of a full turn. In either case this means that

the three labels around the source vertex must be equal, so if the source vertex is

the lower vertex in the figure above then the condition is a = c = a− b + c , which is

equivalent to saying a = b = c . The form is then ax2+axy+ay2 so if it is primitive

it is x2 + xy + y2 . The only other sort of symmetry for a source vertex is reflection

across a line containing one of the three edges that meet at the source vertex. The

only time there can be more than one such symmetry is when all three adjacent labels

are equal so we are again in the situation of a form ax2 + axy + ay2 .

For an elliptic form ax2 + bxy + cy2 that is reduced, so 0 ≤ b ≤ a ≤ c , it is

easy to recognize exactly when symmetries occur, namely when at least one of these

three inequalities becomes an equality. Again using the figure above, when b = 0 one

has a source edge with a mirror symmetry across the perpendicular line. When b = a

we have a − b + c = c so there is a mirror symmetry across the lower right edge.

And when a = c one has mirror symmetry across the central edge. Since a and c

are the two smallest labels on regions in the topograph, we see that reduced forms

ax2+bxy +ay2 occur when the smaller two of the three labels at the source vertex

are equal, and reduced forms ax2 +axy + cy2 occur when the larger two labels are

equal, at 0/1 and ---1/1 .

Certain combinations of equalities in 0 ≤ b ≤ a ≤ c are also possible. If b = 0 and

a = c the form is a(x2 +y2) with a source edge and both types of mirror symmetry

as well as 180 degree rotational symmetry. Another possibility is that b = a = c so

the form is a(x2 + xy + y2) with the symmetries described earlier. These are the

only combinations of equalities that can occur since we must have a > 0 so 0 = b = a

is impossible.
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For reduced elliptic forms this exhausts all the possible symmetries since if we

have strict inequalities 0 < b < a < c then the values of the form in the four regions

shown in the figure above are all distinct. The first time this occurs is when the

inequalities are 0 < 1 < 2 < 3 so the form is 2x2 + xy + 3y2 of discriminant −23.

Symmetries of Hyperbolic Forms

Now consider hyperbolic forms. These all have periodic separator lines so they

always have translational symmetries, and the question is what other sorts of sym-

metries are possible. For a hyperbolic form each symmetry must take the separator

line to itself since this line consists of the edges that separate positive from negative

values of the form. It is a simple geometric fact that a symmetry of a line L that is

divided into a sequence of edges, say of length 1, extending to infinity in both direc-

tions, must be either a translation along L by some integer distance in either direction,

or a reflection of L fixing either a vertex of L or the midpoint of an edge of L and

interchanging the two halves of L on either side of the fixed point. This can be seen

as follows. Symmetries of L are assumed to take vertices to vertices, so suppose the

symmetry T sends a vertex v to the vertex T(v) . Then if T preserves the orientation

of L it must be a translation along L by the distance from v to T(v) as one can see

by considering what T does to the two edges adjacent to v , then to the next two

adjacent edges on either side, then the next two edges, and so on. If T reverses the

orientation of L then either T(v) = v or T fixes the midpoint of the segment from v

to T(v) since it sends this segment to a segment of the same length with one end at

T(v) but extending back toward v since T reverses orientation of L . Thus T fixes a

point of L in either case, and it follows that T must reflect L across this fixed point,

as one can again see by considering the edge or edges containing the fixed point, then

the next two edges, and so on. If the distance from v to T(v) is an even integer, the

midpoint between v and T(v) will be a vertex, and if it is odd, the midpoint will be

a midpoint of an edge.

Returning to the situation of a symmetry T of the topograph of a hyperbolic form

that takes the separator line L to itself, T must also take the side of L with positive

labels to itself, so T preserves orientation of the plane exactly when it preserves ori-

entation of L . Thus the only orientation-preserving symmetries of the topograph are

translations along the separator line, and the only orientation-reversing symmetries

are the two kinds of reflections across lines perpendicular to L .

If the separator line of a hyperbolic form has a mirror symmetry then because of

periodicity there has to be at least one reflector line in each period, but in fact there are

exactly two reflector lines in each period. To see this, let T be the translation by one

period and let R1 be a reflection across a reflector line L1 . Consider the composition

TR1 , reflecting first by R1 then translating by T , so TR1 is an orientation-reversing

symmetry. If L2 is the line halfway between L1 and T(L1) then T(R1(L2)) = L2 as
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we can see in the first figure below:

Thus TR1 is an orientation-reversing symmetry that takes L2 to itself while preserving

the positive and negative sides of the separator line, so TR1 must be a reflection R2

across L2 . This shows that there are at least two reflector lines in each period. There

cannot be more than two since if R1 and R2 are the reflections across two adjacent

reflector lines L1 and L2 as in the second figure then the composition R2R1 , first

reflecting by R1 then by R2 , is orientation-preserving and sends L1 to R2(R1(L1)) =

R2(L1) so this composition is a symmetry translating the separator line by twice the

distance between L1 and L2 . The distance between L1 and L2 must then be half the

length of the period, otherwise if the translation R2R1 were some power Tn of the

basic periodicity translation T with |n| > 1, there would be fewer than two reflector

lines in a period.

For completeness let us also describe the symmetries for the remaining two types

of forms besides elliptic and hyperbolic forms. For a 0-hyperbolic form, if the two

regions labeled 0 in the topograph have a border edge in common then a symmetry

must take this edge to itself, and it cannot interchange the ends of the edge since

positive values must go to positive values. The only possibility is then a reflection

across this edge, which is always a symmetry of the topograph. If the two 0-regions

do not have a common border edge they are joined by a finite separator line and a

symmetry must take this line to itself without interchanging the positive and negative

sides. The only possibility is a reflection across a line perpendicular to the separator

line and passing through its midpoint. This reflection gives a symmetry only when

the finite continued fraction associated to the form is palindromic.

A parabolic form has a single 0-region in its topograph, so the bordering line for

this region must be taken to itself by any symmetry. Every symmetry of this bordering

line gives a symmetry of the form, either a translation along the line or a reflection

across a perpendicular line.

The preceding analysis shows in particular the following fact:

Proposition 5.8. All orientation-reversing symmetries of the topograph of a form

are mirror symmetries, reflecting across a line that is either perpendicular to or

contains an edge of the topograph.

Traditionally, a form whose topograph has an orientation-reversing symmetry is

called ambiguous although there is really nothing about the form that is ambiguous
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in the usual sense of the word, unless perhaps it is the fact that such a form is indis-

tinguishable from its mirror image.

The Symmetric Class Number

Let us define the symmetric class number hs∆ to be the number of equivalence

classes of primitive forms of discriminant ∆ with mirror symmetry. Recall that equiv-

alence is the same as proper equivalence for forms with mirror symmetry. The or-

dinary class number h∆ is thus hs∆ plus twice the number of equivalence classes of

primitive forms without mirror symmetry. We have h∆ ≥ h
s
∆ , and in fact h∆ is always

a multiple of hs∆ as we will see in Proposition 7.16.

In contrast with h∆ , the number hs∆ can be computed explicitly. Here is the result

for elliptic and hyperbolic forms:

Theorem 5.9. If ∆ is a nonsquare discriminant and k is the number of distinct

prime divisors of ∆ then hs∆ = 2k−1 except in the following cases :

(a) If ∆ = 4(4m+ 1) then hs∆ = 2k−2 .

(b) If ∆ = 32m then hs∆ = 2k .

The exceptional cases (a) and (b) involve nonfundamental discriminants, so for

fundamental discriminants we have hs∆ = 2k−1 . For example, the discriminants ∆ =
60 = 3·4·5 and ∆ = −260 = −4·5·13 that we looked at in the previous section have

three distinct prime divisors so the theorem says there are 22 = 4 equivalence classes

of mirror symmetric forms in these two cases. This agrees with what the topographs

showed.

The proof of the theorem will involve considering a number of different cases.

Fortunately most of the resulting complication disappears in the final answer.

Proof: By Proposition 5.6 every form with mirror symmetry is equivalent to a form

ax2 + cy2 or ax2 + axy + cy2 . The strategy will be to count how many of these

special forms there are that are primitive with discriminant ∆ , then determine which

of these special forms are equivalent.

For counting the special forms ax2+cy2 and ax2+axy +cy2 we may assume

a > 0 since a is the value of the form when (x,y) = (1,0) and for elliptic forms

we only consider those with positive values, while for hyperbolic forms we are free to

change a form to its negative so it suffices to count only those with a > 0 and then

double the result.

Case 1: Forms ax2+cy2 . Then ∆ = −4ac = 4δ for δ = −ac . Primitivity of the form

is equivalent to a and c being coprime. The only way to have coprime factors a and

c of δ = −ac is to take an arbitrary subset of the distinct primes dividing δ and let

a be the product of these primes each raised to the same power as in δ (so a = 1

when we choose the empty subset). The number of such subsets is 2k
′

where k′ is the
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number of distinct prime divisors of δ , so there are 2k
′

primitive forms ax2 + cy2

with a > 0.

Case 2: Forms ax2 + axy + cy2 with ∆ odd. We have ∆ = a2 − 4ac so ∆ and a

have the same parity. From ∆ = a(a − 4c) we see that a divides ∆ . We claim that

each divisor a of ∆ gives rise to a form ax2+axy +cy2 of discriminant ∆ . Solving

∆ = a2−4ac for c gives c = (a2−∆)/4a . The numerator is divisible by 4 since a and

∆ are odd and hence a2 and ∆ are both 1 mod 4, making the numerator 0 mod 4.

The numerator is also divisible by a if a divides ∆ . Since 4 and a are coprime when

a is odd, it follows that 4a divides the numerator so c is an integer and we get a

form ax2+axy +cy2 of discriminant ∆ . This form is primitive exactly when a and

c are coprime. This is equivalent to saying that the two factors of ∆ = a(a− 4c) are

coprime since any divisor of a and c must divide the two factors, and conversely any

divisor of the two factors must divide a and 4c , hence also c since this divisor of

the odd number a must be odd. As in Case 1, the only way to obtain a factorization

∆ = a(a−4c) with the two factors coprime is to take an arbitrary subset of the distinct

primes dividing ∆ and let a be the product of these primes each raised to the same

power as in ∆ . The number of such subsets is 2k so this is the number of primitive

forms ax2 + axy + cy2 with a > 0 when ∆ is odd.

There remain the forms ax2+axy + cy2 with ∆ = 4δ . Again ∆ and a have the

same parity since ∆ = a2 − 4ac , so a is even, say a = 2d . From ∆ = a2 − 4ac we

then have δ = d2 − 2dc = d(d− 2c) .

Case 3: Forms ax2 + axy + cy2 with ∆ = 4δ and a = 2d for odd d . By primitivity

c must be odd. The two factors of δ = d(d − 2c) are odd and must be distinct

mod 4 since c is odd. Thus one factor is 1 mod 4 and the other is 3 mod 4, so

δ ≡ 3 mod 4, say δ = 4m + 3. We claim that when δ = 4m + 3, each divisor d

of δ gives rise to a form ax2 + axy + cy2 with a = 2d . To show this, note first

that d must be odd since it divides δ which is odd. Solving δ = d(d − 2c) for c

gives c = (d2 − δ)/2d . Since d and δ are odd, the numerator d2 − δ is even hence

divisible by the 2 in the denominator. The numerator is also divisible by the d in

the denominator if d divides δ . Since d is odd, this implies that 2d divides the

numerator, so c is an integer for each divisor d of δ . In fact c is an odd integer since

the numerator d2 − δ is 2 mod 4 and so cd = (d2 − δ)/2 is odd, forcing c to be

odd. For the form ax2+axy +cy2 to be primitive means that a and c are coprime.

Since c is odd and a = 2d this is equivalent to c and d being coprime. This in turn is

equivalent to the two factors of δ = d(d− 2c) being coprime since c and d are odd.

Thus when δ = 4m+ 3 we get a primitive form ax2 + axy + cy2 for each choice of

a subset of the distinct prime divisors of δ since this determines d as before, and d

determines c and a . The number of primitive forms ax2 + axy + cy2 is then 2k
′

when ∆ is even and a = 2d with d odd, where k′ is the number of distinct prime

divisors of δ as in Case 1.
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Case 4: Forms ax2 + axy + cy2 with ∆ even and a = 2d for even d , say d = 2e .

Then δ = d(d − 2c) = 4e(e − c) . Since c is odd by primitivity of the form, the two

factors e and e− c of δ = 4e(e− c) have opposite parity, hence δ must be divisible

by 8, say δ = 8m . We need to determine which choices of e and c yield primitive

forms ax2 + axy + cy2 . Let δ′ = δ/4 = 2m so the equation δ = 4e(e − c) becomes

δ′ = e(e−c) . Thus e must divide δ′ . We have c = e − δ
′
/e and this will be an integer

if e divides δ′ . From the equation c = e − δ′/e we see that any divisor of two of the

three terms c , e , and δ′/e will divide the third. In particular, c and e will be coprime

exactly when e and δ
′
/e are coprime. Since δ′ = e ·δ

′
/e this means we want to choose

e by choosing some subset of the distinct prime divisors of δ′ and letting e be the

product of these primes raised to the same powers as in δ′ . Then e and δ′/e will be

coprime and of opposite parity since they are not both even and their product δ′ is

even. Their difference c = e − δ′/e will then be odd. Also, c and e will be coprime

so c and a = 4e will be coprime, making the form ax2 + axy + cy2 primitive. The

number of distinct prime divisors of δ′ is the same as for δ = 4δ′ since δ′ is even.

Thus in Case 4 the number of primitive forms ax2 + axy + cy2 with a > 0 is 2k
′

.

Note that k′ = k when δ is even and k′ = k − 1 when δ is odd. By combining

the four cases above and remembering to double the number of forms when ∆ > 0

to account for negative coefficients of x2 , we then obtain the following table for the

number of forms of either of the types ax2 + cy2 or ax2 + axy + cy2 :

∆ odd 4δ , δ = 4m+ 1 4δ , δ = 4m+ 3

Cases (2) (1) (1) and (3)

∆ < 0 2k 2k
′

= 2k−1 2k
′

+ 2k
′

= 2k
′+1 = 2k

∆ > 0 2k+1 2k
′+1 = 2k 2k

′+1 + 2k
′+1 = 2k

′+2 = 2k+1

∆ 4δ , δ = 8m 4δ , δ even, δ ≠ 8m

Cases (1) and (4) (1)

∆ < 0 2k
′

+ 2k
′

= 2k
′+1 = 2k+1 2k

′

= 2k

∆ > 0 2k
′+1 + 2k

′+1 = 2k
′+2 = 2k+2 2k

′+1 = 2k+1

Comparing the results in the table with the statement of the theorem, we see that the

proof will be finished when we show that under the relation of equivalence the special

forms split up into pairs when ∆ < 0 and into groups of four when ∆ > 0.

Two easy cases that can be disposed of first are ∆ = −3 and ∆ = −4. Here all

forms are equivalent and are primitive, and k = 1, so the theorem is true since the

exceptional cases (a) and (b) in the statement of the theorem do not apply.

Our earlier analysis of symmetries of elliptic and hyperbolic forms shows that the

only time that reflector lines can intersect is for elliptic forms equivalent to ax2+ay2

or ax2 + axy + ay2 , so when we restrict to primitive forms this means ∆ = −3 or

∆ = −4. Thus we may assume from now on that reflector lines do not intersect.
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For a form ax2 + cy2 with a reflector line

perpendicular to an edge of the topograph as in

the first figure at the right we have a ≠ c , oth-

erwise there would be two intersecting reflector

lines. Thus the reflector line corresponds to two

distinct special forms, ax2+cy2 and cx2+ay2 .

The second figure shows the case of a form with a reflector line containing an edge of

the topograph. This edge corresponds to a form ax2 + bxy + ay2 and the adjacent

edges correspond to two forms dx2 + dxy + ay2 and ex2 + exy + ay2 of the type

ax2+axy+cy2 . These two forms are distinct since if d = e there would be a second

reflector line intersecting the first one. Thus the reflector line accounts for two special

forms ax2 + axy + cy2 .

Primitive elliptic forms with mirror symmetry and ∆ ≠ −3,−4 have just one

reflector line, so each equivalence class of such forms contains exactly two special

forms. For hyperbolic forms with mirror symmetry there are two reflector lines in

each period, with one pair of special forms for each reflector line. These two pairs

give four distinct special forms, otherwise there would be a translational symmetry

taking one reflector line to the other within a single period, which is impossible. Thus

each equivalence class of mirror-symmetric hyperbolic forms contains exactly four

special forms, and the proof is complete. ⊔⊓

We illustrate the theorem with an example, the first negative discriminant with

four distinct prime divisors, ∆ = −420 = −3·4·5·7. In this case ∆ = 4(4m + 3) so

the theorem says there are 23 = 8 equivalence classes of symmetric primitive forms.

If we compute all the reduced forms for ∆ = −420 by the method in Section 5.2 we

get the following table, with the letter b replacing h so we are finding solutions of

b2 + 420 = 4ac with 0 ≤ b ≤ a ≤ c . The entries [a, b, c] in the last column give the

reduced forms ax2 + bxy + cy2 .

b ac (a, c) [a, b, c]

0 105 (1,105) [1,0,105]

(3,35) [3,0,35]

(5,21) [5,0,21]

(7,15) [7,0,15]

2 106 (2,53) [2,2,53]

4 109 —

6 114 (6,19) [6,6,19]

8 121 (11,11) [11,8,11]

10 130 (10,13) [10,10,13]

Thus all forms of discriminant −420 are symmetric. The first four have b = 0 so

these arise in Case 1 in the proof of the theorem where we set ∆ = 4δ , so δ =

−3·5·7 and we get a form [a,0, c] for each positive divisor a of δ , the eight numbers
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1,3,5,7,15,21,35, and 105. These forms [a,0, c] are the first four entries in the last

column of the table along with the equivalent forms obtained by reversing a and c .

The remaining four forms in the last column have b nonzero and are instances of

forms [a,a, c] and [a, b,a] . The relevant parts of the topographs of these four forms

are shown in the figure to the right of the table. Each edge in the figure gives a form

[a, b,a] , [a,a, c] , or [a, c, c] . For example the third figure gives the forms [11,8,11] ,

[11,14,14] , [14,14,11] , [11,30,30] , and [30,30,11] . In the proof of the theorem

we were only counting the forms [a,a, c] , not [a, b,a] or [a, c, c] . According to

Case 3 in the proof of the theorem the numbers a in the forms [a,a, c] should be

twice the numbers a in the forms [a,0, c] , and they are: 2 = 2·1, 6 = 2·3, 10 = 2·5,

14 = 2·7, 30 = 2·15, 42 = 2·21, 70 = 2·35, and 210 = 2·105.

Corollary 5.10. The nonsquare discriminants ∆ with hs∆ = 1 are ∆ = −4 , ±8 , −16 ,

±p2k+1 , and ±4p2k+1 for odd primes p with p ≡ 1 mod 4 when ∆ > 0 and p ≡ 3

mod 4 when ∆ < 0 . In particular, the only fundamental discriminants with hs∆ = 1

are ∆ = −4 , ±8 , and ±p for odd primes p , with p ≡ 1 mod 4 when ∆ > 0 and

p ≡ 3 mod 4 when ∆ < 0 .

Proof: Consider first the case ∆ > 0. If we are not in one of the exceptional cases (a)

and (b) in Theorem 5.9 then ∆ must have just one distinct prime divisor so it must be

a power of a prime, in fact an odd power if it is not a square. Thus for p odd we have

∆ = p2k+1 and we must have p ≡ 1 mod 4 in order to have ∆ ≡ 1 mod 4. For odd

powers of p = 2 the only possibility is ∆ = 8 since ∆ cannot be 2 and odd powers

beyond 8 are of the form ∆ = 32m , the exceptional case (b) where hs∆ ≥ 2 so this is

ruled out as well. In the exceptional case (a) we have ∆ = 4(4m + 1) with 4m + 1 a

prime power p2k+1 with p ≡ 1 mod 4 since ∆ = 4p2k is a square.

When ∆ < 0 the reasoning is similar, the main difference being that −p2k and

−4p2k are ruled out, not because squares are excluded, but because p2k is always 1

mod 4 when p is odd, so −p2k is 3 mod 4. This rules out −p2k as a discriminant,

and it rules out −4p2k being an exceptional case ∆ = 4(4m+ 1) .

Requiring ∆ to be a fundamental discriminant eliminates the cases ∆ = −16 and

±4p2k+1 and restricts the exponent in ±p2k+1 to be 1. ⊔⊓

We have mentioned the fact that h∆ is always a multiple of hs∆ , which will be

proved in Proposition 7.17. This tells us nothing about h∆ when hs∆ = 1, but we will

also prove that hs∆ = 1 exactly when h∆ is odd. Thus the preceding corollary gives a

way to determine whether h∆ is even or odd. In the examples we have looked at so far

h∆ has been either 1 or even, but odd numbers greater than 1 can also occur as class

numbers. The table on the next page gives some examples for negative discriminants,

so we are determining the reduced forms ax2 + bxy + cy2 by finding the solutions

of b2 + |∆| = 4ac with 0 ≤ b ≤ a ≤ c . The forms other than the principal form

in each discriminant lack mirror symmetry so they count twice in the class number,
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making the class number odd. The discriminants in the table are all fundamental

discriminants, and in each case they are the first negative discriminant with the given

class number.

∆ b ac (a, c) h∆
−23 1 6 (1,6), (2,3) 3

−47 1 12 (1,12), (2,6), (3,4) 5

3 14 —

−71 1 18 (1,18), (2,9), (3,6) 7

3 20 (4,5)

−199 1 50 (1,50), (2,25), (5,10) 9

3 52 (4,13)

5 56 (7,8)

7 62 —

−167 1 42 (1,42), (2,21), (3,14), (6,7) 11

3 44 (4,11)

5 48 (6,8)

7 54 —

−191 1 48 (1,48), (2,24), (3,16), (4,12), (6,8) 13

3 50 (5,10)

5 54 (6,9)

7 60 —

−239 1 60 (1,60), (2,30), (3,20), (4,15), (5,12), (6,10) 15

3 62 —

5 66 (6,11)

7 72 (8,9)

Besides the cases when hs∆ = 1, another nice situation is when h∆ = h
s
∆ so all

primitive forms of discriminant ∆ have mirror symmetry. We call such discriminants

fully symmetric. As we will see in later chapters, forms with fully symmetric discrim-

inants have very special properties. A table at the end of the book lists the 101 known

negative discriminants that are fully symmetric, ranging from −3 to −7392.

Of the 101 known fully symmetric negative discriminants, 65 are fundamental

discriminants, the largest being −5460. Since 5460 factors as 3·4·5·7·13 with five

distinct prime factors, Theorem 5.9 says that hs∆ = 24 = 16. This is in fact the

largest value of hs∆ among the 101 discriminants in the list. Computer calculations

have extended to much larger negative discriminants without finding any more that

are fully symmetric. It has not yet been proved that no more exist, although it is

known that there are at most two more. For positive discriminants there are probably

infinitely many that are fully symmetric since it is likely that there are already infinitely

many with h∆ = 1.
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Skew Symmetries

Among the examples of hyperbolic forms we have considered there were some

whose topograph had a “symmetry” which was a glide reflection along the separator

line that had the effect of changing each value to its negative rather than preserving

the values. These are not actual symmetries according to the definition we have given,

so let us call such a transformation that takes each value of a form to its negative a

skew symmetry . (Compare this with skew-symmetric matrices in linear algebra which

equal the negative of their transpose.)

A skew symmetry must take the separator line to itself while interchanging the

two sides of the separator line, so it either translates the separator line along itself and

hence is a glide reflection, or it reflects the separator line, interchanging its two ends

as well as the two sides of the separator line, making it a 180 degree rotation about

a point of the separator line. Examples of forms with this sort of skew symmetry

occurred in Chapter 4, the forms x2 − 13y2 and 10x2 − 29y2 .

The figures below show forms whose separator lines have all the possible combi-

nations of symmetries and skew symmetries.

The first form has all four types: translations, mirror symmetries, glide reflections,

and rotations. The next three forms have only one type of symmetry or skew symmetry

besides translations, while the last form has only translational symmetries and no

mirror symmetries or skew symmetries. It is not possible to have two of the three

types of nontranslational symmetries and skew symmetries without having the third

since the composition of two of these three types gives the third type. One can see

this by considering the effect of a symmetry or skew symmetry on the orientation of
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the plane and the orientation of the separator line. The four possible combinations

distinguish the four types of transformations according to the following chart, where a

plus sign means orientation-preserving and a minus sign means orientation-reversing.

plane orientation line orientation

translation + +
rotation + −
glide reflection − +
reflection − −

A rotational skew symmetry is a rotation about the midpoint of an edge of the

separator line where the two adjacent regions have labels a and −a . If the edge

separating these two regions has label b then the form associated to this edge is

ax2 + bxy − ay2 . Conversely, any form ax2 + bxy − ay2 whose discriminant

∆ = b2+4a2 is not a square (although it is the sum of two squares) will be a hyperbolic

form having a rotational skew symmetry, as one can see in the

figure at the right. Note that the form ax2 + bxy − ay2 will be

one of the reduced forms in the equivalence class of the given form

since the two edges leading off the separator line at the ends of the

edge labeled b do so on opposite sides of the separator line. Thus rotational skew

symmetries can be detected by looking just at the reduced forms. The same is true for

mirror symmetries and glide reflection skew symmetries, but for these one must look

at the arrangement of the whole cycle of reduced forms rather than just the individual

reduced forms.

For rotational skew symmetries there are two rotation points along the separator

line in each period, just as reflector lines occur in pairs in each period.

Exercises

1. Show that the number of symmetries of an elliptic form, including the identity

transformation, is 1, 2, 4, or 6.

2. Show that the number of equivalence classes of forms of discriminant 45 with

mirror symmetry is not a power of 2 if nonprimitive as well as primitive forms are

allowed. (Compare this with Theorem 5.9.)

3. In the text an example was given of a hyperbolic form having only translational

symmetries and no skew symmetries, the form 5x2 + 14xy − 10y2 . Find another

example of the same sort which is not equivalent to this form or a constant times it.

Hint : First find a separator line with the desired properties, without any labels along

the line, then find a form realizing that separator line.

4. Show that a positive nonsquare number is the discriminant of some hyperbolic

form whose topograph has a rotational skew symmetry if and only if the number is
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the sum of two squares at least one of which is even.

5. Verify that the following discriminants are fully symmetric, so all primitive forms

of that discriminant have mirror symmetry:

(a) −195 (b) −660 (c) 195

6. Show that the topograph of a primitive 0-hyperbolic form qxy −py2 has mirror

symmetry exactly when p2 ≡ 1 mod q , and has rotational skew symmetry exactly

when p2 ≡ −1 mod q . (See the discussion at the end of Secion 2.1 about the rela-

tion between the continued fraction for p/q and the continued fraction obtained by

reversing the order of the terms.)

5.5 Charting All Forms

We have used the Farey diagram to study individual quadratic forms through their

topographs, and in this section we will see that the Farey diagram also appears in

another way when one creates a global picture mapping out all forms simultaneously.

This viewpoint will not play an essential role in later chapters, however, so this section

can be regarded as something of a digression from the main line of the book.

Quadratic forms are defined by formulas ax2+bxy+cy2 , and our point of view

will be to regard the coefficients a , b , and c as parameters that vary over all integers

independently. It is natural to consider the triples (a, b, c) as points in 3-dimensional

Euclidean space R3 , and more specifically as points in the integer lattice Z3 consist-

ing of points (a, b, c) whose coordinates are in-

tegers. We will exclude the origin (0,0,0) since

this corresponds to the trivial form that is iden-

tically zero. Instead of using the usual (x,y, z)

as coordinates for R3 we will use (a, b, c) , but

since a and c play a symmetric role as the coef-

ficients of the squared terms x2 and y2 we will

position the a-axis and the c-axis in a horizontal

plane, with the b-axis vertical, perpendicular to

the ac-plane.

Along a ray starting at (0,0,0) and passing through another lattice point (a, b, c)

there are infinitely many lattice points (ka, kb, kc) for positive integers k . If a , b , and

c have a greatest common divisor larger than 1 we can cancel this common divisor

to get a primitive triple (a, b, c) corresponding to a primitive form ax2+bxy +cy2 .

Then all the other lattice points on the ray through (a, b, c) are the positive integer

multiples (ka, kb, kc) , corresponding to the nonprimitive forms kax2+kbxy+kcy2 .

Thus primitive forms correspond exactly to rays from the origin passing through

lattice points. These are the same as rays passing through points (a, b, c) with rational
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coordinates since denominators can always be eliminated by multiplying a , b , and c

by a common denominator.

Since the discriminant ∆ = b2 − 4ac plays

such an important role in the classification of

forms, let us see how this fits into the picture in

(a, b, c) coordinates. When b2 − 4ac is zero we

have the special class of parabolic forms, and the

points in R3 satisfying the equation b2−4ac = 0

form a double cone with the common vertex of the two cones at the origin. The dou-

ble cone intersects the ac-plane in the a-axis and the c-axis. The central axis of the

double cone is the line a = c in the ac-plane. Parabolic forms are the lattice points

on these cones.

Elliptic and Parabolic Forms

Points (a, b, c) inside either cone have b2 − 4ac < 0 so the lattice points inside

the cones correspond to elliptic forms. Positive elliptic forms have a > 0 and c > 0

so they lie inside the cone projecting to the first quadrant of the ac-plane. We call this

the positive cone. Inside the other cone are the negative elliptic forms, those with a < 0

and c < 0. Outside the cones is a single region consisting of points with b2−4ac > 0

so the lattice points here correspond to hyperbolic forms and 0-hyperbolic forms.

If one slices the positive cone via the vertical plane a + c = 1 perpendicular to

the axis of the cone then the intersection of the cone with this plane is an ellipse

which we denote E . The top and bottom

points of E are (a, b, c) =
(
1/2 ,±1, 1/2

)
so

its height is 2. The left and right points of E

are (1,0,0) and (0,0,1) so its width is
√

2.

Thus E is somewhat elongated vertically. If

we wanted, we could compress the vertical

coordinate to make E a circle, but there is

no special advantage to doing this.

If we take a lattice point (a, b, c) corresponding to a primitive positive elliptic

form and project this lattice point along the ray to the origin passing through (a, b, c) ,

this ray intersects the plane a+c = 1 in the point
(
a/a+c ,

b/a+c ,
c/a+c

)
since this is

the rescaling of (a, b, c) for which the sum of the first and third coordinates is 1. This

point lies inside the ellipse E and has rational coordinates. Conversely, every point in-

side E with rational coordinates is the radial projection of a unique primitive positive

elliptic form, obtained by multiplying the coordinates of the point by the least com-

mon multiple of their denominators. Thus the rational points inside E parametrize

primitive positive elliptic forms. We will use the notation [a, b, c] to denote both the

form ax2 + bxy + cy2 and the corresponding rational point
(
a/a+c ,

b/a+c ,
c/a+c

)
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inside E .

The figure below shows some examples, including a few parabolic forms on E

itself. The lines radiating out from the points [1,0,0] and [0,0,1] consist of the

points [a, b, c] with a fixed ratio b/c or b/a respectively. The ratios a/c are fixed along

vertical lines. For most points inside E any two out of these three ratios determine

the third since b/a ·a/c = b/c . The exceptions are the points on the segment between

[1,0,0] and [0,0,1] where b/a and b/c are both 0 but a/c can be anything.

Of special interest are the reduced primitive elliptic forms [a, b, c] , which are the

ones satisfying 0 ≤ b ≤ a ≤ c where a , b , and c have no common divisor. These

correspond to the rational points in the shaded triangle in the figure with vertices

[1,1,1] , [1,0,1] , and [0,0,1] . The edges of the triangle correspond to one of the

three inequalities 0 ≤ b ≤ a ≤ c becoming an equality, so b = 0 for the lower

edge, a = c for the vertical edge, and a = b for the hypotenuse. Thus the three

edges correspond to the reduced forms with mirror symmetry, the forms [a,0, c] for

the bottom edge, [a, b,a] for the left edge, and [a,a, c] for the diagonal edge. The

vertices [1,0,1] and [1,1,1] correspond to the reduced elliptic forms with more than

one mirror symmetry, and hence also rotational symmetry. Points in the interior of

the triangle correspond to forms with no symmetry.
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Just as rational points inside the ellipse E correspond to primitive positive elliptic

forms, the rational points on E itself correspond to primitive positive parabolic forms.

As we saw in Section 5.2, every parabolic form is equivalent to a form ax2 for some

nonzero integer a . For this to be primitive means that a = ±1, so every positive

primitive parabolic form is equivalent to x2 . Equivalent forms can be obtained from

each other by a change of variables, replacing (x,y) by (px + qy, rx + sy) for

integers p,q, r , s satisfying ps − qr = ±1. For the form x2 this means that the

primitive positive parabolic forms are the forms (px+qy)2 = p2x2+2pqxy+q2y2

for coprime integers p and q . In [a, b, c] notation this is [p2,2pq,q2] , defining a

point on the ellipse E .

More concisely, we could label the rational point on E corresponding to the form

(px + qy)2 just by the fraction p/q . Thus at the left and right sides of E we have

the fractions 1/0 and 0/1 corresponding to the forms x2 and y2 , while at the top and

bottom of E we have 1/1 and ---1/1 corresponding to (x+y)2 and (x−y)2 = (−x+y)2 .

Changing the signs of both p and q does not change the form (px + qy)2 or the

fraction p/q .

In the first quadrant of the ellipse the fractions p/q increase monotonically from 0/1

to 1/1 since the ratio b/c equals 2p/q and b is increasing while c is decreasing so 2p/q

is increasing, and hence so is p/q . Similarly in the second quadrant the values of p/q

increase from 1/1 to 1/0 since we have b/a = 2q/p which decreases as b decreases and

a increases. In the lower half of the ellipse we have just the negatives of the values

in the upper half since the sign of b has changed from plus to minus.

This labeling of the rational points of E by fractions p/q seems very similar to the

labeling of vertices in the circular Farey diagram. As we saw in Section 1.1, if the Farey

diagram is drawn with 1/0 at the top of the unit circle in the xy-plane, then the point

on the unit circle labeled p/q has coordinates (x,y) =
(
2pq/p2 +q2 ,p

2 ---q2
/p2 +q2

)
.

After rotating the circle to put 1/0 on the left side by replacing (x,y) by (−y,x)
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this becomes
(
q2 ---p2

/p2 +q2 , 2pq/p2 +q2
)
. Here the y-coordinate 2pq/p2 +q2 is the

same as the b-coordinate of the point of E labeled p/q , which is the point (a, b, c) =(
p2

/p2 +q2 , 2pq/p2 +q2 ,q
2
/p2 +q2

)
. Since the vertical coordinates of points in either

the left or right half of the unit circle or the ellipse E determine the horizontal coor-

dinates uniquely, this means that the labeling of points of E by fractions p/q is really

the same as in the circular Farey diagram.

Change of Variables

Let us return now to the general picture of how forms ax2 + bxy + cy2 are

represented by points (a, b, c) in R
3 . As we know, a change of variables by a linear

transformation T sends (x,y) to T(x,y) = (px + qy, rx + sy) , where p,q, r , s

are integers with ps − qr = ±1. This change of variables transforms each form into

an equivalent form. To see the effect of this change of variables on the coefficients

(a, b, c) of a form Q(x,y) = ax2 + bxy + cy2 we do a simple calculation:

Q(px + qy, rx + sy) = a(px + qy)2 + b(px + qy)(rx + sy)+ c(rx + sy)2

= (ap2 + bpr + cr 2)x2 + (2apq + bps + bqr + 2crs)xy

+ (aq2 + bqs + cs2)y2

This means that the (a, b, c) coordinates of points in R3 are transformed according

to the following formula:

T∗(a, b, c) =
(
p2a+ prb + r 2c,2pqa+ (ps + qr)b + 2rsc, q2a+ qsb + s2c

)

For fixed values of p,q, r , s this T∗ is a linear transformation of the variables a,b, c .

Its matrix is: 

p2 pr r 2

2pq ps + qr 2rs
q2 qs s2




Since T∗ is a linear transformation, it takes lines to lines and planes to planes, but T∗

also has another special geometric property. Since equivalent forms have the same

discriminant, this means that each surface defined by an equation b2−4ac = k for k

a constant is taken to itself by T∗ . In particular, the double cone b2−4ac = 0 is taken

to itself, and in fact each of the two cones separately is taken to itself since one cone

consists of positive parabolic forms and the other cone of negative parabolic forms (as

one can see just by looking at the coefficients a and c ), and positive parabolic forms

are never equivalent to negative parabolic forms. When k > 0 the surface b2−4ac = k

is a hyperboloid of one sheet and when k < 0 it is a hyperboloid of two sheets. In the

case of two sheets the lattice points on one sheet give positive elliptic forms and the

lattice points on the other sheet give negative elliptic forms.

Since T∗ takes lines through the origin to lines through the origin and the double

cone b2−4ac = 0 to itself, this means that T∗ gives a transformation of the ellipse E
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to itself, taking rational points to rational points since rational points on E correspond

to lattice points on the cones. Regarding E as the boundary circle of the Farey diagram,

we know that linear fractional transformations give symmetries of the Farey diagram,

also taking rational points on the boundary circle to rational boundary points. And

in fact, the transformation of this circle defined by T∗ is exactly one of these linear

fractional transformations. This is because T∗ takes the parabolic form (dx+ey)2 to

the form
(
d(px+qy)+e(rx+sy)

)2
=
(
(dp+er)x+(dq+es)y

)2
so in the fractional

labeling of points of E this says T∗(d/e) =
pd+re/qd+se which is a linear fractional

transformation. If we write this using the variables x and y instead of d and e it

would be T∗(x/y) =
px+ry/qx+sy . This is not quite the same as the linear fractional

transformation T(x/y) =
px+qy/rx+sy defined by the original change of variables

T(x,y) = (px + qy, rx + sy) , but rather T∗ is obtained from T by transposing the

matrix of T , interchanging the off-diagonal terms q and r .

Via radial projection, the transformation T∗ determines a transformation not just

of E but also of the interior of E in the plane a+ c = 1. This transformation, which

we still call T∗ for simplicity, takes lines inside E to lines inside E since T∗ takes

planes through the origin to planes through the origin.

This leads us to consider a linear version of the Farey

diagram in which each circular arc of the original Farey

diagram is replaced by a straight line segment joining

the two endpoints of the circular arc. These line seg-

ments divide the interior of E into triangles, just as the

original Farey diagram divides the disk into curvilinear

triangles. The transformation T∗ takes each of these tri-

angles onto another triangle, analogous to the way that

linear fractional transformations provide symmetries of

the original Farey diagram.

Suppose we divide each triangle of the linear Farey diagram into six smaller trian-

gles as in the figure at the right, by adding diagonals to each quadrilateral formed by

two adjacent triangles of the Farey diagram. The trans-

formation T∗ takes each of these small triangles onto

another small triangle since it takes lines to lines. One

of these small triangles is the triangle defined by the in-

equalities 0 ≤ b ≤ a ≤ c that we considered earlier. The

fact that every positive primitive elliptic form is equiv-

alent to exactly one reduced form, corresponding to a

rational point in this special triangle, is now visible ge-

ometrically as the fact that there is always exactly one

transformation T∗ taking a given small triangle to this

one special small triangle.
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Elliptic forms whose topograph contains a source edge are equivalent to forms

ax2 + cy2 so these are the forms corresponding to rational points on the edges of

the original linear Farey diagram, before the subdivision into smaller triangles. These

are the forms whose topograph has a symmetry reflecting across a line perpendicular

to the source edge. (This line is just the edge in the Farey diagram containing the

given form.) The other type of reflectional symmetry in the topograph of an elliptic

form is reflection across an edge of the topograph. Forms with this sort of symmetry

correspond to rational points in the dotted edges in the preceding figure, the edges

we added to subdivide the Farey diagram into the smaller triangles. The dotted edges

are of two types according to whether the two equal values of the form in the three

regions surrounding the source vertex occur for the smallest value of the form (wide

dotted edges) or the next-to-smallest value of the form (narrow dotted edges). The

wide dotted edges form the dual tree of the Farey diagram.

Hyperbolic and 0-Hyperbolic Forms

Hyperbolic and 0-hyperbolic forms correspond to integer lattice points that lie

outside the two cones. For a point (a, b, c) outside the double cone there are exactly

two planes in R3 that are tangent to the double cone and pass through (a, b, c) . Each

of these planes is tangent to the double cone along a line through the origin. The

two tangent planes through (a, b, c) are determined by their intersection with the

plane a + c = 1, which consists of two lines

tangent to the ellipse E . These two lines can

either intersect or be parallel. The latter pos-

sibility occurs when the point (a, b, c) lies in

the plane a+ c = 0, so the two tangent planes

intersect in a line in this plane. For example, if

the point (a, b, c) we start with happens to lie

on the b-axis, then the tangent planes are the

ab-plane and the bc-plane. These intersect the plane a + c = 1 in the two vertical

tangent lines to the ellipse E .

Our goal will be to show the following:

Proposition 5.11. Let Q(x,y) = ax2+bxy+cy2 be a form of positive discriminant,

either hyperbolic or 0 -hyperbolic. Then the two points where the tangent lines to E

determined by (a, b, c) touch E are the points diametrically opposite the two points

that are the endpoints of the separator line in the topograph of Q in the case that

Q is hyperbolic, or the two points labeling the regions in the topograph of Q where

Q takes the value zero in the case that Q is 0 -hyperbolic.

Proof: We begin with a few preliminary remarks that will allow us to treat the hyper-

bolic and 0-hyperbolic cases in the same way. A form Q(x,y) = ax2 + bxy + cy2
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of positive discriminant can always be factored as (px+qy)(rx+ sy) with p,q, r , s

real numbers since if a = 0 we have the factorization y(bx + cy) and if a ≠ 0 then

the associated quadratic equation ax2+bx+c = 0 has positive discriminant so it has

two distinct real roots α and β . This leads to the factorization ax2 + bxy + cy2 =

a(x−αy)(x−βy) which can be rewritten as (px+qy)(rx+sy) by incorporating a

into either factor. If Q is hyperbolic then the discriminant is not a square and hence

the factorization (px+qy)(rx+ sy) will involve coefficients that are quadratic irra-

tionals. If Q is 0-hyperbolic then the discriminant is a square so the roots α and β

are rational and we obtain a factorization of Q as (px + qy)(rx + sy) with rational

coefficients. In fact we can take p,q, r , s to be integers in this case since we know

every 0-hyperbolic form is equivalent to a form y(bx + cy) so we can obtain the

given form Q from y(bx+cy) by replacing x and y by certain linear combinations

dx + ey and fx + gy with integer coefficients d, e, f , g .

The points where the tangent planes touch the double cone correspond to forms

of discriminant zero, with coefficients that may not be integers or even rational. A

simple way to construct two such forms from a given form Q = (px + qy)(rx+ sy)

is just to take the squares of the two linear factors, so we obtain the forms (px+qy)2

and (rx+sy)2 , each of discriminant zero. We will show that each of these two forms

lies on the line of tangency for one of the two tangent planes determined by Q .

To do this for the case of (px+qy)2 we consider the line L in R3 passing through

the two points corresponding to the forms (px+qy)(rx+ sy) and (px+qy)2 . We

claim that L consists of the forms

Qt(x,y) = (px + qy)
[
(1− t)(rx + sy)+ t(px + qy)

]

as t varies over all real numbers. When t = 0 or t = 1 we obtain the two forms

Q0 = (px + qy)(rx + sy) and Q1 = (px + qy)
2 so these forms lie on L . Also, we

can see that the forms Qt do form a straight line in R3 by rewriting the formula for

Qt(x,y) as ax2 + bxy + cy2 with the coefficients a,b, c given by:

(a, b, c) =
(
pr(1− t)+ p2t, (ps + qr)(1− t)+ 2pqt, qs(1− t)+ q2t

)

This defines a line since p,q, r , s are constants, so each coordinate is a linear function

of t . Since the forms Qt factor as the product of two linear factors, they have non-

negative discriminant for all t . This means that the line L does not go into the interior

of either cone. It also does not pass through the origin since if it did, it would have

to be a subset of the double cone since it contains the form Q1 which lies in the

double cone. From these facts we deduce that L must be a tangent line to the double

cone. Hence the plane containing L and the origin must be tangent to the double cone

along the line containing the origin and Q1 . The same reasoning shows that the other

tangent plane that passes through (px + qy)(rx + sy) intersects the double cone

along the line containing the origin and (rx + sy)2 .
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The labels of the points of E corresponding to the two forms (px + qy)2 and

(rx+sy)2 are p/q and r/s according to the convention we have adopted. On the other

hand, when the form (px+qy)(rx+sy) is hyperbolic the ends of the separator line

in its topograph are at the two points where this form is zero, which occur when x/y

is ---q/p and ---s/r . These are the negative reciprocals of the previous two points p/q

and r/s so they are the diametrically opposite points in E . Similarly, when the form

(px+qy)(rx+sy) is 0-hyperbolic the vertices of the Farey diagram where it is zero

are at ---q/p and ---s/r , again diametrically opposite p/q and r/s . ⊔⊓

It might have been nicer if the statement of the previous proposition did not

involve passing to diametrically opposite points, but to achieve this we would have had

to use a different rule for labeling the points of E , with the label p/q corresponding

to the form (qx−py)2 instead of (px+qy)2 . This 180 degree rotation of the labels

would put the negative labels in the upper half of E rather than the lower half, which

does not seem like a good idea.

Next let us investigate how hyperbolic and 0-hyperbolic forms are distributed

over the lattice points outside the double cone b2−4ac = 0. This is easier to visualize

if we project such points radially into the plane a+ c = 1. This only works for forms

ax2+bxy+cy2 with a+c > 0, but the forms with a+c < 0 are just the negatives of

these so they give nothing essentially new. The forms with a+ c = 0 will be covered

after we deal with those with a+ c > 0.

Forms with a + c > 0 that are hyperbolic or 0-hyperbolic correspond via radial

projection to points in the plane a + c = 1 outside the ellipse E . As we have seen,

each such point determines a pair of tangent lines to E intersecting at the given point.

For a 0-hyperbolic form (px + qy)(rx + sy) the points of tangency in E have

rational labels p/q and r/s . We know that every 0-hyperbolic form is equivalent to

a form y(rx + sy) with a = 0, so p/q =
0/1 and one line of tangency is the vertical

line tangent to E on the right side. The form y(rx + sy) corresponds to the point

(0, r , s) in the plane a = 0 tangent to the double cone. Projecting radially into the

vertical tangent line to E , we obtain the points (0, r/s ,1) , where r/s is an arbitrary

rational number. Thus 0-hyperbolic forms are dense in this vertical tangent line to E .

Choosing any rational number r/s , the other tangent line for the form y(rx+ sy) is

tangent to E at the point labeled r/s .

An arbitrary 0-hyperbolic form (px + qy)(rx + sy) is obtained from one with

p/q =
0/1 by applying a linear fractional transformation T taking 0/1 to p/q , so the

vertical tangent line to E at 0/1 is taken to the tangent line at p/q , and the dense set of

0-hyperbolic forms in the vertical tangent line is taken to a dense set of 0-hyperbolic

forms in the tangent line at p/q . Thus we see that the 0-hyperbolic forms in the plane

a + c = 1 consist of all the rational points on all the tangent lines to E at rational

points p/q of E .
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In the case of a hyperbolic form ax2+bxy +cy2 with a+c > 0 the two tangent

lines intersect E at a pair of conjugate quadratic irrationals, the negative reciprocals of

the roots α and α of the equation ax2+bx+c = 0. Since α determines α uniquely,

one tangent line determines the other uniquely, unlike the situation for 0-hyperbolic

forms whose rational tangency points p/q and r/s can be varied independently. A

consequence of this uniqueness for hyperbolic forms is that each of the two tangent

lines contains only one rational point, the intersection point of the two lines. This is

because any other rational point would correspond to another form having one of its

tangent lines the same as for ax2 + bxy + cy2 and the other tangent line different,

contradicting the previous observation that each tangent line for a hyperbolic form

determines the other. (The hypothetical second form would also be hyperbolic since

the common tangency point for the two forms is not a rational point on E .)

The points in the plane a + c = 1 that correspond to 0-hyperbolic forms are

dense in the region of this plane outside E since for an arbitrary point in this region

we can first take the two tangent lines to E through this point and then take a pair

of nearby lines that are tangent at rational points of E since points in E with rational

labels are dense in E . It is also true that points in the plane a+c = 1 that correspond

to hyperbolic forms are dense in the region outside E . To see this we can proceed

in two steps. First consider the case of a point in this region whose two tangent

lines to E are tangent at irrational points of E . These two irrational points are the

endpoints of an infinite strip in the Farey diagram that need not be periodic. However

we can approximate this strip by a periodic strip by taking a long finite segment of

the infinite strip and then repeating this periodically at each end. This means that the

given point in the region outside E lies arbitrarily close to points corresponding to

hyperbolic forms. Finally, a completely arbitrary point in the region outside E can be

approximated by points whose tangent lines to E touch E at irrational points since

irrational numbers are dense in real numbers.

It remains to consider hyperbolic and 0-hyperbolic forms (px + qy)(rx + sy)

corresponding to points (a, b, c) in the plane a + c = 0. Such a form determines

a line through the origin in this plane, and the tangent planes to the double cone

that intersect in this line intersect the plane a + c = 1 in two parallel lines tangent

to E at two diametrically opposite points p/q and ---q/p . This means that the form is

(px+qy)(qx−py) , up to a constant multiple. If p/q is rational this is a 0-hyperbolic

form. Examples are:

xy with vertical tangents to E at 1/0 and 0/1 .

x2 −y2 = (x +y)(x −y) with horizontal tangents to E at 1/1 and ---1/1 .

2x2 − 3xy − 2y2 = (2x + y)(x − 2y) with parallel tangents at 2/1 and ---1/2 .

If p/q and ---q/p are conjugate quadratic irrationals then we have a hyperbolic form

ax2 + bxy + cy2 = a(x −α)(x −α) where αα = −1 since c = −a when a+ c = 0.

Thus α and α are negative reciprocals of each other that are interchanged by 180
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degree rotation of E . As examples we have:

x2 + xy − y2 =
(
x −

−1+
√

5

2
y
)(
x −

−1−
√

5

2
y
)

2x2 + xy − 2y2 = 2
(
x −

−1+
√

17

4
y
)(
x −

−1−
√

17

4
y
)

One can consider a pair of parallel tangent lines to E as the limit of a pair of inter-

secting tangents where the point of intersection moves farther and farther away from

E in a certain direction which becomes the direction of the pair of parallel tangents.
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With the various things we have learned about quadratic forms so far, let us

return to the basic representation problem of determining what values a given form

Q(x,y) = ax2 + bxy + cy2 can take on when x and y are integers, or in other

words, which numbers can be represented as ax2 + bxy + cy2 for some choice of

integers x and y . Remember that it suffices to restrict attention to the values of Q

appearing in the topograph since these are the values for primitive pairs (x,y) , and

to get all other values one just multiplies the values in the topograph by arbitrary

squares. With this in mind we will adopt the following convention in the rest of the

book:

When we say that a form Q represents a number n we mean that n = Q(x,y)

for some primitive pair of integers (x,y) ≠ (0,0) .

This differs from the traditional terminology in which any solution of n = Q(x,y) is

called a representation of n , without requiring (x,y) to be a primitive pair, and when

(x,y) is primitive it is called a proper or primitive representation of n . However,

since we will rarely consider the case that (x,y) is not a primitive pair, it will save

many words not to have to insert the extra modifier for every representation.

We will focus on forms that are either elliptic or hyperbolic, as these are the most

interesting cases.

6.1 Three Levels of Complexity

In this section we will look at a series of examples to try to narrow down what sort

of answer one could hope to obtain for the representation problem. The end result

will be a reasonable guess that will be verified in the rest of this chapter and the next

one, at least for fundamental discriminants. For nonfundamental discriminants there

is sometimes a small extra wrinkle that seems to be rather subtle and more difficult

to analyze.

As a first example let us try to find a general pattern in the values of the form

x2+y2 . In view of the symmetry of the topograph for this form it suffices to look just

in the first quadrant of the topograph. Part of this quadrant is shown in the figure
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below, somewhat distorted to fit more numbers into the picture. What is shown is all

the numbers in the topograph that are less than 100.

At first glance it may be hard to detect any patterns here. Both even and odd numbers

occur, but none of the even numbers are divisible by 4 so they are all twice an odd

number, and in fact an odd number that appears in the topograph. Considering the

odd numbers, one notices they are all congruent to 1 mod 4 and not 3 mod 4, which

is the other possibility for odd numbers. On the other hand, not all odd numbers

congruent to 1 mod 4 appear in the topograph. Up to 100, the ones that are missing

are 9, 21, 33, 45, 49, 57, 69, 77, 81, and 93. Each of these has at least one prime

factor congruent to 3 mod 4, while all the odd numbers that do appear have all their

prime factors congruent to 1 mod 4. Conversely, all products of primes congruent

to 1 mod 4 are in the topograph.

This leads us to guess that the following might be true:

Conjecture. The numbers that appear in the topograph of x2 + y2 are precisely

the numbers n = 2ap1p2 · · ·pk where a ≤ 1 and each pi is a prime congruent to

1 mod 4 . Consequently, the values of the quadratic form Q(x,y) = x2 + y2 as x

and y range over all integers (not just the primitive pairs) are exactly the numbers

n = m2p1p2 · · ·pk where m is an arbitrary integer and each pi is either 2 or a

prime congruent to 1 mod 4 .

In both statements the index k denoting the number of prime factors pi is allowed

to be zero as well as any positive integer. The restriction a ≤ 1 in the first statement

disappears in the second statement since higher powers of 2 can occur when we

multiply by arbitrary squares. We will prove the conjecture later in the chapter.

A weaker form of the conjecture can be proved just by considering congruences

mod 4 as follows. An even number squared is congruent to 0 mod 4 and an odd

number squared is congruent to 1 mod 4, so x2 +y2 must be congruent to 0, 1, or

2 mod 4. Moreover, the only way that x2+y2 can be 0 mod 4 is for both x and y to

be even, which cannot happen for primitive pairs. Thus all numbers in the topograph

must be congruent to 1 or 2 mod 4. This says that the odd numbers in the topograph

are congruent to 1 mod 4 and the even numbers are each twice an odd number.

However, these simple observations say nothing about the role played by primes

and prime factorizations, nor do they include any positive assertions about which
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numbers actually are represented by x2 + y2 . It definitely takes more work to show

for example that every prime p = 4k+1 can be represented as the sum of two squares.

Let us look at a second example to see whether the same sorts of patterns occur,

this time for the form Q(x,y) = x2+2y2 . Here is a portion of its topograph showing

all values less than 100, with the lower half of the topograph omitted since it is just

the mirror image of the upper half:

Again the even values are just the doubles of the odd values. The odd prime values are

3,11,17,19,41,43,59,67,73,83,89,97 and the other odd values are all the products

of these primes. The odd prime values are not determined by their values mod 4

in this case, but instead by their values mod 8 since the primes we just listed are

exactly the primes less than 100 that are congruent to 1 or 3 mod 8. Apart from

this change, the answer to the representation problem for x2 + 2y2 is completely

analogous to the answer for x2 +y2 . Namely, the numbers represented by x2 + 2y2

are the numbers n = 2ap1p2 · · ·pk with a ≤ 1 and each pi a prime congruent to 1

or 3 mod 8. Using congruences mod 8 we could easily prove the weaker statement

that all numbers represented by x2 + 2y2 must be congruent to 1,2,3, or 6 mod 8,

so all odd numbers in the topograph must be congruent to 1 or 3 mod 8 and all even

numbers must be twice an odd number.

These two examples were elliptic forms, but the same sort of behavior can occur

for hyperbolic forms as we see in the next example, the form x2− 2y2 . The negative

values of this form happen to be just the negatives of the positive values, so we need

only show the positive values in the topograph:
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Here the primes that occur are 2 and primes congruent to ±1 mod 8. The nonprime

values that occur are the products of primes congruent to ±1 mod 8 and twice these

products. Again there is a weaker statement that can be proved using just congruences

mod 8.

In these three examples the guiding principle was to look at prime factorizations

and at primes modulo certain numbers, the numbers 4, 8, and 8 in the three cases.

Notice that these numbers are just the absolute values of the discriminants −4, −8,

and 8. Looking at primes mod |∆| turns out to be a key idea for all quadratic forms.

Another example of the same sort is the form x2+xy +y2 of discriminant −3.

This time it is the prime 3 that plays a special role rather than 2.

We only have to draw one-sixth of the topograph because of all the symmetries. Notice

that all the values are odd, so the prime 2 plays no role here. Since the discriminant

is −3 we are led to consider congruences mod 3. The primes in the topograph are

3 and the primes congruent to 1 mod 3 (which in particular excludes the prime 2),

namely the primes 7,13,19,31,37,43,61,67,73,79,97. The nonprime values are the

products of these primes with the restriction that the prime 3 never has an exponent

greater than 1. This is analogous to the prime 2 never having an exponent greater

than 1 in the preceding examples. In all four examples the “special” primes whose

exponents are restricted are just the prime divisors of the discriminant. This is a

general phenomenon, that primes dividing the discriminant behave differently from

primes that do not divide the discriminant.

A special feature of the discriminants −4, −8, 8, and −3 is that in each case all

forms of that discriminant are equivalent. We will see that the representation problem

always has the same type of answer for discriminants with a single equivalence class

of forms.

Before going on to the next level of complexity let us digress to describe a nice

property that forms of the first level of complexity have. As we know, if an equa-

tion Q(x,y) = n has an integer solution (x,y) then so does Q(x,y) = m2n for

every integer m . The converse is not always true however. For example the equation

2x2 + 7y2 = 9 has the solution (x,y) = (1,1) but 2x2 + 7y2 = 1 obviously has no

solution with x and y integers. Nevertheless, this converse property does hold for
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forms such as those in the preceding four examples where the numbers n for which

Q(x,y) = n has an integer solution are exactly the numbers that can be factored as

n = m2p1p2 · · ·pk for primes pi satisfying certain conditions and m an arbitrary

integer. This is because if a number n has a factorization of this type then we can

cancel any square factor of n and the result still has a factorization of the same type.

Let us apply this “square-cancellation” property in the case of the form x2+y2 to

determine the numbers n such that the circle x2 +y2 = n contains a rational point,

and hence, as in Chapter 0, an infinite dense set of rational points. Suppose first that

the circle x2 +y2 = n contains a rational point, so after putting the two coordinates

over a common denominator the point is (x,y) =
(
a/c ,

b/c
)
. The equation x2+y2 = n

then becomes a2 + b2 = c2n . This means that the equation x2 + y2 = c2n has

an integer solution. Then the square-cancellation property implies that the original

equation x2 + y2 = n has an integer solution. Thus we see that if there are rational

points on the circle x2 + y2 = n then there are integer points on it. This is not

something that is true for all quadratic curves, as shown by the example of the ellipse

2x2 + 7y2 = 1 which has rational points such as
(
1/3 ,

1/3

)
but no integer points.

From the solution to the representation problem for x2 +y2 we deduce that the

circle x2 + y2 = n contains rational points exactly when n = m2p1p2 · · ·pk where

m is an arbitrary integer and each pi is either 2 or a prime congruent to 1 mod 4.

The first few values of n satisfying this condition are 1,2,4,5,8,9,10,13,16,17,

18,20, · · · .

The Second Level of Complexity

For an example with slightly greater complexity consider discriminant 40 where

the class number is 2 and two nonequivalent forms are x2 − 10y2 and 2x2 − 5y2 .

The topographs below show the positive values less than 100.

The topographs are periodic and also have mirror symmetry so it suffices to show half

of one period. There is no need to show any more of the negative values since these
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will just be the negatives of the positive values.

For the form x2 − 10y2 the prime values less than 100 are 31,41,71,79,89.

These are the primes congruent to ±1 or ±9 mod 40, the discriminant. However, in

contrast to what happened in the previous examples, there are many nonprime values

of this form that are not products of these prime values. The prime factors of these

nonprime values are 2,3,5,13,37,43, none of which occur in the topograph of the

first form. Rather miraculously, these prime values are realized instead by the second

form 2x2 − 5y2 . The prime values this form takes on are 2 and 5, which are the

prime divisors of the discriminant 40, along with primes congruent to ±3 and ±13

mod 40, namely 3,13,37,43,53,67, and 83.

Apart from the primes 2 and 5 that divide the discriminant, the possible values

of primes mod 40 are ±1,±3,±7,±9,±11,±13,±17,±19 since even numbers and

multiples of 5 are excluded. There are sixteen different congruence classes here,

and exactly half of them, eight, are realized by one or the other of the two forms

x2 − 10y2 and 2x2 − 5y2 , with four classes realized by each form. The other eight

congruence classes are not realized by any form of discriminant 40 since every form

of discriminant 40 is equivalent to one of the two forms x2− 10y2 or 2x2− 5y2 , as

is easily checked by the methods from the previous chapter.

This turns out to be a general phenomenon valid for elliptic and hyperbolic forms

of any discriminant ∆ : If one excludes the primes that divide ∆ , then the prime values

of quadratic forms of discriminant ∆ are exactly the primes in half of the congruence

classes mod ∆ of numbers coprime to ∆ . This will be proved in Proposition 6.23.

Also, each form represents primes in the same number of congruence classes. For

∆ = 40 this is four congruence classes for each form.

The primes 2 and 5 that divide the discriminant occur in the topographs only to

the first power, and in fact no numbers in the topographs are divisible by 22 or 52 .

This is similar to what happened in the earlier examples where there was only one

prime dividing the discriminant. Apart from this restriction it appears that each prod-

uct of primes represented by Q1 or Q2 is also represented by Q1 or Q2 . The problem

is to decide which form represents which products. For numbers in the topographs

not divisible by 2 or 5 it seems that these numbers are subject to the same congru-

ence conditions as for primes, so they are congruent to ±1 or ±9 for Q1 and to ±3

or ±13 for Q2 .

If one includes numbers divisible by 2 or 5 the following statements seem to be

true, provided that numbers divisible by 22 or 52 are excluded:

The product of two numbers represented by Q1 is again represented by Q1 .

The product of two numbers represented by Q2 is represented by Q1 .

The product of a number represented by Q1 with a number represented by Q2

is represented by Q2 .



Section 6.1 — Three Levels of Complexity 163

To illustrate the first statement, the numbers 6, 9, and 10 appear in the topograph

of Q1 hence so do 6·9, 9·9, and 9·10, but not 6·10 since this is divisible by 22 .

For the second statement, the numbers 2, 3, and 5 are in the topograph of Q2 so

2·3, 3·3, 2·5, and 3·5 are in the topograph of Q1 but not 2·2 or 5·5. The product

2·3·5 is then in the topograph of Q2 by the third statement.

An abbreviated way of writing the three rules is by the formulas Q1Q1 = Q1 ,

Q2Q2 = Q1 , and Q1Q2 = Q2 . One can see that these are formally the same as the

rules for addition of integers mod 2 : 0 + 0 = 0, 1 + 1 = 0, and 0 + 1 = 1. The two

formulas Q1Q1 = Q1 and Q1Q2 = Q2 say that Q1 serves as an identity element for

this multiplication operation, and then the formula Q2Q2 = Q1 can be interpreted as

saying that Q2 is equal to its own inverse, so Q2 = Q
−1
2 .

This way of “multiplying” forms is more than just shorthand notation, and in

Chapter 7 we will develop a general method for forming products of primitive forms

of a fixed discriminant that will be a key ingredient in reducing the representation

problem to the special case of representing primes.

The various observations we have made so far about the two forms of discriminant

40 lead to the following:

Conjecture. The positive numbers represented by either Q1 or Q2 are exactly the

products 2a5bp1p2 · · ·pk where a,b ≤ 1 and each pi is a prime congruent to ±1 ,

±3 , ±9 , or ±13 mod 40 . The form Q1 represents the primes pi ≡ ±1 and ±9

while Q2 represents 2 , 5 , and the primes pi ≡ ±3 and ±13 . One can determine

which form will represent a product 2a5bp1p2 · · ·pk by the rule that if the number

of terms in the product that are represented by Q2 is even then the product is

represented by Q1 and if it is odd then the product is represented by Q2 .

For example, the topograph of Q1 contains the even powers of 3 while the topo-

graph of Q2 contains the odd powers. Another consequence is that the even values

in one topograph are just the doubles of the odd values in the other topograph.

This characterization of numbers represented by these two forms also implies

that no number is represented by both Q1 and Q2 . However, for some discriminants

it is possible for two nonequivalent forms of that discriminant to represent the same

nonzero number, as we will see.

The Conjecture will be proved piece by piece as we gradually develop the neces-

sary general theory. The first statement will be an application of Theorem 6.8 together

with later facts in Section 6.2. The second statement will be an application of Propo-

sition 6.19 and the rest of the Conjecture will use results from Chapter 7, particularly

Theorem 7.7.
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Let us look at another example where the representation problem has an answer

that is qualitatively similar to the preceding example but just a little more complicated,

the case of discriminant −84. Here there are twice as many equivalence classes of

forms, four instead of two, with topographs shown below.

The primes dividing the discriminant −84 are 2, 3, and 7, and these primes are each

represented by one of the forms. In fact the divisors of the discriminant that appear

in the topographs are 1,2,3,6,7,14,21, and 42 which are precisely the squarefree

divisors of the discriminant. These squarefree divisors of ∆ are exactly the numbers

appearing on reflector lines of mirror symmetries of the topographs. This was the

case also in the previous examples, as one can check, and is a general phenomenon

for fundamental discriminants as we saw in Propositions 5.6 and 5.7.

For the primes not dividing the discriminant, we will show in Section 6.3 that the

primes represented by each form are as follows:

For Q1 the primes p ≡ 1,25,37 mod 84.

For Q2 the primes p ≡ 19,31,55 mod 84.

For Q3 the primes p ≡ 11,23,71 mod 84.

For Q4 the primes p ≡ 5,17,41 mod 84.

This agrees with what is shown in the four topographs above, and one could expand

the topographs to get further evidence that these are the right answers. Passing from

primes to arbitrary numbers appearing in at least one of the topographs, these appear

to be exactly the products 2a3b7cp1 · · ·pk with a,b, c ≤ 1 and each pi one of the

other primes represented by Q1 , Q2 , Q3 , or Q4 .

One can work out hypothetical rules for multiplying the forms by considering

how products of two primes are represented. For example, 3 is represented by Q2

and 11 is represented by Q3 , while their product 3·11 = 33 is represented by Q4 , so
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we might guess that Q2Q3 = Q4 . Some other products that give the same conclusion

are 3·2 = 6, 3·23 = 69, 7·2 = 14, 7·11 = 77, and 31·2 = 62. In the same way one

can determine tentative rules for all the products QiQj , with the following results:

The principal form Q1 acts as the identity, so Q1Qi = Qi for each i .

QiQi = Q1 for each i so each Qi equals its own inverse.

The product of any two out of Q2 , Q3 , Q4 is equal to the third.

These multiplication rules are formally identical to how one would add pairs (m,n) of

integers mod 2 by adding their two coordinates separately. The form Q1 corresponds

to (0,0) and the first of the three rules above becomes (0,0)+ (m,n) = (m,n) . The

forms Q2 , Q3 , and Q4 correspond to (1,0) , (0,1) , and (1,1) in any order, and the

second rule above becomes (m,n)+(m,n) = (0,0) which is valid for addition mod 2,

while the third rule becomes the fact that the sum of any two of (1,0) , (0,1) , and

(1,1) is equal to the third if we do addition mod 2.

The multiplication rules determine which form represents a given number n by

replacing each prime in the prime factorization of n by the form Qi that represents

it, then multiplying out the resulting product using the three multiplication rules,

keeping in mind that 2, 3, and 7 can never occur with an exponent greater than 1.

For example, for n = 70 = 2·5·7 we get the product Q3Q4Q2 which equals Q1

and so 70 is represented by Q1 , as the topograph shows. For n = 66 = 2·3·11

we get Q3Q2Q3 = Q2 and 66 is represented by Q2 . In general, for a number

n = 2a3b7cp1 · · ·pk we can determine which form represents n by the follow-

ing steps. First compute the number qi of prime factors of n represented by Qi .

Next compute the sum q1(0,0) + q2(1,0) + q3(0,1) + q4(1,1) = (q2 + q4, q3 + q4)

where (0,0), (1,0), (0,1), (1,1) correspond to Q1,Q2,Q3,Q4 respectively. The re-

sulting sum (r , s) mod 2 then tells which form represents n .

An interesting feature of all the forms at the first or second level of complexity

that we have examined so far is that their topographs have mirror symmetry. This is

actually a general phenomenon: Whenever all the forms of a given discriminant have

mirror symmetry, then one can determine which primes are represented by each form

just in terms of congruence conditions modulo the discriminant. And in fact this is

the only time when congruences modulo the discriminant determine how primes are

represented, at least if one restricts attention just to primitive forms. This will be

shown in Corollary 6.29. In Chapter 5 we called discriminants for which all primitive

forms have mirror symmetry fully symmetric discriminants, and we observed that

they are unfortunately rather rare, with only 101 negative discriminants known to

have this property, and probably no more.
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The Third Level of Complexity

A deeper degree of complexity is illustrated by the case ∆ = −56 where there

are three equivalence classes of forms, with topographs shown below. The first two

topographs have mirror symmetry but the third topograph does not, so the third

form counts twice when determining the class number for discriminant −56, which

is therefore 4 rather than 3.

The behavior of divisors of the discriminant is the same as in the previous examples.

Only the squarefree divisors appear, 1, 2, 7, and 14, and these are the numbers

appearing on the reflector lines.

In the examples at the first two levels of complexity it was possible to determine

which numbers are represented by a given form by looking at primes and which con-

gruence classes they fall into modulo the discriminant. The primes represented by a

given form were exactly the primes in certain congruence classes modulo the discrim-

inant. This is no longer true for discriminant −56 however. For example the primes

23 and 79 are congruent mod 56, and yet 23 is represented by Q1 = x
2+14y2 since
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Q1(3,1) = 23, while 79 is represented by Q2 = 2x2 + 7y2 since Q2(6,1) = 79.

Another nice property that held in the previous examples was that no number

appeared in more than one topograph for the given discriminant, but this too fails

for discriminant −56 since there are many nonprimes that occur in the topographs

of both Q1 and Q2 starting with 15,30,39,57,65,78,95,105,114,130, and 135.

Apart from the primes 2 and 7 that divide the discriminant −56, all other primes

belong to the following 24 congruence classes mod 56, corresponding to odd num-

bers less than 56 not divisible by 7 :

1 3 5 9 11 13 15 17 19 23 25 27 29 31 33 37 39 41 43 45 47 51 53 55

The six congruence classes whose prime elements are represented by Q1 or Q2 are

indicated by underlines, and the six congruence classes whose prime elements are

represented by Q3 are indicated by overlines. Primes not represented by any of the

three forms are in the remaining twelve congruence classes.

The new thing that happens in this example is that one cannot tell whether a

prime is represented by Q1 or Q2 just by considering congruence classes mod the

discriminant. We saw this for the pair of primes 23 and 79, and another such pair

visible in the topographs is 71 and 127. By extending the topographs we could find

many more such pairs. One might try using congruences modulo some other number

besides 56, but it is known that this does not help.

Congruences mod 56 suffice to tell which primes are represented by Q3 , but

there is a different sort of novel behavior involving Q3 when we look at representing

products of primes. To illustrate this, observe that the primes 3 and 5 are represented

by Q3 but their product 15 is represented by both Q1 and Q2 . This means there is

some ambiguity about whether the product Q3Q3 should be Q1 or Q2 . The same

thing happens in fact for any pair of coprime numbers represented by Q3 , for example

5 and 6 whose product is represented by both Q1 and Q2 .

For other products QiQj there seems to be no ambiguity. The principal form Q1

acts as the identity for multiplication, while Q2Q2 = Q1 and Q2Q3 = Q3 , although

this last formula is somewhat odd since it seems to imply that Q3 does not have a

multiplicative inverse since if it did, we could multiply the equation Q2Q3 = Q3 by

this inverse to get Q2 = Q1 .

There is a way out of these difficulties, discovered by Gauss. The troublesome

form Q3 is different from the other forms in this example and in the preceding

examples in that it does not have mirror symmetry. Thus the equivalence class of

Q3 splits into two proper equivalence classes, with Q3 having a mirror image form

Q4 = 3x2 − 2xy + 5y2 obtained from Q3 by changing the sign of either x or y and

hence changing the coefficient of xy to its negative. Using Q4 we can then resolve the

ambiguous product Q3Q3 by setting Q3Q3 = Q2 = Q4Q4 and Q3Q4 = Q1 so that Q4

is the inverse of Q3 . This means that each Qi has its inverse given by the mirror im-

age topograph since Q1 and Q2 have mirror symmetry and equal their own inverses.
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The rigorous justification for the formulas Q3Q3 = Q2 = Q4Q4 and Q3Q4 = Q1 will

come in Chapter 7, but for the moment one can check that these formulas are at least

consistent with the topographs.

Since Q2
3 = Q2 we have Q4

3 = Q
2
2 = Q1 . Multiplying the equation Q4

3 = Q1 by

Q4 , the inverse of Q3 , gives Q3
3 = Q4 . Thus all four proper equivalence classes of

forms are powers of the single form Q3 since Q2
3 = Q2 , Q3

3 = Q4 , and Q4
3 = Q1 . This

is corroborated by the representations of powers of 3 since 3 is represented by Q3 ,

32 by Q2
3 = Q2 , 33 by Q3

3 = Q4 , and 34 by Q4
3 = Q1 . Products of powers Qi3 are

computed by adding exponents mod 4 since Q4
3 is the identity. Thus multiplication

of the four forms is formally identical with addition of integers mod 4. The earlier

doubtful formula Q2Q3 = Q3 is resolved into the two formulas Q2Q3 = Q4 and

Q2Q4 = Q3 , which become Q2
3Q3 = Q

3
3 and Q2

3Q
3
3 = Q

5
3 = Q3 .

The appearance of the same number in two different topographs is easy to explain

now that we have two forms Q3 and Q4 representing exactly the same numbers. For

example, to find all appearances of the number 15 = 3·5 in the topographs we observe

that its prime factors 3 and 5 appear in the topographs of both Q3 and Q4 so 15

will appear in the topographs of Q3Q3 = Q2 , Q3Q4 = Q1 , and Q4Q4 = Q2 , although

this last formula gives no new representations.

The procedure for finding which forms represent a number n = 2a7bp1 · · ·pk

with a,b ≤ 1 and primes pi different from 2 or 7 is to replace each prime factor in

this product by a form Qj that represents it, then multiply out the resulting product of

forms Qj . There is also an extra condition that will be justified in Chapter 7: Whenever

a prime pi appears more than once in the prime factorization of n , we should replace

all of its appearances by the same Qj . For example, the forms representing 18 = 2·32

are just the products Q2Q
2
3 = Q1 and Q2Q

2
4 = Q1 and not Q2Q3Q4 = Q2 , as one can

see in the topographs. Similarly, 9 = 3·3 is represented only by Q2
3 = Q2 = Q

2
4 and

not by Q3Q4 = Q1 .

We will show in Chapter 7 that the set of proper equivalence classes of primitive

forms of fixed discriminant always has a multiplication operation compatible with

multiplying values of forms of that discriminant in the way illustrated by the preceding

examples. This multiplication operation gives this set the structure of a group, that

is, a set with an associative multiplication operation for which there is an element of

the set that functions as an identity for the multiplication, and such that each element

of the set has a multiplicative inverse in the set whose product with the given element

is the identity element. The set of proper equivalence classes of primitive forms with

this group structure is called the class group for the given discriminant. The identity

element is the class of the principal form, and the inverse of a class is obtained by

taking the mirror image topograph.

The class group has the additional property that the multiplication is commuta-

tive. This makes its algebraic structure much simpler than the typical noncommuta-
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tive group. An example of a noncommutative group that we have seen is the group

LF(Z) of linear fractional transformations, where the multiplication comes from mul-

tiplication of 2× 2 matrices, or equivalently, composition of the transformations.

For a given discriminant, if the numbers represented by two primitive forms can-

not be distinguished by congruences modulo the discriminant, then these two forms

are said to belong to the same genus. Thus in the preceding example of discriminant

−56 the two forms Q1 and Q2 are of the same genus while Q3 is of a different genus

from Q1 and Q2 , so there are two different genera (“genera” is the plural of “genus”).

Equivalent forms always belong to the same genus since their topographs contain

exactly the same numbers. The first two of the three levels of complexity we have

described correspond to the discriminants where there is only one equivalence class

in each genus. As we stated earlier, this desirable situation is also characterized by

the condition that all primitive forms of the given discriminant have mirror symmetry.

For larger discriminants there can be large numbers of genera and large numbers of

equivalence classes within a genus. However, for a fixed discriminant there are always

the same number of proper equivalence classes within each genus, as we will show in

Corollary 7.27. This is illustrated by the case ∆ = −56 where one genus consists of

Q1 and Q2 and the other genus consists of Q3 and Q4 .

Dirichlet’s Theorem on Primes in Arithmetic Progressions

The examples in this section show the significance of primes in certain congruence

classes for solving the representation problem. In the examples there seems to be no

shortage of primes in each of the relevant congruence classes. For example, for the

form x2+y2 the primes represented, apart from 2, seem to be the primes congruent

to 1 mod 4, the primes of the form 4k+ 1 starting with 5,13,17,29,37,41,53, · · ·.

The other possibility for odd primes is the sequence 3,7,11,19,23,31,43,47, · · ·,

primes of the form 4k+ 3, or equivalently 4k− 1.

Such sequences form arithmetic progressions an+ b for fixed positive integers

a and b and varying n = 0,1,2,3, · · · . It is natural to ask whether there are infinitely

many primes in each arithmetic progression an+b . For this to be true an obvious re-

striction is that a and b should be coprime since any common divisor of a and b will

divide every number an+b , so there could be at most one prime in the progression.

A famous theorem of Dirichlet from 1837 asserts that every arithmetic progres-

sion an+ b with a and b coprime contains an infinite number of primes. This can

be rephrased as saying that within each congruence class of numbers x ≡ b mod a

there are infinitely many primes whenever a and b are coprime. Dirichlet’s theorem

actually says more, that primes are approximately equally distributed among the var-

ious congruence classes mod a for a fixed a . For example, there are approximately

as many primes p = 4n+ 1 as there are primes p = 4n− 1.



170 Chapter 6 — Representations by Quadratic Forms

Dirichlet’s Theorem is not easy to prove, and a proof would require methods quite

different from anything else in this book so we will not be giving a proof. However

a few special cases of Dirichlet’s Theorem can be proved by elementary arguments.

The simplest case is the arithmetic progression 3,7,11, · · · of numbers n = 4n− 1,

using a variant of Euclid’s proof that there are infinitely many primes. First let us

recall how Euclid’s argument goes: Suppose that p1, · · · , pk is a finite list of primes,

and consider the number N = p1 · · ·pk + 1. This must be divisible by some prime

p , but p cannot be any of the primes pi on the list since dividing pi into N gives a

remainder of 1. Thus no finite list of primes can be complete and hence there must

be infinitely many primes.

To adapt this argument to primes of the form 4n−1, suppose that p1, · · · , pk is

a finite list of such primes, and consider the number N = 4p1 · · ·pk − 1. The prime

divisors of N must be odd since N is odd. If all these prime divisors were of the form

4n + 1 then N would be a product of numbers of the form 4n + 1 hence N itself

would have this form, contradicting the fact that N has the form 4n − 1. Hence N

must have a prime factor p = 4n− 1. This p cannot be any of the primes pi since

dividing pi into N gives a remainder of −1. Thus no finite list of primes 4n− 1 can

be a complete list.

This argument does not work for primes p = 4n + 1 since a number N =

4p1 · · ·pk + 1 can be a product of primes of the form 4n− 1, for example 21 = 3·7,

so one could not deduce that N had a prime factor p = 4n+ 1.

However, the quadratic form x2 + y2 can be used to show there are infinitely

many primes p = 4n+1. In Proposition 6.18 we will show that for each discriminant

∆ there are infinitely many primes represented by forms of discriminant ∆ . In the

case ∆ = −4 all forms are equivalent to the form x2+y2 , so this form must represent

infinitely many primes. None of these primes can be of the form 4n−1 since all values

of x2 + y2 are congruent to 0, 1, or 2 mod 4, as squares are always 0 or 1 mod 4.

Thus there must be infinitely many primes p = 4n+ 1.

The same arguments work also for primes p = 3n + 1 and p = 3n − 1. For

p = 3n − 1 one argues just as for 4n − 1, using numbers N = 3p1 · · ·pk − 1. For

p = 3n + 1 one uses the form x2 + xy + y2 of discriminant −3. Here again all

forms of this discriminant are equivalent so Proposition 6.18 says that x2 +xy +y2

represents infinitely many primes. All values of x2+xy+y2 are congruent to 0 or 1

mod 3 as one can easily check by listing the various possibilities for x and y mod 3.

Thus there are infinitely many primes p = 3n+ 1.

We can try these arguments for arithmetic progressions 5n± 1 and 5n± 2 but

there are problems. The Euclidean argument we have given fails in each case for much

the same reason that it failed for primes p = 4n+ 1. For the approach via quadratic

forms we would use the form x2 + xy −y2 of discriminant 5. This is the only form

of this discriminant, up to equivalence, so Proposition 6.18 implies that it represents



Section 6.1 — Three Levels of Complexity 171

infinitely many primes. The methods in the next section will show that the primes

represented by this form are the primes p = 5n ± 1, so there are infinitely many

primes p = 5n+1 or p = 5n−1 but we cannot be more specific than this. Dirichlet’s

Theorem says there are infinitely primes of each type, and in fact there are fancier

forms of the Euclidean argument that prove this, but these Euclidean arguments do

not work for the other cases p = 5n± 2.

We have just seen three quadratic forms that represent infinitely many primes, for

discriminants −4, −3, and 5, and Proposition 6.18 provides other examples for each

discriminant with class number 1. (Nonprimitive forms obviously cannot represent

infinitely many primes, so these forms can be ignored.) For discriminants with larger

class numbers Proposition 6.18 only implies that there is at least one form represent-

ing infinitely many primes. However there is another hard theorem of Dirichlet which

does say that each primitive form of nonsquare discriminant represents infinitely

many primes.

Exercises

1. For the form Q(x,y) = x2 + xy −y2 do the following things:

(a) Draw enough of the topograph to show all the values less than 100 that occur

in the topograph. This form is hyperbolic and it takes the same negative values as

positive values, so you need not draw all the negative values.

(b) Make a list of the primes less than 100 that occur in the topograph, and a list of

the primes less than 100 that do not occur.

(c) Characterize the primes in the two lists in part (b) in terms of congruence classes

mod |∆| where ∆ is the discriminant of Q .

(d) Characterize the nonprime values in the topograph in terms of their factorizations

into primes in the lists in part (b).

(e) Summarize the previous parts by giving a simple criterion for determining the

numbers n such that Q(x,y) = n has an integer solution (x,y) , primitive or not.

The criterion should say something like Q(x,y) = n is solvable if and only if n =

m2p1 · · ·pk where each pi is a prime such that . . .

(e) Check that all forms having the same discriminant as Q are equivalent to Q .

2. Do the same things for the form x2 + xy + 2y2 , except that this time you only

need to consider values less than 50 instead of 100.

3. For discriminant ∆ = −24 do the following:

(a) Verify that the class number is 2 and find two quadratic forms Q1 and Q2 of

discriminant −24 that are not equivalent.
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(b) Draw topographs for Q1 and Q2 showing all values less than 100. (You do not

have to repeat parts of the topographs that are symmetric.)

(c) Divide the primes less than 100 into three lists: those represented by Q1 , those

represented by Q2 , and those represented by neither Q1 nor Q2 . (No primes are

represented by both Q1 and Q2 .)

(d) Characterize the primes in the three lists in part (c) in terms of congruence classes

mod |∆| = 24.

(e) Characterize the nonprime values in the topograph of Q1 in terms of their factor-

izations into primes in the lists in part (c), and then do the same thing for Q2 . Your

answers should be in terms of whether there are an even or an odd number of prime

factors from certain of the lists.

(f) Summarize the previous parts by giving a criterion for which numbers n the equa-

tion Q1(x,y) = n has an integer solution and likewise for the equation Q2(x,y) = n .

4. This problem will show how things can be more complicated than in the previous

problems.

(a) Show that the number of equivalence classes of forms of discriminant −23 is 2

while the number of proper equivalence classes is 3, and find reduced forms Q1 and

Q2 of discriminant −23 that are not equivalent.

(b) Draw the topographs of Q1 and Q2 up to the value 70. (Again you do not have to

repeat symmetric parts.)

(c) Find a number n that occurs in both topographs, and find the x and y values that

give Q1(x1, y1) = n = Q2(x2, y2) . (This sort of thing never happens in the previous

problems.)

(d) Find a prime p1 in the topograph of Q1 and a different prime p2 in the topograph

of Q2 such that p1 and p2 are congruent mod |∆| = 23. (This sort of thing also

never happens in the previous problems.)

5. Show there are infinitely many primes of the form 6m− 1 by an argument similar

to the one used for 4m− 1.

6. Consider a discriminant ∆ = q2 , q > 0, corresponding to 0-hyperbolic forms. Us-

ing the description of the topographs of such forms obtained in the previous chapter,

show:

(a) Every number is represented by at least one form of discriminant ∆ , so in particular

all primes are represented.

(b) The primes represented by a given form of discriminant ∆ are exactly the primes

in certain congruence classes mod q (and hence also mod ∆ ).

(c) For q = 1, 2, 7, and 15 determine the class number for discriminant ∆ = q2 and

find which primes are represented by the forms in each equivalence class.
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6.2 Representations in a Fixed Discriminant

The problem of determining the numbers represented by a given form is dif-

ficult in general, so in this section we will consider the somewhat easier question of

determining which numbers n are represented by at least one form of a given discrim-

inant ∆ , without specifying which form this will be. We refer to this as representing

n in discriminant ∆ .

On several occasions we will make use of the following fact: A form Q represents

a number a if and only if Q is equivalent to a form ax2+bxy+cy2 with leading co-

efficient a . To see this, note first that the form ax2+bxy+cy2 obviously represents

a when (x,y) = (1,0) , hence any form equivalent to ax2 + bxy + cy2 also repre-

sents a . Conversely, if a form Q represents a then a appears in the topograph of

Q , and by applying a suitable linear fractional transformation we can bring the region

where a appears to the 1/0 region, changing Q to an equivalent form ax2+bxy+cy2

where c is the new label on the 0/1 region and b is the new label on the edge between

the 1/0 and 0/1 regions.

Here is our first use of this principle:

Proposition 6.1. If a number n is represented in discriminant ∆ then so is every

divisor of n .

Thus for representations in a given discriminant, if we find which primes are

represented and then which products of these primes are represented, we will have

found all numbers that are represented.

Proof: If n is represented in discriminant ∆ then there is a form nx2 + bxy + cy2

of discriminant ∆ . If n factors as n = n1n2 then n1 is represented by the form

n1x
2 + bxy +n2cy

2 which has the same discriminant as nx2 + bxy + cy2 . ⊔⊓

There is a simple congruence criterion for when a number is represented in a

given discriminant:

Proposition 6.2. There exists a form of discriminant ∆ that represents n if and

only if ∆ is congruent to a square mod 4n .

Note that if n is negative then “mod 4n” means the same thing as “mod 4|n|”

since being divisible by a number d is equivalent to being divisible by −d when we

are considering both positive and negative numbers.

Proof: Suppose n is represented by a form Q of discriminant ∆ , so n appears in the

topograph of Q . If we look at an edge of the topograph bordering a

region labeled n then we obtain an equation ∆ = h2−4nk where h is

the label on the edge and k is the label on the region on the opposite
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side of this edge. The equation ∆ = h2−4nk implies the congruence ∆ ≡ h2 mod 4n

so ∆ is a square mod 4n .

Conversely, suppose that ∆ is the square of some integer h mod 4n . This means

that h2−∆ is an integer times 4n , or in other words h2−∆ = 4nk for some k . This

equation can be rewritten as ∆ = h2 − 4nk , so the form nx2 + hxy + ky2 has

discriminant ∆ , and this form represents n when (x,y) = (1,0) . ⊔⊓

Let us see what this proposition implies about representing small numbers n .

For n = 1 it says that there is a form of discriminant ∆ representing 1 if and only

if ∆ is a square mod 4. The squares mod 4 are 0 and 1, and we already know that

discriminants of forms are always congruent to 0 or 1 mod 4. So we conclude that for

every possible value of the discriminant there exists a form that represents 1. This is

not new information, however, since the principal forms x2+dy2 and x2+xy+dy2

represent 1 and there is a principal form in each discriminant.

In the next case n = 2 the possible values of the discriminant mod 4n = 8 are

0,1,4,5, and the squares mod 8 are 0,1,4 since 02 = 0, (±1)2 = 1, (±2)2 = 4,

(±3)2 ≡ 1, and (±4)2 ≡ 0. Thus 2 is not represented by any form of discriminant

∆ when ∆ ≡ 5 mod 8, but for all other discriminants there is a form representing 2.

Explicit forms representing 2 are 2x2−ky2 for ∆ = 8k , 2x2+xy−ky2 for ∆ = 8k+1,

and 2x2 + 2xy − ky2 for ∆ = 8k+ 4.

Moving on to the next case n = 3, the discriminants mod 12 are 0,1,4,5,8,9

and the squares mod 12 are 0,1,4,9 since 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 =

9, (±4)2 ≡ 4, (±5)2 ≡ 1, and (±6)2 ≡ 0. The excluded discriminants are thus

those congruent to 5 or 8 mod 12. Again explicit forms are easily given, the forms

3x2 + hxy − ky2 with ∆ = 12k+ h2 for h = 0,1,2,3.

We could continue in this direction, exploring which discriminants have forms

that represent a given number, but this is not really the question we want to answer,

which is to start with a given discriminant and decide which numbers are represented

in this discriminant. The sort of answer we are looking for, based on the various

examples we looked at earlier, is also a different sort of congruence condition, with

congruence modulo the discriminant rather than congruence mod 4n . So there is

more work to be done before we would have the sort of answer we want. Nevertheless,

the representability criterion in Proposition 6.2 is the starting point.

Our approach will be to reduce the representation problem in discriminant ∆ first

to the case of representing prime powers and then to representing primes themselves.

Here is the first step.

Proposition 6.3. If two coprime numbers m and n are both represented in dis-

criminant ∆ then so is their product mn .

Applying this repeatedly, we see that if a number n has the prime factorization

n = p
e1

1 · · ·p
ek
k for distinct primes pi , and if p

ei
i is represented in discriminant ∆ for
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each i , then n is represented in discriminant ∆ .

The main ingredient in the proof of the proposition will be the following:

Lemma 6.4. If a number x is a square mod m1 and also a square mod m2 where

m1 and m2 are coprime, then x is a square mod m1m2 .

For example, the number 2 is a square mod 7 (since 32 ≡ 2 mod 7) and also mod

17 (since 62 ≡ 2 mod 17) so 2 must also be a square mod 7·17 = 119. And in fact

2 ≡ 112 mod 119.

Proof: This will be a consequence of the Chinese Remainder Theorem. If x is a square

mod m1 and also a square mod m2 then there are numbers a1 and a2 such that

x ≡ a2
1 mod m1 and x ≡ a2

2 mod m2 . If m1 and m2 are coprime then by the

Chinese Remainder Theorem there is a number a that is congruent to a1 mod m1

and to a2 mod m2 , hence a2 ≡ a2
1 mod m1 and a2 ≡ a2

2 mod m2 . Thus x ≡ a2

mod m1 and mod m2 . This implies x ≡ a2 mod m1m2 since the difference x − a2

is divisible by both m1 and m2 and hence by their product m1m2 since m1 and m2

are coprime. This shows that x is a square mod m1m2 . ⊔⊓

Proof of Proposition 6.3: Let m and n be coprime. At least one of them must be

odd, say n is odd. If m and n are represented in discriminant ∆ then ∆ is a square

mod 4m and mod 4n , hence also mod n . Since 4m and n are coprime, the lemma

then says that ∆ is a square mod 4mn , so mn is represented in discriminant ∆ . ⊔⊓

Next we try to reduce further from prime powers to primes themselves. This is

possible for most primes by the following more technical result:

Lemma 6.5. If a number x is a square mod p for an odd prime p not dividing x ,

then x is also a square mod pr for each r > 1 . The corresponding statement for

the prime p = 2 is that if an odd number x is a square mod 8 then x is also a

square mod 2r for each r > 3 .

For example, 2 is a square mod 7 since 2 ≡ 32 mod 7, so 2 is also a square mod

72 , namely 2 ≡ 102 mod 49. It is also a square mod 73 = 343 since 2 ≡ 1082 mod

343. Likewise it must be a square mod 74 , mod 75 , etc. The proof of the lemma will

give a method for refining the initial congruence 2 ≡ 32 mod 7 to each subsequent

congruence 2 ≡ 102 mod 49, 2 ≡ 1082 mod 343, etc.

For the prime p = 2 we have to begin with squares mod 8 since 3 is a square

mod 2 but not mod 4, while 5 is a square mod 4 but not mod 8.

Proof of Lemma 6.5: We will show that if x is a square mod pr then it is also a

square mod pr+1 , assuming r ≥ 1 in the case that p is odd and r ≥ 3 in the case

p = 2. By induction this will prove the lemma.

We begin by assuming that x is a square mod pr , so there is a number y such

that x ≡ y2 mod pr or in other words pr divides x − y2 , say x − y2 = pr l for
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some integer l . We would like to find a number z such that x ≡ z2 mod pr+1 , so

it is reasonable to look for a z with z ≡ y mod pr , or in other words z = y + kpr

for some k . Thus we want to choose k so that x ≡
(
y + kpr

)2
mod pr+1 . In other

words we want pr+1 to divide x −
(
y + kpr

)2
. This can be rewritten as:

x −
(
y + kpr

)2
= x −

(
y2 + 2kpry + k2p2r )

= x −y2 − 2kpry − k2p2r

= pr l− 2kpry − k2p2r since x −y2 = pr l

= pr
(
l− 2ky − k2pr

)

For this to be divisible by pr+1 means that p should divide l−2ky −k2pr . Since we

assume r ≥ 1 this is equivalent to p dividing l−2ky , or in other words, l−2ky = pq

for some integer q . Rewriting this as l = 2yk+pq , we see that this linear Diophantine

equation with unknowns k and q always has a solution when p is odd since 2y and

p are coprime if p is odd, in view of the fact that p does not divide y since x ≡ y2

mod pr and we assume x is not divisible by p . This finishes the induction step in

the case that p is odd.

When p = 2 this argument breaks down at the last step since the equation l =

2yk+ pq becomes l = 2yk+ 2q and this will not have a solution when l is odd. To

modify the proof so that it works for p = 2 we would like to get rid of the factor 2

in the equation l = 2yk + pq which arose when we squared y + kpr . To do this,

suppose that instead of trying z = y + k·2r we try z = y + k·2r−1 . Then we would

want 2r+1 to divide x −
(
y + k·2r−1)2

. Again this can be rewritten:

x −
(
y + k·2r−1)2

= x −y2 − k·2ry − k222r−2

= 2r l− k·2ry − k222r−2 since x − y2 = 2r l

= 2r
(
l− ky − k22r−2)

Assuming r ≥ 3, this means 2 should divide l− ky , or in other words l = yk+ 2q

for some integer q . The number y is odd since y2 ≡ x mod 2r and x is odd by

assumption. This implies the equation l = yk+ 2q has a solution (k, q) . ⊔⊓

Proposition 6.6. If a prime p not dividing the discriminant ∆ is represented by a

form of discriminant ∆ then every power of p is also represented by a form of

discriminant ∆ .

Proof: First we consider odd primes p . If p is represented in discriminant ∆ then

∆ is a square mod 4p and hence mod p . The preceding lemma then says that ∆ is a

square mod each power pr . From this it follows by Lemma 6.4 that ∆ is also a square

mod 4pr since ∆ is always a square mod 4. Thus by Proposition 6.2 all powers of p

are represented in discriminant ∆ .

For p = 2 the argument is almost the same. In this case the representability of 2

implies that ∆ is a square mod 4·2 = 8 so the lemma implies that ∆ is also a square

mod 4·2r for all r ≥ 1 so all powers of 2 are represented. ⊔⊓
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In the examples for the representation problem that we looked at in the preceding

section we saw that primes that divide the discriminant behave differently from primes

that do not, and the differences begin at this point:

Proposition 6.7. Each prime dividing the discriminant ∆ is represented in discrim-

inant ∆ . If a prime p divides ∆ but not the conductor of ∆ then no form of

discriminant ∆ represents p2 or any higher power of p .

Recall that the conductor for discriminant ∆ is the largest positive number d such

that ∆ = d2∆′ for some discriminant ∆′ . This ∆′ is then a fundamental discriminant.

Fundamental discriminants are those with conductor 1.

Proof: The representability of primes dividing ∆ follows from Proposition 5.7, but it

can also be deduced from the congruence criterion of Proposition 6.2 as follows. For

a prime p dividing ∆ we have ∆ ≡ 0 mod p so ∆ is a square mod p , namely 02 .

When p is odd it follows that ∆ is also a square mod 4p since ∆ is always a square

mod 4. Hence p is represented in discriminant ∆ in this case. If p is 2 and divides

∆ then ∆ ≡ 0 mod 4 so ∆ = 8k or 8k + 4. Thus ∆ ≡ 0 or 4 mod 8 and so ∆ is a

square mod 8, which means that 2 is represented in discriminant ∆ .

Suppose now that p is a prime dividing ∆ and some form of discriminant ∆
represents p2 . This form is equivalent to a form p2x2 + bxy + cy2 with p dividing

∆ = b2 − 4p2c so p must divide b2 . Since p is prime it must then divide b , so in

fact p2 divides b2 . Therefore p2 divides ∆ = b2 − 4p2c and we have ∆ = p2∆′ for

some integer ∆′ .
Consider first the case that p is odd. Then p2 ≡ 1 mod 4 so ∆ ≡ ∆′ mod 4.

This means that ∆′ is also a discriminant, so by the definition of the conductor, p

divides the conductor. Thus if p divides ∆ but not the conductor then p2 cannot be

represented by any form of discriminant ∆ .

In the case that p = 2 the assumption that p divides ∆ means that ∆ is even

and hence so is b . The discriminant equation ∆ = b2 − 4p2c is now ∆ = b2 − 4·22c

so ∆ ≡ b2 mod 16. The only squares of even numbers mod 16 are 0 and 4, as one

sees by checking 02 , (±2)2 , (±4)2 , (±6)2 , and (±8)2 , so ∆ is either 16k = 4(4k)

or 16k + 4 = 4(4k + 1) . In both cases ∆ is 4 times a discriminant so 2 divides the

conductor.

Once we know that p2 is not represented in discriminant ∆ then neither is any

multiple of p2 by Proposition 6.1, and in particular higher powers of p are not rep-

resented. ⊔⊓

Here is a summary of what we have shown so far in the case of fundamental

discriminants:

Theorem 6.8. If ∆ is a fundamental discriminant then the numbers n > 1 that

are represented by at least one form of discriminant ∆ are exactly the numbers
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that factor as a product n = p
e1

1 p
e2

2 · · ·p
ek
k of powers of distinct primes pi each

of which is represented by some form of discriminant ∆ , with the restriction that

ei ≤ 1 for primes pi dividing ∆ .

The situation for nonfundamental discriminants is more complicated and will be

described later in Theorem 6.11.

Quadratic Reciprocity

For the problem of determining which primes are represented in a given discrim-

inant we already know when 2 is represented and we know that primes dividing the

discriminant are always represented. After these special cases what remains are the

odd primes not dividing the discriminant, which can be regarded as the generic case.

An odd prime p will be represented in discriminant ∆ exactly when ∆ is a square

mod p . Let us introduce some convenient notation for this condition. For p an odd

prime and a an integer not divisible by p , define the Legendre symbol
(
a
p

)
by

(
a
p

)
=

{
+1 if a is a square mod p
−1 if a is not a square mod p

Using this notation we can say:

An odd prime p that does not divide ∆ is represented in discriminant ∆ if and

only if
(∆
p

)
= +1 .

It will therefore be useful to know how to compute
(
a
p

)
. The following four basic

properties of the Legendre symbol make this a feasible task:

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(2)
(

---1
p

)
= +1 if p ≡ 1 mod 4 and

(
---1
p

)
= −1 if p ≡ 3 mod 4.

(3)
(

2
p

)
= +1 if p ≡ ±1 mod 8 and

(
2
p

)
= −1 if p ≡ ±3 mod 8.

(4) If p and q are distinct odd primes then
(
p
q

)
=
(
q
p

)
unless p and q are both

congruent to 3 mod 4, in which case
(
p
q

)
= −

(
q
p

)
.

Property (1), applied repeatedly, reduces the calculation of
(
a
p

)
to the calculation of(

q
p

)
for the various prime factors q of a , along with

(
---1
p

)
when a is negative. Note

that
(
q2

p

)
= +1 so we can immediately reduce to the case that |a| is a product of

distinct primes. Property (2) will be used when dealing with negative discriminants,

and property (3) will be used for certain even discriminants.

Property (4) is called quadratic reciprocity. This is by far the most subtle of the

four properties, and proving it is considerably more difficult than for the other three

properties. We will give a proof in Section 6.4, obtaining proofs of the first three

properties along the way.

For a quick illustration of the usefulness of these properties let us see how they

can be used to compute the values of Legendre symbols. Suppose for example that
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one wanted to know whether 78 was a square mod 89. The naive approach would

be to list the squares of all the numbers ±1, · · · ,±44 and see whether any of these

was congruent to 78 mod 89, but this would be rather tedious. Since 89 is prime

we can instead evaluate
(

78
89

)
using the basic properties of Legendre symbols. First

we factor 78 to get
(

78
89

)
=
(

2
89

)(
3

89

)(
13
89

)
. By property (3) we have

(
2

89

)
= +1 since

89 ≡ 1 mod 8. Next, reciprocity gives
(

3
89

)
=
(

89
3

)
and

(
13
89

)
=
(

89
13

)
since 89 ≡ 1

mod 4. After this we use the fact that
(
a
p

)
depends only on the value of a mod p to

reduce
(

89
3

)
to
(

2
3

)
and

(
89
13

)
to
(

11
13

)
. Using property (3) again, we have

(
2
3

)
= −1,

confirming the obvious fact that 2 is not a square mod 3. For
(

11
13

)
, reciprocity says

this equals
(

13
11

)
. This reduces to

(
2
11

)
= −1. Summarizing, we have:

(
78
89

)
=

(
2
89

)(
3

89

)(
13
89

)
=
(
+1
)(
−1
)(
−1
)
= +1

Thus we see that 78 is a square mod 89, even though we have not found an actual

number x such that x2 ≡ 78 mod 89.

In this example we used the fact that the modulus 89 was prime, but we have

already seen how to reduce to the case of prime moduli. For example, if we wanted

to determine whether 78 is a square mod 88 we know this is the case exactly when it

is a square mod 8 and mod 11. The squares mod 8 are 0, 1, and 4 whereas 78 ≡ 6

mod 8 so 78 is not a square mod 8 and therefore not mod 88 either, even though

78 ≡ 1 mod 11 so 78 is a square mod 11.

Returning now to quadratic forms, let us see what the basic properties of Legendre

symbols tell us about which primes are represented by some of the forms discussed

at the beginning of the chapter. In the first four cases the class number is 1 so we will

be determining which primes are represented by the given form, and Theorem 6.8

will then say exactly which numbers are represented by this form, confirming the

conjectures made when we looked at the topographs.

Example: x2 + y2 with ∆ = −4. This form obviously represents 2, the only prime

dividing ∆ , and it represents an odd prime p exactly when
(

---4
p

)
= +1. Using the first

of the four properties we have
(

---4
p

)
=
(

---1
p

)(
2
p

)(
2
p

)
=
(

---1
p

)
, and the second property

says this is +1 exactly for primes p = 4k + 1. Thus we see the primes represented

by x2 + y2 are 2 and the primes p = 4k+ 1.

Example: x2 + 2y2 with ∆ = −8. Again the only prime dividing ∆ is 2, and it

is represented. For odd primes p we have
(

---8
p

)
=
(

---1
p

)(
2
p

)3
=
(

---1
p

)(
2
p

)
. In the four

cases p ≡ 1,3,5,7 mod 8 this is, respectively, (+1)(+1) , (−1)(−1) , (+1)(−1) , and

(−1)(+1) . We conclude that the primes represented by the form x2 +2y2 are 2 and

primes congruent to 1 or 3 mod 8.

Example: x2−2y2 with ∆ = 8. The only prime dividing ∆ is 2 which is represented

when (x,y) = (2,1) . For odd primes p we have
(

8
p

)
=
(

2
p

)3
=
(

2
p

)
so property (3)

implies that the primes represented by x2 − 2y2 are 2 and p ≡ ±1 mod 8.



180 Chapter 6 — Representations by Quadratic Forms

Example: x2 +xy +y2 with ∆ = −3. The only prime dividing the discriminant is 3

and it is represented. The prime 2 is not represented since ∆ ≡ 5 mod 8. For primes

p > 3 we can evaluate
(

---3
p

)
using quadratic reciprocity:

(
---3
p

)
=
(

---1
p

)(
3
p

)
=



(+1)

(
p
3

)
if p = 4k+ 1

(−1)
(
−
(
p
3

))
if p = 4k+ 3

So we get
(
p
3

)
in both cases. Since

(
p
3

)
only depends on p mod 3, we have

(
p
3

)
= +1

if p ≡ 1 mod 3 and
(
p
3

)
= −1 if p ≡ 2 mod 3. (Since p ≠ 3 we do not need to

consider the possibility p ≡ 0 mod 3.) The conclusion is that the primes represented

by x2 + xy +y2 are 3 and the primes p ≡ 1 mod 3.

Example: ∆ = 40. Here all forms are equivalent to either x2 − 10y2 or 2x2 − 5y2 .

The primes dividing 40 are 2 and 5 so these are represented by one form or the

other, and in fact both are represented by 2x2 − 5y2 as the topographs showed. For

other primes p we have
(

40
p

)
=
(

2
p

)3(5
p

)
=
(

2
p

)(
p
5

)
. The factor

(
2
p

)
depends only on

p mod 8 and
(
p
5

)
depends only on p mod 5, so their product depends only on p

mod 40. The following table lists all the possibilities for congruence classes mod 40

not divisible by 2 or 5 :

1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39(
2
p

)
+1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1

(
p
5

)
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

The product
(

2
p

)(
p
5

)
is +1 in exactly the eight cases p ≡ 1,3,9,13,27,31,37,39

mod 40. We conclude that these are the eight congruence classes containing primes

(other than 2 and 5) represented by one of the two forms x2−10y2 and 2x2−5y2 .

This agrees with our earlier observations based on the topographs. However, we have

yet to verify our earlier guesses as to which congruence classes are represented by

which form. We will see how to do this in the next section.

In the examples above we were able to express
(∆
p

)
in terms of Legendre symbols(

---1
p

)
,
(

2
p

)
, and

(
p
pi

)
for odd primes pi dividing ∆ . The following result shows that

this can be done for all ∆ :

Proposition 6.9. Let the nonzero integer ∆ be factored as ∆ = ε2sp1 · · ·pk for

ε = ±1 , s ≥ 0 , and each pi an odd prime. (We allow k = 0 when ∆ = ε2s .) Then

for odd primes p not dividing ∆ the Legendre symbol
(∆
p

)
has the value given in

the following table :
∆

(∆
p

)

22l(4m+ 1)
(
p
p1

)
· · ·

(
p
pk

)

22l(4m+ 3)
(

---1
p

)(
p
p1

)
· · ·

(
p
pk

)

22l+1(4m+ 1)
(

2
p

)(
p
p1

)
· · ·

(
p
pk

)

22l+1(4m+ 3)
(

---1
p

)(
2
p

)(
p
p1

)
· · ·

(
p
pk

)
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Proof: For ∆ = ε2sp1 · · ·pk quadratic reciprocity gives

(∆
p

)
=
(
ε
p

)(
2
p

)s(p1
p

)
· · ·

(pk
p

)
=
(
ε
p

)(
2
p

)s(ω
p

)(
p
p1

)
· · ·

(
p
pk

)

where ω is +1 or −1 according to whether there are an even or an odd number of

factors pi ≡ 3 mod 4. The exponent s in this formula can be replaced by 0 or 1

according to whether s is even or odd. In the first and third rows of the table the odd

part of ∆ is 4m+ 1 so we have ε =ω and therefore
(
ε
p

)(
ω
p

)
= 1. In the second and

fourth rows the factor 4m + 1 is replaced by 4m + 3 and we have ε = −ω , hence(
ε
p

)(
ω
p

)
=
(

---1
p

)
. ⊔⊓

Corollary 6.10. The representability of an odd prime p in discriminant ∆ depends

only on the congruence class of p mod ∆ .

Proof: The class of p mod ∆ determines its class mod pi for each i and this deter-

mines
(
p
pi

)
. For the terms

(
---1
p

)
and

(
2
p

)
in the last three rows of the table, note first

that l must be at least 1 in these rows since ∆ is a discriminant. In the second row

the class of p mod ∆ determines its class mod 4 so it determines
(

---1
p

)
. In the third

and fourth rows the class of p mod ∆ determines its class mod 8 so both
(

---1
p

)
and(

2
p

)
are determined. Thus in all cases the factors of

(∆
p

)
are determined by the class

of p mod ∆ so
(∆
p

)
is determined. ⊔⊓

Complications for Nonfundamental Discriminants

Our next result generalizes Theorem 6.8 to cover all discriminants. As one can

see, the general statement is considerably more complicated than for fundamental

discriminants.

Theorem 6.11. A number n > 1 is represented by at least one form of discriminant

∆ exactly when n factors as a product n = p
e1

1 p
e2

2 · · ·p
ek
k of powers of distinct

primes pi each of which is represented by some form of discriminant ∆ , where

ei ≤ 1 for primes pi dividing ∆ but not the conductor, while for primes p = pi

dividing the conductor the allowed exponents e = ei are given by the following

rules. First write ∆ = psq with ps the highest power of p dividing ∆ . Then if p is

odd the allowable exponents e are those for which either

(a) e ≤ s or

(b) e > s , s is even, and
(
q
p

)
= +1 .

If p = 2 then the allowable exponents e are those for which either

(a) e ≤ s − 2 or

(b) s is even and e is as in the following table:

q mod 8 1 3 5 7

e all ≤ s − 1 ≤ s ≤ s − 1
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Examples will be given following the proof. The main part of the proof is con-

tained in a lemma:

Lemma 6.12. Suppose that a number x divisible by a prime p factors as psq where

p does not divide q , so ps is the largest power of p dividing x . Then :

(a) x is a square mod pr for each r ≤ s .

(b) If r > s and s is odd then x is not a square mod pr .

(c) If r > s and s is even then x is a square mod pr if and only if q is a square

mod pr−s .

Proof: Part (a) is easy since x is 0 mod ps hence also mod pr if r ≤ s , and 0 is

always a square mod anything.

For (b) we assume r > s and s is odd. Suppose psq is a square mod pr , so

psq = y2 + lpr for some integers y and l . Then ps divides y2 + lpr and it divides

lpr (since r > s ) so ps divides y2 . Since s is assumed to be odd and the exponent of

p in y2 must be even, this implies ps+1 divides y2 . It also divides lpr since s+1 ≤ r ,

so from the equation psq = y2 + lpr we conclude that p divides q , contrary to the

definition of q . This contradiction shows that psq is not a square mod pr when

r > s and s is odd, so statement (b) is proved.

For (c) we assume r > s and s is even. As in part (b), if psq is a square mod pr

we have an equation psq = y2 + lpr and this implies that ps divides y2 . Since s

is now even, this means y2 = psz2 for some number z . Canceling ps from psq =

y2 + lpr yields an equation q = z2 + lpr−s , which says that q is a square mod pr−s .

Conversely, if q is a square mod pr−s we have an equation q = z2+ lpr−s and hence

psq = psz2 + lpr . Since s is even, this says that psq is a square mod pr . ⊔⊓

Proof of Theorem 6.11: As in the proof of Theorem 6.8 the question reduces to rep-

resenting powers of primes. We know from Proposition 6.6 that all powers of a prime

not dividing the discriminant ∆ are represented if the prime itself is represented. By

Proposition 6.7 we also know that primes p dividing ∆ are represented, and their

powers pe with e > 1 cannot be represented unless p divides the conductor. For the

remaining case of primes dividing the conductor we will apply the preceding lemma

with x = ∆ .

For odd p dividing ∆ we need to determine when ∆ is a square mod pe . By the

lemma the times this happens are when e ≤ s , or when e > s and s is even and q is

a square mod pe−s . When e > s this last condition amounts just to q being a square

mod p by Lemma 6.5, or in other words
(
q
p

)
= +1.

When p = 2 we need to determine when ∆ is a square mod 4·2e = 2e+2 . By the

lemma this happens only when e ≤ s − 2 or when s is even and q (which is odd) is

a square mod 2e+2−s . If e = s − 1 then e + 2 − s = 1 and every q is a square mod

2e+2−s = 2. If e = s then e + 2− s = 2 and q is a square mod 2e+2−s = 4 only when
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q = 4k+ 1. And if e ≥ s + 1 then e + 2 − s ≥ 3 and q is a square mod 2e+2−s only

when it is a square mod 8, which means q = 8k+ 1. ⊔⊓

Let us look at two examples illustrating some of the more subtle possibilities

in the preceding theorem. The examples involve the rather simple forms x2 + ny2

whose discriminant −4n is sometimes not a fundamental discriminant such as when

n is congruent to 3 mod 4. The examples will be the cases n = 3,7.

Example: ∆ = −12 with conductor 2. The two forms here are Q1 = x
2 + 3y2 and

the nonprimitive form Q2 = 2x2 + 2xy + 2y2 .

The primes represented in discriminant −12 are 2, 3, and primes p with
(

---12
p

)
=(

---3
p

)
=
(

---1
p

)(
3
p

)
=
(
p
3

)
= +1, so these are the primes p ≡ 1 mod 3. By Theorem 6.11

the numbers represented in discriminant −12 are the numbers n = 2a3bp1 · · ·pk

with a ≤ 2, b ≤ 1, and each pi a prime congruent to 1 mod 3. (When we apply the

theorem for pi = 2 we have s = 2 and q = −3.) We can in fact determine which

of Q1 and Q2 is giving these representations. The form Q2 is twice x2 + xy + y2

and we have already determined which numbers the latter form represents, namely

the products 3bp1 · · ·pk with b ≤ 1 and each prime pi ≡ 1 mod 3. Thus, of the

numbers represented by Q1 or Q2 , the numbers represented by Q2 are those with

a = 1. None of these numbers with a = 1 are represented by Q1 since x2 + 3y2 is

never 2 mod 4, as x2 and y2 must be 0 or 1 mod 4.

Example: ∆ = −28 with conductor 2 again. Here the only two forms up to equiva-

lence are Q1 = x
2 + 7y2 and Q2 = 2x2 + 2xy + 4y2 which is not primitive.

The primes represented in discriminant −28 are 2, 7, and odd primes p with
(

---28
p

)
=(

---1
p

)(
7
p

)
=
(
p
7

)
= +1 so p ≡ 1,2,4 mod 7. According to Theorem 6.11 the numbers
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represented by Q1 or Q2 are the numbers n = 2a7bp1 · · ·pk with b ≤ 1 and each

pi an odd prime congruent to 1, 2, or 4 mod 7. There is no restriction on a since

when we apply the theorem with pi = 2 we have s = 2 and q = −7 = 8l+ 1.

We can say exactly which numbers are represented by Q2 since it is twice the

form x2 + xy + 2y2 of discriminant −7, which is a fundamental discriminant of

class number 1 so Theorem 6.8 tells us which numbers this form represents. These

are the numbers 7bp1 · · ·pk with b ≤ 1 and primes pi ≡ 1,2,4 mod 7, including

now the possibility pi = 2. Thus Q2 represents exactly the numbers 2a7bp1 · · ·pk

with a ≥ 1, b ≤ 1 and odd primes pi ≡ 1,2,4 mod 7. Hence Q1 must represent

at least the numbers 2a7bp1 · · ·pk with a = 0, b ≤ 1, and odd primes pi ≡ 1,2,4

mod 7. These numbers are all odd since a = 0, but Q1 also represents some even

numbers since x2 + 7y2 is even whenever both x and y are odd.

From the topograph we might conjecture that Q1 represents exactly the numbers

2a7bp1 · · ·pk with a ≠ 1,2 and the same conditions on b and the primes pi as

before. For example one can see that 8, 16, 32, 64, and 128 are represented. It is

not difficult to exclude a = 1 and a = 2 by considering the values of x2+7y2 mod 4

and mod 8. To see that Q1 represents all the predicted numbers with a ≥ 3 we use

the following result.

Proposition 6.13. For a prime p , if a product pkq with k > 0 is represented by a

primitive form of discriminant ∆ then pk+2q is represented by a primitive form of

discriminant p2∆ .

Applying this to the case at hand with p = 2, the form x2+xy +2y2 represents

all the products 2a7bp1 · · ·pk as above with a ≥ 1, so x2+7y2 represents all these

products with a ≥ 3.

Proof: Suppose we have a primitive form of discriminant ∆ representing pkq , so the

topograph of this form has a region labeled pkq . If k > 0 then at least one of the

regions adjacent to this region must have a label not divisible by p , otherwise a vertex

in the boundary of this region would have all three adjacent labels divisible by p so

the form would be p times another form, making it nonprimitive. Thus the given

form is equivalent to a form pkqx2+bxy +cy2 with c not divisible by p . The form

pk+2qx2 + pbxy + cy2 has discriminant p2∆ and is primitive since its coefficients

are not all divisible by p , nor are they divisible by any other prime since such a prime

would have to divide q , b , and c making the previous form pkqx2 + bxy + cy2

nonprimitive. ⊔⊓

For nonfundamental discriminants Theorem 6.11 says nothing about whether the

representing forms are primitive. As we will see in Theorem 7.7, determining the

numbers represented by primitive forms of a given discriminant also reduces to the

special case of representing prime powers by primitive forms. Namely, a product of

powers p
ki
i of distinct primes pi is represented by a primitive form exactly when each
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of the prime powers p
ki
i is represented by a primitive form. Most prime powers are

represented only by primitive forms, according to the following easy result:

Proposition 6.14. A form of discriminant ∆ representing a power pk of a prime p

not dividing the conductor of ∆ is primitive.

Proof: If a form Q representing pk is not primitive it is a multiple of another form

by some integer d > 1. This number d divides every number represented by Q so in

particular d divides pk and hence p divides d . Since d divides the conductor, this

means that p divides the conductor. Thus if p does not divide the conductor then Q

must be primitive. ⊔⊓

For primes dividing the conductor one can get some idea of the complications

that can occur from the table on the next page. This lists all the equivalence classes of

forms, both primitive and nonprimitive, for nonfundamental negative discriminants

up to −99, along with the prime powers pk represented by these forms for primes

p dividing the conductor d . To save space the table uses the abbreviated notation

[a, b, c] for the form ax2 + bxy + cy2 .

Some information in the table can be deduced from the earlier Proposition 6.13,

such as the fact that if nonprimitive forms of a given discriminant represent all powers

pk with k ≥ 1 then primitive forms of that discriminant represent all powers pk with

k ≥ 3. This statement is optimal for some discriminants such as −28 and −60 but

not for others such as −72 and −99 where p2 is also represented by a primitive form.

In the table one can see that primitive forms represent powers of primes dividing

the conductor but not these primes themselves. As we will show in Proposition 6.15,

a prime can only be represented by a single equivalence class of forms of a given dis-

criminant, and a prime p dividing the conductor for discriminant ∆ is represented by

p times the principal form of discriminant ∆/p2 , so p is represented by a nonprimi-

tive form and hence cannot also be represented by a primitive form. The uniqueness

of forms representing primes holds also for powers of primes that do not divide the

conductor, but we see from the table that this uniqueness may not hold for primes

that do divide the conductor, even if we restrict attention just to primitive forms, as

for example in the case ∆ = −32 where 23 is represented by two nonequivalent prim-

itive forms, or discriminants −72 and −99 where there are infinitely many different

powers pk represented by different primitive forms.

The entries in the table where Theorem 6.11 says that only finitely many powers

pk are represented can be checked just by drawing topographs, but in the other cases

one must use general theory. We already explained the first case ∆ = −28 in the

earlier analysis of the form x2 + 7y2 . For the next case ∆ = −60 the methods in the

next section will suffice. A technique for handling the last few cases in the table will

be explained at the end of Chapter 8.
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∆ d Q prim. pk Q nonprim. pk

−12 2 [1,0,3] 22 2[1,1,1] 21

−16 2 [1,0,4] 22,23 2[1,0,1] 21,22

−27 3 [1,1,7] 32,33 3[1,1,1] 31,32

−28 2 [1,0,7] 23,24,25, · · · 2[1,1,2] 21,22,23, · · ·

−32 2 [1,0,8] 23 2[1,0,2] 21,22

[3,2,3] 22,23

−36 3 [1,0,9] 32 3[1,0,1] 31

[2,2,5] 32

−44 2 [1,0,11] — 2[1,1,3] 21

[3,2,4] 22

−48 4 [1,0,12] 24 2[1,0,3] 21,23

[3,0,4] 22,24 4[1,1,1] 22

−60 2 [1,0,15] 24,26,28,210, · · · 2[1,1,4] 21,23,25,27, · · ·

[3,0,5] 23,25,27,29, · · · 2[2,1,2] 22,24,26,28, · · ·

−63 3 [1,1,16] — 3[1,1,2] 31

[2,1,8] 32

[4,1,4] 32

−64 4 [1,0,16] 24,25 2[1,0,4] 21,23,24

[4,4,5] 22,24,25 4[1,0,1] 22,23

−72 3 [1,0,18] 33,34,35,36, · · · 3[1,0,2] 31,32,33,34, · · ·

[2,0,9] 32,33,34,35, · · ·

−75 5 [1,1,19] 52 5[1,1,1] 51

[3,3,7] 52

−76 2 [1,0,19] — 2[1,1,5] 21

[4,2,5] 22

−80 2 [1,0,20] — 2[1,0,5] 21

[4,0,5] 22 2[2,2,3] 22

[3,2,7] 23

−92 2 [1,0,23] 25,28,211,214, · · · 2[1,1,6] 21,24,27,210, · · ·

[3,2,8] 23,24,26,27, · · · 2[2,1,3] 22,23,25,26,28,29, · · ·

−96 2 [1,0,24] — 2[1,0,6] 21

[3,0,8] 23 2[2,0,3] 22

[5,2,5] 23

[4,4,7] 22

−99 3 [1,1,25] 33,34,35,36, · · · 3[1,1,3] 31,32,33,34, · · ·

[5,1,5] 32,33,34,35, · · ·
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Unique Representability for Primes and Prime Powers

In Section 6.1 we saw examples where two nonequivalent forms of the same dis-

criminant both represent the same number. However, this does not happen for rep-

resentations of 1 or primes or powers of most primes:

Proposition 6.15. If Q1 and Q2 are two forms of the same discriminant that both

represent the same prime p or both represent 1 , then Q1 and Q2 are equivalent.

The same conclusion holds when Q1 and Q2 both represent the same power pk of

an odd prime p that does not divide the discriminant.

The last statement is also true for p = 2 but the proof is more difficult so we will

wait until the next chapter to deduce this from a more general result, Theorem 7.7.

Examples showing that powers of primes dividing the discriminant can be represented

by nonequivalent forms of the same discriminant can be found in the table on the

previous page. In these examples the prime in question divides the conductor, not

just the discriminant, but this has to be the case since for primes p dividing the

discriminant but not the conductor the only power pk represented by a form of the

given discriminant is p itself, by Proposition 6.7.

Proof: Suppose that Q is a form representing a number p that is either 1 or a prime.

The topograph of Q then has a region labeled p , and we have seen that the h - labels

on the edges adjacent to this p -region form an arithmetic progression with increment

2p when these edges are all oriented in the same direction. We have the discriminant

formula ∆ = h2 − 4pq where h is the label on one of these edges and q is the

value of Q for the region on the other side of this edge. Since p is nonzero the

equation ∆ = h2 − 4pq determines q in terms of ∆ and h . This implies that ∆
and the arithmetic progression determine the form Q up to equivalence since the

progression determines p , and any h -value in the progression then determines the

q -value corresponding to this h -value, so Q is equivalent to px2 + hxy + qy2 .

In the case that p = 1 the increment in the arithmetic progressions is 2 so the

two possible progressions of h -values adjacent to the p -region are the even numbers

and the odd numbers. We know that h has the same parity as ∆ , so ∆ determines

which of the two progressions we have. As we saw in the preceding paragraph, this

implies that the form is determined by ∆ , up to equivalence.

Now we consider the case that p is prime. Let Q1 and Q2 be two forms of the

same discriminant ∆ both representing p . For Q1 choose an edge in its topograph

adjacent to the p -region, with h - label h1 and q - label q1 . For the form Q2 we simi-

larly choose an edge with associated labels h2 and q2 . Both h1 and h2 have the same

parity as ∆ . We have ∆ = h2
1 − 4pq1 = h

2
2 − 4pq2 and hence h2

1 ≡ h
2
2 mod 4p . This

implies h2
1 ≡ h

2
2 mod p , so p divides h2

1−h
2
2 = (h1+h2)(h1−h2) . Since p is prime,

it must divide one of the two factors and hence we must have h1 ≡ ±h2 mod p . By
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changing the orientations of the edges in the topograph for Q1 or Q2 if necessary,

we can assume that h1 ≡ h2 mod p .

If p is odd we can improve this congruence to h1 ≡ h2 mod 2p since we know

that h1 − h2 is divisible by both p and 2 (since h1 and h2 have the same parity),

hence h1 − h2 is divisible by 2p . The congruence h1 ≡ h2 mod 2p implies that the

arithmetic progression of h -values adjacent to the p -region for Q1 is the same as

for Q2 since 2p is the increment for both progressions. By what we showed earlier,

this implies that Q1 and Q2 are equivalent.

When p = 2 this argument needs to be modified slightly. We still have h2
1 ≡ h

2
2

mod 4p so when p = 2 this becomes h2
1 ≡ h

2
2 mod 8. Since 2p = 4 the four possible

arithmetic progressions of h -values are h ≡ 0, 1, 2, or 3 mod 4. We can interchange

the possibilities 1 and 3 just by reorienting the edges, leaving only the possibilities

h ≡ 0, 1, or 2 mod 4. These are distinguished from each other by the congruence

h2
1 ≡ h

2
2 mod 8 since (4k)2 ≡ 0 mod 8, (4k + 1)2 ≡ 1 mod 8, and (4k + 2)2 ≡ 4

mod 8.

Finally we have the case that Q1 and Q2 both represent the power pk of an odd

prime p not dividing ∆ , with k > 1. Following the line of proof above we see that

pk divides h2
1 − h

2
2 = (h1 + h2)(h1 − h2) . If pk divides either factor we can proceed

exactly as before to show that Q1 and Q2 are equivalent since we assume p is odd,

hence also pk . If pk does not divide either factor then both factors are divisible by

p , hence p divides their sum 2h1 . Since p is odd this implies that p divides h1 ,

and so p divides ∆ = h2
1− 4pkq1 . Thus if p does not divide ∆ then the case that pk

divides neither h1 + h2 nor h1 − h2 does not arise. ⊔⊓

The same argument shows another interesting fact:

Proposition 6.16. If the topograph of a form has two regions with the same label

n where n is either 1 , a prime, or a power of an odd prime not dividing the dis-

criminant, then there is a symmetry of the topograph that takes one region labeled

n to the other. Similarly, for positive discriminants and for the same numbers n ,

if there is one region labeled n and another labeled −n then there is a skew sym-

metry taking one region to the other.

Proof: Suppose first that there are two regions having the same label n . As we saw

in the proof of the preceding proposition, each of these regions is adjacent to an edge

with the same label h and hence the labels q across these edges are also the same.

This means there is a symmetry taking one region labeled n to the other.

The other case is that one region is labeled n and the other −n . The topographs

of the given form Q and its negative −Q then each have a region labeled n so there

is an equivalence from Q to −Q taking the n -region for Q to the n -region for −Q .

This equivalence can be regarded as a skew symmetry of Q taking the n -region to

the −n -region. ⊔⊓
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For the last result in this section we will use a variant of Euclid’s proof that there

are infinitely many primes to prove the following general statement:

Proposition 6.18. For each discriminant ∆ the set of primes represented in discrim-

inant ∆ is infinite.

Proof: In each discriminant ∆ there is a form Q(x,y) = x2 + bxy + cy2 represent-

ing 1. We can assume c is nonzero since in the topograph of Q there will always be

at least one region adjacent to the 1 region that is not labeled by 0. (Only parabolic

and 0-hyperbolic forms can have a 0 region and they have at most two 0 regions.) Let

p1, · · · , pk be any finite list of primes. We allow repetitions on this list so we can make

k as large as we like just by repeating some pi often enough. Let P be the product

p1 · · ·pk and consider the number n = Q(1, P) = 1+bP+cP2 . This is represented by

Q since (1, P) is a primitive pair. If k is large enough we will have |n| > 1 since |cP2|

will be much larger than |1+ bP | . Any prime p dividing n will also be represented

by some form of discriminant ∆ . This p must be different from any of the primes

pi on the initial list since dividing pi into n = 1 + P + cP2 gives a remainder of 1,

whereas p divides n evenly. Thus we have shown that for any finite list of primes

there is another prime not on the list that is represented in discriminant ∆ . Hence

the set of primes represented in discriminant ∆ must be infinite. ⊔⊓

Exercises

1. Determine discriminants ∆ for which there exists a quadratic form of discriminant

∆ that represents 5, and also the discriminants for which there does not exist a form

representing 5. When 5 is represented, find a form that gives the representation.

2. The following is a generalization of Lemma 6.4. Let P(x) be a polynomial with

integer coefficients and let n be an integer. Show that if the congruence P(x) ≡ n

has a solution mod m1 and also a solution mod m2 where m1 and m2 are coprime,

then it has a solution mod m1m2 . Give an example where this fails without the

coprimeness condition.

3. Verify that the statement of quadratic reciprocity is true for the following pairs of

primes (p, q) : (3,5) , (3,7) , (3,13) , (5,13) , (7,11) , and (13,17) .

4. Evaluate the following Legendre symbols:
(

30
101

)
,
(

99
101

)
,
(

506
967

)
.

5. Show that
(
a
p

)
can always be computed just from the four basic properties of

Legendre symbols.

6. Determine which numbers in the range from 40 to 50 are squares mod 132.
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7. (a) Using quadratic reciprocity determine which primes are represented by some

form of discriminant 17.

(b) Show that all forms of discriminant 17 are equivalent to the form x2+xy −4y2 .

(c) Draw enough of the topograph of x2 + xy − 4y2 to show all values between −70

and 70, and verify that the primes that occur are precisely the ones predicted by your

answer in part (a).

8. Determine which primes are represented by at least one form of the following

discriminants: (a) 21 (b) −19 (c) −20 (d) −24.

9. Show that every prime is represented by at least one of the forms x2+y2 , x2+2y2 ,

and x2 − 2y2 .

10. Consider forms Q = ax2+bxy+cy2 of discriminant ∆ . Show that the following

three conditions are equivalent:

(1) The coefficients a , b , and c of Q are all odd.

(2) Q represents only odd numbers.

(3) ∆ ≡ 5 mod 8.

11. For which fundamental discriminants ∆ is there a form of discriminant ∆ repre-

senting |∆|? What about nonfundamental discriminants?

12. In terms of their prime factorizations, which numbers are sums of two nonzero

squares? Which squares are sums of two nonzero squares?

13. Show that if the form x2 +ny2 represents 2k with n odd and k > 0 then n ≡ 7

mod 8 except when (n, k) = (1,1) and (3,2) .

14. Show that for each prime p dividing the conductor for discriminant ∆ there is at

least one primitive form of discriminant ∆ that represents a power of p . Hint : Use

induction on the highest power of p dividing the conductor, along with Theorem 6.11

and Propositions 6.13 and 6.14.

15. This exercise involves using quadratic reciprocity to apply Legendre’s Theorem

(Theorem 2.6) on rational points on quadratic curves.

(a) Determine the values of n for which the curve 2x2 + ny2 = 1 contains rational

points, assuming n is odd and squarefree. For each of the first three positive values

of n for which the curve contains rational points find two of these rational points

that lie in the first quadrant.

(b) For the same equation show that the case that n is even and squarefree reduces

to the case n is odd and squarefree.

(c) Determine the values of n for which the curve 3x2 + ny2 = 1 contains rational

points, assuming n is odd, squarefree, and coprime to 3.
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6.3 Genus and Characters

In the previous section we obtained a reasonably complete answer to the ques-

tion of which numbers are represented by at least one form of a given discriminant.

Legendre symbols determine which primes are represented, and in a fairly simple way

this determines which nonprimes are represented. For discriminants of class number

1 this gives a complete answer to the question of which numbers are represented by

a given form.

The main goal of the present section is to see how Legendre symbols, along with a

few extensions of them for the special prime 2, can give additional information when

the class number is not 1. In particular, in favorable cases we will be able to determine

fully which forms represent which primes. Underlying this method is the following

basic result:

Proposition 6.19. Let Q be a form of discriminant ∆ and let p be an odd prime

dividing ∆ . Then the Legendre symbol
(
n
p

)
has the same value for all numbers n

in the topograph of Q that are not divisible by p .

Before proving this let us see how it applies in the case ∆ = 40 with p = 5. The

class number here is 2 corresponding to the forms x2 − 10y2 and 2x2 − 5y2 .

According to the proposition, for each of the two forms the value of
(
n
5

)
must be the

same for all numbers n in the topograph not divisible by 5. To determine the value

of
(
n
5

)
for each form it therefore suffices to compute it for a single number n . The

simplest thing is just to compute it for (x,y) = (1,0) or (0,1) . Choosing (1,0) , for

x2− 10y2 we have
(

1
5

)
= +1 and for 2x2− 5y2 we have

(
2
5

)
= −1. The proposition

then says that all numbers n in the topograph of x2 − 10y2 not divisible by 5 have(
n
5

)
= +1, hence n ≡ ±1 mod 5, while for 2x2 − 5y2 we have

(
n
5

)
= −1, hence

n ≡ ±2 mod 5. Thus the last digits of the numbers in the topograph of x2 − 10y2

must be 0, 1, 4, 5, 6, or 9 and for 2x2−5y2 the last digits must be 0, 2, 3, 5, 7, or 8.
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Note that the congruences n ≡ ±1 and n ≡ ±2 mod 5 are consistent with the fact

that for both forms the negative values are just the negatives of the positive values.

(The proposition holds for negative as well as positive numbers in topographs.)

We know that
(

40
p

)
=
(

2
p

)(
p
5

)
must equal +1 for primes p ≠ 2,5 represented by

either form, so for x2 − 10y2 this product must be (+1)(+1) while for 2x2 − 5y2 it

must be (−1)(−1) .

1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39(
2
p

)
+1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1(

p
5

)
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

Q1 Q2 Q1 Q2 Q2 Q1 Q2 Q1

From the table we can see exactly which primes each of these two forms represents,

namely x2 − 10y2 represents primes p ≡ 1,9,31,39 mod 40 while 2x2 − 5y2 rep-

resents primes p ≡ 3,13,27,37 mod 40.

Proof of Proposition 6.19: For an edge in the topograph labeled h with adjacent

regions labeled n and k we have ∆ = h2 − 4nk . If p is a prime dividing ∆ this

implies that 4nk ≡ h2 mod p . Thus if neither n nor k is divisible by p and p is

odd then the Legendre symbol
(

4nk
p

)
is defined and

(
4nk
p

)
=
(
h2

p

)
= +1. Since(

4nk
p

)
=
(

4
p

)(
n
p

)(
k
p

)
and

(
4
p

)
= +1 this implies

(
n
p

)
=
(
k
p

)
. In other words, the

symbol
(
n
p

)
takes the same value on any two adjacent regions of the topograph of Q

labeled by numbers not divisible by p . To finish the proof we will use the following

fact:

Lemma 6.20. Given a form Q and a prime p dividing the discriminant of Q , then

any two regions in the topograph of Q where the value of Q is not divisible by p

can be connected by a path passing only through such regions.

Assuming this, Proposition 6.19 easily follows since we have seen that the value

of
(
n
p

)
is the same for any two adjacent regions with label not divisible by p . ⊔⊓

Proof of the Lemma: Let us call regions in the topograph of Q whose label is not

divisible by p good regions, and the other regions bad regions. We can assume that

at least one region is good, otherwise there is nothing to prove. What we will show

is that no two bad regions can be adjacent. Thus a path in the topograph from one

good region to another cannot pass through two consecutive bad regions, and if it

does pass through a bad region then a detour around this region allows this bad

region to be avoided, creating a new path passing

through one fewer bad region as in the figure at the

right. By repeating this detouring process as often

as necessary we eventually obtain a path avoiding

bad regions entirely, still starting and ending at the

same two given good regions.
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To see that no two adjacent regions are bad, suppose this is false, so there are

two adjacent regions whose Q values n and k are both divisible by p . If the edge

separating these two regions is labeled h then we have an equation ∆ = h2−4nk , and

since we assume p divides ∆ this implies that p divides h as well as n and k . Thus

the form nx2 + hxy + ky2 , which is equivalent to Q , is equal to p times another

form. This implies that all regions in the topograph of Q are bad. This contradicts

an earlier assumption so we conclude that there are no adjacent bad regions. ⊔⊓

A useful observation is that the value of
(
n
p

)
for numbers n in the topograph of

a form ax2 + bxy + cy2 with discriminant divisible by p can always be determined

just by looking at the coefficients a and c . This is because a and c appear in adjacent

regions of the topograph, so if both these coefficients were divisible by p , this would

imply that b was also divisible by p since p divides b2 − 4ac , so the whole form

would be divisible by p . Excluding this uninteresting possibility, we see that at least

one of a and c is not divisible by p and we can use this to compute
(
n
p

)
.

Let us look at another example, the discriminant ∆ = −84 = −22·3·7 with three

different prime factors. For this discriminant there are four equivalence classes of

forms: Q1 = x2 + 21y2 , Q2 = 3x2 + 7y2 , Q3 = 2x2 + 2xy + 11y2 , and Q4 =

5x2 + 4xy + 5y2 . The topographs of these forms were shown in Section 6.1. To see

which odd primes are represented in discriminant −84 we compute:

(
---84
p

)
=
(

---1
p

)(
3
p

)(
4
p

)(
7
p

)
=
(

---1
p

)(
3
p

)(
7
p

)
=
(

---1
p

)(
p
3

)(
p
7

)

As in the example of ∆ = 40 we can make a table of the values of these Legendre

symbols for the 24 numbers mod 84 that are not divisible by the prime divisors

2,3,7 of 84. Using the fact that the squares mod 3 are (±1)2 = 1 and the squares

mod 7 are (±1)2 = 1, (±2)2 = 4, and (±3)2 ≡ 2, we obtain the following table:

1 5 11 13 17 19 23 25 29 31 37 41(
---1
p

)
+1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 +1(

p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1(

p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q1 Q4 Q3 Q4 Q2 Q3 Q1 Q2 Q1 Q4

43 47 53 55 59 61 65 67 71 73 79 83(
---1
p

)
−1 −1 +1 −1 −1 +1 +1 −1 −1 +1 −1 −1(

p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1

(
p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q2 Q3

The twelve cases when the product
(

---1
p

)(
p
3

)(
p
7

)
is +1 give the congruence classes

of primes not dividing ∆ that are represented by one of the four forms, and we can

determine which form it is by looking at the values of
(
p
3

)
and

(
p
7

)
for each of the four
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forms. As noted earlier, these values can be computed directly from the coefficients

of x2 and y2 that are not divisible by 3 for
(
p
3

)
or by 7 for

(
p
7

)
. For example, for

Q2 = 3x2+7y2 the coefficient of y2 tells us that
(
p
3

)
=
(

7
3

)
= +1 and the coefficient

of x2 tells us that
(
p
7

)
=
(

3
7

)
= −1. Thus the pair

(
p
3

)
,
(
p
7

)
is +1,−1 for Q2 . In a

similar way we find that
(
p
3

)
,
(
p
7

)
is +1,+1 for Q1 = x

2 + 21y2 , while it is −1,+1

for Q3 = 2x2 + 2xy + 11y2 and −1,−1 for Q4 = 5x2 + 4xy + 5y2 . This allows us

to determine which congruence classes of primes are represented by which form, as

indicated in the table, since the product
(

---1
p

)(
p
3

)(
p
7

)
must be +1.

Another case we looked at was ∆ = −56 where there were three inequivalent

forms Q1 = x
2 + 14y2 , Q2 = 2x2 + 7y2 , and Q3 = 3x2 + 2xy + 5y2 . Here we have(

---56
p

)
=
(

---1
p

)(
2
p

)(
7
p

)
=
(

2
p

)(
p
7

)
. The table of values for these Legendre symbols for

congruence classes of numbers mod 56 not divisible by 2 or 7 is:

1 3 5 9 11 13 15 17 19 23 25 27(
2
p

)
+1 −1 −1 +1 −1 −1 +1 +1 −1 +1 +1 −1(

p
7

)
+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(
Q1

Q2

)
Q3 Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

) (
Q1

Q2

)
Q3

29 31 33 37 39 41 43 45 47 51 53 55(
2
p

)
−1 +1 +1 −1 +1 +1 −1 −1 +1 −1 −1 +1(

p
7

)
+1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(

Q1

Q2

)
Q3

From the table we see that
(

2
p

)(
p
7

)
is (+1)(+1) for p ≡ 1,9,15,23,25,39 mod 56 and

(−1)(−1) for p ≡ 3,5,13,19,27,45 mod 56. Thus the primes that are represented

in discriminant −56 are the primes in these twelve congruence classes, along with 2

and 7, the prime divisors of 56. Moreover, since
(
p
7

)
has the value +1 for numbers in

the topographs of Q1 and Q2 not divisible by 7, and the value −1 for numbers in the

topograph of Q3 not divisible by 7, we can deduce that primes p ≡ 1,9,15,23,25,39

mod 56 are represented by Q1 or Q2 while primes p ≡ 3,5,13,19,27,45 mod 56

are represented by Q3 . However the values of the Legendre symbols in the table do

not allow us to distinguish between Q1 and Q2 .

Each row in one of the tables above can be regarded as a function assigning a

number ±1 to each congruence class of numbers n coprime to the discriminant ∆ .

Such a function is called a character and the table is called a character table. There

is one column in the table for each congruence class of numbers coprime to ∆ so the

number of columns is ϕ(|∆|) where ϕ is the Euler phi function from Section 2.3. For

each odd prime p dividing ∆ there is a character given by the Legendre symbol
(
n
p

)
.

There is sometimes also a character associated to the prime 2 in a somewhat less

transparent way. In the example ∆ = −84 this is the character defined by the first

row of the table, which assigns the values +1 to numbers n = 4k + 1 and −1 to
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numbers n = 4k+ 3. We will denote this character by χ4 to indicate that its values

χ4(n) = ±1 depend only on the value of n mod 4. Thus χ4(p) =
(

---1
p

)
when p is

an odd prime, but χ4(n) is defined for all odd numbers n , not just primes. One can

check that an explicit formula for χ4 is χ4(n) = (−1)(n−1)/2 although we will not be

needing this formula.

In the example with ∆ = −56 the character corresponding to the prime 2 is given

by the row labeled
(

2
p

)
. This character associates the value +1 to an odd number

n ≡ ±1 mod 8 and the value −1 when n ≡ ±3 mod 8. We will denote it by χ8 since

its values χ8(n) = ±1 depend only on n mod 8. We have χ8(p) =
(

2
p

)
for all odd

primes p , but χ8(n) is defined for all odd numbers n . There is again an explicit

formula χ8(n) = (−1)(n
2−1)/8 that we will not use.

By analogy we can also introduce the notation χp for the earlier character defined

by χp(n) =
(
n
p

)
for p an odd prime and n not divisible by p .

As another example illustrating the use of characters let us determine which pow-

ers of 2 are represented by the two forms x2 + 15y2 and 3x2 + 5y2 of discriminant

−60. This is not a fundamental discriminant since it is 4 times the fundamental dis-

criminant −15, so the conductor is 2 which is why the question of determining the

forms representing powers of 2 is more subtle, as we saw in the previous section. In

both the discriminants −15 and −60 we have the characters χ3 and χ5 and we can

use either one of these for this application so we will use χ3 .

First consider discriminant −15 where the class number is 2 corresponding to the

two forms x2+xy +4y2 and 2x2+xy +2y2 . The second form represents 2 which

does not divide the discriminant −15 so all powers of 2 are represented by one or the

other of these two forms. To determine which form it is for each power we use the

character χ3 . This has the value +1 on numbers not divisible by 3 in the topograph

of x2 +xy + 4y2 since 1 is one of these numbers and χ3(1) = +1. Similarly χ3 has

the value −1 for the other form 2x2 + xy + 2y2 since 2 appears in the topograph

of this form and χ3(2) = −1. We have χ3(2
k) = (−1)k since χ3(2

k) =
(

2k

3

)
=
(

2
3

)k
.

Hence x2 + xy + 4y2 represents only the even powers of 2 and 2x2 + xy + 2y2

represents only the odd powers.

For discriminant −60 the class number is also 2, corresponding to the forms

x2 + 15y2 and 3x2 + 5y2 . Obviously neither of these forms represents 2 or 4.

However by Proposition 6.13 each power 2k with k ≥ 3 is represented by at least one

of the two forms since all powers 2k with k ≥ 1 are represented by one of the forms

of discriminant −15. The value of χ3 for x2+15y2 is +1 since this form represents

1 and χ3(1) = +1, and the value of χ3 for 3x2+5y2 is −1 since this form represents

5 and χ3(5) = −1. From this it follows as before that x2 + 15y2 represents just the

even powers of 2 starting with 24 and 3x2 + 5y2 represents just the odd powers

starting with 23 . This is the answer that was given in the large table in the preceding

section.
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Characters for the Prime 2

Let us consider now how characters can be associated to the prime 2 in general.

Since characters arise from primes that divide the discriminant, this means we are

interested in even discriminants, and the characters we are looking for should assign

a value ±1 to each number not divisible by 2, that is, to each odd number. We would

like the analogue of Proposition 6.19 to hold, so characters for the prime 2 should

take the same value on all odd numbers in the topograph of a form of the given

discriminant. By Lemma 6.20 this just means that the characters should have the

same value for odd numbers in adjacent regions of the topographs.

Even discriminants are multiples of 4 so can be written as ∆ = 4δ . For adjacent

regions in a topograph with labels n and k we have ∆ = h2 − 4nk where h is the

label on the edge between the two regions. Since ∆ is even, so is h and we can write

h = 2l . The discriminant equation then becomes 4δ = 4l2 − 4nk or just δ = l2 −nk .

There will be six different cases. The first two are when δ is odd, which means

that ∆ is divisible by 4 but not 8. In these two cases we consider congruences mod 4,

the highest power of 2 dividing ∆ . Since δ is odd and both n and k are odd, the

equation δ = l2 − nk implies that l must be even, so l2 ≡ 0 mod 4 and we have

nk ≡ −δ mod 4. Multiplying both sides of this congruence by k , we get n ≡ −δk

mod 4 since k2 ≡ 1 mod 4, k being odd. Multiplying the congruence n ≡ −δk by k

again gives the previous congruence nk ≡ −δ so the two congruences are equivalent.

Case 1: δ = 4m−1. The congruence condition n ≡ −δk mod 4 is then n ≡ k mod 4.

Thus Lemma 6.20 implies that the character χ4 assigning +1 to integers 4s + 1 and

−1 to integers 4s − 1 has the same value for all odd numbers in the topograph of

a form of discriminant ∆ = 4(4m − 1) . We might try reversing the values of χ4 ,

assigning the value +1 to integers 4s − 1 and −1 to integers 4s + 1, but this just

gives the function −χ4 which does not really give any new information that χ4 does

not give. In practice χ4 turns out to be more convenient to use than −χ4 would be.

An example for the case δ = 4m − 1 is the discriminant ∆ = −84 considered

earlier, where the first row of the character table gave the values for χ4 .

Case 2: δ = 4m + 1. The difference from the previous case is that the congruence

condition is now n ≡ −k mod 4. This means the mod 4 value of odd numbers in the

topograph is not constant, and so we do not get a character for the prime 2. As an

example, consider the form x2 + 3y2 with ∆ = −12 and δ = −3.
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Here there are odd numbers in the topograph congruent to both 1 and 3 mod 4.

The situation is not improved by considering odd numbers mod 8 instead of mod 4

since the topograph contains numbers congruent to each of 1,3,5,7 mod 8. Trying

congruences modulo higher powers of 2 does not help either.

The absence of a character for the prime 2 when δ = 4m + 1 could perhaps

have been predicted from the calculation of
(∆
p

)
. Since δ is odd we have ∆ =

4δ = 4p1 · · ·pr for odd primes p1, · · · , pr and so
(∆
p

)
=
(
p1
p

)
· · ·

(
pr
p

)
. This equals(

p
p1

)
· · ·

(
p
pr

)
since the number of primes pi congruent to 3 mod 4 is even when

δ = 4m+ 1. Thus the value of
(∆
p

)
depends only on the characters associated to the

odd prime factors of ∆ .

There remain the cases that δ is even. The next two cases are when ∆ is divisible

by 8 but not by 16. After that is the case that ∆ is divisible by 16 but not by 32,

and finally the case that ∆ is divisible by 32. In all these cases we will consider

congruences mod 8, so the equation δ = l2 −nk becomes δ ≡ l2 −nk mod 8. Since

δ is now even while n and k are still odd, this congruence implies l is odd, and so

l2 ≡ 1 mod 8 and the congruence can be written as nk ≡ 1− δ mod 8. Since k2 ≡ 1

mod 8 when k is odd, we can multiply both sides of the congruence nk ≡ 1−δ by k

to obtain the equivalent congruence n ≡ (1− δ)k mod 8.

Case 3: δ ≡ 2 mod 8. The congruence is then n ≡ −k mod 8. It follows that in the

topograph of a form of discriminant ∆ = 4(8m+ 2) either the odd numbers must all

be congruent to ±1 mod 8 or they must all be congruent to ±3 mod 8. Thus the

character χ8 which takes the value +1 on numbers 8s±1 and −1 on numbers 8s±3

has a constant value, either +1 or −1, for all odd numbers in the topograph.

An example for this case is ∆ = 40. Here the two rows of the character table

computed earlier in this section gave the values for χ8 and χ5 .

Case 4: δ ≡ 6 mod 8. Now the congruence n ≡ (1− δ)k mod 8 becomes n ≡ −5k ,

or equivalently n ≡ 3k mod 8. This implies that all odd numbers in the topograph

of a form of discriminant ∆ = 4(8m + 6) must be congruent to 1 or 3 mod 8, or

they must all be congruent to 5 or 7 mod 8. The character associated to the prime

2 in this case has the value +1 on numbers 8s + 1 and 8s + 3, and the value −1 on

numbers 8s + 5 and 8s + 7. We have not encountered this character previously, so

let us give it the new name χ′8 . However, it is not entirely new since it is actually just

the product χ4χ8 as one can easily check by evaluating this product on 1,3,5, and 7.

A simple example is ∆ = −8 with class number 1. Here we have
(∆
p

)
=
(

---8
p

)
=(

---1
p

)(
2
p

)
which equals +1 for p ≡ 1,3 mod 8 and −1 for p ≡ 5,7 mod 8 so this is

just the character χ′8 .

Another example is ∆ = 24 where there are the two forms Q1 = x
2 − 6y2 and

Q2 = 6x2 − y2 . We have
(∆
p

)
=
(

24
p

)
=
(

2
p

)(
3
p

)
=
(

2
p

)(
---1
p

)(
p
3

)
. The character table

has the following form:
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1 5 7 11 13 17 19 23

χ′8 +1 −1 −1 +1 −1 +1 +1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1

Thus Q1 represents primes p ≡ 1,19 mod 24 and Q2 represents primes p ≡ 5,23

mod 24.

Case 5: δ ≡ 4 mod 8. Now we have the congruence n ≡ −3k mod 8. Thus in

the topograph of a form of discriminant ∆ = 4(8m + 4) all odd numbers must be

congruent to 1 or 5 mod 8, or they must all be congruent to 3 or 7 mod 8. More

simply, one can say that all odd numbers in the topograph must be congruent to 1

mod 4 or they must all be congruent to 3 mod 4. Thus we obtain the character χ4

again.

An example is ∆ = −48 where we have the two forms Q1 = x2 + 12y2 and

Q2 = 3x2 + 4y2 as well as a pair of nonprimitive forms Q3 = 2x2 + 6y2 and Q4 =

4x2 + 4xy + 4y2 . We have
(∆
p

)
=
(

---3
p

)
=
(

---1
p

)(
3
p

)
=
(
p
3

)
. This is the character χ3 .

We also have the character χ4 that we just described. Here is the character table:

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47

χ4 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

The columns repeat every four columns since
(

---1
p

)
and

(
p
3

)
are determined by the

value of p mod 12. In contrast with earlier examples, the representability of a prime

p > 3 in discriminant −48 is determined by one character, χ3 , and the other character

χ4 serves only to decide which of the forms Q1 and Q2 achieves the representation.

The character χ4 says nothing about the nonprimitive forms Q3 and Q4 whose values

are all even. On the other hand, from χ3 we can deduce that all values of Q3 not

divisible by 3 must be congruent to 2 mod 3 while for Q4 they must be congruent

to 1 mod 3. This could also have been deduced from applying χ3 to the associated

primitive forms x2 + 3y2 and x2 + xy + y2 .

Case 6: δ ≡ 0 mod 8, so ∆ is a multiple of 32. In this case the congruence n ≡ (1−δ)k

mod 8 becomes simply n ≡ k mod 8. Thus all odd numbers in the topograph of a

form of discriminant ∆ = 32m must lie in the same congruence class mod 8. The two

characters χ4 and χ8 can now both occur independently, as shown in the following

chart listing their values on the four classes 1,3,5,7 mod 8 :

1 3 5 7

χ4 +1 −1 +1 −1

χ8 +1 −1 −1 +1

As an example consider the discriminant ∆ = −32. Here there are two primitive

forms Q1 = x
2 + 8y2 and Q2 = 3x2 + 2xy + 3y2 along with one nonprimitive form

Q3 = 2x2 + 4y2 . We have
(∆
p

)
=
(

---2
p

)
=
(

---1
p

)(
2
p

)
with the two factors being the
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two independent characters for the prime 2. The full character table is then just a

four-fold repetition of the previous shorter table:

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

χ4 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

χ8 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

This finishes the analysis of the six cases for characters associated to the prime 2.

To summarize we have:

Proposition 6.21. The characters associated to the prime 2 are given in the follow-

ing table :

∆ 4(4m+ 1) 4(4m+ 3) 8(4m+ 1) 8(4m+ 3) 16(2m+ 1) 32m

χ — χ4 χ8 χ′8 = χ4χ8 χ4 χ4, χ8

We have now defined a set of characters for each discriminant ∆ , with one char-

acter for each odd prime dividing ∆ and either zero, one, or two characters for the

prime 2 when ∆ is even. The character table for discriminant ∆ has one row for each

of these characters.

If one restricts attention to fundamental discriminants then the only relevant

columns in the table in the preceding proposition are the second, third, and fourth

columns on the right. Thus the characters for the prime 2 that arise in the three cases

of fundamental discriminants are exactly χ4 , χ8 , and χ′8 .

A nice property satisfied by characters is that they are multiplicative, so χ(mn) =

χ(m)χ(n) for all m and n for which χ is defined. For the characters χp associated to

odd primes p this is just the basic property
(
mn
p

)
=
(
m
p

)(
n
p

)
of Legendre symbols.

For the prime 2 the characters χ4 and χ8 are multiplicative as well. For χ4 this

holds since χ4(1·1) = +1 = χ4(1)χ4(1) , χ4(1·3) = −1 = χ4(1)χ4(3) , and χ4(3·3) =

+1 = χ4(3)χ4(3) . Similarly for χ8 we have χ8(±1· ± 1) = +1 = χ8(±1)χ8(±1) ,

χ8(±1· ± 3) = −1 = χ8(±1)χ8(±3) , and χ8(±3· ± 3) = +1 = χ8(±3)χ8(±3) . The

multiplicativity of χ′8 follows since χ′8 = χ4χ8 .

In fact χ4 , χ8 , and χ′8 are the only multiplicative functions from the odd integers

mod 8 to {±1} , apart from the trivial function assigning +1 to all four of 1,3,5,7.

To see this, note first that each of 3,5,7 has square equal to 1 mod 8 and the product

of any two of 3,5,7 is the third, mod 8. This means that a multiplicative function χ

from odd integers mod 8 to {±1} is completely determined by the two values χ(3)

and χ(5) since χ(1) = χ(3)χ(3) and χ(7) = χ(3)χ(5) . For χ4 the values on 3 and 5

are −1,+1, for χ8 they are −1,−1, and for χ′8 = χ4χ8 they are +1,−1. The only

other possibility is +1,+1 but this leads to the trivial character.
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As we know, an odd prime p is represented in discriminant ∆ exactly when(∆
p

)
= +1. This criterion can also be expressed in terms of characters via the following

restatement of Proposition 6.9 in different notation:

Proposition 6.22.
(∆
p

)
= X∆(p) for X∆ the product of characters given in the table

below, where ∆ = ε2sp1 · · ·pk for ε = ±1 with each pi an odd prime. ⊔⊓

∆
(∆
p

)
X∆

22l(4m+ 1)
(
p
p1

)
· · ·

(
p
pk

)
χp1
· · · χpk

22l(4m+ 3)
(

---1
p

)(
p
p1

)
· · ·

(
p
pk

)
χ4χp1

· · · χpk

22l+1(4m+ 1)
(

2
p

)(
p
p1

)
· · ·

(
p
pk

)
χ8χp1

· · · χpk

22l+1(4m+ 3)
(

---1
p

)(
2
p

)(
p
p1

)
· · ·

(
p
pk

)
χ′8χp1

· · · χpk

The value X∆(n) = ±1 is defined whenever n is coprime to ∆ . If n is repre-

sented in discriminant ∆ then X∆(n) = +1 since each prime factor p of n is then

represented, so X∆(p) = +1, and X∆(n) is the product of these terms X∆(p) since

X∆ is multiplicative, being a product of multiplicative functions. If n is not a prime

it can happen that X∆(n) = +1 even when n is not represented in discriminant ∆ .

For example for ∆ = −4 we have X∆(21) = χ4(21) = χ4(3)χ4(7) = (−1)(−1) = +1

but 21 is not represented by the form x2 +y2 , the only form in this discriminant up

to equivalence.

Next let us verify that some of the special features of the character tables in the

earlier examples hold in general.

Proposition 6.23. (a) The columns of a character table contain all possible combi-

nations of +1 and −1 , and each such combination occurs in the same number of

columns.

(b) If the discriminant ∆ is not a square then half of the columns have X∆(n) = +1

and half have X∆(n) = −1 for numbers n in the congruence class corresponding

to the column.

For example, if ∆ is a fundamental discriminant then X∆ is just the product of all

the characters in the character table, so the combinations of ±1’s that give X∆ = +1

in these cases are the combinations with an even number of −1’s. This need not be

true for nonfundamental discriminants as the earlier example ∆ = −48 shows.

From statement (b) in the proposition we immediately deduce:

Corollary 6.24. For hyperbolic and elliptic forms, the primes not dividing the dis-

criminant ∆ that are represented in discriminant ∆ are the primes in exactly half

of the congruence classes mod ∆ of numbers coprime to ∆ .

For the proof of Proposition 6.23 we will need the following fact:
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Lemma 6.25. For a power pr of an odd prime p exactly half of the pr − pr−1

congruence classes mod pr of numbers a not divisible by p satisfy
(
a
p

)
= +1 .

Proof: First we do the case r = 1. The p− 1 nonzero congruence classes mod p are

±1,±2, · · · ,±1/2

(
p−1

)
. The two numbers +a and −a in each pair ±a have the same

square, so there are at most 1/2

(
p−1

)
different nonzero squares mod p . In fact there

are exactly this many since if a2 ≡ b2 mod p then p divides a2−b2 = (a−b)(a+b) ,

so since p is prime it must divide either a−b or a+b which means that either a ≡ b

or a ≡ −b mod p . Thus exactly half of the p−1 nonzero congruence classes mod p

are squares, so the lemma is proved when r = 1.

Now suppose r > 1. The value of
(
a
p

)
depends only on the congruence class of

a mod p so there are the same number of numbers a with
(
a
p

)
= +1 in each of the

intervals [0, p] , [p,2p] , [2p,3p] , etc. There are pr−1 of these intervals in [0, pr ] .

Thus half of the pr−1(p − 1) = pr − pr−1 congruence classes mod pr of numbers a

not divisible by p have
(
a
p

)
= +1 and half have

(
a
p

)
= −1. ⊔⊓

Proof of Proposition 6.23: Let us write ∆ = ε 2sp
r1

1 · · ·p
rk
k where ε = ±1, s ≥ 0,

and the pi ’s are the distinct odd prime divisors of ∆ . Thus the characters for this

discriminant are χp1
, · · · , χpk and either zero, one, or two characters associated to

the prime 2 when s > 0.

To prove statement (a) choose numbers ai realizing any combination of preas-

signed values χpi(ai) = ±1. When s > 0 we also choose a number 1, 3, 5, or 7 to

realize any preassigned pair of values for χ4 and χ8 , hence for any preassigned val-

ues for the characters associated to the prime 2. By the Chinese Remainder Theorem

there is a number a congruent to each ai mod p
ri
i and to the chosen number 1,3,5,7

mod 8. The number a is coprime to ∆ since it is nonzero mod pi for each i and is

odd when s > 0. Thus the column in the character table corresponding to a realizes

the chosen values for all the characters.

To prove the second half of statement (a) we will count the number of columns

in the character table realizing a given combination of values ±1 and see that this

number does not depend on which combination is chosen. By the preceding lemma

the number of choices for ai mod p
ri
i in the previous paragraph is 1/2p

ri−1
i (pi−1) , so

the Chinese Remainder Theorem implies that when s = 0 the number of congruence

classes mod ∆ realizing a given combination of values ±1 is the product of these

numbers 1/2p
ri−1
i (pi − 1) . When s > 0 but there is no character for the prime 2,

the product of the numbers 1/2p
ri−1
i (pi − 1) is multiplied by 2s−1 since this is the

number of odd congruence classes mod 2s . If there is one character for the prime 2

the number 2s−1 is cut in half, and if there are two characters for the prime 2 it is cut

in half again. Thus in all cases the number of columns realizing a given combination

of ±1’s is independent of the combination.

For (b), consider the definition of X∆ which has four different cases depending
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on the prime factorization of ∆ . If ∆ is a square then the applicable formula is the

first of the four formulas since an odd square is 1 mod 4, and in fact the formula

degenerates to just the constant +1 since its terms all cancel out, as each prime factor

of ∆ occurs to an even power. When ∆ is not a square, the terms in the first of the

four formulas do not all cancel out, and in the other three formulas there is also at

least one term remaining after cancellations, either χ4 , χ8 , or χ′8 .

In view of property (a), to prove (b) it will suffice to show that when ∆ is not

a square, the set of combinations of values ±1 in columns of the character table

that give X∆ = +1 has the same number of elements as the set of combinations

that give X∆ = −1. But this is obviously true since we can interchange these two

sets by choosing one term in the formula for X∆ that remains after cancellation and

switching the sign of the value ±1 for this term, keeping the values for the other

characters unchanged. ⊔⊓

Genus

Recall the concept of genus that was introduced informally in Section 6.1. The

idea was that if two forms of the same discriminant cannot be distinguished by looking

only at their values modulo the discriminant then they should be regarded as having

the same genus. Here it is best to restrict attention just to primitive forms. We can

now give this notion a more precise definition by saying that two primitive forms of

discriminant ∆ have the same genus if each character for discriminant ∆ takes the

same value on the two forms, where the value of a character on a form means its value

on all numbers in the topograph not divisible by the prime associated to the character.

In fact there is always a single number in the topograph that can be used to

evaluate all the characters, according to the following general result:

Proposition 6.26. Given a positive integer n and a primitive form Q that represents

at least one positive number, then Q represents a positive number coprime to n .

For the application to evaluating characters we choose n = |∆| for ∆ the discrim-

inant of Q , which we assume is nonzero.

Proof: Let Q = ax2 + bxy + cy2 . We can replace Q by any equivalent form so we

can arrange that a > 0 and c > 0 by choosing two adjacent regions in the topograph

of Q with positive labels a and c . We can also assume b ≥ 0 since changing the sign

of b produces an equivalent form.

The case n = 1 is trivial since every positive number is coprime to 1, so we may

assume n > 1. Suppose first that n is a prime p . One of the following three cases

will apply:

(1) If p does not divide a let (x,y) be a primitive pair with p dividing y but

not x . Then p will not divide ax2 + bxy + cy2 . For example we could take

(x,y) = (1, p) .
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(2) If p divides a but not c let (x,y) be a primitive pair with p dividing x but

not y . Then p will not divide ax2 + bxy + cy2 . For example we could take

(x,y) = (p,1) .

(3) If p divides both a and c then it will not divide b since Q is primitive. In this

case let (x,y) be a primitive pair with neither x nor y divisible by p . Then p

will not divide ax2 + bxy + cy2 . For example we could take (x,y) = (1,1) .

This finishes the proof when n is prime. For a general n let p1, · · · , pk be its distinct

prime divisors. For each pi let (xi, yi) be (1, pi) , (pi,1) , or (1,1) according to which

of the three cases above applies to pi . Now let x = x1 · · ·xk and y = y1 · · ·yk .

Then x and y are coprime since no pi is a factor of both x and y . If the number

ax2+bxy+cy2 is not coprime to n it will be divisible by some pi . If case (1) applies

to pi then pi divides y but not x so pi does not divide ax2+bxy + cy2 . Likewise

if cases (2) or (3) apply to pi then pi does not divide ax2 + bxy + cy2 . Thus no pi

can divide ax2+bxy +cy2 . Finally, ax2+bxy +cy2 is positive since x and y are

positive as are the coefficients except possibly b which is either positive or zero. ⊔⊓

The number of genera in discriminant ∆ is at most 2κ where κ is the number of

characters in discriminant ∆ . In all the character tables we have looked at, only half

of the 2κ possible combinations of ±1’s were actually realized by forms, and in fact

this is true generally:

Theorem 6.27. If ∆ is not a square then the number of genera of primitive forms

of discriminant ∆ is 2κ−1 where κ is the number of characters in discriminant ∆ .

This turns out to be fairly hard to prove. The original proof by Gauss required

a somewhat lengthy digression into the theory of quadratic forms in three variables.

An exposition of this proof can be found in the book by Flath listed in the Bibliogra-

phy. We will give a different proof that deduces the result rather quickly from things

we have already done, together with Dirichlet’s Theorem about primes in arithmetic

progressions discussed at the end of Section 6.1, which we will not prove. We will

not need the full strength of Dirichlet’s Theorem, and in fact all we will actually need

is that each congruence class of numbers x ≡ b mod a contains at least one prime

greater than 2 if a and b are coprime. One might think this would be easier to prove

than that there are infinitely many primes in the congruence class, but this seems not

to be the case.

Proof of Theorem 6.27 using Dirichlet’s Theorem: We have seen that for each prim-

itive form Q of discriminant ∆ there is a number n coprime to ∆ that is represented

by Q . Then X∆(n) is defined, and we saw when we defined X∆ that X∆(n) = +1

when n is represented by a form of discriminant ∆ . In the proof of Proposition 6.23

we showed that exactly half of the 2κ possible combinations of ±1’s have X∆ = +1,

so the number of genera of forms is at most 2κ−1 .
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To show that the number of genera is at least 2κ−1 consider a combination of ±1’s

with X∆ = +1. By Proposition 6.23 this combination occurs in some column of the

character table. This column corresponds to some number n coprime to ∆ . By Dirich-

let’s Theorem there exists a prime p congruent to n mod ∆ . We have X∆(p) = +1, so

since p is prime this implies that p is represented by some form of discriminant ∆ .

This form must be primitive, otherwise every number it represents would be divisible

by some number d > 1 dividing ∆ so it could not represent p which is coprime to ∆ .

Thus every combination of ±1’s with X∆ = +1 is realized by some primitive form, so

the number of genera is at least 2κ−1 . ⊔⊓

From this theorem we can deduce two very strong corollaries.

Corollary 6.28. For a nonsquare discriminant the number of genera is equal to the

number of equivalence classes of primitive forms that have mirror symmetry.

This may seem a little surprising since there is no apparent connection between

genera and mirror symmetry. A possible explanation might be that each genus con-

tains exactly one equivalence class of primitive forms with mirror symmetry, but this

is not always true. For example when ∆ = −56 we saw in Section 6.1 that there are

two genera and two equivalence classes of mirror symmetric forms, but both these

forms belong to the same genus. The true explanation will come in Chapter 7 when

we study the class group.

Proof: For a nonsquare discriminant the number of equivalence classes of primitive

forms with mirror symmetry was computed in Theorem 5.9 to be 2k−1 in most cases,

where k is the number of distinct prime divisors of ∆ . The exceptions are discrim-

inants ∆ = 4(4m + 1) when 2k−1 is replaced by 2k−2 , and ∆ = 32m when 2k−1 is

replaced by 2k . In the nonexceptional cases we have k = κ , the number of charac-

ters in discriminant ∆ since there is one character for each prime dividing ∆ . When

∆ = 4(4m+1) there is no character for the prime 2 so κ = k−1, and when ∆ = 32m

there are two characters for the prime 2 so κ = k+ 1. The result follows. ⊔⊓

Corollary 6.29. For a nonsquare discriminant, each genus of primitive forms con-

sists of a single equivalence class of forms if and only if all the topographs of

primitive forms have mirror symmetry.

Proof: Let E(∆) be the set of equivalence classes of primitive forms of discriminant

∆ and let G(∆) be the set of genera of primitive forms of discriminant ∆ . There

is a natural function Φ :E(∆)→G(∆) assigning to each equivalence class of forms

the genus of these forms. The function Φ is onto since there is at least one form in

each genus, by the definition of genus. If all primitive forms of discriminant ∆ have

mirror symmetry then Corollary 6.28 says that the sets E(∆) and G(∆) have the same

number of elements. Then since Φ is onto it must also be one-to-one. This means

that each genus consists of a single equivalence class of forms.
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Conversely, if each genus consists of a single equivalence class then Φ is one-

to-one. Since Φ is also onto, this means it is a one-to-one correspondence so E(∆)
and G(∆) have the same number of elements. By Corollary 6.28 this means that

the equivalence classes of primitive forms with mirror symmetry account for all the

elements of E(∆) , and the proof is complete. ⊔⊓

Exercises

1. For the following discriminants determine the class number and a form in each

class, then use a character table to determine which primes are represented by each

of the forms, at least to the extent that this can be determined by characters. Also

determine the various genera.

(a) −24 (b) 24 (c) −39 (d) −96

2. Determine which primes are represented by each of the following forms:

(a) x2 + 8y2 (b) x2 + 9y2 (c) x2 + 25y2 (d) x2 − 12y2 and 12x2 −y2

3. Show that each genus consists of a single equivalence class of forms for the fol-

lowing discriminants: (a) −168 (b) −660 (c) 105

4. Find the smallest positive discriminant for which the number of genera is 16. How

does the answer change if only fundamental discriminants are allowed?

5. Show that for a positive nonsquare discriminant ∆ , if the principal form represents

−1 then all odd primes p dividing ∆ must satisfy p ≡ 1 mod 4. Hint : Use χp .

6. Use Propositions 6.1 and 6.26 to show that in each nonzero discriminant there

exists a form that represents an infinite number of primes.

6.4 Proof of Quadratic Reciprocity

First let us show that quadratic reciprocity can be expressed more concisely as a

single formula: (
p
q

)(
q
p

)
= (−1)

p−1
2
·q−1

2

Here p and q are distinct odd primes. Since they are odd, the fractions
p−1

2
and

q−1
2

are integers. The only way the exponent
p−1

2
·
q−1

2
can be odd is for both factors to

be odd, so
p−1

2
= 2k+ 1 and

q−1
2
= 2l+ 1, which is equivalent to saying p = 4k+ 3

and q = 4l+ 3. Thus the only time that the right side of the formula shown above is

−1 is when p and q are both congruent to 3 mod 4, and quadratic reciprocity is the

assertion that the left side of the formula has exactly this property.

There will be three main steps in the proof of quadratic reciprocity. The first is

to derive an explicit algebraic formula for
(
a
p

)
due originally to Euler. The second
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step is to use this formula to give a somewhat more geometric interpretation of
(
a
p

)

in terms of the number of dots in a certain triangular pattern. Then the third step is

the actual proof of quadratic reciprocity using symmetry properties of the patterns

of dots. This proof is due to Eisenstein, first published in 1844, simplifying an earlier

proof by Gauss who was the first to give a full proof of quadratic reciprocity.

Step 1. In what follows we will always use p to denote an odd prime, and the symbol

a will always denote an arbitrary nonzero integer not divisible by p . When we write

a congruence such as a ≡ b this will always mean congruence mod p , even if we do

not explicitly say that the modulus is p .

Euler’s formula is (
a
p

)
≡ a

p−1
2 mod p

For example, for p = 11 Euler’s formula says
(

2
11

)
≡ 25 = 32 ≡ −1 mod 11 and(

3
11

)
≡ 35 = 243 ≡ +1 mod 11. These are the correct values since the squares mod

11 are (±1)2 = 1, (±2)2 = 4, (±3)2 = 9, (±4)2 ≡ 5, and (±5)2 ≡ 3.

Euler’s formula determines the value of
(
a
p

)
uniquely since +1 and −1 are not

congruent mod p if p > 2. It is not immediately obvious that the number a
p−1

2

should always be congruent to either +1 or −1 mod p , but when we prove Euler’s

formula we will see that this has to be true.

As a special case, taking a = −1 in Euler’s formula gives the calculation of
(

---1
p

)
:

(
−1
p

)
= (−1)

p−1
2 =

{
+1 if p = 4k+ 1

−1 if p = 4k+ 3

Before proving Euler’s formula we will need to derive a few preliminary facts

about congruences modulo a prime p . First let us note that each of the numbers

a = 1,2, · · · , p − 1 has a multiplicative inverse mod p . This is a special case of the

fact that each number coprime to a number n has a multiplicative inverse mod n as

we saw in Section 2.3. (This was because the equation ax + ny = 1 has an integer

solution (x,y) whenever a and n are coprime.) Any two choices for an inverse to

a mod p are congruent mod p since if ax ≡ 1 and ax′ ≡ 1 then multiplying both

sides of ax′ ≡ 1 by x gives xax′ ≡ x , and xa ≡ 1 so we conclude that x ≡ x′ .

Which numbers equal their own inverse mod p? If a·a ≡ 1, then we can rewrite

this as a2 − 1 ≡ 0, or equivalently (a + 1)(a − 1) ≡ 0. This is certainly a valid con-

gruence if a ≡ ±1, so suppose that a 6≡ ±1. The factor a+ 1 is then not congruent

to 0 mod p so it has a multiplicative inverse mod p , and if we multiply the congru-

ence (a + 1)(a − 1) ≡ 0 by this inverse, we get a − 1 ≡ 0 so a ≡ 1, contradicting

the assumption that a 6≡ ±1. This argument shows that the only numbers among

1,2, · · · , p − 1 that are congruent to their inverses mod p are 1 and p − 1.

An application of this fact is a result known as Wilson’s Theorem :

(p − 1)! ≡ −1 mod p whenever p is prime.
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To see why this is true, observe that in the product (p− 1)! = (1)(2) · · · (p−1) each

factor other than 1 and p−1 can be paired with its multiplicative inverse mod p and

these two terms multiply together to give 1 mod p , so the whole product is congruent

to just (1)(p − 1) mod p . Since p − 1 ≡ −1 mod p this gives Wilson’s Theorem.

Now let us prove the following congruence known as Fermat’s Little Theorem :

ap−1 ≡ 1 mod p whenever p is an odd prime not dividing a .

To show this, note first that the numbers a,2a,3a, · · · , (p−1)a are all distinct mod p

since we know that a has a multiplicative inverse mod p , so in a congruence ma ≡ na

we can multiply both sides by the inverse of a to deduce that m ≡ n . Let us call this

property that ma ≡ na implies m ≡ n the cancellation property for congruences

mod p .

It follows from the cancellation property that the set {a,2a,3a, · · · , (p − 1)a}

is the same mod p as {1,2,3, · · · , p − 1} since both sets have p − 1 elements and

neither set contains numbers that are 0 mod p . (If ma ≡ 0 then multiplying by the

inverse of a gives m ≡ 0.) If we take the product of all the numbers in each of these

two sets we obtain the following congruence:

(a)(2a)(3a) · · · (p − 1)a ≡ (1)(2)(3) · · · (p − 1) mod p

We can cancel the factors 2,3, · · · , p− 1 from both sides by repeated applications of

the cancellation property. The result is the congruence ap−1 ≡ 1 claimed by Fermat’s

Little Theorem.

Now we can prove Euler’s formula for
(
a
p

)
. The first case is that

(
a
p

)
= +1. Then

a ≡ x2 for some x 6≡ 0 and a
p−1

2 ≡ xp−1 so by Fermat’s Little Theorem we have

a
p−1

2 ≡ 1. Thus Euler’s formula
(
a
p

)
≡ a

p−1
2 is valid in this case since both sides

are +1.

The other case is that
(
a
p

)
= −1 so a is not a square mod p . Observe first that the

congruence xy ≡ a has a solution y mod p for each x 6≡ 0 since x has an inverse

x−1 mod p so we can take y = x−1a . Moreover the solution y is unique mod p since

xy1 ≡ xy2 implies y1 ≡ y2 by the cancellation property. Since we are in the case that

a is not a square mod p the solution y of xy ≡ a satisfies y 6≡ x . Thus the numbers

1,2,3, · · · , p − 1 are divided up into
p−1

2
pairs {x1, y1}, {x2, y2}, · · · , {x p−1

2
, y p−1

2
}

with xiyi ≡ a for each i . Multiplying these
p−1

2
pairs together, we get:

a
p−1

2 ≡ x1y1x2y2 · · ·x p−1
2
y p−1

2

The product on the right is just a rearrangement of (1)(2)(3) · · · (p−1) , and Wilson’s

Theorem says that this product is congruent to −1 mod p . Thus we see that Euler’s

formula
(
a
p

)
≡ a

p−1
2 holds also when

(
a
p

)
= −1, completing the proof in both cases.
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A consequence of Euler’s formula is the multiplicative property of Legendre sym-

bols that we stated and used earlier in the chapter:(
ab
p

)
=

(
a
p

)(
b
p

)

This holds since (ab)
p−1

2 = a
p−1

2 b
p−1

2 .

Step 2. Our goal here will be to express the Legendre symbol
(
a
p

)
in more geometric

terms. To begin, consider a rectangle in the first quadrant of the xy-plane that is p

units wide and a units high, with one corner at the origin and the opposite corner at

the point (p,a) . The picture at the right shows

the case (p,a) = (7,5) . We will be interested

in points that lie strictly in the interior of the

rectangle and whose coordinates are integers.

Points satisfying the latter condition are called

lattice points. The number of lattice points in

the interior is then (p−1)(a−1) since their x-

coordinates can range from 1 to p−1 and their

y-coordinates from 1 to a−1, independently.

The diagonal of the rectangle from (0,0) to (p,a) does not pass through any of

these interior lattice points since we assume that the prime p does not divide a , so

the fraction a/p , which is the slope of the diagonal, is in lowest terms. (If there were

an interior lattice point on the diagonal, the slope of the diagonal would be a fraction

with numerator and denominator smaller than a and p .) Since there are no interior

lattice points on the diagonal, exactly half of the lattice points inside the rectangle

lie on each side of the diagonal, so the number of lattice points below the diagonal is
1
2

(
p − 1

)(
a− 1

)
. This is an integer since p is odd, which makes p − 1 even.

A more refined question one can ask is how many lattice points below the diagonal

have even x-coordinate and how many have odd x-coordinate. Here there is no

guarantee that these two numbers must be equal, and indeed if they were equal then

both numbers would have to be
1
4

(
p − 1

)(
a − 1

)
but this fraction need not be an

integer, for example when p = 7 and a = 4.

We denote the number of lattice points that are below the diagonal and have even

x-coordinate by the letter e . The cases p = 7 and p = 13 are illustrated in the figures

on the next page, with a ranging from 1 to 6 when p = 7 and from 1 to 12 when

p = 13. The corresponding values of e count the number of black dots below the line

from the origin to the point (p,a) . The values of
(
a
p

)
are also listed. The way that

e varies with a seems somewhat unpredictable, but one can observe that
(
a
p

)
is +1

when e is even and −1 when e is odd in these examples with p = 7 and p = 13.

We will show that this simple relationship between e and
(
a
p

)
holds in general:

(
a
p

)
= (−1)e



Section 6.4 — Proof of Quadratic Reciprocity 209

To prove the formua
(
a
p

)
= (−1)e we first derive a formula for e . The segment of

the vertical line x = u between the x-axis and the diagonal has length u·a/p =
ua/p

since the slope of the diagonal is a/p . If u is a positive integer, the number of lattice

points on this line segment is
⌊
ua/p

⌋
, the greatest integer n ≤ ua/p . If we add

up these numbers of lattice points for u running through the set of even numbers

E = {2,4, · · · , p − 1} we get:

e =
∑

E

⌊
ua/p

⌋

The way to compute
⌊
ua/p

⌋
is to apply the division algorithm for integers, dividing

p into ua to obtain
⌊
ua/p

⌋
as the quotient with a remainder that we denote r(u) .
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Thus we have:

ua = p
⌊
ua/p

⌋
+ r(u) (1)

The formula ua = p
⌊
ua/p

⌋
+ r(u) implies that

⌊
ua/p

⌋
has the same parity as r(u)

since u is even and p is odd. Hence
∑
E

⌊
ua/p

⌋
has the same parity as

∑
E r(u) . Since

e =
∑
E

⌊
ua/p

⌋
, this implies that the number (−1)e that we are interested in can be

computed as:

(−1)e = (−1)
∑
E r(u) (2)

With this last expression in mind we will focus our attention on the remainders r(u) .

The number r(u) lies strictly between 0 and p and can be either even or odd,

but in both cases we can say that (−1)r(u)r(u) is congruent to an even number in

the interval (0, p) since if r(u) is odd, so is (−1)r(u)r(u) and then adding p to this

gives an even number between 0 and p . Thus there is always an even number s(u)

between 1 and p that is congruent to (−1)r(u)r(u) mod p . Obviously s(u) is unique

since no two numbers in the interval (0, p) are congruent mod p .

A key fact about these even numbers s(u) is that they are all distinct as u varies

over the set E . For suppose we have s(u) = s(v) for another even number v in E .

Thus r(u) ≡ ±r(v) mod p , which implies au ≡ ±av mod p in view of the equa-

tion (1) above. We can cancel the a from both sides of the congruence au ≡ ±av to

get u ≡ ±v . However we cannot have u ≡ −v because the number between 0 and p

that is congruent to −v is p − v , so we would have u = p − v which is impossible

since u and v are even while p is odd. Thus we must have u ≡ +v , hence u = v

since these are numbers strictly between 0 and p . This shows that the numbers s(u)

are all distinct.

Now consider the product of all the numbers (−1)r(u)r(u) as u ranges over the

set E . Written out, this is:

[
(−1)r(2)r(2)

][
(−1)r(4)r(4)

]
· · ·

[
(−1)r(p−1)r(p − 1)

]
(3)

By equation (1) we have r(u) ≡ ua mod p , so this product is congruent mod p to:

[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]

On the other hand, by the definition of the numbers s(u) the product (3) is congruent

mod p to [s(2)][s(4)] · · · [s(p−1)] . There are 1/2

(
p−1

)
factors here and they are all

distinct even numbers in the interval (0, p) as we showed in the previous paragraph,

so they are just a rearrangement of the numbers 2,4, · · · , p − 1. Thus we have the

following congruence:

[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]
≡ (2)(4) · · · (p − 1) mod p

Canceling the factors 2,4, · · · , p − 1 from both sides of this congruence gives:

(−1)
∑
E r(u)a

p−1
2 ≡ 1 mod p
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Both the factors (−1)
∑
E r(u) and a

p−1
2 are ±1 mod p and their product is 1 so they

must be equal mod p (using the fact that 1 and −1 are not congruent modulo an odd

prime). By Euler’s formula we have a
p−1

2 ≡
(
a
p

)
mod p , so from the earlier formula (2)

we conclude that
(
a
p

)
= (−1)e . This finishes Step 2.

Step 3. Now we specialize the value of a to be an odd prime q distinct from p . As

in Step 2 we consider lattice points in the interior of a p × q rectangle.

From Step 2 we know that
(
q
p

)
= (−1)e where e is the number of lattice points

with even x-coordinate inside the rectangle and below the diagonal. Suppose that we

divide the rectangle into two equal halves separated by the vertical line x = p/2 which

does not pass through any lattice points since p is odd. This vertical line cuts off two

smaller triangles from the two large triangles above and below the diagonal of the

rectangle. In the figure above, these smaller triangles are the shaded triangles. Call

the lower small triangle L and the upper one U , and let l and u denote the number

of lattice points with even x-coordinate in the interiors of L and U respectively. Note

that u has the same parity as the number of lattice points with even x-coordinate in

the interior of the quadrilateral below U in the right half of the rectangle since each

column of lattice points inside the rectangle has q− 1 points, an even number. Thus

e has the same parity as l+u , hence (−1)e = (−1)l+u .

The next thing to notice is that rotating the triangle U by 180 degrees about the

center of the rectangle carries it onto the triangle L . This rotation takes the lattice

points inside U with even x-coordinate onto the lattice points inside L with odd x-

coordinate. Thus we obtain the formula
(
q
p

)
= (−1)t where t is the total number of

lattice points inside the triangle L .

Reversing the roles of p and q , we can also say that
(
p
q

)
= (−1)t

′

where t′ is

the number of lattice points inside the triangle L′ with edges on the diagonal of the
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rectangle, the horizontal line y = q/2 , and the y-axis. Then t + t′ is the number of

lattice points in the interior of the small rectangle formed by L and L′ together. This

number is just
p−1

2
·
q−1

2
. Thus we have

(
q
p

)(
p
q

)
= (−1)t(−1)t

′

= (−1)t+t
′

= (−1)
p−1

2 ·
q−1

2

which finally finishes the proof of quadratic reciprocity. ⊔⊓

We can also use the geometric interpretation of
(
a
p

)
to prove the formula for

(
2
p

)

that was given in Section 6.2, namely:
(

2
p

)
=

{
+1 if p = 8k± 1

−1 if p = 8k± 3

We have shown that
(

2
p

)
= (−1)e where e is the number of lattice points inside a

p × 2 rectangle lying below the diagonal and having even x-coordinate, as indicated

in the following figure which shows the diagonals for p = 3,5,7, · · · ,17 :

Another way to describe e is to say that it is equal to the number of even integers

in the interval from p/2 to p . We do not need to assume that p is prime in order

to count these points below the diagonals, just that p is odd. One can see what the

pattern is just by looking at the figure: Each time p increases by 2 there is one more

even number at the right end of the interval
(
p/2, p

)
, and there may or may not be

one fewer even number at the left end of the interval, depending on whether p is

increasing from 4k− 1 to 4k+ 1 or from 4k+ 1 to 4k+ 3. It follows that the parity

of e depends only on the value of p mod 8 as in the table for p ≤ 17, so e is even

for p ≡ ±1 mod 8 and e is odd for p ≡ ±3 mod 8.

Exercises

1. As a sort of converse to Wilson’s Theorem, show that if n is not a prime then

(n − 1)! is not congruent to −1 mod n . More precisely, when n > 4 and n is not

prime, show that n divides (n − 1)! , so (n − 1)! ≡ 0 mod n . What happens when

n = 4?

2. In Step 2 of the proof of quadratic reciprocity there were figures depicting the

geometric interpretation of
(
a
7

)
and

(
a
13

)
. Draw analogous figures for

(
a
5

)
and

(
a
11

)
.
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3. Show that the calculation of the Legendre symbol
(

---1
p

)
can also be obtained using

the method in the proof of quadratic reciprocity involving counting certain lattice

points in a (p − 1)× p rectangle.
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In the previous chapter we determined which numbers n are represented by at

least one form of a given discriminant, where the numbers represented by a form Q

are the numbers that appear in the topograph of Q , so we consider only the values

Q(x,y) for primitive pairs (x,y) . The answer was in terms of certain congruence

conditions on the prime divisors of n . We could also determine the genus of the

forms representing n via congruence conditions.

What one would really like to do is refine these results to determine which equiva-

lence classes of forms represent n , and for this it is natural to consider only primitive

forms. The hardest part of the problem is determining which primes each primitive

form represents. Much is known about this, but it requires considerably deeper math-

ematics than we can cover in this book so we will say nothing more about representing

primes beyond what we have already discussed concerning genus. Instead, what we

will do in the present chapter is study the question for nonprimes, assuming one al-

ready knows which primes each form represents. For fundamental discriminants we

will obtain a fairly complete picture, while for nonfundamental discriminants there

will remain certain ambiguities, with examples showing the extra complication in these

cases.

The main tool will be a method for multiplying forms of a given discriminant

that corresponds to multiplying the numbers represented by these forms. This mul-

tiplication of forms gives rise to a commutative group structure on the set of proper

equivalence classes of primitive forms of a given discriminant. This group, called

the class group and denoted CG(∆) for discriminant ∆ , also has other uses besides

determining the forms representing nonprimes. For example we will use it to give

a good explanation for why the number of genera in a given discriminant is equal

to the number of equivalence classes of primitive forms in that discriminant whose

topographs have mirror symmetry.

In this chapter we will restrict attention entirely to forms of nonsquare discrimi-

nant, which means elliptic and hyperbolic forms. For elliptic forms we only consider

those with positive values, as usual.
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7.1 Multiplication of Forms

Since we will often be dealing with several different forms at a time it will be

convenient to shorten the notation by writing a form ax2 + bxy + cy2 simply as

[a, b, c] , retaining only the essential information of the coefficients. We are restricting

attention to discriminants that are not squares so the outer coefficients a and c must

always be nonzero.

Recall that a number a is represented by a form Q if and only if a appears

in the topograph of Q , and this in turn is equivalent to a appearing as the leading

coefficient of a form [a, b, c] equivalent to Q . A simple observation is that if a factors

as a = a1a2 then the forms [a1a2, b, c] , [a1, b, a2c] , and [a2, b, a1c] all have the

same discriminant. This shows that if a number a is represented in discriminant ∆
then so is each divisor of a , as we saw in Proposition 6.1.

A form [a1a2, b, c] can thus be split into two forms [a1, b, a2c] and [a2, b, a1c]

of the same discriminant. One might wonder about the reverse process of combin-

ing or “multiplying” the two forms [a1, b, a2c] and [a2, b, a1c] to obtain the form

[a1a2, b, c] . For example the product of [2,0,15] and [3,0,10] would be [6,0,5] .

The main goal in this section will be to show that this simple way to multiply certain

special pairs of forms is nevertheless sufficiently general to give a well-defined mul-

tiplication operation on the set of proper equivalence classes of primitive forms of a

given discriminant.

A pair of forms [a1, b, a2c] and [a2, b, a1c] is said to be concordant. For two

forms to be concordant is obviously a very strong condition since not only are the

second coefficients of the two forms equal, but also the first coefficient of each form

divides the third coefficient of the other form. Furthermore, the discriminants of the

two forms are equal. Conversely, suppose that two forms [a1, b, c1] and [a2, b, c2]

with the same middle coefficient have the same discriminant. Then a1c1 = a2c2 ,

so if a1 divides c2 , say c2 = a1c for some integer c , then a1c1 = a2c2 = a2a1c

so in particular a1c1 = a2a1c , and since a1 is nonzero we can cancel it from this

equation to get c1 = a2c . The two forms are thus [a1, b, a2c] and [a2, b, a1c] so

they are concordant. This argument shows in fact that for two forms [a1, b, c1] and

[a2, b, c2] of the same discriminant, if a1 divides c2 then it automatically follows that

a2 divides c1 .

Since we wish to consider only primitive forms the following result will be useful:

Lemma 7.1. If the concordant forms [a1, b, a2c] and [a2, b, a1c] are primitive then

so is their product [a1a2, b, c] . If a1 and a2 are coprime then the converse is also

true: If [a1a2, b, c] is primitive then so are [a1, b, a2c] and [a2, b, a1c] .
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An extra condition is needed in the converse since for example the primitive form

[4,0,1] factors as the product of the nonprimitive concordant forms [2,0,2] and

[2,0,2] .

Proof: If the coefficients of [a1a2, b, c] have a common divisor then they have a com-

mon prime divisor, which will divide either a1 or a2 , as well as b and c , so one of

the forms [a1, b, a2c] and [a2, b, a1c] will not be primitive. This gives the first state-

ment. For the second, if one of [a1, b, a2c] and [a2, b, a1c] is not primitive, say

[a1, b, a2c] , then its coefficients will be divisible by some prime p . If a1 and a2 are

coprime, then p dividing a1 and a2c implies that p divides c . Thus p divides all

three coefficients of [a1a2, b, c] , making it nonprimitive. ⊔⊓

Proposition 7.2. For each pair of primitive forms Q1 and Q2 of discriminant ∆
there is a pair of primitive forms Q′1 = [a1, b, a2c] and Q′2 = [a2, b, a1c] which are

concordant to each other and properly equivalent to Q1 and Q2 respectively. The

forms Q′1 and Q′2 can be chosen so that a1 > 0 and a2 > 0 .

For the proof we will need the following result which will be useful on other

occasions as well:

Lemma 7.3. For each pair of forms Q1 = [a1, b1, c1] and Q2 = [a2, b2, c2] of the

same discriminant with a1 and a2 coprime there exists a pair of forms [a1, b, a2c]

and [a2, b, a1c] that are concordant to each other and properly equivalent to Q1

and Q2 respectively.

Proof: The main step will be to find two forms properly equivalent to Q1 and Q2 that

have the same first coefficients as Q1 and Q2 and have equal second coefficients. To

do this we begin by recalling that the edges in the topograph of a form have integer

labels, with the sign of a label changing when the orientation of the edge is reversed.

For a region in the topograph of Q1 labeled a1 let us orient the edges bordering this

region all in the same direction so that the region lies to the left as we move along

the edges in the direction specified by their orientation. The edge labels then form

an arithmetic progression with increment 2a1 . One of these edges is labeled b1 , so

the other edge labels are b1 + 2a1m for m varying over all integers. Similarly, in

the topograph of Q2 we have a region labeled a2 whose bordering edges have labels

b2 + 2a2n for all integers n .

We would like one of the edge labels b1 + 2a1m to equal one of the edge labels

b2+2a2n . This means we would like to find integers m and n satisfying the equation

b1+2a1m = b2+2a2n , or equivalently a1m−a2n = (b2−b1)/2. Note that the right

side of this equation is an integer since the edge labels in a topograph always have

the same parity as the discriminant, which is the same for both forms by assumption.

From Section 2.3 we know the equation a1m−a2n = (b2−b1)/2 always has an integer

solution (m,n) if a1 and a2 are coprime. Thus we can find edges bordering the a1

and a2 regions with the same label b . The two given forms are therefore equivalent



Section 7.1 — Multiplication of Forms 217

to forms [a1, b, c
′
1] and [a2, b, c

′
2] , and in fact properly equivalent because of the way

we have oriented the edges bordering the a1 and a2 regions.

Equating the discriminants of these two forms [a1, b, c
′
1] and [a2, b, c

′
2] leads

to the equation a1c
′
1 = a2c

′
2 . Since a1 and a2 are coprime this implies that a1

divides c′2 , so c′2 = a1c for some integer c . The equation a1c
′
1 = a2c

′
2 then becomes

a1c
′
1 = a2a1c , which implies that c′1 = a2c since a1 is nonzero. Thus we have two

concordant forms [a1, b, a2c] and [a2, b, a1c] properly equivalent to the original

forms [a1, b1, c1] and [a2, b2, c2] . ⊔⊓

Proof of Proposition 7.2: Choose a number a1 > 0 in the topograph of Q1 . By

Proposition 6.26 the topograph of Q2 contains some number a2 > 0 coprime to a1 .

Thus Q1 and Q2 are properly equivalent to forms [a1, b1, c1] and [a2, b2, c2] , and

then Lemma 7.3 finishes the proof. ⊔⊓

To illustrate how to multiply forms let us look at a few examples in the case

∆ = −104. Here there are four equivalence classes of forms:




Since only the first two forms have mirror symmetry, the class number is 6. We will

be somewhat free with the notation and use the same symbol Qi to denote any form

properly equivalent to the original form Qi .

Let us compute the product of Q2 and Q3 using the method in the proof of

Lemma 7.3. To begin we need regions in the topographs of Q2 and Q3 with coprime

labels, so the simplest thing is to use the region labeled 2 in the topograph of Q2

and the region labeled 3 in the topograph of Q3 . For the Q2 topograph the edge

between the 2 and 13 regions is labeled 0 so the next edges bordering the 2 region

are labeled 4,8,12, · · · . For the 3 region in the topograph of Q3 the bordering edges

are labeled 2,8,14, · · · starting with the edge adjacent to the 9 region. The number 8

is in both these arithmetic progressions so we choose this for b . In the Q2 topograph
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this edge labeled 8 is between the regions labeled 2 and 21 so the form we want is

[2,8,21] . For Q3 the edge labeled 8 is between the 3 and 14 regions so the form

corresponding to this edge is [3,8,14] . The product of these two concordant forms

is then [6,8,7] . The values of this form at (x,y) = (0,1) , (1,0) , and (1,1) are 6, 7,

and 21 so from the topograph of Q4 we see that this form is properly equivalent to

Q4 . Thus we have Q2Q3 = Q4 .

The product Q4Q4 , or in other words Q2
4 , can be computed in the same way using

the regions in the topograph of Q4 with the coprime labels 5 and 6. For the edges

bordering the 5 region the labels starting with the edge between the 5 and 6 regions

are 4,14,24, · · · . For the edges bordering the 6 region we can start with the same

edge but now this edge must be oriented in the opposite direction in order to have

the 6 region on our left as we move forward. The edge labels are then −4,8,20, · · · .

Continuing these arithmetic progressions a little farther we find the common label 44

on the edge between the 5 and 102 regions, and on the edge between the 6 and 85

regions. Thus we have the concordant forms [5,44,102] and [6,44,85] , with product

[30,44,17] . The coefficients 30 and 17 appear in adjacent regions in the topograph

of Q3 so Q2
4 is properly equivalent to either Q3 or the mirror image form. We can

determine which by evaluating [30,44,17] at (x,y) = (−1,1) , giving the value 3.

Thus in the topograph of [30,44,17] the values 30,17,3 appear in clockwise order

around a vertex, while in the topograph of Q3 they are in counterclockwise order, so

these two topographs are mirror images and hence Q2
4 is properly equivalent to the

mirror image form of Q3 .

In these examples there were a number of choices made in order to compute

the products QiQj . Thus for computing Q2Q3 we first chose the regions labeled 2

and 3 in the topographs of Q2 and Q3 , but we could have chosen any region in one

topograph and then chosen any of the infinitely many regions in the other topograph

with a label coprime to the label of the first region. After choosing the regions labeled

2 and 3 we then chose edges bordering these regions having the same label b , and

there are infinitely many possibilities to choose from here too. For the 2 region the

edge labels are the integers 8+ 4k and for the 3 region they are the integers 8+ 6k

so the common edge labels are the integers 8 + 12k , which are in fact all the edge

labels for the 6 region in the topograph of Q4 . It is not at all obvious that the various

choices that were made for the two topographs always lead to the same result that

Q2Q3 = Q4 . Our next task will be to prove that this is true not just for this calculation

but in general.

What we wish to prove is the crucial fact that multiplication of proper equivalence

classes of primitive forms by choosing a concordant pair of forms in these classes does

not depend on which concordant pair we choose. This can be phrased in the following

way:
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Proposition 7.4. For a fixed discriminant let Q1,Q2 be a pair of concordant primi-

tive forms and let Q′1,Q
′
2 be another such pair properly equivalent to Q1 and Q2

respectively. Then the products Q1Q2 and Q′1Q
′
2 are properly equivalent.

The proof will involve a certain amount of calculation, and to ease the burden

it will be convenient to express quadratic forms in terms of matrices. This is based

on the simple observation that a form ax2 + bxy + cy2 , regarded as a 1× 1 matrix

(ax2 + bxy + cy2) , can be obtained as a product of a 1× 2 matrix, a 2× 2 matrix,

and a 2× 1 matrix:

(
x y

)( a b/2
b/2 c

)(
x

y

)
=
(
ax + by/2

bx/2 + cy
)(x

y

)

=
(
ax2 + bxy + cy2

)

Thus we are expressing the form ax2+bxy + cy2 as a matrix
(
a
b
b
c

)
where b = b/2 .

The entries b might not be integers, but this will not matter for our purposes.

When we do a change of variables by means of a matrix
(
p
r
q
s

)
with determinant

ps−qr = 1, replacing
(
x
y

)
by

(
p
r
q
s

)(
x
y

)
=
(
px+qy
rx+sy

)
, then the product (x y)

(
a
b
b
c

)(
x
y

)

becomes (x y)
(
p
q
r
s

)(
a
b
b
c

)(
p
r
q
s

)(
x
y

)
, with the second matrix being the transpose of

the fourth matrix. Thus the matrix
(
a
b
b
c

)
for the form ax2 + bxy + cy2 is replaced

by the matrix
(
a′

b′
b′

c′

)
=
(
p
q
r
s

)(
a
b
b
c

)(
p
r
q
s

)
for the new form a′x2 + b′xy + c′y2 . We

can write this last equation as
(
p r

q s

)(
a b

b c

)
=

(
a′ b′

b
′
c′

)(
p q

r s

)−1

=

(
a′ b′

b
′
c′

)(
s −q
−r p

)

where this last matrix is the inverse of
(
p
r
q
s

)
since ps − qr = 1.

Proof of Proposition 7.4: We will use the notation Q ≈ Q′ to mean that the forms Q

and Q′ are properly equivalent.

Let Q1 = [a1, b, a2c] and Q2 = [a2, b, a1c] , with Q′1 = [a
′
1, b

′, a′2c
′] and Q′2 =

[a′2, b
′, a′1c

′] . To begin the proof we look at the special case that Q1 = Q
′
1 , so a1 = a

′
1 ,

b = b′ , and a2c = a
′
2c
′ . We assume Q2 ≈ Q

′
2 so by the remarks preceding the proof

there is an integer matrix
(
p
r
q
s

)
of determinant 1 such that:

(
p r
q s

)(
a2 b
b a1c

)
=

(
a′2 b
b a1c

′

)(
s −q
−r p

)

Multiplied out, this becomes:
(
a2p + br bp + a1cr
a2q + bs bq + a1cs

)
=

(
a′2s − br bp − a′2q
bs − a1c

′r a1c
′p − bq

)
(∗)

To show Q1Q2 ≈ Q1Q
′
2 we would like to find an integer matrix

(
p′

r′
q′

s′

)
of determi-

nant 1 such that:(
p′ r ′

q′ s′

)(
a1a2 b

b c

)
=

(
a1a

′
2 b

b c′

)(
s′ −q′

−r ′ p′

)
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This becomes:

(
a1a2p

′ + br ′ bp′ + cr ′

a1a2q
′ + bs′ bq′ + cs′

)
=

(
a1a

′
2s
′ − br ′ bp′ − a1a

′
2q
′

bs′ − c′r ′ c′p′ − bq′

)
(∗∗)

We can convert the upper left entries in the two matrices in (∗ ) to the corresponding

entries in (∗∗ ) by multiplying by a1 if we choose p′ = p , s′ = s , and r ′ = a1r . Then

the equality of the upper left entries in (∗ ) will imply equality of the upper left entries

in (∗∗ ). If we further choose q′ = q/a1 then the upper right entries in (∗ ) will be

equal to the corresponding entries in (∗∗ ), and the same will be true for the lower

left entries. The lower right entries in (∗ ) will be a1 times those in (∗∗ ) so the lower

right entries in (∗∗ ) will be equal as well. Thus we hope to define
(
p′

r′
q′

s′

)
by:

(
p′ q′

r ′ s′

)
=

(
p q/a1

a1r s

)

Note that this matrix has the same determinant as
(
p
r
q
s

)
. The only problem is that

the entry q′ = q/a1 will only be an integer if a1 divides q . To guarantee that it does,

observe that the equality of the upper right entries in (∗ ) implies that a1cr = −a
′
2q ,

so if a1 is coprime to a′2 then a1 will divide q . Thus we have proved the proposition

in the special case Q1 = Q
′
1 provided that a1 and a′2 are coprime.

In the case just considered we assumed Q1 = Q
′
1 which implied that b = b′ . Now

let us assume merely that b = b′ along with the previous hypothesis that a1 and a′2

are coprime. Under these conditions the desired equivalence Q1Q2 ≈ Q
′
1Q

′
2 will be

obtained as the combination of two equivalences Q1Q2 ≈ Q1Q
′
2 ≈ Q

′
1Q

′
2 , but first we

have to check that Q1 and Q′2 are concordant so that Q1Q
′
2 is defined. Since b = b′

and the determinants of Q1 and Q′1 are equal, we have a1a2c = a
′
1a
′
2c
′ . Since a1

and a′2 are coprime it follows that a1 divides a′1c
′ . As we saw earlier, this implies

that the forms Q1 = [a1, b, a2c] and Q′2 = [a
′
2, b, a

′
1c
′] are concordant.

Assuming that a1 and a′2 are coprime, the previous case Q1 = Q′1 now gives

an equivalence Q1Q2 ≈ Q1Q
′
2 . Switching the roles of Q1 and Q′2 as well as Q′1 and

Q2 , this argument also shows Q1Q
′
2 ≈ Q

′
1Q

′
2 using the same assumption that a′2 and

a1 are coprime. We conclude that Q1Q2 ≈ Q
′
1Q

′
2 when a1 and a′2 are coprime and

b = b′ .

Next we consider how to arrange that b = b′ . The hypothesis that will allow this

is that a1a2 is coprime to a′1a
′
2 , which is equivalent to saying that each of a1 and

a2 is coprime to each of a′1 and a′2 . If a1a2 and a′1a
′
2 are coprime, we know by

an argument in the proof of Lemma 7.3 that the arithmetic progressions b + a1a2m

and b′ + a′1a
′
2n have a common value B . This will also be a value in each of the

arithmetic progressions b + a1m , b + a2n , b′ + a′1m , and b′ + a′2n . Thus we have

forms Q̃i = [ai, B, c̃i] ≈ Qi for i = 1,2, and similarly Q̃′i = [a
′
i, B, c̃

′
i] ≈ Q

′
i .

Let us check that Q̃1 and Q̃2 are concordant. This will be true if the first coef-

ficient of one form divides the third coefficient of the other, say a2 divides c̃1 . The
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forms Q1 and Q̃1 have the same discriminant so b2−4a1a2c = B
2−4a1c̃1 . Substitut-

ing B = b+2a1a2m and simplifying, we get −a1a2c = a1a2bm+a
2
1a

2
2m

2−a1c̃1 . Af-

ter canceling a factor of a1 from both sides, this becomes −a2c = a2bm+a1a
2
2m

2−c̃1

which implies that a2 divides c̃1 . Thus Q̃1 and Q̃2 are concordant, and by the same

reasoning Q̃′1 and Q̃′2 are concordant, so we can form the products Q̃1Q̃2 and Q̃′1Q̃
′
2 .

We have Q1Q2 ≈ Q̃1Q̃2 since the label B occurs on an edge bordering the region

labeled a1a2 in the topographs of both of these product forms, which is obvious for

Q̃1Q̃2 = [a1a2, B,−] while for Q1Q2 = [a1a2, b,−] it follows from the definition of B .

Similarly Q′1Q
′
2 ≈ Q̃

′
1Q̃

′
2 . We can now apply the previous case b = b′ to the four forms

Q̃1, Q̃2, Q̃
′
1, Q̃

′
2 since the leading coefficients a1 and a′2 of the first and fourth forms

are coprime. Thus we have Q̃1Q̃2 ≈ Q̃
′
1Q̃

′
2 and hence Q1Q2 ≈ Q̃1Q̃2 ≈ Q̃

′
1Q̃

′
2 ≈ Q

′
1Q

′
2 .

This proves the proposition under the assumption that a1a2 is coprime to a′1a
′
2 .

Now we can finish the proof by reducing to the case just considered, that a1a2

is coprime to a′1a
′
2 . Choose a number A1 represented by Q1 coprime to a1a2a

′
1a
′
2 ,

and then choose a number A2 represented by Q2 and coprime to A1a1a2a
′
1a
′
2 . Since

A1 and A2 are coprime, Lemma 7.3 implies that there exist concordant forms Q̂1 =

[A1, B,A2C] and Q̂2 = [A2, B,A1C] with Q̂1 ≈ Q1 and Q̂2 ≈ Q2 . Since A1A2 is

coprime to a1a2 the previous case implies that Q1Q2 ≈ Q̂1Q̂2 . The previous case also

implies that Q̂1Q̂2 ≈ Q
′
1Q

′
2 since A1A2 is coprime to a′1a

′
2 and we have Q̂1 ≈ Q1 ≈ Q

′
1

and Q̂2 ≈ Q2 ≈ Q
′
2 . Thus Q1Q2 ≈ Q̂1Q̂2 ≈ Q

′
1Q

′
2 and we are done. ⊔⊓

For proper equivalence classes of primitive forms of a fixed discriminant we have

seen that if two classes represent coprime numbers, then the product class represents

the product of the two numbers. The next proposition says that we can drop the

coprimeness condition on the two numbers if we allow “representations” Q(x,y) = n

with nonprimitive pairs (x,y) .

Proposition 7.5. If Q1 and Q2 are concordant forms with product Q1Q2 then each

product Q1(x1, y1)Q2(x2, y2) can be expressed as Q1Q2(X, Y ) where X and Y are

certain explicit functions of (x1, y1) and (x2, y2) given in terms of the coefficients

of Q1 and Q2 .

Proof: Let Q1(x,y) = a1x
2+bxy +a2cy

2 and Q2(x,y) = a2x
2+bxy +a1cy

2 . It

will suffice to express a product Q1(x1, y1)Q2(x2, y2) as a1a2X
2+bXY +cY 2 where

X and Y are given in terms of the coefficients a1, a2, c and the variables x1, y1, x2, y2 .

First we compute Q1(x1, y1)Q2(x2, y2) :

(
a1x

2
1 + bx1y1 + a2cy

2
1

)(
a2x

2
2 + bx2y2 + a1cy

2
2

)

= a1a2x
2
1x

2
2︸ ︷︷ ︸

(1)

+ a1bx
2
1x2y2︸ ︷︷ ︸
(2)

+ a2
1cx

2
1y

2
2︸ ︷︷ ︸

(3)

+ a2bx1x
2
2y1︸ ︷︷ ︸

(4)

+ b2x1x2y1y2︸ ︷︷ ︸
(5)

+ a1bcx1y1y
2
2︸ ︷︷ ︸

(6)

+ a2
2cx

2
2y

2
1︸ ︷︷ ︸

(7)

+ a2bcx2y
2
1y2︸ ︷︷ ︸

(8)

+ a1a2c
2y2

1y
2
2︸ ︷︷ ︸

(9)
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There are nine terms here and we label them (1)–(9) as shown. We want to choose X

and Y so that the sum of these nine terms is equal to a1a2X
2 + bXY + cY 2 . Only

the terms (1) and (9) contain the factor a1a2 appearing in a1a2X
2 so to get (1) it is

reasonable to start with X = x1x2 . Then to get (9) we expand this to:

X = x1x2 ± cy1y2

Here we allow a sign ± for flexibility later in the calculation. Now we have:

a1a2X
2 = a1a2x

2
1x

2
2︸ ︷︷ ︸

(1)

±2a1a2cx1x2y1y2 + a1a2c
2y1y2︸ ︷︷ ︸
(9)

This gives (1) and (9) but the middle term does not appear among (1)–(9) so we will

have to have something that cancels it later.

Next, to get the term (2) we start with Y = a1x1y2 so that bXY starts with

a1bx
2
1x2y2 which is (2). For symmetry let us expand Y = a1x1y2 to:

Y = a1x1y2 + a2x2y1

This gives:

bXY = a1bx
2
1x2y2︸ ︷︷ ︸
(2)

+ a2bx1x
2
2y1︸ ︷︷ ︸

(4)

± a1bcx1y1y
2
2︸ ︷︷ ︸

(6)

± a2bcx2y
2
1y2︸ ︷︷ ︸

(8)

and cY 2 = a2
1cx

2
1y

2
2︸ ︷︷ ︸

(3)

+ 2a1a2cx1x2y1y2 + a
2
2cx

2
2y

2
1︸ ︷︷ ︸

(7)

If we choose the sign ± in X to be minus then the middle term of cY 2 cancels the

middle term of a1a2X
2 , but this gives the terms (6) and (8) in bXY the wrong sign

so we will need other terms to compensate for this. We have also not yet accounted

for the term (5). To get this let us add another term to Y so that X and Y are now:

X = x1x2 − cy1y2

Y = a1x1y2 + a2x2y1 + by1y2

Then we have:

a1a2X
2 = a1a2x

2
1x

2
2︸ ︷︷ ︸

(1)

− 2a1a2cx1x2y1y2 + a1a2c
2y1y2︸ ︷︷ ︸
(9)

bXY = a1bx
2
1x2y2︸ ︷︷ ︸
(2)

+ a2bx1x
2
2y1︸ ︷︷ ︸

(4)

− a1bcx1y1y
2
2︸ ︷︷ ︸

(6)

− a2bcx2y
2
1y2︸ ︷︷ ︸

(8)

+ b2x1x2y1y2︸ ︷︷ ︸
(5)

− b2cy2
1y

2
2

cY 2 = a2
1cx

2
1y

2
2︸ ︷︷ ︸

(3)

+ 2a1a2cx1x2y1y2 + a
2
2cx

2
2y

2
1︸ ︷︷ ︸

(7)

+ b2cy2
1y

2
2 + 2a1bcx1y1y

2
2︸ ︷︷ ︸

(6)

+ 2a2bcx2y
2
1y2︸ ︷︷ ︸

(8)
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Now when we add everything up, the unlabeled terms cancel and the remaining terms

combine to give precisely the terms (1)–(9). ⊔⊓

As a very simple illustration let us consider the case ∆ = −24 where there are

the two reduced forms [1,0,6] and [2,0,3] . The form [1,0,6] is concordant to it-

self and we have [1,0,6][1,0,6] = [1,0,6] . Also [1,0,6] is concordant to [2,0,3]

and we have [1,0,6][2,0,3] = [2,0,3] . However [2,0,3] is not concordant to it-

self, although it is concordant to [3,0,2] which is equivalent to [2,0,3] and in fact

properly equivalent to it since both forms have mirror symmetry. Thus we have

[2,0,3][3,0,2] = [6,0,1] which is properly equivalent to [1,0,6] . If we apply the

preceding proposition with Q1 = [2,0,3] and Q2 = [3,0,2] then we have a1 = 2,

a2 = 3, b = 0, and c = 1, so the formulas for X and Y are X = x1x2 − y1y2 and

Y = 2x1y2 + 3x2y1 . The calculations in the proof then give:

(2x2
1 + 3y2

1 )(3x
2
2 + 2y2

2 ) = 6X2 + Y 2 = 6(x1x2 −y1y2)
2 + (2x1y2 + 3x2y1)

2

To express this in terms of the original two forms [1,0,6] and [2,0,3] we change

variables by switching x2 and y2 and then we interchange the two terms on the right

to get:

(2x2
1 + 3y2

1 )(2x
2
2 + 3y2

2 ) = (2x1x2 + 3y1y2)
2 + 6(x1y2 − x2y1)

2

This shows explicitly that the product of two numbers 2x2+3y2 is a number x2+6y2 .

In a similar way we can obtain formulas for the other products:

(x2
1 + 6y2

1)(x
2
2 + 6y2

2 ) = (x1x2 − 6y1y2)
2 + 6(x1y2 + x2y1)

2

(x2
1 + 6y2

1 )(2x
2
2 + 3y2

2 ) = 2(x1x2 − 3y1y2)
2 + 3(x1y2 + 2x2y1)

2

Other discriminants can be handled in the same way although the calculations can

become complicated. One would start with a list of forms, one for each proper

equivalence class of forms of the given discriminant. For each pair of forms on the

list one would find a properly equivalent pair of concordant forms [a1, b, a2c] and

[a2, b, a1c] , with suitable changes of variables to convert the given pair of forms to

the concordant pair. Then one would apply the formulas for X and Y in the proof

of the preceding proposition, and finally one would do another change of variables to

convert a1a2X
2 + bXY + cY 2 to a form on the original list.

Exercises

1. In discriminant ∆ = −56 we have the forms Q2 = [2,0,7] and Q3 = [3,2,5] .

Compute Q2Q3 and Q2
3 by finding suitable pairs of concordant forms.

2. Find all the concordant pairs of forms [3, b, c1] and [5, b, c2] of discriminant −120.
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7.2 The Class Group for Forms

In the previous section we defined a method for multiplying any two elements of

the set CG(∆) of proper equivalence classes of primitive forms of discriminant ∆ ,

which was to choose a pair of concordant forms Q1 = a1x
2+bxy+a2cy

2 and Q2 =

a2x
2 + bxy + a1cy

2 in the two proper equivalence classes, and then the product of

these two classes is the class containing the form Q1Q2 = a1a2x
2+bxy+cy2 . Note

that the form Q1Q2 is the same as Q2Q1 since a1a2 = a2a1 so this multiplication

operation in CG(∆) is commutative.

The multiplication operation in CG(∆) has a few other simple properties. A form

[a, b, c] is concordant to [1, b, ac] and [a, b, c][1, b, ac] = [a, b, c] . Since [1, b, ac]

represents 1 it is equivalent to the principal form, hence properly equivalent to it

since the principal form has mirror symmetry. Thus the class of the principal form

in CG(∆) is an identity element for the multiplication.

Each form [a, b, c] is concordant to its mirror image form [c, b,a] , and their

product is [ac, b,1] which represents 1 hence is properly equivalent the principal

form. Thus all elements of CG(∆) have inverses for the multiplication operation,

obtained by taking mirror image forms.

Forms whose topographs have mirror symmetry give elements of CG(∆) that are

equal to their inverses. The converse is also true since if a topograph is properly

equivalent to its mirror image, this says it has an orientation-reversing symmetry and

all such symmetries are mirror reflections by Proposition 5.8.

Another basic property of the multiplication operation in CG(∆) is that it is asso-

ciative, although proving this takes a little more work. To do this we start with three

forms Q1,Q2,Q3 giving three classes in CG(∆) . Choose a number a1 in the topo-

graph of Q1 , then a number a2 in the topograph of Q2 coprime to a1 , then a number

a3 in the topograph of Q3 coprime to a1a2 . Each Qi is then properly equivalent to

a form [ai, bi, ci] . Since each ai is coprime to the other two, the Chinese Remainder

Theorem guarantees that there is a number b congruent to bi mod ai for each i .

We would like these congruences to be mod 2ai instead of just mod ai . To arrange

this we go back and first choose a1 coprime to 2, then a2 coprime to 2a1 , then a3

coprime to 2a1a2 , so each ai is odd. Next, when we apply the Chinese Remainder

Theorem we find b congruent to each bi mod ai and also congruent to ∆ mod 2,

hence also congruent to each bi mod 2. Then b will be congruent to each bi mod 2ai

since 2 and ai are coprime.

Having chosen b in this way, each form [ai, bi, ci] is properly equivalent to a

form [ai, b, c
′
i] . Equating discriminants of the first two of these new forms, we see

that a1c
′
1 = a2c

′
2 so a2 divides a1c

′
1 and hence it divides c′1 since a1 and a2 are

coprime. Similarly a3 divides c′1 . Since a2 and a3 are coprime this means that a2a3
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divides c′1 and we can write c′1 = a2a3c for some integer c . Equating discriminants

then gives c′2 = a1a3c and c′3 = a1a2c . Thus we have the three forms [a1, b, a2a3c] ,

[a2, b, a1a3c] , and [a3, b, a1a2c] , and each pair of these forms is concordant. If

we multiply the first two forms we get [a1a2, b, a3c] , and then multiplying this by

the third form [a3, b, a1a2c] gives [a1a2a3, b, c] . We get the same result if we first

multiply the second and third forms and then multiply their product by the first form.

This proves associativity.

We have now shown the following basic fact:

Proposition 7.6. CG(∆) is a group, that is, the multiplication is associative, there

is an identity element whose product with any element is that element, and each

element has an inverse, so that the product of an element and its inverse is the

identity element.

For general groups the multiplication operation is not required to be commutative,

and this complicates the definition slightly. The identity element is required to act as

an identity when it is multiplied on both the right and the left. Thus there must be an

element e such that both ge = g and eg = g for all elements g in the group. Similar,

inverses are required to be inverses for both multiplication on the right and on the

left, so each element g must have an inverse element g−1 satisfying both gg−1 = e

and g−1g = e . Noncommutative groups often arise quite naturally, and we have in

fact already made extensive use of one, the group of linear fractional transformations

LF(Z) . This differs from CG(∆) not just in being noncommutative, but also by having

an infinite number of elements, while the number of elements of CG(∆) is the class

number h∆ which is always finite.

We should observe that the identity element in a group is always unique since if

two elements g and h both act as the identity then gh = h since g is an identity,

but we also have gh = g since h is an identity, so g = h . Another general fact is that

each element g in a group has a unique inverse since if h and h′ are two possibly

different inverses for g , so both gh and gh′ are the identity, then we have gh = gh′

so after multiplying both sides of this equation on the left by any inverse g−1 we get

h = h′ .

We can now re-examine some of the examples in Section 6.1 to verify that the

conjectured group structures on CG(∆) are in fact correct.

First consider the case ∆ = 40. Here there were two equivalence classes of forms,

given by Q1 = x
2−10y2 and Q2 = 2x2−5y2 . Both topographs have mirror symmetry

so proper equivalence is the same as equivalence. Thus the group CG(∆) has two

elements, and we will use the same symbols Q1 and Q2 for these elements of CG(∆) .
The identity element of CG(∆) is Q1 since this is the principal form. Since Q2 = Q

−1
2

by the mirror symmetry of its topograph, we have Q2Q2 = Q1 , the identity element
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of CG(∆) . This determines the group structure in CG(∆) completely, and it agrees

with what we predicted from the topographs in Section 6.1.

Next consider the case ∆ = −84 where there were four equivalence classes of

forms Q1 , Q2 , Q3 , and Q4 . All four topographs have mirror symmetry so CG(∆)
has four elements. The principal form Q1 gives the identity element, and QiQi = Q1

for each i by the mirror symmetry. It remains to determine the products Q2Q3 ,

Q2Q4 , and Q3Q4 . For Q2Q3 , this cannot be Q1 otherwise Q3 would be Q−1
2 . Also

Q2Q3 cannot be Q2 otherwise Q3 would be the identity element Q1 . Similarly, Q2Q3

cannot be Q3 . Therefore we must have Q2Q3 = Q4 . The same reasoning shows that

Q2Q4 = Q3 and Q3Q4 = Q2 .

In more complicated cases it can be helpful to use the fact that if two primitive

forms Q1 and Q2 of the discriminant ∆ represent coprime numbers a1 and a2 then

their product Q1Q2 represents a1a2 . This is a consequence of results in the previous

section, particularly Lemma 7.3. For example in the preceding case ∆ = −84 we could

also show that Q2Q3 = Q4 by looking at the topographs to see that Q2 represents 3

and Q3 represents 2 so Q2Q3 must represent 6. The only element of CG(∆) whose

topograph contains 6 is Q4 , so Q2Q3 = Q4 . Similarly one sees that Q2Q4 = Q3 using

the numbers 3 and 5, and Q3Q4 = Q2 using 2 and 5. We could also deduce the last

two formulas from Q2Q3 = Q4 by multiplying both sides by Q2 or Q3 .

The next example from Section 6.1 is ∆ = −56 where there were three equivalence

classes of forms Q1 , Q2 , and Q3 . For Q1 and Q2 the topographs have mirror symme-

try but not for Q3 so there is another form Q4 whose topograph is the mirror image

of the one for Q3 , with Q4 = Q
−1
3 in CG(∆) . Again we have Q1 the identity in CG(∆)

and we have Q2Q2 = Q1 by mirror symmetry. However it is not so easy to determine

Q3Q3 . The topograph of Q3 contains 3 and 5 so the topograph of Q3Q3 must con-

tain 15, but 15 is in the topographs of both Q1 and Q2 so this is inconclusive. The

same thing happens for other pairs of primes in the topograph of Q3 such as 3,13 or

5,19. However, since the topograph of Q3 does not have mirror symmetry, we know

that Q3 is not Q−1
3 hence Q3Q3 is not Q1 so it must be Q2 . Thus all four elements of

CG(∆) are powers of Q3 , namely Q3 , Q2
3 = Q2 , Q4

3 = Q
2
2 = Q1 , and Q3

3 = Q4 since

Q4
3 = Q1 implies Q3

3 = Q
−1
3 which is Q4 . This determines the structure of CG(∆)

completely. For example Q2Q4 = Q
2
3Q

3
3 = Q

5
3 = Q3 since Q4

3 = Q1 .

In the preceding examples the group CG(∆) was small enough that its structure

could be determined just from the topographs. This is not always the case in more

complicated examples, however. One difficulty is that a form Q and its inverse Q−1

have mirror image topographs containing exactly the same numbers, so from the

topographs one may be able to compute a product QiQj = Q
±1
k but one cannot always

tell which exponent +1 or −1 is correct. Another problem is that some numbers can

appear in more than one topograph.

We illustrate these difficulties with an example, discriminant ∆ = −104 where
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we showed the topographs of the four equivalence classes of forms in the previous

section. Since the first two forms Q1 and Q2 have mirror symmetry while the second

two Q3 and Q4 do not, the group CG(∆) has six elements, with the principal form

Q1 the identity and Q2
2 = Q1 . From the product 3·17 = 51 we see that Q2

3 is Q1 ,

Q3 , or Q−1
3 , but Q1 is ruled out since the topograph of Q3 does not have mirror

symmetry, and Q3 is ruled out since Q2
3 = Q3 would imply Q3 = Q1 . Thus Q2

3 = Q
−1
3 ,

or equivalently, Q3
3 = Q1 . Similarly, we can try to compute Q2

4 from the product

5·7 = 35 which appears in the topographs of Q1 and Q3 . The possibility that Q2
4 is

Q1 is ruled out since Q4 does not have mirror symmetry. Thus Q2
4 = Q

±1
3 , but we

cannot tell which exponent is correct from the topographs and the argument we used

to compute Q2
3 does not work here. In fact we computed Q2

4 in the previous section

by finding a pair of concordant forms properly equivalent to Q4 , and it turned out

that Q2
4 was Q−1

3 , the mirror image of Q3 .

Let us see what the higher powers of Q4 are. Note first that Q6
4 = (Q2

4)
3 =

(Q−1
3 )3 = Q1 since (Q−1

3 )3 is the inverse of Q3
3 = Q1 . From Q6

4 = Q1 we obtain

Q5
4 = Q

−1
4 and Q4

4 = Q
−2
4 = Q3 . For Q3

4 we have (Q3
4)

2 = Q6
4 = Q1 so Q3

4 has mirror

symmetry making it either Q1 or Q2 , but Q3
4 = Q1 is impossible since it would say

that Q2
4 is Q−1

4 rather than Q−1
3 . Thus Q3

4 = Q2 and so the six elements of CG(∆)
are the powers Qi4 for i = 1,2,3,4,5,6 with Q6

4 the identity. This determines the

multiplication in CG(∆) completely. We will see in Section 7.3 that a group with

six elements and commutative multiplication always contains an element whose first

through sixth powers are all the elements of the group.

The Representation Theorem

Now we come to our first application of the class group, which is to the problem

of determining which primitive forms of a given discriminant ∆ represent a given

number n . It will suffice to consider only the case that n is positive. This is no

restriction when ∆ < 0 since there is no need to consider elliptic forms with negative

values. When ∆ > 0, if we know which forms represent positive n then the negatives

of these forms will be the forms representing −n . The only forms representing 1 are

the forms equivalent to the principal form so we can assume n > 1.

Here is the theorem, where for convenience we continue to use the same symbol

for a primitive form and for the element of CG(∆) that it determines:

Theorem 7.7. (a) Let a number n > 1 be factored as n = p
e1

1 · · ·p
ek
k for distinct

primes pi with ei > 0 for each i . Then the primitive forms of discriminant ∆ that

represent n are the products Q1 · · ·Qk where Qi is a primitive form representing

pei .

(b) The forms of discriminant ∆ representing a power pe of a prime p not dividing

∆ are primitive and are exactly the forms Q±e where Q is a form representing p .
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If p divides ∆ but not the conductor then the only power of p represented in

discriminant ∆ is p itself, and it is represented by a primitive form.

The theorem says nothing about the primitive forms that represent powers of a

prime dividing the conductor, and indeed this is a delicate question as the examples

in the large table in Section 6.2 show. In the first statement in (b) the form Q is unique

up to equivalence by Proposition 6.15. It may or may not have mirror symmetry, so

Q and Q−1 may be different elements of CG(∆) and the same is true of Qe and Q−e .

In the second statement of (b) a form Q representing p is unique up to equivalence

and is symmetric by Proposition 6.17 so there is no need to consider Q−1 .

If ∆ is a fundamental discriminant then the conductor is 1 so the theorem gives a

full reduction of the representation problem for nonprimes to the corresponding prob-

lem for primes: The forms representing p
e1

1 · · ·p
ek
k are the products Q

±e1

1 · · ·Q
±ek
k

where Qi represents pi and ei = 1 if pi divides ∆ . For nonfundamental discrimi-

nants one obtains all primitive forms representing p
e1

1 · · ·p
ek
k by modifying the pre-

vious statement to allow some of the primes pi to divide the conductor, replacing the

corresponding terms Q
±ei
i by any primitive forms Qi that represent p

ei
i .

As a special case, the only forms representing a power pe of a prime p not divid-

ing the discriminant are Qe and Q−e where Q represents p . Since Q−e is the inverse

of Qe in CG(∆) , these two forms are equivalent so there is only one equivalence class

of forms representing pe . When p is odd this was proved in Proposition 6.15, and

now we see that it holds also for p = 2.

When there are two or more distinct prime factors pi the choices between Qei

and Q−ei can lead to nonequivalent forms representing the same number. For ex-

ample for a product p1p2 of two different primes there can be four different proper

equivalence classes Q±1
1 Q±1

2 for the four choices of signs, and these can give two

different equivalence classes, even if Q1 = Q2 .

Proof of Theorem 7.7: If n is represented by a form Q then Q is properly equivalent

to a form [n,b, c] . If n factors as n = a1a2 · · ·ak then [n,b, c] factors as [n,b, c] =

[a1, b,nc/a1][n/a1, b, a1c] with the latter two forms being concordant. If k = 2 this

gives [a1a2, b, c] = [a1, b, a2c][a2, b, a1c] . If k > 2 we can factor [n/a1, b, a1c]

further as [a2, b,nc/a2][n/a1a2, b, a1a2c] . Continuing in this way, we eventually

get:

[n,b, c] = [a1, b,nc/a1][a2, b,nc/a2] · · · [ak, b,nc/ak]

Here any two forms in the product on the right are concordant.

In particular for the prime factorization n = p
e1

1 · · ·p
ek
k we have [n,b, c] =

Q1 · · ·Qk for Qi = [p
ei
i , b,nc/p

ei
i ] , a form representing p

ei
i . By Lemma 7.1 the

form [n,b, c] is primitive if and only if each Qi is primitive since the primes pi are

assumed to be distinct. This proves half of statement (a), that each primitive form

representing n can be expressed as a product Q1 · · ·Qk with Qi a primitive form
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representing p
ei
i . The other half is the statement that a product Q1 · · ·Qk is prim-

itive and represents n if each Qi is primitive and represents p
ei
i . This follows by

applying Lemma 7.3 repeatedly, first to forms [p
e1

1 , b1, c1] and [p
e2

2 , b2, c2] properly

equivalent to Q1 and Q2 , then to the product of the two resulting forms and a form

[p
e3

3 , b3, c3] properly equivalent to Q3 , and so on.

For part (b) of the theorem, a form representing pe is properly equivalent to a

form [pe, b, c] . As above, this factors as [pe, b, c] = [p, b,pe−1c]e . If p does not

divide the conductor then the forms Q = [p, b,pe−1c] representing p and Qe =

[pe, b, c] representing pe are primitive by Proposition 6.14. Since forms represent-

ing primes are unique up to equivalence, any form representing p must be properly

equivalent to Q or Q−1 . Hence the form we started with that represents pe is properly

equivalent to the eth power of Q or Q−1 , that is, to Qe or Q−e .

If p divides ∆ but not the conductor then Proposition 6.7 says that p is repre-

sented by a form of discriminant ∆ but no higher power of p is represented. The

form representing p is primitive by Proposition 6.14. ⊔⊓

Let us look at a few examples. For ∆ = −56, a fundamental discriminant, we

have already determined the group structure of CG(∆) which has four elements, but

we can use the preceding Theorem 7.7 to quickly rederive the group structure from

the topographs which were shown in Section 6.1. For this it suffices to look just at

how the powers of 3 are represented. Since 3 is represented by Q3 = [3,2,5] it

follows that 3i is represented by Q±i3 . The topographs show that 32 is represented

by Q2 = [2,0,7] so Q2
3 = Q

±1
2 , but Q2 = Q

−1
2 since the topograph of Q2 has mirror

symmetry, so we have Q2
3 = Q2 . Next, 33 is represented by Q3 so Q3

3 = Q
±1
3 , but

Q3
3 = Q3 would imply Q2

3 = Q1 contradicting the fact that Q2
3 = Q2 , so Q3

3 = Q
−1
3 .

And finally 34 is represented by Q1 = [1,0,14] so Q4
3 = Q

±1
1 = Q1 . Thus we see

again that CG(∆) consists of the powers of Q3 , with Q4
3 the identity.

From this we can determine which forms represent a number n = p
e1

1 · · ·p
ek
k ,

with ei ≤ 1 for pi = 2,7. Changing notation for convenience, let Q be the form

[3,2,5] previously called Q3 , so the other three forms are powers of Q . According to

the theorem, the forms representing n are the products (Qq1)±e1 · · · (Qqk)±ek where

Qqi is the power of Q representing pi . We may assume each qi is 0, 1, or 2 since

Q3 = Q−1 represents the same numbers as Q . The product (Qq1)±e1 · · · (Qqk)±ek is

then a power Qe where only the value of e mod 4 matters. Primes pi represented

by Q4 , the identity in CG(∆) , can be ignored. Then we have

e =
∑

Q

±ei +
∑

Q2

±2ei

where the first sum is over subscripts i such that pi is represented by Q and similarly

for the second sum with Q2 in place of Q . The sign ± in the second sum can be

ignored since Q2 = Q−2 . As we saw in Section 6.3, the forms Q0 and Q2 make up

one genus while Q and the equivalent form Q3 = Q−1 make up the other genus. The
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parity of e thus determines the genus of the forms representing n . (Recall that forms

representing a given number all belong to the same genus.) From the formula for e

we can deduce that n is represented by both Q0 and Q2 exactly when e is even and

at least one ei in the first sum is odd since this is the only time when the choice of

the signs ± matters.

As another example, when ∆ = −104 we computed CG(∆) to have six elements,

the first through sixth powers of the form Q4 = [5,4,6] with Q6
4 = Q1 , the identity

in CG(∆) . We can obtain most of this structure a little more efficiently now using

Theorem 7.7. Looking at the topographs, we see that 5, 52 , and 53 are represented

by Q4 , Q3 , and Q2 so Q2
4 = Q

±1
3 and Q3

4 = Q
±1
2 which is Q2 since the topograph of

Q2 has mirror symmetry. Since Q2
2 = Q1 it follows that Q6

4 = Q
2
2 = Q1 so Q5

4 = Q
−1
4

and Q4
4 = Q

−2
4 = Q∓1

3 . We cannot determine which sign in Q2
4 = Q

±1
3 is correct just

from the topographs, but we showed that Q2
4 = Q

−1
3 earlier.

The forms representing a number n = p
e1

1 · · ·p
ek
k when ∆ = −104 can be de-

scribed in a similar way to the preceding example with ∆ = −56. For ∆ = −104 the

exceptional primes pi with ei ≤ 1 are 2 and 13. The forms representing n are the

products (Qq1)±e1 · · · (Qqk)±ek where Qqi is the power of Q = Q4 representing pi

with qi either 0, 1, 2, or 3. Writing this product as Qe where only the value of e

mod 6 matters, the formula for e now has another term:

e =
∑

Q

±ei +
∑

Q2

±2ei +
∑

Q3

±3ei

The parity of e again determines the genus, with one genus consisting of Q0 and

Q2 (which is equivalent to Q4 ) and the other genus consisting of Q and Q3 (with

Q5 = Q−1 equivalent to Q ). From the formula for e one could work out when a

number is represented by both forms within a genus and when it is represented by

only one form. Note that for the formula above it does not matter whether Q2
4 is Q3

or Q−1
3 since both these forms represent the same numbers.

Exercises

1. For discriminant ∆ = −47 show the class number is 5 and determine the multipli-

cation rules for the five proper equivalence classes of forms.

2. Determine the numbers represented by each of the two forms [1,1,6] and [2,1,3] .

3. Show that the numbers represented by x2 + 4y2 are the numbers 2mp1 · · ·pk

where m is 0, 2, or 3 and each pi is a prime congruent to 1 mod 4.

4. Show that if two forms Q1 and Q2 in the class group CG(∆) represent coprime

numbers n1 and n2 then their product Q1Q2 represents n1n2 . Give an example

where this fails without the coprimeness assumption, even if n1 and n2 are coprime

to ∆ .
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5. For a fixed discriminant ∆ consider the set S∆ of primes that do not divide the

conductor and are represented by primitive forms with mirror symmetry. Show that

numbers that are products of primes in S∆ are represented by at most one form of

discriminant ∆ , up to equivalence, and this form has mirror symmetry.

7.3 Finite Abelian Groups

A group whose multiplication operation is commutative is usually referred to as

an abelian group, after the mathematician Niels Henrik Abel (1802–1829), although

the term “commutative group” is sometimes used as well. The aim of this section is

to explain the structure of abelian groups with finitely many elements. This structure

is far simpler than for finite nonabelian groups which can be extremely complicated,

with no hope of being completely classified.

The number of elements in a group G is called the order of G . This can be finite

or infinite, but for the class group CG(∆) it is always finite since it is just the class

number for discriminant ∆ .

For an element g in a group G the smallest positive integer n such that gn is

the identity is called the order of g if such an n exists, and otherwise the order of

g is said to be infinite. Each element g in a finite group G has finite order since the

powers g,g2, g3, · · · cannot all be distinct elements of G , so we must have gm = gn

for some m ≠ n , say m < n , and then if we multiply both gm and gn by g−m , the

inverse of gm , we see that gn−m is the identity. Thus some positive power of g is

the identity, and the smallest such power is the order of g . The identity element of a

group always has order 1 and is obviously the only element of order 1.

If an element g of a group G has order n then all the powers g,g2, g3, · · · , gn

must be distinct elements of G , otherwise if two of these powers gi and gj were

equal with i < j we would have gj−i equal to the identity, with j − i < n , contrary

to the assumption that g has order n . If g has order n then the higher powers

gn+1, gn+2, · · · just cycle through the powers g,g2, · · ·gn repeatedly. In particular

the only powers of g that are the identity element of G are the powers gkn for

integers k . The negative powers of g are just the inverses of the positive powers, and

these cycle through the same sequence g,g2, · · · , gn in reverse order since g−1 =

gn−1 , g−2 = gn−2 , and so on.

If g has order n then the order of each power gk can be determined in the

following way. The order of gk is the number m such that mk is the smallest multiple

of k that is also a multiple of n . The smallest common multiple of k and n is kn/d

where d is the greatest common divisor of k and n , as one can see by comparing the

prime factorizations of k and n . Thus mk = kn/d so m = n/d and the order of gk

is n/d .
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In particular if g has order n = kl , then gk has order l . This means that for

each divisor l of n there is a power of g having order l .

For example if g has order 6 then g2 and g4 have order 3, g3 has order 2, and

g5 has order 6. Similarly, if g has order 12 then g2 and g10 have order 6, g3 and

g9 have order 4, g4 and g8 have order 3, and g5 , g7 , and g11 have order 12.

A finite group G is called cyclic if there is an element g ∈ G such that every

element of G is a power of g , so the elements g,g2, g3, · · · cycle through all the

elements of G . The element g is then called a generator of G . Cyclic groups are

automatically abelian since gkgl and glgk both equal gk+l . If a generator g of a

cyclic group G has order n , then this is also the order of G since all the powers

g,g2, g3, · · · , gn must be distinct, as noted earlier. Thus a group of order n is cyclic

exactly when it contains an element of order n . In a cyclic group there are generally

a number of different choices for a generator since if g is one generator of order n

then gk is a generator exactly when it has order n , which is equivalent to k being

coprime to n . The number of different generators is thus ϕ(n) where ϕ is the Euler

phi function.

Among the groups CG(∆) that we computed in the previous section, CG(∆) is

cyclic of order 4 for ∆ = −56 and cyclic of order 6 for ∆ = −104, but for ∆ = −84

the group is not cyclic since it has order 4 but each element other than the identity

has order 2.

Cyclic groups are easy to understand, and our next goal is to see that all finite

abelian groups are built from cyclic groups by a fairly simple procedure. Given two

groups G1 and G2 , the product group G1 × G2 is defined to be the set of all pairs

(g1, g2) with g1 ∈ G1 and g2 ∈ G2 . The multiplication operation in G1×G2 is defined

by (g1, g2)·(g
′
1, g

′
2) = (g1g

′
1, g2g

′
2) , so the coordinates are multiplied separately. The

identity element of G1×G2 is the pair (g1, g2) with g1 the identity in G1 and g2 the

identity in G2 . The inverse of an element (g1, g2) is (g−1
1 , g−1

2 ) . More generally one

can define products G1 × · · · × Gk of any collection of groups G1, · · · , Gk , with the

elements of this product group being k - tuples (g1, · · · , gk) with gi ∈ Gi for each i .

One can also iterate the process of forming products of groups but this gives nothing

new since for example (G1×G2)×G3 is really the same as G1×G2×G3 by rewriting

its elements
(
(g1, g2), g3

)
as (g1, g2, g3) .

If G1 and G2 are finite groups of orders n1 and n2 , then G1×G2 has order n1n2

since the two coordinates g1 and g2 of pairs (g1, g2) in G1 ×G2 vary independently

over G1 and G2 . For an element (g1, g2) in G1 ×G2 , if g1 has order n1 and g2 has

order n2 then the order of (g1, g2) is the least common multiple of n1 and n2 since

a power (g1, g2)
n = (gn1 , g

n
2 ) is the identity exactly when n is a multiple of both n1

and n2 , so the order of (g1, g2) is the smallest such multiple. In particular, if n1 and

n2 are coprime then (g1, g2) has order n1n2 . This leads to the following interesting

fact:
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Proposition 7.8. If G1 and G2 are cyclic of coprime orders n1 and n2 then G1×G2

is cyclic of order n1n2 .

Proof: If g1 is a generator of G1 of order n1 and g2 is a generator of G2 of order n2

then (g1, g2) has order n1n2 if n1 and n1 are coprime, as we saw above. The group

G1 ×G2 is therefore cyclic since it contains an element whose order equals the order

of the group. ⊔⊓

Now we come to the main result in this section, the basic structure theorem for

finite abelian groups:

Theorem 7.9. Every finite abelian group is a product G1×· · ·×Gk of cyclic groups

G1, · · · , Gk , with the possibility k = 1 allowed when the group itself is cyclic.

For the proof we will use the notation o(g) for the order of an element g ∈ G . The

identity element of G will be written simply as 1. We need two preliminary lemmas.

Lemma 7.10. If two elements g1 and g2 of a finite abelian group have coprime

orders o(g1) and o(g2) then their product g1g2 has order o(g1)o(g2) .

This need not be true if o(g1) and o(g2) are not coprime. As an extreme example

take g2 to be g−1
1 . Another example would be to take g1 to be an element of maximal

order in G and g2 any element with o(g2) > 1.

Proof: Let n1 = o(g1) and n2 = o(g2) . Then (g1g2)
n1n2 = g

n1n2

1 g
n1n2

2 = 1 so it will

suffice to show that if (g1g2)
n = 1 then n is a multiple of n1n2 .

Suppose (g1g2)
n = 1 and let g = gn1 = g

−n
2 . Then gn1 = g

nn1

1 = (g
n1

1 )
n = 1 so

o(g) divides n1 . Similarly, gn2 = g
−nn2

2 = (g
n2

2 )
−n = 1 so o(g) divides n2 . Since

n1 and n2 are assumed to be coprime, this means o(g) = 1 and hence g = 1. Thus

gn1 = 1 and g−n2 = 1, which implies gn2 = 1. Since gn1 = 1 it follows that n is a

multiple of n1 , and n is also a multiple of n2 since gn2 = 1. As n1 and n2 are

coprime, this implies that n is a multiple of n1n2 . ⊔⊓

Lemma 7.11. For a finite abelian group G let m be the maximal order of elements

of G . Then the order of each element of G is a divisor of m .

Proof: Suppose this is false, so there is an element g such that o(g) does not divide

the maximal order m . This means there is some prime power pk dividing o(g) such

that the highest power pl dividing m has l < k . Since pk divides o(g) there is a

power of g having order pk . Let g1 be this power of g and let g2 be an element

of G of order m/pl , for example hp
l

where h is an element of order m . Then by

the preceding lemma the product g1g2 has order pk(m/pl) which is greater than m

since k > l . This contradicts the maximality of m , so we conclude that o(g) divides

m for all g ∈ G . ⊔⊓

Proof of Theorem 7.9: Let g1 be an element of G of maximal order n1 . If every

element of G is a power of g1 then G is cyclic and there is nothing more to prove. If
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there are elements of G that are not powers of g1 then we proceed by induction to

find further elements g2, · · · , gq satisfying the following two properties:

(1q ) The elements g1, g2, · · · , gq have orders n1, n2, · · · , nq where ni > 1 for each i

and ni is divisible by ni+1 for each i < q .

(2q ) If g
k1

1 · · ·g
kq
q = g

k′1
1 · · ·g

k′q
q then ki ≡ k′i mod ni for each i . Since each gi

has order ni an equivalent statement is that if g
k1

1 · · ·g
kq
q = g

k′1
1 · · ·g

k′q
q with

0 ≤ ki < ni and 0 ≤ k′i < ni for each i , then ki = k
′
i for each i .

If we have elements g1, · · · , gq satisfying (1q ) and (2q ) such that their products

g
k1

1 · · ·g
kq
q give all the elements of G , then by rewriting each product g

k1

1 · · ·g
kq
q

as a q - tuple (g
k1

1 , · · · , g
kq
q ) we see that G is a product of cyclic groups of orders

n1, · · · , nq and the proof will be complete.

If the products g
k1

1 · · ·g
kq
q do not account for all elements of G then we will

show how to find another element gq+1 of order nq+1 so that the conditions (1q+1 )

and (2q+1 ) are satisfied. This process can be iterated until all elements of G are

exhausted since at each step the number of products g
k1

1 · · ·g
kq
q increases, at least

doubling in fact, and G has only finitely many elements.

Assume inductively that we have already chosen elements g1, · · · , gq satisfy-

ing (1q ) and (2q ). To find gq+1 we consider congruence classes of elements of G

mod g1, · · · , gq , which means that we consider each element g as congruent to all

the products gg
k1

1 · · ·g
kq
q for arbitrary exponents ki . Let [g]q denote the congru-

ence class of g , the set of all the elements gg
k1

1 · · ·g
kq
q . In particular [g]q includes g

itself by choosing each ki to be 0. It is not hard to see that these congruence classes

[g]q form an abelian group with the product defined by [g]q[g
′]q = [gg

′]q . Let this

group of congruence classes [g]q be denoted [G]q . In particular when q = 0 we

start with [G]0 = G before we have chosen any of the elements gi . We then start

the induction by choosing g1 to be an element of G = [G]0 of maximal order n1 .

Conditions (11 ) and (21 ) are then obviously satisfied.

For the induction step, if there are elements of G that are not products g
k1

1 · · ·g
kq
q

then [G]q has more than one element. Let [gq+1]q be an element of [G]q of max-

imal order nq+1 in [G]q . First we check that nq+1 divides nq . Since [gq+1]
nq+1

q =

[1]q we have g
nq+1

q+1 = g
k1

1 · · ·g
kq
q for some exponents ki . Then in [G]q−1 we have

[gq+1]
nq
q−1 = [1]q−1 since Lemma 7.11 implies that all elements of [G]q−1 have order

dividing the maximal order, which is nq by the inductive definition of nq . The equa-

tion [gq+1]
nq
q−1 = [1]q−1 means that g

nq
q+1 is a product of powers of g1, · · · , gq−1 , so

it is certainly a product of powers of g1, · · · , gq which means [gq+1]
nq
q = [1]q . Thus

nq is a multiple of nq+1 , the order of [gq+1]q in [G]q , as we wanted to show. Since

(1q ) holds by inductive assumption, it follows that nq+1 divides each ni with i ≤ q .

It is also true that nq+1 divides each ki in the formula g
nq+1

q+1 = g
k1

1 · · ·g
kq
q . To

see this, consider the power g
ni
q+1 . We can write this as g

ni
q+1 =

(
g
nq+1

q+1

)ni/nq+1 =
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(
g
k1

1 · · ·g
kq
q

)ni/nq+1 with ni/nq+1 an integer since nq+1 divides ni . We can also

write g
ni
q+1 as a product g

l1
1 · · ·g

li−1

i−1 since [g
ni
q+1]i−1 = [gq+1]

ni
i−1 = [1]i−1 as a con-

sequence of the definition of ni as the maximal order of elements of [G]i−1 , so all

elements of [G]i−1 have order dividing ni by Lemma 7.11. Since the two expres-

sions
(
g
k1

1 · · ·g
kq
q

)ni/nq+1 and g
l1
1 · · ·g

li−1

i−1 for g
ni
q+1 are equal with gi not appearing

in the second expression, the property (2q ) implies that the exponent kini/nq+1 on

gi in the first expression must be a multiple of ni , the order of gi by (1i ). Thus we

have kini/nq+1 =mni for some integer m . Canceling ni from this equation, we get

ki/nq+1 =m so nq+1 divides ki .

Next we would like to find an element gq+1g
x1

1 · · ·g
xq
q congruent to gq+1 mod

g1, · · · , gq and having order nq+1 in G . The order of gq+1g
x1

1 · · ·g
xq
q cannot be

less than nq+1 since it determines the same element of [G]q as gq+1 and [gq+1]q

has order nq+1 in [G]q . This means that we just need to find exponents xi so that
(
gq+1g

x1

1 · · ·g
xq
q

)nq+1 = 1. Since g
nq+1

q+1 = g
k1

1 · · ·g
kq
q we have:

(
gq+1g

x1

1 · · ·g
xq
q

)nq+1 = g
nq+1

q+1 g
x1nq+1

1 · · ·g
xqnq+1

q = g
k1+x1nq+1

1 · · ·g
kq+xqnq+1

q

This will be 1 if ki + xinq+1 = 0 for each i . Solving ki + xinq+1 = 0 for xi gives

xi = −ki/nq+1 with xi an integer since we have shown that nq+1 divides ki .

Having found an element gq+1g
x1

1 · · ·g
xq
q of order nq+1 , we replace gq+1 by this

element, so the new gq+1 has order nq+1 in G . It remains to check condition (2q+1 ).

If g
k1

1 · · ·g
kq
q g

kq+1

q+1 = g
k′1
1 · · ·g

k′q
q g

k′q+1

q+1 then in [G]q we have [gq+1]
kq+1

q = [gq+1]
k′q+1

q .

Since the order of [gq+1]q in [G]q is nq+1 this implies that kq+1 ≡ k
′
q+1 mod nq+1 ,

hence g
kq+1

q+1 = g
k′q+1

q+1 in G since gq+1 has order nq+1 . We can then cancel g
kq+1

q+1

and g
k′q+1

q+1 from the equation g
k1

1 · · ·g
kq
q g

kq+1

q+1 = g
k′1
1 · · ·g

k′q
q g

k′q+1

q+1 to get g
k1

1 · · ·g
kq
q =

g
k′1
1 · · ·g

k′q
q . Since condition (2q ) holds by induction, we have ki ≡ k

′
i mod ni for each

i ≤ q . Thus (2q+1 ) holds and we are done. ⊔⊓

To illustrate how the preceding proof works, suppose we start with the group

G = H1 × H2 where H1 is cyclic of order 4 generated by an element h1 and H2 is

cyclic of order 2 generated by an element h2 of order 2. In this case we already know

that G is a product of cyclic groups, but suppose we forget this and just follow the

proof through. At the first step we choose an element g1 in G of maximal order,

so let us choose g1 = (h1,1) which has order 4 in G . There are then two congru-

ence classes of elements of G mod g1 , namely the class consisting of the elements

(h
k1

1 , h
k2

2 ) with k2 = 0 and the class with k2 = 1, so the group [G]1 of congruence

classes mod g1 has order 2. Intuitively, taking congruence classes mod g1 amounts

just to ignoring the first coordinates of pairs (h
k1

1 , h
k2

2 ) since we are free to change

this coordinate arbitrarily by multiplying (h
k1

1 , h
k2

2 ) by any element (h
l1
1 ,1) . Next we

choose an element g2 of maximal order in [G]1 . For this we can choose g2 = (h
k1

1 , h2)

for any k1 . If we choose k1 to be 1 or 3 then g2 will have order 4, which is larger
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than the maximal order of elements of [G]1 which is 2. The next-to-last paragraph of

the proof gives a procedure for rechoosing g2 to have order equal to 2 rather than 4,

so in the present example this would amount to choosing k1 to be 0 or 2 rather than

1 or 3. Either choice k1 = 0 or k1 = 2 will work, but if we choose k1 = 0 then the

element g2 becomes simply (1, h2) and a general product g
l1
1 g

l2
2 becomes the general

element (h
l1
1 , h

l2
2 ) of H1 ×H2 .

From the preceding theorem we can deduce a general fact:

Corollary 7.12. Each element of a finite abelian group has order dividing the order

of the group.

An equivalent statement is that if a finite abelian group G has order n then

gn = 1 for each g ∈ G . This is because if gn = 1 then the order of g divides n and

conversely.

Proof: By the theorem a finite abelian group G is a product G1 × · · · × Gk of cyclic

groups Gi . If the order of Gi is ni then the order of G is n = n1 · · ·nk . Each element

gi in Gi is a power of a generator of Gi which has order ni so g
ni
i = 1 and hence

gni = 1. For any element g = (g1, · · · , gk) of G we then have gn = 1. ⊔⊓

Fermat’s Little Theorem, which we encountered in the proof of quadratic reci-

procity in Section 6.4, is a special case of this corollary, the case that the group is the

group of congruence classes mod p of integers coprime to p , for p an odd prime.

The group operation is multiplication of congruence classes, and integers coprime to

p have multiplicative inverses mod p so one does indeed have a group. The order

of the group is p − 1, so each element has order dividing p − 1 which implies that

ap−1 ≡ 1 mod p for each integer a coprime to p , as Fermat’s Little Theorem asserts.

The proof we gave for Fermat’s Little Theorem in Section 6.4 extends easily to give

a simple proof of the corollary for any finite abelian group G . To see this, suppose

G has order n , with the elements of G being g1, · · · , gn . For an arbitrary element g

in G the multiples gg1, · · · , ggn are all distinct since if ggi = ggj then multiplying

both sides of this equation by g−1 gives gi = gj . Thus the sets {g1, · · · , gn} and

{gg1, · · · , ggn} are equal. Taking the product of all the elements in each of these two

sets and using commutativity of the multiplication operation, we have g1 · · ·gn =

gng1 · · ·gn which implies gn = 1.

Fermat’s Little Theorem was generalized by Euler to replace the prime p by any

number n . Here one takes the group of congruence classes mod n of numbers co-

prime to n . As we know, these numbers have multiplicative inverses mod n so we

again have a group. Its order is given by Euler’s function ϕ(n) , the number of positive

integers less than n and coprime to n . The statement is then that aϕ(n) ≡ 1 mod n

for every a coprime to n .

There are several different notations commonly used for the group of congruence

classes mod n of integers coprime to n . We will write it as Z∗n with Zn denoting the set
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of congruence classes of integers mod n and the star indicating that we are only taking

congruence classes of integers coprime to n . One might wonder what the structure of

Z
∗
n is as a product of cyclic groups. The first step in understanding this is to apply the

Chinese Remainder Theorem. As we saw in Section 2.3, if the prime factorization of

n is p
r1

1 · · ·p
rk
k for distinct primes pi , then specifying the congruence class mod n

of an integer coprime to n is equivalent to specifying its congruence class mod p
ri
i

for each i , with the latter classes being coprime to p
ri
i (which is the same as being

coprime to pi ). This amounts to saying that Z∗n is the product Z∗
p
r1
1

× · · · × Z∗
p
rk
k

.

This gives a reduction to the case of a prime power pr . When p is an odd prime

the group Z
∗
pr is cyclic, while Z

∗
2r is cyclic when r ≤ 2 but for larger r it is the

product of two cyclic groups, one of order 2r−2 and the other of order 2. These facts

will not be needed in the rest of the book so we will not prove them but will instead

just look at a few examples. Some cases when Z∗n is cyclic are shown in the following

figures where the elements of Z∗n label the vertices of a polygon and multiplication

by a generator of Z∗n rotates the polygon, taking each vertex to the next vertex.

Z
∗
7 Z

∗
9 Z

∗
18 Z

∗
11

For example in the first figure the group Z∗7 is cyclic of order 6 generated by 3 with

the powers of 3 mod 7 being 3,2,6,4,5,1. Notice that when Z
∗
n is cyclic, any two

opposite vertices are negatives of each other mod n , corresponding to the fact that −1

is the only element of order 2 in Z∗n and multiplication by −1 rotates the polygon 180

degrees. Note also that reflecting the polygon across its horizontal axis of symmetry

sends each element of Z∗n to its multiplicative inverse in Z∗n .

Some cases when Z∗n is not cyclic but is the product of a cyclic group of order 2

with a cyclic group are shown in the next three figures.

Z
∗
16 Z

∗
21 Z

∗
32

Here the cyclic factor of order 2 is generated by −1 and multiplication by −1 takes

each vertex of the inner polygon to the adjacent vertex of the outer polygon and vice
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versa. Multiplication by a generator of the other cyclic factor rotates the whole figure.

Multiplicative inverses are again given by reflection across the horizontal axis.

Each of these diagrams is known as a Cayley graph for the group. The graph has a

vertex for each element of the group, and two vertices are joined by an edge whenever

one group element is obtained from another by multiplication by one of a chosen set

of generators for the group. In the first four examples the group was cyclic so it had a

single generator, while in the last three examples the group had two generators, one

for each cyclic factor.

The preceding Corollary 7.12 implies that a finite abelian group G of prime order

p must be cyclic since any nonidentity element of G must have order p . This holds

more generally if the order of G is a product of distinct primes since in a factorization

of G as a product of cyclic groups these groups must all have coprime orders so their

product will also be cyclic by repeated applications of Proposition 7.8.

By Proposition 7.8, every cyclic group whose order is not a power of a prime can

be expressed as a product of two cyclic groups of smaller order. Applying this fact

repeatedly, every cyclic group is a product of cyclic groups of prime power order.

Hence by Theorem 7.9 every finite abelian group is a product of cyclic groups of

prime power order. A cyclic group of prime power order pk cannot be factored as a

product since the factors would have orders pl for l < k so the elements of the factors

would have orders dividing pk−1 , hence the same would be true for all elements of

the product, contradicting the fact that it is cyclic of order pk and so contains an

element of order pk .

Proposition 7.13. The factorization of a finite abelian group as a product of cyclic

groups of prime power order is unique in the sense that any two such factorizations

have the same number of factors of each order.

For example, if we let Cn denote a cyclic group of order n , then the only two

abelian groups of order 4 are C4 and C2 ×C2 . For order 8 the three possibilities are

C8 , C4 ×C2 , and C2 ×C2 ×C2 . For order 16 there are five possibilities: C16 , C8×C2 ,

C4×C4 , C4×C2×C2 , and C2×C2×C2×C2 . These examples illustrate the general fact

that the abelian groups of order a prime power pk correspond exactly to the different

partitions of k as a sum of numbers from 1 to k . In the case of 24 = 16 these were

the five partitions 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. (The order of the

terms does not matter, so 2+1+1 is regarded as the same partition as 1+2+1 and

1+ 1+ 2.)

For groups whose order is a product of powers of different primes one just

combines the various groups of each prime power independently. Thus for order

144 = 9·16 there are ten possibilities, the products of the five groups of order 16

listed above with either of the two groups C9 and C3 × C3 of order 9. The only time

there is only one group of order n is when n is a product of distinct primes, so the
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group is a product of cyclic groups of distinct prime orders, making the whole group

cyclic.

Proof of Proposition 7.13: The idea will be to characterize the number of cyclic fac-

tors of each prime power order in an intrinsic way that does not depend on a particular

choice of factorization. For a prime p dividing the order of a finite abelian group G

let G(p) be the set of elements in G whose order is a power of p , including the iden-

tity element 1 of order p0 . Note that an element g has order a power of p exactly

when gp
n

= 1 for some n . Given a factorization of G as a product G1 × · · · ×Gk of

cyclic groups of prime power order, an element g = (g1, · · · , gk) of G has order a

power of p exactly when each coordinate gi has order a power of p since if gp
n

= 1

then g
pn

i = 1 for each i and conversely if g
pni

i = 1 for each i then gp
n

= 1 for n

the largest ni . For the factors Gi whose order is a power of a prime different from p

the only way to have g
pn

i = 1 is when gi = 1. We can therefore regard G(p) as the

product of the factors Gi whose order is a power of p . This gives a characterization

of the product of the factors Gi of order a power of p that does not depend on the

choice of the factorization of G .

Thus the problem reduces to the case that G = G(p) , i.e., G has order pn for

some n , so we assume this from now on. It remains to give an intrinsic characteriza-

tion of the number of cyclic factors of order pr for each r . Suppose we are given a

factorization of G as a product G1 × · · · ×Gk of cyclic groups of order pn1 , · · · , pnk

with each ni ≥ 1. We can assume the exponent sequence n1, · · · , nk is in decreasing

order, so n1 ≥ n2 ≥ · · · ≥ nk . Such a sequence can be pictured as an arrange-

ment of boxes into rows and columns, with the ith column containing ni boxes. The

figure at the right shows the box diagram for the sequence

5,5,4,2,2,2,1. If the order of G is pn then the total number

of boxes is n since the cyclic factor Gi of order pni corre-

sponds to the ith column with ni boxes, so the order of G

is pn = pn1 · · ·pnk = pn1+···+nk , hence n = n1 + · · · +nk .

Consider the subset G(p) of G consisting of all elements that are p th powers gp

of elements g in G . The p th power of an element g = (g1, · · · , gk) of G1 × · · ·×Gk

is gp = (g
p
1 , · · · , g

p
k ) so an element of G is a p th power exactly when each of its

coordinates is a p th power. Thus G(p) = G
(p)
1 × · · · × G

(p)
k where G

(p)
i consists of

the powers g
p
i of elements gi in Gi . If gi is a generator of Gi then the elements of

G
(p)
i are g

p
i , g

2p
i , g

3p
i , · · · , g

(pni−1)p = 1 so G
(p)
i is a cyclic group of order pni−1 . Thus

the box diagram for G(p) = G
(p)
1 × · · · × G

(p)
k is obtained from the box diagram for

G = G1 × · · · ×Gk by deleting the bottom row.

Repeating this process, the subset of G(p) consisting of elements that are p th

powers (gp)p of elements gp of G(p) is the subset G(p
2) of G consisting of the

powers gp
2

of elements g in G . The box diagram for G(p
2) = G

(p2)
1 × · · · × G

(p2)
k

is obtained by deleting the bottom two rows of the diagram for G . Similarly, the
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powers gp
m

of elements g in G form a subset G(p
m) whose box diagram is obtained

by deleting the bottom m rows of the diagram for G .

We noted before that if G has order pn then the total number of boxes in the

box diagram for G is n . In the same way the order of G(p) determines the number of

boxes above the bottom row. Thus the orders of G and G(p) determine the number of

boxes in the bottom row. Similarly, the number of boxes in the mth row up from the

bottom is determined by the orders of G(p
m−1) and G(p

m) . The diagram is completely

determined by the numbers of boxes in each row, so the diagram is determined by the

intrinsic structure of the group G using the intrinsically defined groups G(p
m) that

are contained in G . Since the diagram determines the factorization of G as a product

of cyclic groups of order a power of p , this finishes the proof. ⊔⊓

The factorization of a finite abelian group as a product of cyclic groups of prime

power order is the unique factorization with the largest number of factors since any

other factorization with at least as many factors could be factored further into a

product with prime power cyclic factors, contradicting the uniqueness statement in

the preceding proposition.

On the other hand there can be different factorizations into cyclic factors with

the smallest number of factors. For example, if p and q are distinct primes then

Cp2q2 × Cpq and Cp2q × Cpq2 are both the group Cp2 × Cp × Cq2 × Cq . A natural way

to factor a group G as a product G1 × · · · × Gk of cyclic groups with the minimum

number of factors is by the following procedure. First factor G as a product of cyclic

groups of prime power order. Place these groups in the boxes of a box diagram of

the type considered in the previous proof, with one group in each box, so that each

column consists of the groups of order a power of a fixed prime, arranged in order

of decreasing size as one moves upward in the column. Let Gi be the product of the

groups in the ith row of the diagram, numbering the rows from the bottom to the top.

Each Gi is a cyclic group since it is the product of cyclic groups of coprime orders.

We have G = G1 × · · · × Gk where k is the number of rows, which is the maximum

number of prime power cyclic factors of G for any prime.

For the group Cp2 × Cp × Cq2 × Cq considered above this procedure yields the

factorization Cp2q2 × Cpq . For a general finite abelian group G the procedure yields

a factorization G = Cn1
× · · · × Cnk with each ni divisible by ni+1 . This is the same

factorization of G as the one obtained in the proof of Theorem 7.9 since it is uniquely

determined by the condition that each ni is divisible by ni+1 .

Two Constructions with Squares

To conclude this section we describe two ways of using the squaring operation in

a finite abelian group to build another somewhat simpler group. These constructions

will be applied to class groups in the next two sections.
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For the first construction we consider elements of a finite abelian group G whose

square is the identity. These are the elements of order 1 or 2. These elements form

a subgroup of G , that is, a subset which is a group in its own right. For a subset H

of a group G to be a subgroup amounts to H satisfying three properties:

(1) The product of two elements of H is again in H , so within H there is a multipli-

cation operation defined, the same multiplication as in G . The multiplication in

H is automatically associative since multiplication in G is associative.

(2) H contains the identity element of G .

(3) The inverse of each element of H is in H .

These properties hold when H consists of the elements of order 1 or 2 in an abelian

group G since property (1) means that if g2
1 = 1 and g2

2 = 1 for elements g1 and g2

of G then (g1g2)
2 = 1, which is true since (g1g2)

2 = g2
1g

2
2 when G is abelian, while

property (2) holds since the identity element of G has order 1 and (3) holds since a

group element and its inverse always have the same order.

Proposition 7.14. In a finite abelian group G the elements whose order is 1 or 2

form a subgroup of order 2e where e is the number of factors of even order in any

factorization of G as a product of cyclic groups. This subgroup is a product of e

cyclic groups of order 2 , and the order of G is a multiple of 2e .

In general, when a finite abelian group G is factored as a product of cyclic groups

of prime power order, the number of factors of order a power of the prime p is called

the p -rank of G . The number e in the proposition is thus the 2-rank of G . The

proposition easily generalizes to the statement that the number of elements of G of

order 1 or p is pr where r is the p -rank of G .

Proof: Let G = G1 × · · · × Gk be a factorization of G as a product of cyclic groups.

An element (g1, · · · , gk) of the product has order 1 or 2 exactly when each gi has

order 1 or 2. A cyclic group C2n of even order generated by an element g has just

one element of order 2, the element gn , since a power gk with 0 < k < n has g2k
≠ 1

and the inverses of these elements are the powers gk with n < k < 2n so these too

do not have order 2. A cyclic group of odd order has no elements of order 2 since the

order of an element always divides the order of the group. Thus if e is the number of

factors Gi of even order, there are e coordinates gi of (g1, · · · , gk) where we have

a choice of two elements of Gi of order 1 or 2 and in the other coordinates we must

have gi = 1. The elements of order 1 or 2 thus form a product of e cyclic groups of

order 2. The last statement of the proposition is then obvious. ⊔⊓

Now we turn to the second construction. For any abelian group G we can form

another group denoted G/G2 whose elements are congruence classes of elements of

G mod squares, so g1 ≡ g2 if g2 = g1g
2 for some g ∈ G . This is analogous to taking

congruence classes of integers mod 2 except now the group operation is multiplica-

tion rather than addition. The multiplication in G/G2 comes from multiplication in
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G , so if we denote the congruence class of g ∈ G by [g] then [g1][g2] is defined

to be [g1g2] . This is unambiguous since if g1 ≡ g
′
1 and g2 ≡ g

′
2 , so g′1 = g1h

2
1 and

g′2 = g2h
2
2 for some h1, h2 ∈ G , then g1g2 ≡ g

′
1g
′
2 since g′1g

′
2 = g1g2(h1h2)

2 . The

identity element of G/G2 is [1] where 1 is the identity of G , and [g]−1 = [g−1] .

Associativity in G/G2 follows from associativity in G , so G/G2 is a group, which is

abelian since G is abelian.

Proposition 7.15. For a finite abelian group G factored as a product G1×· · ·×Gk

of cyclic groups Gi the group G/G2 is a product of cyclic groups of order 2 with

one factor for each factor Gi of even order.

Thus G/G2 factors as a product of cyclic groups in exactly the same way as the

subgroup of G consisting of elements whose square is the identity, even though the

constructions of these two groups are quite different.

Proof: For G = G1× · · ·×Gk the square of an element (g1, · · · , gk) is (g2
1 , · · · , g

2
k) ,

so the group G/G2 is the product of the groups Gi/G
2
i . Thus the proposition reduces

to the special case that G is a cyclic group. If G is cyclic of even order 2n with genera-

tor g then the squares in G are the even powers g2, g4, · · · , g2n, g2n+2 = g2, g2n+4 =

g4, · · · which are all congruent to 1. The odd powers g,g3, · · · , g2n−1, g2n+1 =

g,g2n+3 = g3, · · · are all congruent to each other but not to any even power of g

so G/G2 is cyclic of order 2. If G is cyclic of odd order 2n + 1 then the squares

g2, g4, · · · , g2n, g2n+2 = g,g2n+4 = g3, · · · form all of G so G/G2 has order 1. ⊔⊓

Exercises

1. Show the converse of Proposition 7.8: If a product G1×G2 of finite abelian groups

is cyclic then G1 and G2 are cyclic of coprime orders.

2. Show that if a prime p divides the order of a finite abelian group G then G contains

an element of order p . For which nonprimes is this also true?

3. For each abelian group of order 4, 8, or 16 determine the number of elements of

each possible order.

4. Determine the maximum order of elements of a finite abelian group G in terms of

the factorization of G as a product of cyclic groups of prime power order, and show

that the orders of elements of G are exactly all the divisors of this maximal order.

5. (a) State and prove the analogue of Proposition 7.14 with 2 replaced by an odd

prime p .

(b) Do the same for Proposition 7.15.

6. This problem concerns the question of when the group Z
∗
n of congruence classes

mod n of integers coprime to n is cyclic.
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(a) Show that Z∗2 and Z
∗
4 are cyclic but Z∗8 is not cyclic and deduce that Z∗2r is also

not cyclic when r > 3.

(b) Show that if Z∗n is cyclic then n = 2, 4, pr , or 2pr for some odd prime p . Hint :

Z
∗
n has even order if n > 2.

(c) The group Z∗pr is known to be cyclic when p is an odd prime. Show that this implies

that Z∗2pr is cyclic.

7. Describe each of the following groups Z∗n as a product of cyclic groups and draw

a Cayley graph: Z∗10 , Z∗13 , Z∗15 , Z∗24 , and Z∗60 .

7.4 Symmetry and the Class Group

We have defined the symmetric class number hs∆ for discriminant ∆ to be the

number of equivalence classes of primitive forms of discriminant ∆ whose topographs

have mirror symmetry. Thus hs∆ is the number of elements in the class group CG(∆)
whose order is 1 or 2 since mirror symmetric forms correspond to elements of CG(∆)
satisfying Q = Q−1 , which is the same as saying Q2 = 1. (For symmetric forms there

is no distinction between equivalence and proper equivalence.) As we saw in the

discussion before Proposition 7.14, these elements form a subgroup of CG(∆) which

could be called the symmetric class group with the notation SCG(∆) . Its order is

hs∆ , and it is a product of cyclic groups of order 2 since each element has order 1

or 2.

From Proposition 7.14 we can immediately deduce the following result:

Proposition 7.16. (a) The symmetric class number hs∆ is equal to 2r where r is

the 2 -rank of CG(∆) , the number of cyclic factors of CG(∆) of order a power of 2

when CG(∆) is expressed as a product of cyclic groups of prime-power order.

(b) The ordinary class number h∆ is always a multiple of hs∆ , with h∆ = h
s
∆ exactly

when CG(∆) is a product of cyclic groups of order 2 , and hs∆ = 1 exactly when h∆
is odd. ⊔⊓

Applying Theorem 5.9 which computed hs∆ in terms of the prime factorization

of ∆ we conclude:

Corollary 7.17. If the number of distinct prime divisors of ∆ is k then the 2 -rank

of CG(∆) is k− 1 except when ∆ = 4(4m+ 1) when the 2 -rank is k− 2 , and when

∆ = 32m when the 2 -rank is k . In particular the 2 -rank is k − 1 when ∆ is a

fundamental discriminant. ⊔⊓

From this corollary we can deduce another:

Corollary 7.18. If |∆| is prime then the class number h∆ is odd. ⊔⊓
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We know that CG(∆) is cyclic if the class number is prime or a product of distinct

primes, but there are other cases when the structure of CG(∆) as a product of cyclic

groups is completely determined if one knows the class number as well as the prime

factorization of ∆ , using the fact that the latter determines the 2-rank of CG(∆)
as in Corollary 7.17. For example if the class number is 4 then CG(∆) is either C4

or C2 × C2 and these two cases are distinguished by their 2-ranks. We saw this

distinction between C4 and C2×C2 for the fundamental discriminants −56 and −84

both of which have class number 4, but −56 has two distinct prime divisors so its

class group is C4 while −84 has three distinct prime divisors so its class group is

C2 × C2 .

A similar thing works for class number 8 where the group is either C8 , C4×C2 , or

C2×C2×C2 , with different 2-ranks. On the other hand, for class number 16 there is

an ambiguity between C8×C2 and C4×C4 . The first negative discriminant with class

number 16 is ∆ = −399 = −3·7·19, a fundamental discriminant. Since there are

three distinct prime factors of ∆ the 2-rank of CG(∆) is 2 so the ambiguity between

C8×C2 and C4×C4 arises here. It is easy to compute that there are ten reduced forms

of discriminant −399 :

[1,1,100] [2,1,50] [4,1,25] [5,1,20] [10,1,10]

[3,3,34] [6,3,17] [7,7,16] [8,7,14] [10,9,12]

Labeling these as Q1, · · · ,Q5 in the first row and Q6, · · · ,Q10 in the second row,

we see that there are four forms with mirror symmetry, Q1 , Q5 , Q6 , Q8 , the forms

with two of their coefficients equal. This is in agreement with the 2-rank being 2.

The six without symmetry count double in the class number which is therefore 16.

To determine whether the class group is C8 × C2 or C4 × C4 it suffices to look for

elements of order greater than 4. This happens to be very easy in this case if we look

at which forms represent powers of 2. In the list above we see that Q2 represents 2,

Q3 represents 4, Q9 represents 8, and Q8 represents 16. Since powers of primes

not dividing the discriminant are always represented by unique equivalence classes of

forms, it follows that Q2
2 = Q

±1
3 , Q3

2 = Q
±1
9 , and Q4

2 = Q8 , with no sign ambiguity in

the last case since Q8 has mirror symmetry. In particular we see that Q2 must have

order greater than 4, so CG(∆) is not C4 × C4 and hence it must be C8 × C2 .

The order of Q2 is 8 since there are no elements of order 16 in C8 × C2 . (This

also follows from the fact that Q4
2 has mirror symmetry hence must have order 2.)

As in the proof of Theorem 7.9 we can choose Q2 as a generator of the C8 factor of

CG(∆) , and a generator of the C2 factor can be chosen to be either Q5 or Q6 , the two

forms with mirror symmetry that are not a power of Q2 . Additional work would be

needed to compute the remaining products QiQj such as whether Q2
2 is Q3 or Q−1

3 .

However some products can be determined without calculation, for example the fact

that the product of any two of the symmetric forms Q5,Q6,Q8 equals the third since
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the product of two elements of order 2 must have order 1 or 2, but for example

Q5Q6 cannot be the identity element Q1 nor can it be Q5 or Q6 so it must be Q8 .

Thus the elements Q1 , Q5 , Q6 , and Q8 form a subgroup C2 × C2 . This is just the

symmetric class group SCG(∆) .
A similar but even simpler sort of ambiguity occurs for class numbers p2 with

p an odd prime, where the choice is between the groups Cp2 and Cp × Cp . The

first example of this sort among negative discriminants occurs when ∆ = −199. The

reduced forms are Q1 = [1,1,50] , Q2 = [2,1,25] , Q3 = [5,1,10] , Q4 = [4,3,13] ,

and Q5 = [7,5,8] . Only Q1 has mirror symmetry so the other four forms count twice

in the class number which is therefore 9. To decide whether CG(∆) is C9 or C3 ×C3

we observe that Q2 represents 2, Q4 represents 22 , and Q5 represents 23 , so Q2

must have order greater than 3 in CG(∆) . Since the order of Q2 must divide the

order of CG(∆) we see that Q2 has order 9 and so CG(∆) is C9 rather than C3×C3 .

The order of the class group can be made arbitrarily large by taking ∆ to have a

large number of distinct prime factors, using a product of distinct odd primes if one

wants a fundamental discriminant. It is also possible for individual elements of the

class group to have large order:

Proposition 7.19. For arbitrary integers a > 1 and n > 1 the form [a,1, an−1] has

order n in CG(∆) for ∆ = 1− 4an .

Proof: The form [a,1, an−1] is concordant to itself if n > 1 and we can use this fact

to compute its powers inductively as in the proof of Theorem 7.7, with the result that

[a,1, an−1]k = [ak,1, an−k] . When k = n the latter form is [an,1,1] which repre-

sents 1 so it is the identity element in the class group. Thus the order of [a,1, an−1]

is a divisor of n . The discriminant 1 − 4an is negative and the forms [ak,1, an−k]

are reduced if k ≤ n− k , or in other words if k ≤ n/2 . None of these reduced forms

is the principal form if a > 1 so none is the identity in CG(∆) . Thus the order of

[a,1, an−1] is greater than n/2 so it must be n . ⊔⊓

In general it is a hard question to determine which finite abelian groups occur as

class groups. An interesting special case is to determine the values of n such that

the product of n cyclic groups of order 2 is a class group CG(∆) for some ∆ . By

Proposition 7.16 this is equivalent to having h∆ = h
s
∆ , and we have mentioned that

there is a list, probably complete, of 101 negative discriminants ∆ with this property.

In these 101 cases the number of C2 factors of CG(∆) ranges from 0 to 4, so the

class number is 1, 2, 4, 8, or 16. Thus it appears that a product of five or more

copies of C2 cannot occur as a class group CG(∆) with ∆ < 0. For ∆ > 0 less seems

to be known.

Here is a table listing the smallest discriminants having class group a given abelian

group of order up to 12 :
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CG(∆) C1 C2 C3 C4 C2 × C2 C5 C6 C7

∆ < 0 −3 −15 −23 −39 −84 −47 −87 −71

∆ > 0 5 12 148 136 60 401 316 577

C8 C4 × C2 C2 × C2 × C2 C9 C3 × C3 C10 C11 C12 C6 × C2

−95 −224 −420 −199 −4027 −119 −167 −279 −231

505 396 480 1129 32009 817 1297 1345 940

As one can see, for positive discriminants one usually needs to go farther than for

negative discriminants to realize a given group.

Positive Discriminants

While positive discriminants are more difficult both computationally and theoret-

ically, they have an extra piece of structure that adds to their interest, the operation

that sends a form Q to its negative −Q . This gives a well-defined operation on CG(∆)
since if two forms Q1 and Q2 are properly equivalent then so are −Q1 and −Q2 be-

cause an orientation-preserving linear fractional transformation taking the topograph

of Q1 to the topograph of Q2 takes the topograph of −Q1 to the topograph of −Q2 .

Also, if Q is primitive then obviously so is −Q .

In CG(∆) the operation sending Q to −Q is generally different from the opera-

tion which sends Q to its mirror image form Q−1 in CG(∆) . For example when ∆ = 12

the group CG(∆) is cyclic of order 2 consisting of the principal form Q = x2 − 3y2

and its negative −Q = −x2 + 3y2 which is equivalent to 3x2 − y2 . Thus Q and −Q

are distinct elements of CG(∆) , but Q = Q−1 and −Q = −Q−1 since Q and −Q

have mirror symmetry. Note that there is never any ambiguity about whether −Q−1

is −(Q−1) , the negative of the mirror image of Q , or (−Q)−1 , the mirror image of the

negative of Q , since these are obviously the same.

Proposition 7.20. Inverses and negatives are related to symmetries and skew sym-

metries in the following ways:

(a) Q = Q−1 in CG(∆) if and only if the topograph of Q has a mirror symmetry.

(b) Q = −Q in CG(∆) if and only if the topograph of Q has a 180 degree rotational

skew symmetry.

(c) Q = −Q−1 in CG(∆) if and only if the topograph of Q has a glide reflection

skew symmetry.

Proof: We have already seen that (a) holds. Statements (b) and (c) apply only to hy-

perbolic forms, in which case we can focus on what is happening along the separator

lines in their topographs. We take separator lines to be drawn in the usual way as

horizontal lines with positive values above and negative values below. We can assume

that the edges leading off the separator line occur at unit intervals.
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For (b), the separator line for the negative of a form Q is obtained by first changing

the sign of all the labels along the separator line for Q and then rotating the plane by

180 degrees about some point on the separator line to bring the positive labels back

above the separator line. If Q is properly equivalent to −Q this means that these

two operations of changing signs and rotating produce the same separator line we

started with, up to horizontal translation. Thus the composition of a rotation and a

translation gives a skew symmetry of the separator line of Q . The two ends of the

line are interchanged by this skew symmetry so it must fix some point on the line,

as we saw in the discussion of symmetries of hyperbolic forms in Section 5.4. Hence

the skew symmetry must be a rotation about this point of the separator line. Thus if

Q = −Q in CG(∆) , the topograph of Q has a 180 degree rotational skew symmetry.

The converse is obviously true as well.

For (c), we can transform the separator line of a form Q to the separator line

of −Q−1 by first changing the signs of the labels and rotating by 180 degrees to

get the separator line for −Q , then reflecting across a vertical line to convert this to

the separator line for −Q−1 . The composition of the rotation and the reflection is a

glide reflection along the separator line. Thus the separator line for Q is transformed

into the separator line for −Q−1 by a glide reflection and changing the sign of the

labels. Hence if Q is properly equivalent to −Q−1 , the separator line for Q has

a skew symmetry obtained by combining a glide reflection with a translation. This

combination is again a glide reflection. ⊔⊓

We can picture the relationships between inverses and

negatives by the diagram at the right which can be viewed as

a picture of a regular tetrahedron. The tetrahedron has three

180 degree rotational symmetries about the three axes pass-

ing through midpoints of opposite edges of the tetrahedron.

One of these rotations sends each form to its inverse, another

sends each form to its negative, and the third sends each form to the negative of its

inverse. These rotational symmetries of the tetrahedron are related to symmetries

and skew symmetries of forms in the following ways:

If Q has mirror symmetry then so does −Q so the top two forms are equal in

CG(∆) and so are the bottom two. The first of the three rotational symmetries

of the tetrahedron realizes these equalities in CG(∆) .
If Q has a rotational skew symmetry then so does Q−1 so the two forms on the

left are equal in CG(∆) and so are the two on the right. These equalities are

realized by the second rotation of the tetrahedron.

If Q has a glide reflection skew symmetry then so does −Q so the two forms in

each diagonal pair are equal in CG(∆) , and the third rotation of the tetrahedron

gives these equalities.
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When Q has two of the three types of symmetries and skew symmetries, it has the

third type as well, so all four forms are equal in CG(∆) . In this case we will say

that Q is fully symmetric. For example the principal form always has mirror sym-

metry and represents 1 so it is fully symmetric exactly when it represents −1 since

Proposition 6.16 says this is equivalent to its having a skew symmetry.

Now let us see how negation of forms relates to multiplication in CG(∆) . One

might guess that (−Q1)Q2 = −(Q1Q2) as with numbers, but this turns out to be not

quite right as the following lemma shows:

Lemma 7.21. In CG(∆) the formula (−Q1)Q2 = −(Q1Q
−1
2 ) holds for all Q1 and Q2 .

In particular, when Q1 = Q2 we have (−Q1)Q1 = −Q0 where Q0 is the principal

form.

Proof: The forms Q1 and Q2 are properly equivalent to a pair of concordant forms

[a1, b, a2c] and [a2, b, a1c] . The form [−a1,−b,−a2c] is then concordant to the

form [a2,−b, (−a1)(−c)] = [a2,−b,a1c] . Taking the product of this pair of concor-

dant forms gives [−a1,−b,−a2c][a2,−b,a1c] = [−a1a2,−b,−c] . This says that

(−Q1)(Q
−1
2 ) = −(Q1Q2) . Replacing Q2 by Q−1

2 then gives the claimed formula

(−Q1)Q2 = −(Q1Q
−1
2 ) . ⊔⊓

Proposition 7.22. If one element of CG(∆) has a glide reflection skew symmetry

then so do all elements of CG(∆) . This occurs exactly for those discriminants for

which the principal form represents −1 .

Proof: Suppose that Q is a form with a glide reflection skew symmetry, so Q = −Q−1

or equivalently −Q = Q−1 . Then if Q0 is the principal form, we have Q0 = Q
−1Q =

(−Q)Q and this equals −Q0 by the previous lemma. Thus Q0 = −Q0 if a single form

has a glide reflection skew symmetry. Once one has Q0 = −Q0 , then for arbitrary Q

the formula (−Q)Q = −Q0 says that Q is the inverse of −Q , so Q = −Q−1 which

means that Q has a glide reflection skew symmetry. This proves the first statement

of the proposition. The second statement then follows since the principal form has a

glide reflection skew symmetry exactly when it represents −1. ⊔⊓

Corollary 7.23. If the class number h∆ is odd then all forms in CG(∆) have a

glide reflection skew symmetry but only the principal form has a rotational skew

symmetry.

Proof: The principal form Q0 has mirror symmetry and therefore so does −Q0 . Thus

(−Q0)
2 = Q0 . If CG(∆) has odd order then it has no elements of order 2 so we must

have −Q0 = Q0 . Thus Q0 has a rotational skew symmetry so it must also have a glide

reflection skew symmetry. By the preceding proposition all forms in CG(∆) then have

a glide reflection skew symmetry. Any form which had a rotational skew symmetry

would therefore also have a mirror symmetry and hence be of order 1 or 2 in CG(∆) ,
so it would have to be Q0 . ⊔⊓



Section 7.4 — Symmetry and the Class Group 249

One might ask whether the “one implies all” property in Proposition 7.22 also

holds for the other two types of symmetries and skew symmetries. For mirror sym-

metries the only time all elements of CG(∆) have mirror symmetry is when CG(∆) is

a product of cyclic groups of order 2, a rather rare occurrence that we have discussed

before. For rotational skew symmetries it can happen that some forms have rotational

skew symmetry while others do not. We just saw that when CG(∆) has odd order only

the principal form has rotational skew symmetry. An example where another form has

rotational skew symmetry but the principal form does not is ∆ = 136. Here it is not

hard to compute that there are three equivalence classes of forms: Q0 = [1,0,−34] ,

−Q0 = [−1,0,34] , and Q1 = [3,2,−11] . Here are the topographs of Q0 and Q1 :

Since Q0 and −Q0 have mirror symmetry while Q1 does not, the class number is 4.

The group CG(∆) must be C4 rather than C2×C2 since it contains a form Q1 without

mirror symmetry, so this form has order 4 rather than 2. Thus Q2
1 has order 2 so

it must be the form −Q0 , as is confirmed by the fact that Q1 represents 3 and −Q0

represents 9. The topographs show that only Q1 and Q−1
1 have a rotational skew

symmetry.

When do all primitive forms of discriminant ∆ have a rotational skew symmetry?

If this happens then in particular the principal form has a rotational skew symmetry,

as well as a mirror symmetry, so it also has a glide reflection skew symmetry. The

previous proposition then says that all primitive forms have a glide reflection skew

symmetry, in addition to the assumed rotational skew symmetry, so they have mirror

symmetry as well. Thus the class group is a product of cyclic groups of order 2

and the principal form represents −1. Conversely, these two conditions imply that

all principal forms have mirror symmetry and glide reflection skew symmetry, hence

also rotational skew symmetry.

Another question one could ask is which discriminants have at least one primitive

form with rotational skew symmetry. This turns out to have a very pleasing answer.

As we observed near the end of Section 5.4, the pivot points of rotational skew sym-

metries lie at the midpoints of edges of the separator line where the labels of the

adjacent regions in the topograph are a and −a . If the edge itself is labeled b then
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the associated form is [a, b,−a] , and all such forms occur this way at pivot points of

rotational skew symmetries. The discriminant of the form [a, b,−a] is b2 + 4a2 so

we are looking for solutions of x2 + 4y2 = ∆ . For [a, b,−a] to be primitive means

that the pair (a, b) is primitive, so the question reduces just to finding the numbers

represented by the form x2 + 4y2 , excluding squares since we want the resulting

forms [a, b,−a] to be hyperbolic. (Squares correspond to 0-hyperbolic forms with

rotational skew symmetry.) Here is a portion of the topograph of x2 + 4y2 showing

also the labels
x
y =

b
a that determine the associated forms [a, b,−a] :




The form x2+4y2 has discriminant −16 with class number 1. From Theorems 6.11

and 7.7 we can deduce that the numbers represented by x2 + 4y2 are the numbers

2mp1 · · ·pk where m is 0, 2, or 3 and each pi is a prime congruent to 1 mod 4.

This tells us which discriminants have at least one primitive form with rotational skew

symmetry.

A more refined question is how many different elements of CG(∆) have rotational

skew symmetries. Solutions of b2 + 4a2 = ∆ come in groups of four obtained by

varying the signs of a and b . If we restrict attention just to the solutions with a

positive, the primitive solutions (a, b) correspond exactly to regions in the topograph

of x2 + 4y2 labeled ∆ , and these regions come in pairs, one in the upper half of the

topograph with b > 0 and one in the lower half with b < 0. The sign of the label b

on an edge of a topograph with a pivot point can be specified by orienting all edges

of the separator line so that the regions on the left of the separator line have positive

labels. Taking the mirror image topograph then corresponds to changing the sign of b .

This might or might not give the same element of CG(∆) depending on whether the

topograph has mirror symmetry.

The topograph of a form with rotational skew symmetry has two pivot points on

the separator line in each period. Thus the number of proper equivalence classes of

primitive forms of discriminant ∆ with rotational skew symmetry is half the number

of regions labeled ∆ in the topograph of x2 + 4y2 , and is therefore equal to the

number of such regions in the upper half of the topograph. In other words the number

of elements of CG(∆) with rotational skew symmetry equals the number of times that
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∆ appears in the upper half of the topograph of x2 + 4y2 . For example, a prime can

appear only once in the upper half of the topograph by Proposition 6.16 so prime

discriminants have only one element of CG(∆) with rotational skew symmetry, and

this element must have mirror symmetry.

In general the number of rotationally skew symmetric forms in CG(∆) can be

computed from the prime factorization of ∆ using methods from the next chapter.

The result is that if ∆ = 2mp
e1

1 · · ·p
ek
k for distinct primes pi ≡ 1 mod 4 with each

ei > 0 then the number of forms in CG(∆) with rotational skew symmetry is 2k−1

when m = 0 or 2, and 2k when m = 3.

Exercises

1. For discriminant ∆ = −95 first compute the class number by finding all the reduced

forms, then determine the structure of the class group in two different ways, first by

applying Corollary 7.17 and then by seeing which forms represent powers of 2 up to

24 .

2. For discriminant ∆ = −164 determine the structure of the class group and find the

orders of all its elements.

3. Do the same for discriminant ∆ = −224.

4. For discriminant ∆ = 148 determine the class group and also the symmetries and

skew-symmetries of the forms of that discriminant.

5. Do the same for ∆ = 145.

6. (a) Show that the form [2,1,m] has order at least n in its class group if 2m > 2n .

(b) Show that the discriminant 1− 8m in part (a) can be chosen to be a fundamental

discriminant.

(c) Do the analogues of (a) and (b) using the form [3,2,m] of even discriminant.

7. Show that if a form Q of discriminant ∆ represents a prime p coprime to ∆ then

pk is represented by Q if and only if the order of Q in the class group divides k− 1

or k+ 1.

7.5 Genus and the Class Group

The various genera of forms of discriminant ∆ are determined by the charac-

ters χ associated to primes p dividing ∆ , where χ assigns a value χ(n) = ±1 to

each integer n not divisible by p . Since each character has a constant value on all

numbers in a topograph not divisible by p , we can regard characters as functions

from CG(∆) to {±1} . A key property of characters is that they are multiplicative, so
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χ(n1n2) = χ(n1)χ(n2) . This implies that characters are also multiplicative as func-

tions on CG(∆) , meaning that χ(Q1Q2) = χ(Q1)χ(Q2) for forms Q1 and Q2 defining

elements of CG(∆) . This is because the topographs of Q1 and Q2 contain numbers

n1 and n2 not divisible by p and coprime to each other by Proposition 6.26, and then

the topograph of Q1Q2 contains n1n2 . Thus χ(Q1Q2) = χ(n1n2) = χ(n1)χ(n2) =

χ(Q1)χ(Q2) .

Since the values of characters are ±1 this implies that χ(Q2) = +1 for each

primitive form Q . Therefore χ(Q1Q
2) = χ(Q1)χ(Q

2) = χ(Q1) for all Q1 and Q . This

means that characters define functions on the group CG(∆)/CG(∆)2 of congruence

classes of forms modulo squares.

Let G(∆) be the set of genera in discriminant ∆ . Since forms that are congru-

ent modulo squares have the same genus, there is a well-defined function Φ from

CG(∆)/CG(∆)2 to G(∆) sending each congruence class of forms to the genus of

these forms.

Theorem 7.24. The function Φ from CG(∆)/CG(∆)2 to G(∆) is a one-to-one cor-

respondence. Thus two primitive forms Q1 and Q2 of discriminant ∆ belong to

the same genus if and only if when we regard them as elements of CG(∆) we have

Q2 = Q1Q
2 for some primitive form Q of discriminant ∆ .

In particular, taking Q1 to be the principal form, we see that a form is in the

genus of the principal form if and only if it is the square of another form. This fact is

sometimes called the Gauss Duplication Theorem, “duplication” referring to squaring.

This special case in fact implies the general case since if Q1 and Q2 are of the same

genus then all characters have the same values for Q1 and Q2 , so all characters have

the value +1 on Q2Q
−1
1 which means that Q2Q

−1
1 lies in the genus of the principal

form, making Q2Q
−1
1 a square Q2 and hence Q2 = Q1Q

2 .

We will give two proofs of the theorem. The first proof relies on Dirichlet’s Theo-

rem on primes in arithmetic progressions which we have not proved in this book, and

which we have previously used only at the end of Section 6.3 in the proofs of Theo-

rem 6.27 and Corollaries 6.28 and 6.29. The second proof will use only results proved

in this book, notably Legendre’s Theorem on solutions of ax2 + by2 = cz2 from

Section 2.3, but this proof has the disadvantage of applying only for fundamental dis-

criminants. We will also be able to deduce a proof of Theorem 6.27 and its corollaries

that does not use Dirichlet’s Theorem, again just for fundamental discriminants.

First proof: By the definition of genus, every genus contains at least one form, so Φ
is onto. Since a function between two finite sets with the same number of elements is

one-to-one if and only if it is onto, it will suffice to show that CG(∆)/CG(∆)2 and G(∆)
have the same number of elements. By Corollary 6.28 the number of genera is equal

to the number of elements of CG(∆) corresponding to forms with mirror symmetry,
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or in other words the elements of CG(∆) of order 1 or 2. By Propositions 7.14 and

7.15 this equals the number of elements of CG(∆)/CG(∆)2 . ⊔⊓

For the second proof of Theorem 7.24 the main step will be the following:

Lemma 7.25. If a primitive form belongs to the genus of the principal form then it

represents a nonzero square.

Proof: A primitive form ax2+bxy+cy2 of discriminant ∆ represents some positive

number coprime to 2∆ so after a change of variables we may assume a is this number.

Thus a is positive, odd, and coprime to ∆ . If the form belongs to the genus of the

principal form, we wish to find an integer solution of ax2+bxy+cy2 = z2 with z ≠ 0.

This is equivalent to finding a rational solution with z ≠ 0 since a rational solution

yields an integer solution by multiplying x , y , and z by a common denominator.

Having an integer solution (x,y, z) means that the form ax2+bxy+cy2 represents

a square since any common divisor of x and y will divide z and can be canceled from

the equation.

After multiplying the equation ax2 + bxy + cy2 = z2 by 4a it becomes:

4a
(
ax2 + bxy + cy2) = (2ax + by)2

+
(
4ac − b2)y2 = 4az2

If we let w = 2ax+by this can be written as w2−∆y2 = 4az2 or ∆y2+4az2 = w2 ,

and a rational solution of this equation will give a rational solution of the original

equation ax2+bxy +cy2 = z2 with x = w ---by/2a . If we write ∆ and 4a as squares

times squarefree numbers ∆′ and a′ then the equation ∆y2 + 4az2 = w2 can be

replaced by ∆′y2 + a′z2 = w2 by absorbing the square factors of ∆ and 4a into y2

and z2 . Since ∆ and a were coprime, so are ∆′ and a′ .

We would like to apply Legendre’s Theorem to the equation ∆′y2 + a′z2 = w2 .

The sign condition in the theorem is satisfied since a is positive, hence so is a′ . The

condition that the coefficients of y2 , z2 , and w2 are coprime is satisfied since we

chose a to be coprime to ∆ . The remaining congruence conditions reduce to ∆′ being

a square mod a′ and a′ being a square mod ∆′ . For the first of these two conditions

we know that ∆ is a square mod a since ∆ = b2−4ac , hence ∆ is a square mod each

prime dividing a . From the multiplicative property of Legendre symbols it follows

that ∆′ is also a square mod these primes and in particular a square mod each prime

dividing a′ . These primes are odd since a is odd, so ∆′ is a square mod a′ by

Lemma 6.4 since a′ is a product of distinct primes.

Now consider the condition that a′ is a square mod ∆′ . This is equivalent to a′

being a square mod each prime p dividing ∆′ since ∆′ is squarefree. For p = 2 this

holds automatically. For odd p this means the Legendre symbols
(
a′

p

)
=
(
a
p

)
have

value +1, which they do if the form ax2+bxy + cy2 is in the genus of the principal

form since this form represents a .
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Thus Legendre’s Theorem applies and there is a nontrivial integer solution of

∆′y2 + a′z2 = w2 . This must have z nonzero, otherwise the equation would be-

come ∆′y2 = w2 , forcing ∆′ to be a square, hence also ∆ , contrary to the standing

hypothesis for this chapter. ⊔⊓

The lemma can be interpreted as a statement about rational points on quadratic

curves: If the form ax2 + bxy + cy2 lies in the principal genus and its discriminant

b2 − 4ac is not a square, then the curve ax2 + bxy + cy2 = 1 contains a rational

point. As in Chapter 0 it then follows that the curve has a dense set of rational points,

and hence the form ax2 + bxy + cy2 represents infinitely many squares.

The restriction to nonsquare discriminants is not actually necessary. In the proof

of the lemma, if ∆ is a nonzero square then we would have ∆′ = 1 so we would be

looking for solutions of y2 + a′z2 = w2 . This has an obvious solution with z = 0 so

the curve y2+a′z2 = 1 has one rational point (y, z) = (1,0) , hence it has a dense set

of rational points with z ≠ 0 and so the curve ax2+bxy + cy2 = 1 also has a dense

set of rational points. The case ∆ = 0 is rather trivial since the original primitive form

ax2 + bxy + cy2 is then equivalent to the form ±x2 . The negative parabolic form

−x2 must obviously be excluded, just as negative elliptic forms are excluded.

Second proof of Theorem 7.24, for fundamental discriminants: If a form Q is in the

genus of the principal form then the lemma says it represents a nonzero square n2 .

Let the prime factorization of n2 be p
2r1

1 · · ·p
2rk
k for distinct primes pi . If the dis-

criminant is a fundamental discriminant then Theorem 7.7 says that Q has a cor-

responding factorization Q = Q
2r1

1 · · ·Q
2rk
k in CG(∆) . Hence Q is the square of

Q
r1

1 · · ·Q
rk
k . ⊔⊓

For nonfundamental discriminants it is not always true that a primitive form that

represents a square must be the square of another form. For example for ∆ = −32

the form 3x2 + 2xy + 3y2 represents 4 when (x,y) = (1,−1) but this form is not

a square since the character χ8 is defined for ∆ = −32 and has the value −1 on this

form. However, if a primitive form represents a square coprime to the conductor then

Theorem 7.7 does imply that the form is a square.

The first proof of Theorem 7.24 used the fact that the number of genera equals the

symmetric class number, Corollary 6.28, whose proof depended on Dirichlet’s Theo-

rem. In the case of fundamental discriminants we can now give a different proof of

Corollary 6.28 that does not use Dirichlet’s Theorem but instead uses Legendre’s The-

orem, as follows. The symmetric class number is the number of elements of CG(∆)
whose square is the identity. By Propositions 7.14 and 7.15 this is the same as the

number of elements of the group CG(∆)/CG(∆)2 . Using the second proof of Theo-

rem 7.24, this is just the number of genera, so we obtain Corollary 6.28. Since Corol-

lary 6.28 implies Theorem 6.27 using the calculation of the symmetric class number
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in Theorem 5.9, we also obtain a proof of Theorem 6.27 that does not use Dirichlet’s

Theorem, in the case of fundamental discriminants.

Let us illustrate the correspondence between elements of CG(∆)/CG(∆)2 and

genera by the example of discriminant ∆ = −104. We have already looked at this

example in some detail earlier in the chapter where we saw that CG(∆) is a cyclic

group of order 6 generated by the form Q4 = [5,4,6] . We have
(

---104
p

)
=
(

---26
p

)
=(

---1
p

)(
2
p

)(
13
p

)
=
(

---1
p

)(
2
p

)(
p
13

)
. The product

(
---1
p

)(
2
p

)
is +1 for p ≡ 1,3 mod 8 and

−1 for p ≡ 5,7 mod 8 so this is the character we called χ′8 in Section 6.3, while
(
p
13

)
is

χ13 , with the value +1 for p ≡ 1,3,4,9,10,12 mod 13 and −1 for p ≡ 2,5,6,7,8,11

mod 13. These are the two characters for ∆ = −104. Evaluating these characters on

numbers not divisible by 2 or 13 in the topographs shown in Section 7.1, we see that

Q1 and Q±1
3 belong to one genus where the character values are +1,+1, while Q2 and

Q±1
4 make up the other genus with character values −1,−1. Expressing the forms as

powers of the generator Q4 we see that the even powers Q2
4 = Q

−1
3 , Q4

4 = Q3 , and

Q6
4 = Q1 form one genus and the odd powers Q4 , Q3

4 = Q2 , and Q5
4 = Q

−1
4 form the

other genus. Thus two forms belong to the same genus exactly when one is a square

times the other since the squares are the even powers of Q4 .

From Theorem 7.24 we can deduce the following interesting consequence of hav-

ing a group structure in CG(∆) :

Corollary 7.27. Each genus of forms of a given discriminant contains the same

number of proper equivalence classes of forms.

Proof: Let Q1, · · · ,Qk be the distinct elements of CG(∆) in the genus of the principal

form. By Theorem 7.24 these are exactly the elements of CG(∆) that are squares.

The genus of an arbitrary element Q of CG(∆) then consists of QQ1, · · · ,QQk since

these are all the elements of CG(∆) obtained by multiplying Q by squares. These

multiples of Q are all distinct since if QQi = QQj then after multiplying by Q−1 we

have Qi = Qj so i = j . Thus each genus consists of k elements of CG(∆) . ⊔⊓

For a fixed discriminant ∆ the class number is the product of the number of

genera times the number of classes in each genus. There are two extreme situations

that can occur when one or the other of these two factors is 1 :

(1) The number of genera is 1, so the primitive forms of discriminant ∆ all have the

same genus. Equivalent ways of stating this condition are:

The only primitive forms with mirror symmetry are the forms equivalent to

the principal form.

CG(∆) contains no elements of order 2.

CG(∆) contains no elements of even order.

The class number is odd.
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(2) Each genus consists of a single equivalence class of forms. Again there are equiv-

alent statements:

The number of genera equals the class number.

Every form has mirror symmetry.

Every element of CG(∆) has order 2.

CG(∆) is a product of cyclic groups of order 2.

The representation problem of determining which numbers are represented

by each primitive form has a solution just in terms of congruence classes

modulo the discriminant.

Discriminants where (1) or (2) occurs are rather rare. For (1), Corollary 5.10 says

exactly when this happens in terms of the prime factorization of ∆ . For (2) there is

no such simple characterization.

An Exact Sequence

The relationships between the class group, genus, and symmetry can be expressed

concisely in a sequence of groups and functions between them:

SCG(∆) -----→CG(∆) Sq
------------------→CG(∆) Ch

------------------→TS(∆) Pr
------------------→ {±1}

Here SCG(∆) is the symmetric class group, the subgroup of CG(∆) consisting of

symmetric forms, and the function SCG(∆)→CG(∆) is just the inclusion of this

subgroup into CG(∆) . The function Sq is squaring, sending a form Q to Q2 . The

group TS(∆) is the set of “total symbols” (±1, · · · ,±1) with one coordinate for each

character defined for discriminant ∆ . The group structure in TS(∆) is multiplication

in each coordinate separately. The function Ch is the “total character” sending each

form to the values of the various characters on this form. The last function Pr is the

product of the coordinates of TS(∆) corresponding to the characters in the product

X∆ defined in Proposition 6.22 that measures whether a prime not dividing ∆ is rep-

resented in discriminant ∆ . For fundamental discriminants this is all the characters

and Pr is just the product of all the coordinates in TS(∆) .
The compositions of two successive functions in the five-term sequence above

have a special property: For each pair of adjacent functions A
f
-----→B

g
-----→C an element

b in the middle group B is sent by g to the identity element of C exactly when b is

equal to the image f(a) of some element a in A . A sequence of functions with this

property is called an exact sequence. Let us see what this means for each of the three

middle groups in the five-term sequence above.

(1) Exactness at the first CG(∆) term is the fact that the square Q2 of a form Q is

the identity in CG(∆) exactly when Q is symmetric.

(2) Exactness at the second CG(∆) term means that a form Q belongs to the genus

of the principal form exactly when Q is the square of a form in CG(∆) . This is

the Gauss Duplication Theorem.



Section 7.5 — Genus and the Class Group 257

(3) Exactness at TS(∆) means that Pr has the value +1 on a total symbol exactly

when this is the total symbol given by the character values of some primitive

form. This is what we showed to prove Theorem 6.27.

In each case the easier half of the assertion is the statement obtained by omitting the

word “exactly”.

Representations by Nonequivalent Forms

Now let us consider the relationship between genus and the simultaneous repre-

sentation of numbers by forms of the same discriminant that are not equivalent.

Proposition 7.28. If two primitive forms of the same discriminant represent the

same number coprime to the conductor then the two forms are in the same genus.

For numbers coprime to the discriminant this is a simple consequence of the

definition of genus, but the result is less obvious in the more general situation, and

indeed often fails to hold for numbers not coprime to the conductor. An example is

discriminant −32 with conductor 2 where the two forms [1,0,8] and [3,2,3] both

represent 8 but have different genus since the character χ4 is defined when ∆ = −32

and has the value +1 on [1,0,8] and −1 on [3,2,3] .

Proof: According to Theorem 7.7 we obtain the various primitive forms representing

a number n coprime to the conductor as products Q
±e1

1 · · ·Q
±ek
k where the prime

factorization of n is n = p
e1

1 · · ·p
ek
k and Qi represents pi . Changing the exponent

of Qi from +ei to −ei amounts to multiplying Q
ei
i by a square Q

−2ei
i , and similarly

for changing the exponent from −ei to +ei . As we noted earlier, multiplying a form

by the square of another form does not change its genus. So any two primitive forms

representing n have the same genus. ⊔⊓

Proposition 7.29. If two primitive forms are of the same genus then there exist

numbers that are represented by both forms, and in fact there are infinitely many

such numbers.

Proof: If the primitive forms Q1 and Q2 of discriminant ∆ have the same genus then

there is a form Q such that Q2 = Q1Q
2 in CG(∆) . Choose a number k represented

by Q1 . We can then choose a number m represented by Q and coprime to k , and

after this a number n represented by Q and coprime to km , so all three of k , m , and

n are coprime. Then kmn is represented by both Q1Q
2 = Q2 and Q1QQ

−1 = Q1 .

There are infinitely many choices possible for n since new choices can always be made

coprime to all previously chosen numbers. ⊔⊓
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Exercises

1. Find all the instances in the large table in Section 6.2 where two primitive forms of

the same discriminant but different genus represent the same power of the conductor.

2. For discriminant ∆ = −260 the equivalence classes of forms were worked out

in Section 5.2. Show that CG(∆) is C4 × C2 , partition the forms into genera, and

determine the order of each element of CG(∆) . Which elements are squares of other

elements?

3. For discriminant ∆ = −119 = −7·17 show that CG(∆) is cyclic, determine its

order, and find forms giving all the elements. Then partition these elements according

to their genus and determine the order of each element. (All this can be done without

actually computing any products using concordant pairs of forms.)

7.6 Rational Equivalence and Rational Forms

Legendre’s Theorem shows that determining when quadratic curves contain ratio-

nal points is much easier than determining when they contain integer points. Pursuing

this idea, our goal in this section will be to see how the general theory of quadratic

forms becomes much simpler when rational numbers are used in place of integers,

and in fact reduces largely to genus theory.

As an illustration consider the two forms Q1(x,y) = x
2+ 14y2 and Q2(x,y) =

2x2 + 7y2 of discriminant −56 that we considered in Section 6.1. These forms

have the same genus since the two characters for this discriminant are χ7 and χ8

which both take the value +1 on the two forms. We could also deduce this from

Proposition 7.28 since both forms represent 15. However, the two forms are not

equivalent. This means that there is no matrix
(
p
r
q
s

)
with integer entries and de-

terminant ±1 such that Q1(px + qy, rx + sy) = Q2(x,y) . But if we broaden

our perspective to allow rational numbers as entries then there is such a matrix,

namely the matrix 1/3

(
2

---1
7
1

)
of determinant +1, since a simple calculation shows

that Q1

(
2x/3 +

7y/3 ,
---x/3 +

y/3

)
= Q2(x,y) . There are other matrices that could be

used instead of 1/3

(
2

---1
7
1

)
, for example 1/5

(
6

---1
7
3

)
.

This example leads us to define two forms Q1 and Q2 to be rationally equivalent

if there exists a matrix
(
p
r
q
s

)
with rational entries and nonzero determinant such that

Q1(px+qy, rx+sy) = Q2(x,y) . The determinant condition ensures that the matrix

has an inverse, also with rational entries, so the change of variables is reversible. In

the example the determinant was +1, and in this case the forms are said to be properly

rationally equivalent, or more briefly, properly Q-equivalent.
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Having allowed rational coefficients when we change variables, we can go a step

further and consider rational forms ax2 + bxy + cy2 where the coefficients and

variables are all allowed to be rational numbers. Rational equivalence of rational

forms is defined just as it was for integral forms in the previous paragraph.

To see the effect of a rational change of variables on the discriminant of a rational

form we can use the matrix notation
(
a
b
b
c

)
for a form [a, b, c] from Section 7.1, where

b = b/2 . The discriminant b2−4ac is −4 times the determinant of this matrix. When

we change variables via a rational matrix
(
p
r
q
s

)
the new form corresponds to the

matrix
(
p
q
r
s

)(
a
b
b
c

)(
p
r
q
s

)
so the discriminant b2 − 4ac is multiplied by the square of

the determinant of the change-of-variables matrix since
(
p
q
r
s

)
and

(
p
r
q
s

)
have the

same determinant. In particular this means that properly Q-equivalent forms have

the same discriminant.

Using rational numbers gives added flexibility to prove certain statements that

do not hold when only integers are allowed. Here are some instances of this:

Proposition 7.30. (a) If a rational form takes on the nonzero value a then it is

properly Q-equivalent to a form [a,0, c] . In particular every rational form is

properly Q-equivalent to a form [a,0, c] .

(b) If two rational forms of the same discriminant take on the same nonzero value

then they are properly Q-equivalent.

Since the discriminant of a form [a,0, c] is −4ac it follows that c is determined

by a and the discriminant, namely c = ---∆/4a . For example the two forms [1,0,14]

and [2,0,7] of discriminant −56 both take the value 15 so by part (a) of the propo-

sition they are both properly Q-equivalent to
[
15,0, 14/15

]
and hence to each other.

As another example the principal form x2 + xy + ky2 of discriminant 1− 4k takes

the value 1 so it is properly Q-equivalent to x2 + 4k−1
4
y2 and this form is rationally

equivalent to x2 + (4k− 1)y2 , the principal form of discriminant 4(1− 4k) .

Proof: Let Q be a rational form taking the nonzero value a when (x,y) = (p, q)

for rational numbers p and q , not both zero. The numbers p and q form the first

column of a matrix
(
p
q
r
s

)
of determinant 1 since the equation ps − qr = 1 always

has a solution with rational numbers r and s . For example, if p ≠ 0 we can choose

r = 0 and s = 1/p and if q ≠ 0 we can choose s = 0 and r = ---1/q . We use the

matrix
(
p
q
r
s

)
to change variables to get a new form Q(px + ry, qx + sy) properly

Q-equivalent to Q whose value at (x,y) = (1,0) is Q(p,q) = a . Thus Q is properly

Q-equivalent to a form [a, b, c] for some rational numbers b and c . This form can

be rewritten as:

ax2 + bxy + cy2 = a
(
x +

b

2a
y
)2
+
(
c −

b2

4a

)
y2

Thus if we change variables to X = x+ b/2ay and Y = y the form [a, b, c] becomes

[a,0, c′] for c′ = c − b
2
/4a . The matrix for this change of variables has determi-
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nant 1 so the form [a,0, c′] is properly Q-equivalent to [a, b, c] and hence also to

the original form Q . This proves statement (a).

Statement (b) follows from (a) since the coefficient c in a form [a,0, c] is deter-

mined by a and the discriminant when a ≠ 0. ⊔⊓

For the next proposition we return to forms with integer coefficients.

Proposition 7.31. Primitive forms of the same genus are properly Q-equivalent.

For fundamental discriminants the converse is also true: Properly Q-equivalent

forms have the same genus.

An example showing the necessity of the extra hypothesis in the converse is pro-

vided by the forms [1,0,8] and [3,2,3] of discriminant −32 which have different

genus but are properly Q-equivalent since they both represent 8.

Proof: For the first statement, two primitive forms of the same genus represent the

same number by Proposition 7.29, and then the previous proposition says they are

properly Q-equivalent.

Conversely, suppose Q and Q′ are primitive forms of discriminant ∆ that are

properly Q-equivalent. Let k be a number represented by Q . If k is divisible by p2

for some prime p , say k = p2m , then if ∆ is a fundamental discriminant Theorem 7.7

implies that Q is equivalent to the product of a form representing m and the square

of a form representing p . The form representing m is then in the same genus as Q

and thus also properly Q-equivalent to Q , so for proving the converse we can replace

Q by this form. After repetitions of this step we can then assume that the number k

represented by Q is squarefree.

Since Q and Q′ are properly Q-equivalent they take on the same rational values

as the variables range over all rational numbers. Thus there exist integers x,y, z

such that Q′
(
x/z ,y/z

)
= k and hence Q′(x,y) = kz2 . We would like to say that

Q′ represents kz2 , and this will be the case if x and y are coprime. Suppose on

the contrary that x and y are both divisible by some prime p . We can assume p

does not divide z , otherwise the fractions x/z and y/z could be reduced. Since p

divides x and y it follows that p2 divides Q′(x,y) = kz2 and hence p2 divides k .

This contradicts the fact that k is squarefree, so we deduce that Q′ represents kz2 .

Using Theorem 7.7 again and the assumption that ∆ is a fundamental discriminant

we conclude that Q′ is the product of a form Q′′ representing k and the square of

some form representing z , so Q′ and Q′′ are in the same genus. Since Q and Q′′

both represent k they have the same genus by Proposition 7.28. Hence Q and Q′

have the same genus. ⊔⊓

In the remainder of this section we will describe the classification of rational forms

up to rational equivalence. The first difference from the classification of integer forms

up to integer equivalence as in Chapter 5 involves the discriminant. As we have seen,
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a change of variables by a matrix of nonzero rational determinant r multiplies the

discriminant by r 2 . For example the change of variables replacing (x,y) by (rx,y)

has this effect. This leads us to consider nonzero rational numbers modulo squares,

so two nonzero rational numbers are regarded as equivalent modulo squares if one is

obtained from the other by multiplying by the square of a nonzero rational number.

Every nonzero rational number is equivalent modulo squares to an integer since we

can multiply by the square of its denominator. Thus p/q becomes pq , turning division

into multiplication. After this, any square integer factor of the resulting integer can

be eliminated by multiplying by the reciprocal of this square factor. In this way every

equivalence class of nonzero rational numbers modulo rational squares contains a

squarefree nonzero integer, and this integer is obviously unique.

In particular every nonzero discriminant is equivalent modulo squares to a unique

nonzero squarefree integer discriminant which we call a reduced discriminant. When

we speak of the reduced discriminant of a form we will mean the unique squarefree in-

teger that is equivalent to its discriminant modulo squares. For example for a nonzero

squarefree integer d the forms x2 − d/4y
2 and 4x2 − dy2 both have reduced dis-

criminant d . Thus all squarefree nonzero integers occur as reduced discriminants.

A reduced discriminant is a fundamental discriminant if it is congruent to 1 mod 4,

and otherwise four times the reduced discriminant is a fundamental discriminant.

A form Q and a nonzero rational multiple rQ have the same reduced discrimi-

nant. However Q and rQ may not be rationally equivalent. An example is provided by

the forms x2+y2 and 3x2+3y2 with reduced discriminant −1, as we will soon see.

On the other hand Q and r 2Q are rationally equivalent since r 2Q(x,y) = Q(rx, ry) .

It follows that every rational form is rationally equivalent to an integer form, so it will

suffice to classify integer forms up to rational equivalence.

Proposition 7.32. If two rational forms of the same reduced discriminant take on

the same nonzero value then they are rationally equivalent.

Proof: Let the two forms be Q and Q′ . Since they have the same reduced discrim-

inant there is a rational number r such that the discriminant of Q′ is r 2 times the

discriminant of Q . The form Q′′(x,y) = Q(rx,y) has the same discriminant as

Q′ and is rationally equivalent to Q , hence has the same values as Q . Thus we may

assume from the start that Q and Q′ have the same discriminant. Proposition 7.30

then gives the result. ⊔⊓

For a fixed reduced discriminant δ all rational numbers r occur as values of

rational forms of reduced discriminant δ since if Q0 is the principal form for the

associated fundamental discriminant then rQ0 has the same reduced discriminant

as Q0 and takes the value r . Proposition 7.32 then says that the sets of nonzero

values of forms of reduced discriminant δ give a partition of the set of all nonzero
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rational numbers into disjoint subsets, and these subsets correspond exactly to the

rational equivalence classes of forms of reduced discriminant δ .

As a very special case, for reduced discriminant 1 there is the form xy and this

takes on all rational values, so all rational forms of reduced discriminant 1 are ratio-

nally equivalent. This includes all 0-hyperbolic integer forms since the discriminants

of these forms are nonzero squares.

To deal with the general case the following result will be useful:

Proposition 7.33. The values taken on by a rational form Q(x,y) as x and y

range over all rational numbers are exactly the values r 2Q(x,y) as x and y

range over all integers and r ranges over all rational numbers.

Proof: For each integer pair (x,y) and each rational number r we have r 2Q(x,y) =

Q(rx, ry) so rational squares times values at integer pairs are values at rational pairs.

Conversely, if (x,y) is a rational pair there is a nonzero integer d such that (dx,dy)

is an integer pair, and then Q(x,y) = d−2Q(dx,dy) so every value at a rational pair

is a rational square times a value at an integer pair. ⊔⊓

Multiplying a form by a nonzero square does not affect the signs of its values, so

the basic distinction between elliptic, hyperbolic, 0-hyperbolic, and parabolic forms

still holds for rational forms. We have seen that all 0-hyperbolic forms are rationally

equivalent. The classification of parabolic forms up to rational equivalence is easy

and will be left as an exercise. This leaves hyperbolic and elliptic forms. For elliptic

forms we can restrict attention to those taking positive values as we did for integer

forms.

As a first example let us work out the classification of forms of reduced discrimi-

nant −1 up to rational equivalence. The associated fundamental discriminant is −4,

with class number 1 so all integer forms of discriminant −4 are equivalent to x2+y2 .

The values of this form for integers x and y are all the positive numbers whose prime

factorization contains primes p ≡ 3 mod 4 only to even powers. The values for ratio-

nal x and y are then all such products where negative as well as positive exponents

on primes are allowed.

Consider next the form 3x2+3y2 which also has reduced discriminant −1. The

values this form takes on for rational x and y can be described in the same way as for

x2 +y2 except that now the exponent on the prime 3 must be odd rather than even.

Thus this form is not rationally equivalent to x2+y2 . More generally, for any finite set

of primes p1, · · · , pk congruent to 3 mod 4 the values of the form p1 · · ·pk(x
2+y2)

are the products in which each pi has odd exponent. Different sets of primes pi ≡ 3

mod 4, including the empty set for the form x2 + y2 , give forms taking on disjoint

sets of values, so all these sets of primes give different rational equivalence classes

of forms. Every rational equivalence class is realized in this way since one can take

any form in this class and any nonzero value r this form takes on, then take the set
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of primes pi ≡ 3 mod 4 that occur to an odd power in the prime factorization of r .

Thus we have determined all of the infinitely many rational equivalence classes of

forms of reduced discriminant −1.

Other fundamental discriminants of class number 1 work in the same way. For

example for discriminant −3 we have the form x2+xy+y2 whose values are products

of primes in which primes p ≡ 2 mod 3 occur only to even powers. The rational

equivalence classes then correspond to multiples of x2 +xy +y2 by finite products

of distinct primes p ≡ 2 mod 3. Instead of x2 + xy + y2 we could use x2 + 3y2

which has the same reduced discriminant and is rationally equivalent to x2+xy+y2

since both forms take the value 3.

In the general case the rational classification of forms of a given reduced dis-

criminant δ involves the different genera of forms of the associated fundamental

discriminant ∆ . By Proposition 7.31 each of these genera corresponds to exactly one

rational equivalence class of forms. Choose one form Qi in each of these genera. The

values of integer forms of discriminant ∆ are the numbers whose prime factorization

contains certain primes only to even powers, namely the primes not represented in

discriminant ∆ , which are the primes in certain congruence classes mod ∆ . The ra-

tional equivalence classes for reduced discriminant δ then correspond exactly to the

forms p1 · · ·pkQi where p1, · · · , pk are distinct primes not represented in discrim-

inant ∆ .

Exercises

1. What is the classification of rational forms of discriminant 0 up to rational equiv-

alence?

2. Show that for each nonzero reduced discriminant δ there is a unique form x2+by2

of reduced discriminant δ with b a squarefree integer, and show that every form of

reduced discriminant δ is rationally equivalent to a form a(x2 + by2) .
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Even when one’s primary interest is in integers it can sometimes be very helpful

to consider more general sorts of numbers. For example, when studying the principal

quadratic form x2 −Dy2 of discriminant 4D it can be a great aid to understanding

to allow ourselves to factor this form as (x + y
√
D)(x − y

√
D) . Here we allow D to

be negative as well as positive, in which case we would be moving into the realm of

complex numbers.

To illustrate this idea, consider the case D = −1, so the form is x2 + y2 which

we are factoring as (x + yi)(x − yi) . Writing a number n as a sum a2 + b2 is then

equivalent to factoring it as (a+bi)(a−bi) . For example 5 = 22+12 = (2+ i)(2− i) ,

and 13 = 32 + 22 = (3+ 2i)(3− 2i) , so 5 and 13 are no longer prime when we allow

factorizations using numbers a+bi . Sometimes a nonprime number such as 65 can

be written as the sum of two squares in more than one way: 65 = 82 + 12 = 42 + 72 ,

so it has factorizations as (8 + i)(8 − i) and (4 + 7i)(4 − 7i) . This becomes more

understandable if we factorize 65 as:

65 = 5·13 = (2+ i)(2− i)(3+ 2i)(3− 2i)

If we combine these four terms as (2− i)(3 + 2i) = 8+ i and (2+ i)(3 − 2i) = 8− i

we get the representation 65 = 82 + 12 = (8+ i)(8− i) , whereas if we combine them

as (2+ i)(3+2i) = 4+7i and (2− i)(3−2i) = 4−7i we get the other representation

65 = 42 + 72 = (4+ 7i)(4− 7i) .

More generally we will consider the set Z[
√
D] of all numbers x + y

√
D with x

and y integers. Thus Z[
√
D] consists of real numbers if D > 0 and complex numbers

if D < 0. We will always assume the integer D is not a square, so Z[
√
D] is not just Z .

When D = −1 we have Z[
√
D] = Z[i] , and numbers x + yi in Z[i] are known as

Gaussian integers.

We will also have occasion to consider numbers x + y
√
D where x and y are

allowed to be rational numbers, not just integers. The set of all such numbers is

denoted Q(
√
D) with round parentheses instead of square brackets to emphasize that

Q(
√
D) is a field while Z[

√
D] is only a ring. In other words, in Q(

√
D) we can perform

all four of the basic arithmetic operations of addition, subtraction, multiplication, and

division, whereas in Z[
√
D] only the first three operations are possible in general.

Division by a nonzero element x + y
√
D of Q(

√
D) is possible since it amounts to

multiplication by its reciprocal 1/(x +y
√
D) = (x −y

√
D)/(x2 −Dy2) which lies in

Q(
√
D) when x and y are rational.
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8.1 Prime Factorization

The ring of Gaussian integers Z[i] can be pictured as a subset of the plane, viewed

as complex numbers in the usual way with x + yi corresponding to the point with

coordinates (x,y) . Thus Z[i] forms a square grid consisting of the points (x,y)

with x and y integers:

Similarly, the ring Z[
√
D] with D < 0 forms a grid of complex numbers forming

rectangles of height
√
|D| obtained by stretching the previous figure vertically.

When D > 0 the numbers in Z[
√
D] are real numbers which would normally be

regarded as points along the x-axis. However, there is another point of view that will

make the case D > 0 look just like the case D < 0, and this is to regard a number

x+y
√
D in Z[

√
D] or more generally Q(

√
D) as the point (x,y

√
D) in the plane. Thus

for example Z[
√

2] is exactly the same rectangular grid as Z[
√
−2] , with rectangles

of width 1 and height
√

2. From this point of view the horizontal and vertical axes

of the plane, instead of being the real and imaginary axes, are now regarded as the

“rational and irrational axes”, with the two coordinates x and y
√
D being the rational

and irrational parts of x +y
√
D .

A useful operation with complex numbers is to pass from a number x + yi to

its complex conjugate x − yi obtained by reflecting across the x-axis. In Z[
√
D] or

Q(
√
D) with D < 0 this amounts to replacing x + y

√
D by its conjugate x − y

√
D .

When D > 0 we can do exactly the same operation of reflecting x +y
√
D across the

x-axis to the point x −y
√
D , which we again call the conjugate of x + y

√
D .

The ring Z[
√
D] is useful for factoring the form x2−Dy2 as (x+y

√
D)(x−y

√
D) .

For this form the discriminant ∆ = 4D is 0 mod 4, and it would be nice to treat also

the discriminants ∆ = 4d+ 1 ≡ 1 mod 4, when the principal form is x2 +xy −dy2 .

This factors in the following way:

x2 + xy − dy2 =
(
x +

1+
√

1+ 4d

2
y
)(
x +

1−
√

1+ 4d

2
y
)
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To simplify the notation we let ω = (1 +
√

1+ 4d)/2 and ω = 1 −
√

1+ 4d)/2, the

conjugate of ω , so the factorization becomes x2 + xy − dy2 = (x +ωy)(x +ωy) .

The quadratic equation satisfied by ω is ω2 −ω−d = 0. Thus ω2 =ω+d and this

allows the product of two numbers of the form m + nω to be written in the same

form. In other words, the set Z[ω] of all numbers x + yω with x and y integers

is a ring, just like Z[
√
D] . Note that ω is an element of Z[ω] since ω +ω = 1, so

ω = 1−ω

For example, when d = −1 we have ω = (1+
√
−3)/2 and the elements of Z[ω]

form a grid of equilateral triangles in the xy-plane:

The picture for larger negative values of d is similar but stretched in the vertical

direction, forming a grid of isosceles triangles. For positive values of d we can do

the same thing we did before with Z[
√
D] and regard Z[ω] as a grid in the plane.

For example, for d = 1 we have ω = (1 +
√

5)/2 and Z[ω] looks like the picture

for d = −1 stretched in the vertical direction so that the y-coordinate of ω is
√

5/2

rather than
√

3/2.

Elements of Z[ω] can always be written in the form m+nω = (a+b
√

1+ 4d)/2

for suitable integers a and b . Here a and b must have the same parity since this

is true for ω = (1 +
√

1+ 4d)/2 and hence for any integer multiple nω , and then

adding an arbitrary integer m to nω preserves the equal parity condition since it

adds an even integer to a . Conversely, if two integers a and b have the same parity

then (a + b
√

1+ 4d)/2 lies in Z[ω] since by adding or subtracting a suitable even

integer from a we can reduce to the case a = b when one has a multiple of ω . Notice

that having both a and b even is equivalent to (a+b
√

1+ 4d)/2 lying in Z[
√

1+ 4d] ,

so Z[
√

1+ 4d] is a subset of Z[ω] . In the figure above we can see that Z[
√

1+ 4d]

consists of the even rows, the numbers m+nω with n even.

To have a unified notation for both the cases Z[
√
D] and Z[ω] let us define R∆

to be Z[
√
D] when the discriminant ∆ is 4D and Z[ω] when ∆ is 4d + 1. We will

often write elements of R∆ using lower case Greek letters, for example α = x+y
√
D

in Z[
√
D] with conjugate α = x − y

√
D , or α = x + yω in Z[ω] with conjugate



Section 8.1 — Prime Factorization 267

α = x +yω = x + y(1−ω) = (x +y)−yω .

The main theme of this section and the next will be how elements of R∆ factor

into “primes” within R∆ . For example, if a prime p in Z happens to be representable

as p = x2 − Dy2 then this is saying that p is no longer prime in Z[
√
D] since it

factors as p = (x + y
√
D)(x − y

√
D) = αα for α = x + y

√
D and α = x − y

√
D . Of

course, we should say precisely what we mean by a “prime” in Z[
√
D] or Z[ω] . For an

ordinary integer p > 1, being prime means that p is divisible only by itself and 1. If

we allow negative numbers, we can “factor” a prime p as (−1)(−p) , but this should

not count as a genuine factorization, otherwise there would be no primes at all in Z .

In R∆ things can be a little more complicated because of the existence of units in R∆ ,

the nonzero elements ε in R∆ whose inverse ε−1 also lies in R∆ . For example, in

the Gaussian integers Z[i] there are four obvious units, ±1 and ±i , where for ±i we

have (i)(−i) = 1 so i−1 = −i and (−i)−1 = i . We will see in a little while that these

are the only units in Z[i] . Having four units in Z[i] instead of just ±1 complicates

the factorization issue slightly, but not excessively so.

For positive values of ∆ things are somewhat less tidy because there are always

infinitely many units in R∆ . For example, in Z[
√

2] the number ε = 3 + 2
√

2 is a

unit because (3 + 2
√

2)(3 − 2
√

2) = 1. All the powers of 3 + 2
√

2 are therefore

also units, and there are infinitely many of them since 3 + 2
√

2 > 1 so the powers

(3 + 2
√

2)n form an increasing infinite sequence approaching +∞ . Their inverses

(3+ 2
√

2)−n = (3− 2
√

2)n are a decreasing infinite sequence approaching 0.

Whenever ε is a unit in R∆ we can factor any number α in R∆ as α = (αε)(ε−1) .

If we allowed this as a genuine factorization there would be no primes in R∆ , so it

is best not to consider it as a genuine factorization. This leads us to the following

definition: An element α of R∆ is said to be prime in R∆ if it is neither 0 nor a unit,

and if whenever we have a factorization of α as α = βγ with both β and γ in R∆ ,

then it must be the case that either β or γ is a unit in R∆ . Not allowing units as

primes is analogous to the standard practice of not considering 1 to be a prime in Z .

If we replace R∆ by Z in the definition of primeness above, we get the condition

that an integer a in Z is prime if its only factorizations are the trivial ones a =

(a)(1) = (1)(a) and a = (−a)(−1) = (−1)(−a) , which is what we would expect.

This definition of primeness also means that we are allowing negative primes as the

negatives of the positive primes in Z .

A word of caution: An integer p in Z can be prime in Z but not prime in R∆ . For

example, in Z[i] we have the factorization 5 = (2+ i)(2 − i) , and as we will be able

to verify soon, neither 2+ i nor 2− i is a unit in Z[i] . Hence by our definition 5 is

not a prime in Z[i] , even though it is prime in Z . Thus one always has to be careful

when speaking about primeness to distinguish “prime in Z” from “prime in R∆ ”.

Having defined what we mean by primes in R∆ it is then natural to ask whether

every nonzero element of R∆ that is not a unit can be factored as a product of primes,
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and if so, whether this factorization is in any way unique. As we will see, the existence

of prime factorizations is fairly easy to prove, but the uniqueness question is much

more difficult and subtle. To clarify what the uniqueness question means, notice first

that if we have a unit ε in R∆ we can always modify a factorization α = βγ to give

another factorization α = (εβ)(ε−1γ) . This is analogous to writing 6 = (2)(3) =

(−2)(−3) in Z . This sort of nonuniqueness is unavoidable, but it is also not too

serious a problem. So when we speak of factorization in R∆ being unique, we will

always mean unique up to multiplying the factors by units.

A fruitful way to study factorizations in R∆ is to relate them to factorizations in

Z by associating to each element α in R∆ the number N(α) = αα called the norm

of α . Thus in the two cases R∆ = Z[
√
D] and R∆ = Z[ω] we have:

N(x +y
√
D) = (x +y

√
D)(x −y

√
D) = x2 −Dy2

N(x + yω) = (x +yω)(x +yω) = x2 + xy − dy2

In both cases N(α) is an integer. Notice that when the discriminant is negative, so

α is a complex number a + bi for real numbers a and b , the norm of α is just

αα = (a + bi)(a − bi) = a2 + b2 , the square of the distance from α to the origin in

the complex plane. When the discriminant is positive the norm can be negative so it

does not have a nice geometric interpretation in terms of distance, but it will be quite

useful in spite of this.

The reason the norm is useful for studying factorizations is that it satisfies the

following multiplicative property:

Proposition 8.1. N(αβ) = N(α)N(β) for all α and β in R∆ .

Proof: We will deduce multiplicativity of the norm from multiplicativity of the conju-

gation operation, the fact that αβ = αβ . The argument will apply more generally to

all elements of Q(
√
D) for any integer D that is not a square. To verify that αβ = αβ ,

write α = x + y
√
D and β = z +w

√
D , so that αβ = (xz + ywD)+ (xw + yz)

√
D .

Then:

αβ = (xz +ywD)− (xw +yz)
√
D = (x −y

√
D)(z −w

√
D) = αβ

For the norm we then have N(αβ) = (αβ)(αβ) = αβαβ = ααββ = N(α)N(β) . ⊔⊓

Using the multiplicative property of the norm we can derive a simple criterion for

recognizing units:

Proposition 8.2. An element ε ∈ R∆ is a unit if and only if N(ε) = ±1 .

Proof: Suppose ε is a unit, so its inverse ε−1 also lies in R∆ . Then N(ε)N(ε−1) =

N(εε−1) = N(1) = 1. Since N(ε) and N(ε−1) are integers this forces N(ε) to be

±1. For the converse we use the fact that a nonzero element α in R∆ has inverse

α−1 = α/N(α) since α
(
α/N(α)

)
= 1. Hence if N(ε) = ±1 we have ε−1 = ±ε which

is an element of R∆ if ε is, so ε is a unit. ⊔⊓
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When ∆ is negative there are very few units in R∆ . In the case of Z[
√
D] the

equation N(x +y
√
D) = x2 −Dy2 = ±1 has very few integer solutions when D < 0,

namely, if D = −1 there are only the four solutions (x,y) = (±1,0) and (0,±1) while

if D < −1 there are only the two solutions (x,y) = (±1,0) . Thus the only units in

Z[i] are ±1 and ±i , and the only units in Z[
√
D] for D < −1 are ±1. Geometrically

this is saying that these are the only points in the grid Z[
√
D] of distance 1 from

the origin, which is obviously true. In the case of Z[ω] one can see from the earlier

figure of Z[ω] that there are just six points of Z[ω] of distance 1 from the origin

when d = −1, and only the two points ±1 when d < −1 and the figure is stretched

vertically. When d = −1 the six units are ±1, ±ω , and ±(ω−1) . These are the powers

ωn for n = 1,2,3,4,5,6 since the general formula ω2 = ω + d gives ω2 = ω − 1

when d = −1, and from this it follows that ω3 = −1, ω4 = −ω , ω5 = 1 −ω , and

ω6 = 1. When d < −1 the only units in Z[ω] are ±1.

The situation for R∆ with ∆ positive is quite different. For Z[
√
D] we are looking

for solutions of x2 − Dy2 = ±1 with D > 0, while for Z[ω] the corresponding

equation is x2+xy −dy2 = ±1 with d > 0. We know from our study of topographs

of hyperbolic forms that these equations have infinitely many integer solutions since

the value 1 occurs along the periodic separator line in the topograph of the principal

form when (x,y) = (1,0) , so it appears infinitely often by periodicity. For some

values of D or d the number −1 also appears along the separator line, and then it

too appears infinitely often. Thus when ∆ > 0 the ring R∆ has infinitely many units

ε = x + y
√
D or x +yω , with arbitrarily large values of x and y .

There is a nice interpretation of units in R∆ as symmetries of the topograph of

the principal form of discriminant ∆ . A unit ε in R∆ defines a transformation Tε of

R∆ by the formula Tε(α) = εα . In the case of Z[
√
D] , if ε = p + q

√
D then

Tε(x + y
√
D) = (p + q

√
D)(x + y

√
D) = (px +Dqy)+ (qx + py)

√
D

while for Z[ω] , if ε = p + qω we have

Tε(x +yω) = (p + qω)(x +yω) = (px + qyω
2)+ (qx + py)ω

= (px + dqy)+
(
qx + (p + q)y

)
ω

since ω2 = ω + d . In both cases we see that Tε is a linear transformation of x

and y , with matrix
(
p
q
Dq
p

)
in the first case and

(
p
q
dq
p+q

)
in the second case. The

determinants in the two cases are p2 − Dq2 and p2 + pq − dq2 which equal N(ε)

and hence are ±1 since ε is a unit. Thus Tε defines a linear fractional transformation

giving a symmetry of the Farey diagram. Since N(εα) = N(ε)N(α) we see that Tε is

an orientation-preserving symmetry of the topograph of the norm form when N(ε) =

+1 and an orientation-reversing skew symmetry when N(ε) = −1. The symmetry

corresponding to the “universal” unit ε = −1 is just the identity since ---x/---y =
x/y .
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When ∆ < 0 the only interesting cases are ∆ = −3, when Tε for ε = ω is a

120 degree rotation of the topograph, and ∆ = −4 when Tε for ε = i rotates the

topograph by 180 degrees.

When ∆ > 0 there is a fundamental unit ε corresponding to the ±1 in the

topograph of the norm form at the vertex p/q with smallest positive values of p

and q . When N(ε) = +1 the transformation Tε is then the translation giving the

periodicity along the separating line since it is an orientation-preserving symmetry.

In the opposite case N(ε) = −1 the transformation Tε is an orientation-reversing skew

symmetry so it must be a glide reflection along the separator line by half a period.

Proposition 8.3. When ∆ > 0 the units in R∆ are exactly the elements ±εn for

n ∈ Z , where ε is the fundamental unit.

Proof: The units appear along the separator line at the regions x/y where the norm

form takes the value ±1. From our previous comments, these are the points Tnε
(
1/0

)

as n varies over Z . Since Tε is multiplication by ε , the power Tnε is multiplication

by εn . Thus the values ±1 occur at the regions labeled x/y for εn = x + y
√
D or

εn = x+yω . The units are therefore the elements ±εn where the ± comes from the

fact that the topograph does not distinguish between (x,y) and (−x,−y) . ⊔⊓

The conjugation operation in R∆ sending α to α also gives a symmetry of the

topograph of the norm form since N(α) = N(α) . Conjugation in Z[
√
D] sends an

element x+y
√
D to x−y

√
D so in the Farey diagram it is reflection across the edge

joining 1/0 and 0/1 . Conjugation in Z[ω] sends x + yω to x + yω = (x + y)−yω

since ω = 1 −ω , so conjugation fixes the vertex 1/0 and interchanges 0/1 and ---1/1

by reflecting across the line perpendicular to the edge from 0/1 to ---1/1 .

Proposition 8.4. All symmetries and skew symmetries of the topograph of the norm

form are obtainable as combinations of conjugation and the transformations Tε

associated to units ε in R∆ .

Proof: It will suffice to reduce an arbitrary symmetry or skew symmetry T to the

identity by composing with conjugation and transformations Tε . If T is a skew sym-

metry we must have ∆ > 0 with −1 appearing along the separator line as well as +1.

Composing T with a glide reflection Tε then converts T into a symmetry, so we may

assume T is a symmetry from now on. If T reverses orientation of the Farey diagram

we may compose it with conjugation to reduce further to the case that T preserves

orientation. When ∆ < 0 the only possibility for T is then the identity except when

∆ = −4 and T = Tε for ε = i , or when ∆ = −3 and T = Tε for ε = ω or ω2 . If

∆ > 0 the only possibility for T is a translation along the separator line, which is Tε

for some unit ε . ⊔⊓

Now we begin to study primes and prime factorizations in R∆ . First we have a

useful fact:
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Proposition 8.5. If the norm N(α) of an element α in R∆ is prime in Z then α is

prime in R∆ .

For example, when we factor 5 as (2+ i)(2− i) in Z[i] , this proposition implies

that both factors are prime since the norm of each is 5, which is prime in Z .

Proof: Suppose an element α in R∆ has a factorization α = βγ , hence N(α) =

N(β)N(γ) . If N(α) is prime in Z , this forces one of N(β) and N(γ) to be ±1, hence

one of β and γ is a unit. This means α is a prime since it cannot be 0 or a unit, as

its norm is a prime. ⊔⊓

The converse of this proposition is not generally true. For example the number

3 has norm 9, which is not prime in Z , and yet 3 is prime in Z[i] . This is because

if we had a factorization 3 = αβ in Z[i] with neither α nor β a unit, then the equa-

tion N(α)N(β) = N(3) = 9 would imply that N(α) = ±3 = N(β) , but there are

no elements of Z[i] with norm ±3 since the equation x2 + y2 = ±3 has no integer

solutions.

Now we can prove that prime factorizations always exist:

Proposition 8.6. Every nonzero element of R∆ that is not a unit can be factored as

a product of primes in R∆ .

Proof: We argue by induction on |N(α)| . Since we are excluding 0 and units, the

induction starts with the case |N(α)| = 2. In this case α must itself be a prime by the

preceding proposition since 2 is prime in Z . For the induction step, if α is a prime

there is nothing to prove. If α is not prime, it factors as α = βγ with neither β nor

γ a unit, so |N(β)| > 1 and |N(γ)| > 1. Since N(α) = N(β)N(γ) , it follows that

|N(β)| < |N(α)| and |N(γ)| < |N(α)| . By induction, both β and γ are products of

primes in R∆ , hence their product α is also a product of primes in R∆ . ⊔⊓

Let us investigate how to compute a prime factorization by looking at the case

of Z[i] . Assuming that factorizations of Gaussian integers into primes are unique

(up to units), which we will prove later, here is a procedure for finding the prime

factorization of a Gaussian integer α = a+ bi :

(1) Factor the integer N(α) = a2 + b2 into primes pk in Z .

(2) Determine how each pk factors into primes in Z[i] .

(3) By the uniqueness of prime factorizations, the primes found in step (2) will be

factors of either a+bi or a−bi since they are factors of (a+bi)(a−bi) , so all

that remains is to test which of the prime factors of each pk are factors of a+bi .

To illustrate this with a simple example, let us see how 3+ i factors in Z[i] . We have

N(3+ i) = (3+ i)(3− i) = 10 = 2·5. These two numbers factor as 2 = (i+ i)(1− i)

and 5 = (2+ i)(2− i) . These are prime factorizations in Z[i] since N(1± i) = 2 and
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N(2± i) = 5, both of which are primes in Z . Now we test whether for example 1+ i

divides 3+ i by dividing:

3+ i

1+ i
=
(3+ i)(1− i)

(1+ i)(1− i)
=

4− 2i

2
= 2− i

Since the quotient 2−i is a Gaussian integer, we conclude that 1+i is a divisor of 3+i

and we have the factorization 3+ i = (1+ i)(2− i) . This is the prime factorization of

3+ i since we have already noted that both 1+ i and 2− i are primes in Z[i] .

For a more complicated example consider 244 + 158i . For a start, this factors

as 2(122+ 79i) . Since 122 and 79 have no common factors in Z we cannot go any

farther by factoring out ordinary integers. We know that 2 factors as (1 + i)(1 − i)

and these two factors are prime in Z[i] since their norm is 2. It remains to factor

122+ 79i . This has norm 1222 + 792 = 21125 = 53·132 . Both 5 and 13 happen to

factor in Z[i] , namely 5 = (2 + i)(2 − i) and 13 = (3 + 2i)(3 − 2i) , and these are

prime factorizations since the norms of 2± i and 3± 2i are 5 and 13, primes in Z .

Thus we have the prime factorization

(122+ 79i)(122− 79i) = 53·132 = (2+ i)3(2− i)3(3+ 2i)2(3− 2i)2

Now we look at the factors on the right side of this equation to see which ones are

factors of 122+ 79i . Suppose for example we test whether 2+ i divides 122+ 79i :

122+ 79i

2+ i
=
(122+ 79i)(2− i)

(2+ i)(2− i)
=

323+ 36i

5

This is not a Gaussian integer, so 2 + i does not divide 122 + 79i . Let us try 2 − i

instead:
122+ 79i

2− i
=
(122+ 79i)(2+ i)

(2− i)(2+ i)
=

165+ 280i

5
= 33+ 56i

So 2−i does divide 122+79i . In fact, we can expect that (2−i)3 will divide 122+79i ,

and it can be checked that it does. In a similar way one can check whether 3+ 2i or

3 − 2i divides 122+ 79i , and one finds that it is 3 − 2i that divides 122+ 79i , and

in fact (3 − 2i)2 divides 122 + 79i . After these calculations one might expect that

122+ 79i was the product (2 − i)3(3 − 2i)2 , but upon multiplying this product out

one finds that it is the negative of 122+ 79i . Thus:

122+ 79i = (−1)(2− i)3(3− 2i)2

The factor −1 is a unit, so it could be combined with one of the other factors, for

example changing one of the factors 2 − i to i − 2. Alternatively, we could replace

the factor −1 by i2 and then multiply each 3 − 2i factor by i to get a neater prime

factorization:

122+ 79i = (2− i)3(2+ 3i)2

Combining these calculations, we have the prime factorization for 244+ 158i :

244+ 158i = (1+ i)(1− i)(2− i)3(2+ 3i)2



Section 8.1 — Prime Factorization 273

The method in this example for computing prime factorizations in Z[i] depended

on unique factorization. When unique factorization fails, things are more compli-

cated. One of the simplest instances of this is in Z[
√
−5] where we have the factor-

izations:

6 = (2)(3) =
(
1+

√
−5

)(
1−

√
−5

)

The only units in Z[
√
−5] are ±1, so these two factorizations do not differ just by

units. We can see that 2, 3, and 1±
√
−5 are prime in Z[

√
−5] by looking at norms.

Using the formula N(x+y
√
−5) = x2+5y2 we see that the norms of 2, 3, and 1±

√
−5

are 4, 9, and 6, so if one of 2, 3, or 1±
√
−5 was not a prime, it would have a factor of

norm 2 or 3 since these are the only numbers that occur in nontrivial factorizations

of 4, 9, and 6 in Z . However, the equations x2+5y2 = 2 and x2+5y2 = 3 obviously

have no integer solutions so there are no elements of Z[
√
−5] of norm 2 or 3. Thus

in Z[
√
−5] the number 6 has two prime factorizations that do not differ just by units.

This example can be explained by the fact that x2+5y2 is not the only quadratic

form of discriminant −20, up to equivalence. Another form of the same discriminant

is 2x2+2xy+3y2 , and this form takes on the values 2 and 3 that the form x2+5y2

omits, even though x2+5y2 does take on the value 6 = 2·3. Here are the topographs

of these two forms, with prime values circled:

The appearance of 6 in the topograph of x2 + 5y2 = (x + y
√
−5)(x − y

√
−5) when

x/y =
1/1 gives the factorization 6 = (1+

√
−5)(1−

√
−5) .

The boxed nonprime numbers in the topograph of x2 + 5y2 give rise to other

nonunique prime factorizations. For example 14 = (2)(7) = (3 +
√
−5)(3 −

√
−5)



274 Chapter 8 — Quadratic Fields

where the second factorization comes from the appearance of 14 in the topograph of

x2 + 5y2 when x/y =
3/1 . As with the earlier factorizations of 6, the nonappearance

of 2 and 7 in the topograph of x2+5y2 implies that 2, 7, and 3±
√
−5 are prime in

Z[
√
−5] . Some numbers in the topograph of x2 + 5y2 occur in boxes twice, leading

to three different prime factorizations. Thus 21 factors into primes in Z[
√
−5] as

3·7, as (1 + 2
√
−5)(1 − 2

√
−5) and as (4 +

√
−5)(4 −

√
−5) . Another example is

69 = 3·23 = (7+ 2
√
−5)(7− 2

√
−5) = (8+

√
−5)(8−

√
−5) .

The numbers that appear in the topograph of the second form 2x2+2xy+3y2 are

not the norms of elements of Z[
√
−5] but one might imagine that they are the norms

of “ideal numbers” of some sort. Thus 2 might be the norm of an ideal number P , so

2 = PP , and 3 might be the norm of an ideal number Q , so 3 = QQ . The product

PQ would then have norm (PQ)(PQ) = (PP)(QQ) = 2·3 = 6, so it is possible that

PQ = 1+
√
−5. If this is true, it would explain very nicely the two factorizations of 6

as 2·3 = (PP)(QQ) and as (1+
√
−5)(1−

√
−5) = (PQ)(PQ) .

One can also see how some numbers might have three different prime factoriza-

tions. For example for 21 = 3·7, if we have 3 = PP and 7 = QQ then there are three

ways to group these four ideal numbers into pairs, as (PP)(QQ) , as (PQ)(P Q) , and

as (PQ)(PQ) , and these three groupings could give the three factorizations of 21.

The reason there are only two factorizations for 2·3 and 2·7 is that in the factoriza-

tion 2 = PP the two factors P and P happen to be equal, so there is no difference

between (PQ)(P Q) and (PQ)(PQ) .

Much of this chapter will be devoted to making sense of these “ideal numbers”.

They will be realized not by actual numbers but by certain sets of numbers in R∆
called simply “ideals”. These ideals behave like actual numbers in some respects.

Most importantly they can be multiplied and they have norms which are ordinary

integers, behaving much like norms of elements of R∆ . On the other hand there is

no method for adding ideals that behaves like addition of numbers, so ideals are not

entirely like numbers. However, this will not matter for studying prime factorizations

where multiplication is what one is interested in.

There is a natural notion of what a prime ideal is, and the big theorem about

ideals in R∆ is that they have unique factorizations into prime ideals when ∆ is a

fundamental discriminant. This gives information about prime factorizations of ele-

ments of R∆ because each element of R∆ gives rise to a special kind of ideal called

a principal ideal. For some discriminants all ideals are principal ideals, and for these

discriminants the unique prime factorization of ideals translates into unique prime

factorization of elements of R∆ .

In the remainder of this section and continuing in the next we will go further

into prime factorizations of elements of R∆ before beginning the study of ideals in

Section 8.3.
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The question of how a prime p in Z factors in R∆ can be rephrased in terms of

the norm form x2 −Dy2 or x2 + xy − dy2 , according to the following result:

Proposition 8.7. Let p be a prime in Z . Then :

(a) If either p or −p is represented by the norm form for R∆ , so N(α) = ±p for

some α in R∆ , then p factors in R∆ as p = ±αα and both these factors are

prime in R∆ .

(b) If neither p nor −p is represented by the norm form then p remains prime

in R∆ .

In statement (a) note that when ∆ < 0 the norm only takes positive values, so if a

positive prime p factors in R∆ it must factor as p = αα , never as −αα . However for

∆ > 0 this need not be the case. For example for Z[
√

3] the topograph of x2 − 3y2

shown in Section 4.1 contains the value −2 but not 2, so the prime 2 factors as

−(1+
√

3)(1−
√

3) in Z[
√

3] but not as αα .

Proof: For part (a), if p = ±N(α) , then p factors in R∆ as p = ±αα = ±N(α) . The

two factors are prime since their norm is ±p which is prime in Z by assumption.

For (b), if p is not a prime in R∆ then it factors in R∆ as p = αβ with neither

α nor β a unit. Then N(p) = p2 = N(α)N(β) with neither N(α) nor N(β) equal to

±1, hence we must have N(α) = N(β) = ±p . The equation N(α) = ±p says that the

norm form represents ±p . Thus if the norm form represents neither p nor −p then

p must be prime in R∆ . ⊔⊓

Proposition 8.8. If R∆ has unique factorization into primes then the only primes

in R∆ are the primes described in (a) or (b) of the preceding proposition, or units

times these primes.

This can be false without unique prime factorization since the primes in R∆ ob-

tained by factoring a prime integer p have norm dividing N(p) = p2 , but we have

seen for example that 1+
√
−5 is prime in Z[

√
−5] and has norm 6.

Proof: Let α be an arbitrary prime in R∆ . The norm n = N(α) = αα is an integer in

Z so it can be factored as a product n = p1 · · ·pk of primes in Z . By Proposition 8.7

each pi either stays prime in R∆ or factors as a product ±αiαi of two primes in R∆ .

This gives a factorization of n into primes in R∆ . A second factorization of n into

primes in R∆ can be obtained from the formula n = αα by factoring α into primes

since the first factor α is already prime by assumption. (In fact if α is prime then α

will also be prime, but we do not need to know this.) If we have unique factorization

in R∆ then the prime factor α of the second prime factorization will have to be one

of the prime factors in the first prime factorization of n , or a unit times one of these

primes. Thus α will be a unit times a prime of one of the two types described in

Proposition 8.7. ⊔⊓



276 Chapter 8 — Quadratic Fields

There are two qualitatively different ways in which a prime p in Z can factor as

the product of two primes in R∆ , depending on whether the two primes in R∆ differ

by just a unit, or equivalently, whether p is a unit times the square of an element of

R∆ . For example in Z[i] we have 2 = (1+ i)(1− i) and the two factors 1+ i and 1− i

differ only by a unit since −i(1 + i) = 1 − i . Thus 2 = ε(1 + i)2 for the unit ε = −i .

In fact 2 is the only prime that can be factored in Z[i] as p = ε(a + bi)2 for some

unit ε . The units in Z[i] are ±1 and ±i so the only possibilities are p = ±(a+ bi)2

and p = ±i(a+bi)2 . In the first case p = ±(a+bi)2 = ±(a2−b2+2abi) so 2ab = 0

hence either a or b is 0, but that would say p = ±a2 or p = ±b2 which is impossible

since p is prime. The other case is p = ±i(a + bi)2 = ±
(
(a2 − b2)i − 2ab

)
hence

p = ±2ab so a and b are ±1 and p = 2.

Exercises

1. (a) Show that if α and β are elements of Z[
√
D] such that α is a unit times β , then

N(α) = ±N(β) .

(b) Either prove or give a counterexample to the following statement: If α and β are

Gaussian integers with N(α) = N(β) then α is a unit times β .

2. Show that a Gaussian integer x + yi with both x and y odd is divisible by 1+ i

but not by (1+ i)2 .

3. There are four different ways to write the number 1105 = 5·13·17 as a sum of two

squares. Find these four ways using the factorization of 1105 into primes in Z[i] .

Here we are not counting 52+22 and 22+52 as different ways of expressing 29 as the

sum of two squares. Note that an equation n = a2 + b2 is equivalent to an equation

n = (a+ bi)(a− bi) .

4. (a) Find four different units in Z[
√

3] that are positive real numbers, and find four

that are negative.

(b) Do the same for Z[
√

11] .

5. Make a list of all the Gaussian primes x + yi with −7 ≤ x ≤ 7 and −7 ≤ y ≤ 7.

(The only actual work here is to figure out the primes x + yi with 0 ≤ y ≤ x ≤ 7

since the rest are obtainable from these by symmetry properties.)

6. Factor the following Gaussian integers into primes in Z[i] : 3 + 5i , 8 − i , 10+ i ,

5− 12i , 35i , −35+ 120i , 253+ 204i .

7. (a) Show that if an odd prime p factors in Z[ω] for ω = (1+
√
−3)/2 then it factors

in Z[
√
−3] .

(b) Do the same with −3 replaced by −7.

(c) Show that this no longer holds when −3 is replaced by −11.
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8. (a) Determine how the number 2 factors into primes in R∆ for ∆ = −3,−4,−7,−8,

−11,−12,−15, and −16.

(b) Do the same for ∆ = 5,8, and 12.

9. Show that if an element α in R∆ is prime then so is α .

10. (a) Find a number n that has exactly two different factorizations into primes in

Z[
√
−6] , up to multiplication by units, and find another number that has exactly three

such factorizations.

(b) Do the same for Z[
√

10] where things are slightly more complicated since there

are many more units.

11. Show that the factorization of a prime p in Z into primes in R∆ is always unique

up to units. (See Propositions 6.16 and 8.4.)

8.2 Unique Factorization via the Euclidean Algorithm

The main goal in this section is to show that unique factorization holds for the

Gaussian integers Z[i] and in a few other cases as well. The plan will be to see that

Gaussian integers have a Euclidean algorithm much like the Euclidean algorithm in Z ,

then deduce unique factorization from this Euclidean algorithm.

In order to prove that prime factorizations are unique we will use the following

special property that holds in Z and in some of the rings R∆ as well:

(∗) If a prime p divides a product ab then p must divide either a or b .

One way to prove this for Z would be to consider the prime factorization of ab , which

can be obtained by factoring each of a and b into primes separately. Then if the prime

p divides ab , it would have to occur in the prime factorization of ab , hence it would

occur in the prime factorization of either a or b , which would say that p divides a

or b .

This argument assumed implicitly that the prime factorization of ab was unique.

Thus the property (∗) is a consequence of unique factorization into primes. But the

property (∗) also implies that prime factorizations are unique. To see why, consider

two factorizations of a number n > 1 into positive primes:

n = p1p2 · · ·pk = q1q2 · · ·ql

We can assume k ≤ l by interchanging the pi ’s and qi ’s if necessary. We want to

argue that if (∗) holds for each pi , then the qi ’s are just a permutation of the pi ’s

and in particular k = l . The argument to prove this goes as follows. Consider first

the prime p1 . This divides the product q1(q2 · · ·ql) so by property (∗) it divides

either q1 or q2q3 · · ·ql . In the latter case, another application of (∗) shows that p1
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divides either q2 or q3q4 · · ·ql . Repeating this argument as often as necessary, we

conclude that p1 must divide at least one qi . After permuting the qi ’s we can assume

that p1 divides q1 . We are assuming all the pi ’s and qi ’s are positive, so the fact that

the prime p1 divides the prime q1 implies that p1 equals q1 . We can then cancel

p1 and q1 from the equation p1p2 · · ·pk = q1q2 · · ·ql to get p2 · · ·pk = q2 · · ·ql .

Now repeat the argument to show that p2 equals some remaining qi which we can

assume is q2 after a permutation. After further repetitions we eventually reach the

point that the final pk is a product of the remaining qi ’s. But then since pk is prime

there could only be one remaining qi , so we would have k = l and pk = qk , finishing

the argument.

If we knew the analogue of property (∗) held for primes in R∆ we could make

essentially the same argument to show that unique factorization holds in R∆ . The only

difference in the argument would be that we would have to take units into account.

The argument would be exactly the same up to the point where we concluded that p1

divides q1 . Then the fact that q1 is prime would not say that p1 and q1 were equal,

but only that q1 is a unit times p1 , so we would have an equation q1 = ep1 with e

a unit. Then we would have p1p2 · · ·pk = ep1q2 · · ·ql . Canceling p1 would then

yield p2p3 · · ·pk = eq2q3 · · ·ql . The product eq2 is prime if q2 is prime, so if we

let q′2 = eq2 we would have p2p3 · · ·pk = q
′
2q3 · · ·ql . The argument could then be

repeated to show eventually that the qi ’s are the same as the pi ’s up to permutation

and multiplication by units, which is what unique factorization means.

Since the property (∗) implies unique factorization, it will not hold in R∆ when

R∆ does not have unique factorization. For a concrete example consider Z[
√
−5] .

Here we had nonunique prime factorizations 6 = 2·3 = (1 +
√
−5)(1 −

√
−5) . The

prime 2 thus divides the product (1 +
√
−5)(1 −

√
−5) but it does not divide either

factor 1±
√
−5 since (1±

√
−5)/2 is not an element of Z[

√
−5] .

Our task now is to prove the property (∗) without using unique factorization.

As we saw in Chapter 2, an equation ax+by = 1 always has integer solutions (x,y)

whenever a and b are coprime integers. This fact can be used to show that property

(∗) holds in Z . To see how, suppose that a prime p divides a product ab . It will

suffice to show that if p does not divide a then it must divide b . If p does not

divide a , then since p is prime, p and a are coprime. This implies that the equation

px + ay = 1 is solvable with integers x and y . Now multiply this equation by b to

get an equation b = pbx+aby . The number p divides the right side of this equation

since it obviously divides pbx and it divides ab by assumption. Hence p divides b ,

which is what we wanted to show.

The fact that equations ax + by = 1 in Z are solvable whenever a and b are

coprime can be deduced from the Euclidean algorithm in the following way. What the

Euclidean algorithm gives is a method for starting with two positive integers α0 and
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α1 and constructing a sequence of positive integers αi and βi satisfying the following

equations:
α0 = β1α1 +α2

α1 = β2α2 +α3

...

αn−2 = βn−1αn−1 +αn

αn−1 = βnαn +αn+1

αn = βn+1αn+1

From these equations we can deduce two consequences:

(1) αn+1 divides α0 and α1 .

(2) The equation αn+1 = α0x +α1y is solvable in Z .

To see why (1) is true, note that the last equation implies that αn+1 divides αn . Then

the next-to-last equation implies that αn+1 also divides αn−1 , and the equation before

this then implies that αn+1 also divides αn−2 , and so on until one deduces that αn+1

divides all the αi ’s and in particular α0 and α1 .

To see why (2) is true, observe that each equation before the last one allows an

αi to be expressed as a linear combination of αi−1 and αi−2 . Then by repeatedly

substituting in, one can express each αi in terms of α0 and α1 as a linear combination

xα0 +yα1 with integer coefficients x and y . In particular αn+1 can be represented

in this way, which says that the equation αn+1 = α0x +α1y is solvable in Z .

Now if we assume that α0 and α1 are coprime then αn+1 must be 1 by (1), and

by (2) we get integers x and y such that α0x +α1y = 1, as we wanted.

Putting all the preceding arguments together, we see that the Euclidean algorithm

in Z implies unique factorization in Z .

A very similar argument works in R∆ provided that one has a Euclidean algorithm

to produce the sequence of equations above starting with any pair of nonzero elements

α0 and α1 in R∆ , with all the numbers αi and βi now being elements of R∆ . The

statements (1) and (2) again follow from these equations, with the equation in (2) now

being solvable with x and y in R∆ . For the application to unique factorization the

coefficients α0 and α1 will be coprime in the sense that their only common divisors

are units, so αn+1 will be a unit. A solution of αn+1 = α0x+α1y can then be modified

by multiplying x and y by α−1
n+1 to get a solution of 1 = α0x+α1y . By the argument

given before, this is all that is needed to imply unique factorization in R∆ .

Let us show now that there is a Euclidean algorithm in the Gaussian integers Z[i] .

The key step is to be able to find, for each pair of nonzero Gaussian integers α0 and

α1 , two more Gaussian integers β1 and α2 such that α0 = β1α1 +α2 with α2 being

“smaller” than α1 . We measure “smallness” of complex numbers by computing their

distance to the origin in the complex plane. For a complex number α = x + yi this

distance is
√
x2 + y2 . Here x2+y2 is just the norm N(α) when x and y are integers,
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so we could measure the size of a Gaussian integer α by
√
N(α) . However it is simpler

just to use N(α) without the square root, so this is what we will do.

Thus our goal is to find an equation α0 = β1α1+α2 with N(α2) < N(α1) , starting

from two given nonzero Gaussian integers α0 and α1 . If we can always do this, then

by repeating the process we can construct a sequence of αi ’s and βi ’s where the

successive αi ’s have smaller and smaller norms. Since these norms are nonnegative

integers, they cannot keep decreasing infinitely often, so eventually the process will

reach an αi of norm 0, hence this αi will be 0 and the Euclidean algorithm will end

in a finite number of steps, as it should.

The equation α0 = β1α1+α2 is saying that when we divide α1 into α0 , we obtain

a quotient β1 and a remainder α2 . What we want is for the remainder α2 to have a

smaller norm than α1 . To get an idea how we can do this let us look instead at the

equivalent equation
α0

α1
= β1 +

α2

α1

If we were working with ordinary integers, the quotient β1 would be the integer part

of the rational number α0/α1 and α2/α1 would be the remaining fractional part. For

Gaussian integers we do something similar, but instead of taking β1 to be the “integer

part” of α0/α1 we take it to be a Gaussian integer of minimum distance to α0/α1 .

As an example let us take α0 = 12+ 15i and α1 = 5+ 2i . Then:

α0

α1
=

12+ 15i

5+ 2i
=
(12+ 15i)(5− 2i)

(5+ 2i)(5− 2i)
=

90+ 51i

29
= (3+ 2i)+

3− 7i

29
= β1 +

α2

α1

Here in the last step we choose 3+ 2i as β1 because 3 is the closest integer to 90/29

and 2 is the closest integer to 51/29 . Having found a likely candidate for β1 , we can

use the equation α0 = β1α1 +α2 to find α2 :

12+ 15i = (3+ 2i)(5+ 2i)+α2

= (11+ 16i)+α2 hence α2 = 1− i

Since N(1− i) = 2 and N(5+ 2i) = 29 we have N(α2) < N(α1) as we wanted.

In fact choosing β1 as a closest Gaussian integer to the “Gaussian rational” α0/α1

will always lead to an α2 with N(α2) < N(α1) . This is because if we write the quotient

α2/α1 in the form x+yi for rational numbers x and y (so in the example above we

have x = 3/29 and y = ---7/29 ) then for β1 to be a Gaussian integer closest to α0/α1

means that |x| ≤ 1/2 and |y| ≤ 1/2 , and therefore:

N
(α2

α1

)
= x2 +y2 ≤ 1/4+

1/4 < 1

and hence N(α2) = N
(α2

α1
·α1

)
= N

(α2

α1

)
N(α1) < N(α1)

Thus we have N(α2) < N(α1) . This shows that there is a general Euclidean algorithm

in Z[i] , and so Z[i] has unique factorization.
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Just as an exercise let us finish carrying out the Euclidean algorithm for α0 =

12+ 15i and α1 = 5+ 2i . The next step is to divide α2 = 1− i into α1 = 5+ 2i :

5+ 2i

1− i
=
(5+ 2i)(1+ i)

(1− i)(1+ i)
=

3+ 7i

2
= (1+ 3i)+

1+ i

2

Notice that the fractions 3/2 and 7/2 are exactly halfway between two consecutive

integers, so instead of choosing 1 + 3i for the closest integer to 3+7i/2 we could

equally well have chosen 2+3i or 1+4i or 2+4i . Let us stick with the choice 1+3i

and use this to calculate the next αi :

5+ 2i = (1+ 3i)(1− i)+α3 = (4+ 2i)+α3

hence α3 = 1. The final step would be simply to write 1− i = (1− i)1+ 0. Thus the

full Euclidean algorithm gives the following equations:

12+ 15i = (3+ 2i)(5+ 2i)+ (1− i)

5+ 2i = (1+ 3i)(1− i)+ 1

1− i = (1− i)(1)+ 0

In particular, since the last nonzero remainder is 1, a unit in Z[i] , we deduce that this

is the greatest common divisor of 12 + 15i and 5 + 2i , where “greatest” means “of

greatest norm”. In other words 12+ 15i and 5+ 2i have no common divisors other

than units. (This also follows from the fact that the norms N(12+ 15i) = 9·41 and

N(5+ 2i) = 29 are coprime.)

The equations that display the results of carrying out the Euclidean algorithm can

be used to express the last nonzero remainder in terms of the original two numbers:

1 = (5+ 2i)− (1+ 3i)(1− i)

= (5+ 2i)− (1+ 3i)[(12+ 15i)− (3+ 2i)(5+ 2i)]

= −(1+ 3i)(12+ 15i)+ (−2+ 11i)(5+ 2i)

If it had happened that the last nonzero remainder was a unit other than 1, we could

have expressed this unit in terms of the original two Gaussian integers, and then

multiplied the equation by the inverse of the unit to get an expression for 1 in terms

of the original two Gaussian integers.

Having shown that prime factorizations in Z[i] are unique, let us see what this

implies about the representation problem for the norm form x2 + y2 . The equation

x2+y2 = n can be written as (x+yi)(x−yi) = n . If the prime factorization of x+yi

in Z[i] is x +yi = α1 · · ·αl and the prime factorization of n in Z is n = p1 · · ·pm

then the equation x2 + y2 = n becomes α1α1 · · ·αlαl = p1 · · ·pm . A prime p

in Z either splits as a product αα of two primes in Z[i] or remains prime in Z[i] .

Unique prime factorization means that, up to units, the factorization n = α1 · · ·αl

is obtained from the factorization n = p1 · · ·pm by replacing each pk that splits by

a product αjαj . Each prime pk that does not split will be equal to some αj or αj ,
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but in this case both factors αj and αj are integers so they are equal. This means

that the two factors αj and αj give two factors of the product p1 · · ·pm that are

the same nonsplit prime. Thus nonsplit primes must occur to an even power in n .

Conversely, if the nonsplit prime factors of n occur only to even powers then we

obtain a factorization n = α1α1 · · ·αlαl and hence a solution of x2 + y2 = n with

x +yi = α1 · · ·αl .

Thus we see that the equation x2+y2 = n has an integer solution (x,y) exactly

when each nonsplit prime factor p of n occurs with an even exponent in n . The split

primes are the primes represented by x2 +y2 , so these are 2 and primes p = 4k+ 1

as we saw in Chapter 6. Hence the numbers expressible as the sum of two squares

are the numbers in which each prime factor p = 4k+3 occurs to an even power. This

agrees with the answer we got in Chapter 6, but the only results from that chapter we

have used here are the fact that all primes p = 4k+1 are represented by x2+y2 and

the easy facts that 2 is represented but primes p = 4k+ 3 are not represented.

Going further, we can also answer the more subtle question of when the equation

x2 + y2 = n has a solution with x and y coprime. For x and y not to be coprime

means they are both divisible by some prime p , which is the same as saying that

x+yi is divisible by p in Z[i] , or we could equally well say x−yi instead of x+yi .

If a prime factor p of n in Z does not split in Z[i] then p will be prime in Z[i] so in

the factorization n = (x+yi)(x−yi) we will have p as a prime factor of x+yi or

x−yi in Z[i] , so x and y will not be coprime. Thus n must be a product of primes

that split in Z[i] . If one of these primes splits as p = αα then we cannot have both

α and α as two of the factors of x + yi , otherwise p would divide x + yi . Thus if

p appears to the kth power in n , we must have αk as a factor of x+yi and αk as a

factor of x−yi or vice versa, at least when α and α do not differ just by a unit. If α

and α differ just by a unit then we must have k = 1, otherwise x +yi would have p

as a factor. We noted earlier that 2 is the only prime in Z that splits as a product of

two primes in Z[i] that differ just by a unit, so the final result is that x2+y2 = n has

a solution with x and y coprime exactly when n = 2ap1 · · ·pk with each pi a prime

congruent to 1 mod 4 and a ≤ 1. This too agrees with what we showed in Chapter 6.

An advantage of using Gaussian integers to determine the numbers represented

by x2+y2 is that this gives a way of computing explicitly all the representations of a

given number n . Computing the topograph does this, but the amount of work needed

increases rapidly as n gets larger since one is computing the representations of all

numbers smaller than n at the same time. To illustrate how Gaussian integers speed

things up for specific values of n let us see how to find all the primitive solutions of

x2 + y2 = 5k . For k = 1 we have the solution (x,y) = (2,1) corresponding to the

factorization 5 = (2+ i)(2− i) , so a primitive solution for arbitrary k is obtained by

expressing (2+ i)k as x + yi . One could use the binomial theorem for this, but this

would involve computing binomial coefficients, so let us instead proceed by induction
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on k using the formula (x+yi)(2+i) = (2x−y)+(x+2y)i . This yields the following

sequence of pairs (x,y) for k = 1,2,3,4,5,6,7,8 :

(2,1), (3,4), (2,11), (−7,24), (−38,41), (−117,44), (−278,−29), (−527,−336)

The signs are irrelevant for solutions of x2+y2 = 5k but they cannot be ignored when

computing with the inductive formula. For each k there are exactly eight primitive

solutions, corresponding to (2 + i)k and (2 − i)k along with multiples of these by

each of the four units ±1,±i . In terms of x and y these are the groups (±x,±y)

and (±y,±x) . In the topograph of x2+y2 the value 5k will appear just once in each

quadrant since each pair of solutions (x,y) and (−x,−y) determines the same frac-

tion x/y . This was guaranteed to happen by Proposition 6.16 which states that any

two occurrences of the same prime power in a topograph are related by a symmetry

of the topograph, for primes not dividing the conductor, and the conductor here is 1.

For negative discriminants it is not difficult to figure out exactly when R∆ has a

Euclidean algorithm. Recall that this means that for each pair of nonzero elements

α0 and α1 in R∆ there should exist elements β and α2 such that α0 = βα1 + α2

and N(α2) < N(α1) . Since α2 is determined by α0 , α1 , and β , this is equivalent to

saying that there should exist an element β in R∆ such that N(α0 − βα1) < N(α1) .

The last inequality can be rewritten as N
(
α0/α1

−β
)
< 1. Geometrically this is saying

that every point α0/α1
in the plane should be within a distance less than 1 of some

point β in the lattice R∆ . We can check this by seeing whether the interiors of all the

circles of radius 1 centered at points of R∆ completely cover the plane.

For Z[
√
D] with D < 0 the critical case D = −3 is shown in

the figure at the right, where the triangle is an equilateral trian-

gle of side length 1. Here the four circles of radius 1 centered

at 0, 1,
√
−3, and 1 +

√
−3 intersect at the point (1 +

√
−3)/2

so this point is not within distance less than 1 of an element of

Z[
√
−3] and therefore the Euclidean algorithm fails in Z[

√
−3] .

For D < −3 the lattice Z[
√
D] is stretched vertically so the Eu-

clidean algorithm fails in these cases too. For D = −2 the lattice is compressed

vertically so Z[
√
−2] does have a Euclidean algorithm.

In the case of Z[ω] with ω = (1+
√

1+ 4d)/2 and d < 0

the upper row of disks is at height
√
|1+ 4d|/2 above the

lower row, so from the figure we see that the condition we

need is that this height should be less than 1+
√

3
2

. Thus we

need
√
|1+ 4d| < 2+

√
3. Squaring both sides gives |1+4d| <

7+ 4
√

3 which is satisfied only in the cases d = −1,−2,−3.

In summary, we have shown the following result:

Proposition 8.9. The only negative discriminants ∆ for which R∆ has a Euclidean

algorithm are ∆ = −3,−4,−7,−8,−11 .
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Notice that these are the first five negative discriminants.

For even discriminants ∆ = 4D it is easy to prove that unique factorization fails

in R∆ = Z[
√
D] in all cases when ∆ is negative and there is no Euclidean algorithm:

Proposition 8.10. Unique factorization fails in Z[
√
D] whenever D < −2 , and it

also fails when D > 0 and D ≡ 1 modulo 4 .

Proof: The number D2 − D factors in Z[
√
D] as (D +

√
D)(D −

√
D) , and it also

factors as D(D − 1) . The number 2 divides either D or D − 1 since one of these

two consecutive integers must be even. However, 2 does not divide either D+
√
D or

D −
√
D in Z[

√
D] since (D ±

√
D)/2 is not an element of Z[

√
D] as the coefficient of√

D in this quotient is not an integer. If we knew that 2 was prime in Z[
√
D] we would

then have two distinct factorizations of D2 −D into primes in Z[
√
D] : one obtained

by combining prime factorizations of D and D − 1 in Z[
√
D] and the other obtained

by combining prime factorizations of D +
√
D and D −

√
D . The first factorization

would contain the prime 2 and the second would not.

It remains to check that 2 is a prime in Z[
√
D] in the cases listed. If it is not

a prime, then it factors as 2 = αβ with neither α nor β a unit, so we would have

N(α) = N(β) = ±2. Thus the equation x2 − Dy2 = ±2 would have an integer

solution (x,y) . This is clearly impossible if D = −3 or any negative integer less than

−3. If D > 0 and D ≡ 1 modulo 4 then if we look at the equation x2 − Dy2 = ±2

modulo 4 it becomes x2−y2 ≡ 2 mod 4, but this is impossible since x2 and y2 are

congruent to 0 or 1 modulo 4, so x2 − y2 is congruent to 0, 1, or −1. ⊔⊓

This proposition says in particular that unique factorization fails in Z[
√
−3] ,

Z[
√
−7] , and Z[

√
−11] . However, when we enlarge these rings to Z[ω] for ω equal

to (1 +
√
−3)/2, (1 +

√
−7)/2, and (1 +

√
−11)/2 we do have unique factorization.

A similar thing happens when we enlarge Z[
√
−8] to Z[

√
−2] . In all these cases the

enlargement replaces a nonfundamental discriminant by one which is fundamental.

One might wonder whether there are other ways to enlarge Z[
√
D] to make prime

factorization unique when it is not unique in Z[
√
D] itself. Without changing things

too drastically, suppose we just tried a different choice of ω . In order to do multi-

plication within the set Z[ω] of numbers x + yω with x and y integers one must

be able to express ω2 as mω + n , which means that ω must satisfy a quadratic

equation ω2 −mω − n = 0. This has roots (m ±
√
m2 + 4n)/2, so we see that

larger denominators than 2 in the definition of ω will not work. If m is even, say

m = 2k , then ω becomes k ±
√
k2 +n , with no denominators at all and we are

back in the situation of a ring Z[
√
D] . If m is odd, say m = 2k+ 1, then ω becomes(

2k+1±
√

4k2 + 4k+ 1+ 4n
)
/2 which equals k+(1±

√
1+ 4d)/2 for d = k2+k+n so

the ring Z[ω] in this case would be the same as when we chose ω = (1+
√

1+ 4d)/2.
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It is known that there are only nine negative discriminants for which R∆ has

unique factorization, the discriminants

∆ = −3,−4,−7,−8,−11,−19,−43,−67,−163

These are exactly the nine negative discriminants for which all quadratic forms of

that discriminant are equivalent. This is not an accident since the usual way one

determines whether unique factorization holds is by proving that unique factorization

holds precisely when all forms of the given discriminant are equivalent, as we will see

later in the chapter. This is for negative discriminants. For positive discriminants the

condition is that all forms are equivalent to either the principal form or its negative.

For positive discriminants the norm form is hyperbolic so it takes on both pos-

itive and negative values. The Euclidean algorithm is then modified so that in the

equations αi−1 = βiαi+αi+1 it is required that |N(αi+1)| < |N(αi)| . It is known that

there are exactly 16 positive fundamental discriminants for which there is a Euclidean

algorithm in R∆ :

∆ = 5,8,12,13,17,21,24,28,29,33,37,41,44,57,73,76

The determination of this list is quite a bit more difficult than for negative discrimi-

nants since the norm no longer has the nice geometric meaning of the square of the

distance to the origin in the plane.

There are many positive fundamental discriminants for which R∆ has unique

factorization even though there is no Euclidean algorithm. The fundamental discrim-

inants less than 100 with this property are 53,56,61,69,77,88,89,92,93,97.

The situation can be improved somewhat by considering a more general notion

of a “norm”. In the proof of unique factorization the key properties of the integer

|N(α)| assigned to each α in R∆ , were that |N(α)| ≥ 0 for all α and N(α) = 0 only

for α = 0. More generally, let us say that a generalized norm on R∆ is any function N

assigning an integer N(α) ≥ 0 to each α in R∆ , such that N(α) = 0 only for α = 0.

Given such a generalized norm function N , suppose that R∆ has a Euclidean algorithm

with respect to N , so for each pair of nonzero elements α0 and α1 in R∆ there exist

elements β1 and α2 of R∆ such that α0 = β1α1+α2 with N(α2) < N(α1) . Then the

earlier argument applies to show that R∆ has unique factorization. It is conjectured

that, conversely, if the ring R∆ with ∆ > 0 has unique factorization then it has a

Euclidean algorithm with respect to some generalized norm. However, this is not true

for ∆ < 0, as R∆ for ∆ = 19,43,67,163 has unique factorization but no Euclidean

algorithm with respect to any generalized norm. The conjecture has been proved for

many positive values of ∆ including all ∆ < 500, although the generalized norms that

work are quite a bit more complicated than the usual norm.
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To conclude this section we give two applications of unique factorization to

quadratic forms. The first will be to find all primitive solutions of x2+7y2 = 2k . This

equation came up in Section 6.2 when we were considering which powers of a prime

that divides the conductor for a given nonfundamental discriminant are represented

by primitive forms of that discriminant. For the form x2 + 7y2 the discriminant is

−28 with class number 1 and conductor 2 so the question was which powers of 2 are

represented by x2 + 7y2 . Obviously 2 and 22 are not represented, but we showed

that all powers 2k with k ≥ 3 are represented. However the method there did not

produce actual primitive solutions of x2+7y2 = 2k so that is what we will find here.

The form x2 + 7y2 is the norm form in Z[
√
−7] so we are looking for elements

x+y
√
−7 of Z[

√
−7] of norm x2+7y2 = 2k with x and y coprime. The ring Z[

√
−7]

does not have unique factorization, so we will enlarge it to Z[ω] for ω = (1+
√
−7)/2

since Z[ω] does have unique factorization. The only units in Z[ω] are ±1 so prime

factorizations are unique up to signs.

We have N(ω) = ωω = 2 so N(ωk) = 2k . The prime factorization of 2k in

Z[ω] is 2k =ωkωk so the elements of Z[ω] of norm 2k are, up to sign, the products

ωlωm with l+m = k . We need to determine which of these products lie in Z[
√
−7]

and are primitive, that is, not an integer multiple of another element of Z[
√
−7] unless

that integer is ±1.

Consider first the case m = 0. If ωk is an element a + b
√
−7 of Z[

√
−7] then

the norm equation a2 + 7b2 = 2k implies that a and b have the same parity. If they

are both even then ωk would be divisible by 2 in Z[
√
−7] and hence also divisible

by 2 in Z[ω] , but this is impossible since 2 factors as ωω and ω is not one of the

prime factors of ωk since ω ≠ ±ω . If a and b are both odd then ωk is 2 times an

element of Z[ω] and we have the same contradiction. Thus we must have m > 0,

and similarly we must have l > 0.

If m = 1 then we are considering the product ωk−1ω which equals 2ωk−2 . This

is twice an element of Z[ω] so it lies in Z[
√
−7] and can be written as x +y

√
−7 for

some integers x and y . If x and y are not coprime, they are divisible by some prime

p which must be 2 since odd primes do not divide 2ωk−2 in Z[ω] , as N(2ωk−2) = 2k .

This leaves the possibility that x and y are both even. If this is the case then we can

cancel a 2 from both sides of the equation 2ωk−2 = x + y
√
−7 to get ωk−2 as an

element of Z[
√
−7] , which is impossible if k ≥ 3 as we saw in the preceding paragraph.

Thus we conclude that x+y
√
−7 = 2ωk−2 gives a primitive solution of x2+7y2 = 2k

when k ≥ 3. Similarly, if l = 1 we would obtain the conjugate solution x − y
√
−7,

just changing the sign of y .

There remains the possibility that both l and m are greater than 1. In these

cases ωlωm would be divisible by 4, giving an element x + y
√
−7 of Z[

√
−7] with

x and y even, so we would not get a primitive solution of x2 + 7y2 = 2k .

Thus we have shown that the equation x2 + 7y2 = 2k has exactly four primitive
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solutions for each k ≥ 3, differing only in the signs of x and y so there is a unique

primitive solution with x and y positive. We can compute this solution by computing

2ωk−2 as an element x +y
√
−7. This can be done inductively using the formula:

(a+ b
√
−7 )

(
1+

√
−7

2

)
=
(a− 7b)+ (a+ b)

√
−7

2

Here is a table of these values for k ≤ 15 :

k 3 4 5 6 7 8 9 10

(a, b) (1,1) (−3,1) (−5,−1) (1,−3) (11,−1) (9,5) (−13,7) (−31,−3)

11 12 13 14 15

(−5,−17) (57,−11) (67,23) (−47,45) (−181,−1)

Omitting the minus signs gives the positive primitive solutions. However, if we tried

to simplify the calculations by omitting the minus signs at each step, this does not

work since for example if we use the solution (3,1) for k = 4 instead of (−3,1) in

the formula
(
(a − 7b) + (a + b)

√
−7

)
/2, this would give the nonprimitive solution

(−2,2) for k = 5 instead of (−5,−1) .

This problem has some history. In the early 1900s the number theorist Ra-

manujan observed that the Diophantine equation x2 + 7 = 2k has solutions for

k = 3,4,5,7,15 and he conjectured that there were no solutions for larger k . In

terms of the preceding example this is saying that the only solutions of x2+7y2 = 2k

with y = 1 occur in these five cases, so x = 1,3,5,11,181 as in the table above.

(Note that a solution with y = 1 must be primitive.) Ramanujan’s conjecture was

later proved in a paper by Skolem, Chowla, and Lewis published in 1959.

For the other application of unique factorization we consider the forms x2+18y2

and 2x2+9y2 of discriminant −72. The class number here is 2 and these forms are

in the two classes. The discriminant −72 is not fundamental since −72 = 32(−8)

with −8 a fundamental discriminant, so the conductor is 3. This leads us to ask

which powers of 3 are represented by the two forms. Neither form represents 3 and

only the second form represents 9, but both forms represent 27, coincidentally when

(x,y) = (3,1) in both cases.

As in the preceding example we will enlarge the ring Z[
√
−18] , which is R∆ for

∆ = −72, to the corresponding ring Z[
√
−2] which is R∆ for ∆ = −8, in order to

take advantage of the fact that Z[
√
−2] has unique factorization while Z[

√
−18] does

not. Note that
√
−18 = 3

√
−2 so Z[

√
−18] is contained in Z[

√
−2] as the numbers

a+ 3b
√
−2.

First we consider the form x2 + 18y2 = N(x + 3y
√
−2) so we are looking for

elements a+ 3b
√
−2 of Z

√
−18] of norm 3k with a and b coprime. An element of

Z[
√
−2] of norm 3 is 1 +

√
−2, so (1 +

√
−2)k has norm 3k . However (1 +

√
−2)k

does not lie in Z[
√
−18] , for suppose (1+

√
−2)k = a+ 3b

√
−2 for some integers a

and b . Taking norms, we would then have 3k = a2 + 18b2 . This implies 3 divides
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a , hence 3 divides (1+
√
−2)k = a+ 3b

√
−2 in Z[

√
−2] , but this is impossible since

the prime factorization of 3 in Z[
√
−2] is (1+

√
−2)(1−

√
−2) and 1−

√
−2 is not a

prime factor of (1+
√
−2)k .

To get an element of Z[
√
−18] of norm 3k we now try 3(1+

√
−2)k−2 which has

this norm and lies in Z[
√
−18] since it is 3 times an element of Z[

√
−2] . Thus we

can write 3(1+
√
−2)k−2 = a+b

√
−18 for some integers a and b . To check whether

a and b are coprime we note first that by taking norms we see that the only prime

that could divide a and b is 3. If 3 does divide a and b we can divide the equation

3(1 +
√
−2)k−2 = a + b

√
−18 by 3 and deduce that (1 +

√
−2)k−2 is an element of

Z[
√
−18] , but we saw in the preceding paragraph that this is not the case if k ≥ 3.

Thus we have a solution of x2 + 18y2 = 3k with coprime integers x and y for each

k ≥ 3.

Now we turn to the form 2x2 + 9y2 . The starting point here is the observation

that if we restrict the form x2 + 18y2 to pairs (x,y) with x even, then we have

(2x)2 + 18y2 which is just 2(2x2 + 9y2) , or twice the form 2x2 + 9y2 . Thus we are

looking for elements 2x+y
√
−18 of Z[

√
−18] of norm 2·3k with x and y coprime.

A reasonable guess might be
√
−2 · 3(1+

√
−2)k−2 which has norm 2·3k . This lies in

Z[
√
−18] since it is 3 times an element of Z[

√
−2] so we can write it as a+ b

√
−18.

A prime dividing a and b must divide the norm 2·3k so it must be 2 or 3. If 2

divided a and b then 4 would divide the norm so this is impossible. If 3 divided a

and b then after canceling this 3 we would have
√
−2(1+

√
−2)k−2 being an element

of Z[
√
−18] , but this is impossible by the same argument that showed (1 +

√
−2)k

was not in Z[
√
−18] . Thus a and b are coprime. It remains only to check that a is

even, but this is immediate from the norm equation a2 + 18b2 = 2·3k .

These arguments show that all the powers 3k with k ≥ 3 are represented by both

x2 + 18y2 and 2x2 + 9y2 . This sort of behavior, with nonequivalent forms of the

same discriminant representing the same prime powers, can only happen for nonfun-

damental discriminants, and then only for powers of primes dividing the conductor,

as we know from Chapter 6.

The trick of realizing 2x2+9y2 as a multiple of the form obtained by restricting

the norm form x2 + 18y2 to certain values of x and y in Z[
√
−18] is in fact part of

a general pattern that will be explored in the next section.

Exercises

1. (a) According to Proposition 8.10, unique factorization fails in Z[
√
D] when D = −3

since the number D(D − 1) = 12 has two distinct prime factorizations in Z[
√
D] . On

the other hand, if we enlarge Z[
√
−3] to Z[ω] for ω = (1 +

√
−3)/2 then unique

factorization is restored. Explain how the two prime factorizations of 12 in Z[
√
−3]

give rise to the same prime factorization in Z[ω] (up to units).
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(b) Do the same thing for the case D = −7.

2. Show that the number 8 has two different prime factorizations in Z[
√
−7] , one

with three prime factors and the other with two prime factors.

3. In R∆ for ∆ = −3 show that the only primes α for which α is a unit times α are√
−3 and units times

√
−3.

4. In this problem we consider Z[
√
−2] , so elements of Z[

√
−2] are sums x +y

√
−2

for integers x and y , with N(x + y
√
−2) = (x +y

√
−2)(x − y

√
−2) = x2 + 2y2 .

(a) Draw the topograph of x2+2y2 including all values less than 70 (by symmetry, it

suffices to draw just the upper half of the topograph). Circle the values that are prime

(prime in Z , that is). Also label each region with its x/y fraction.

(b) Which primes in Z factor in Z[
√
−2]?

(c) Using the information in part (a), list all primes in Z[
√
−2] of norm less than 70.

(d) Draw a diagram in the xy-plane showing all elements x + y
√
−2 in Z[

√
−2] of

norm less than 70 as small dots, with larger dots or squares for the elements that are

prime in Z[
√
−2] . (There is symmetry, so the primes in the first quadrant determine

the primes in the other quadrants.)

(e) Show that the only primes x + y
√
−2 in Z[

√
−2] with x even are ±

√
−2. (Your

diagram in part (d) should give some evidence that this is true.)

(f) Factor 4+
√
−2 into primes in Z[

√
−2] .

(g) Use the unique factorization property in Z[
√
−2] to determine which numbers are

represented by the form x2 + 2y2 , as was done in the text for x2 +y2 .

5. Following the two examples at the end of this section, find primitive solutions of

x2 + 18y2 = 3k and of 2x2 + 9y2 = 3k for k = 3,4,5,6,7,8.

8.3 The Correspondence Between Forms and Ideals

So far in this chapter we have focused on principal forms, and now we begin

to extend what we have done to arbitrary forms. For principal forms we began by

factoring them as a product of two linear factors whose coefficients involved square

roots, for example the factorization x2−Dy2 = (x+
√
Dy)(x−

√
Dy) in the case of

discriminant ∆ = 4D . For a general form Q(x,y) = ax2+bxy+cy2 of discriminant

∆ the corresponding factorization is a(x − αy)(x − αy) where α is a root of the

quadratic equation ax2 + bx + c = 0. Thus we have:

ax2 + bxy + cy2 = a
(
x −

−b +
√
∆

2a
y
)(
x −

−b −
√
∆

2a
y
)
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An equivalent equation that will be more convenient for our purposes is obtained by

multiplying both sides of the preceding equation by the coefficient a :

a(ax2 + bxy + cy2) =
(
ax +

b +
√
∆

2
y
)(
ax +

b −
√
∆

2
y
)

The advantage of writing the equation this way is that in each of the two linear factors

on the right the coefficients of x and y now lie in the ring R∆ since b must have

the same parity as ∆ . Thus if ∆ = 4D we can eliminate the denominator 2 in the

coefficient of y to obtain an element of Z[
√
D] while if ∆ = 4d+1 the fraction lies in

Z[ω] since b is odd. Another thing to observe is that the right side of the equation is

just the norm N
(
ax+ b+

√
∆

2
y
)

, so the displayed equation above can be written more

concisely as aQ(x,y) = N
(
ax + b+

√
∆

2
y
)

.

For a form Q(x,y) = ax2+bxy+cy2 the set of numbers ax+ b+
√
∆

2
y as x and

y range over all integers forms a lattice contained in the larger lattice R∆ in the plane.

Here by a lattice we mean a set of numbers of the form αx + βy for fixed nonzero

elements α and β of R∆ , with x and y varying over Z , and we assume that α and β

do not lie on the same line through the origin. We denote this lattice by L(α,β) and

call α and β a basis for the lattice.

In particular, associated to the form Q we have the lattice LQ = L(a,
b+

√
∆

2
) con-

sisting of all the numbers ax + b+
√
∆

2
y for integers x and y . The earlier equation

aQ(x,y) = N
(
ax + b+

√
∆

2
y
)

then says that the form Q is obtained from the lattice

LQ by taking the norms of all its elements and multiplying by the constant factor 1/a ,

which can be regarded as a sort of normalization constant as we will see in more detail

later.

Let us look at some examples to see what LQ can look like in the case ∆ = −4 so

R∆ = Z[i] , the Gaussian integers. In this case we have ax + b+
√
∆

2
y = ax + (b′ + i)y

where b′ = b/2 is an integer since b always has the same parity as ∆ . For the principal

form x2 + y2 we have a = 1 and b′ = 0 so LQ = L(1, i) = Z[i] . Four more cases are

shown in the figures below.
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2x2 + 2xy +y2 ←→ L(2,1+ i) 5x2 + 4xy +y2 ←→ L(5,2+ i)

5x2 + 6xy + 2y2 ←→ L(5,3+ i) 13x2 + 10xy + 2y2 ←→ L(13,5+ i)

In each case the lattice forms a grid of squares, rotated and expanded from the square

grid formed by Z[i] itself. Not all lattices in Z[i] form square grids since for example

one could have a lattice of long thin rectangles such as L(10, i) .

A 90 degree rotation of the plane about the origin takes a square lattice to itself.

Conversely, a lattice L that is taken to itself by a 90 degree rotation about the origin

must be a square lattice. To see this, observe first that the 90 degree rotation takes a

point α of L that is closest to the origin to another point β of L closest to the origin,

with the sum α+ β giving the fourth vertex of a square of lattice points. The lattice

L(α,β) is then a square lattice contained in L . In fact we must have L = L(α,β) , for if

there were a point of L in the interior of a square of L(α,β) then such a point would

be closer to a corner of the square than the length of the side of the square, which

is impossible since the minimum distance between any two points in a lattice equals

the minimum distance from the origin to a lattice point.

Since 90 degree rotation is the same as multiplication of complex numbers by i ,

we could also say that square lattices are those that are taken to themselves by mul-

tiplication by i . Once a lattice has this property, it follows that multiplication by an

arbitrary element of Z[i] takes the lattice into itself. Namely, if we know that iα is

in a lattice L whenever α is in L , then for arbitrary integers m and n it follows that

mα and niα are in L and hence (m+ni)α is in L .

There is a standard term for this concept. A lattice L in R∆ is called an ideal if

for each element α in L and each β in R∆ the product βα is in L . In other words,
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L is taken to itself by multiplication by every element of R∆ . The term “ideal” may

seem like an odd name, but it originally arose in a slightly different context where it

seems more natural, as we will see later in the chapter. For now we can just imagine

that ideals are the best kind of lattices, “ideal lattices”.

The fact that all lattices LQ in Z[i] are square lattices is a special case of the

following general fact:

Proposition 8.11. For each quadratic form Q = ax2 + bxy + cy2 of discriminant

∆ the lattice LQ = L(a,
b+

√
∆

2
) is an ideal in R∆ .

Proof: To cover all discriminants at once we can write R∆ as Z[τ] for τ = e+
√
∆

2
where

e is 0 if ∆ = 4D and 1 if ∆ = 4d+ 1. What we need to check in order to verify that

the lattice LQ = L(a,
b+

√
∆

2
) is an ideal is that both of the products τ ·a and τ · b+

√
∆

2

are elements of LQ . For the product τ ·a this means we want to solve the equation
e+
√
∆

2
·a = ax + b+

√
∆

2
·y for integers x and y . Comparing the coefficients of

√∆ on

both sides of the equation, we get y = a , an integer. Substituting y = a into the

equation then gives
ea
2
= ax + ba

2
so x = e−b

2
. This is an integer since both e and b

have the same parity as ∆ .

For the other product τ · b+
√
∆

2
we have an equation

e+
√
∆

2
· b+

√
∆

2
= ax + b+

√
∆

2
·y

which we can rewrite as
eb+∆+(e+b)

√
∆

4
= ax+ b+

√
∆

2
y . From the coefficients of

√
∆ we

get y = e+b
2

which is an integer since e and b have the same parity. Then the equation

becomes
eb+∆

4
= ax + eb+b2

4
which simplifies to ∆ = 4ax + b2 . Since ∆ = b2 − 4ac

we have the integer solution x = −c . ⊔⊓

We saw in the case of Z[i] that all ideals are square lattices, so they are obtained

from Z[i] by rotation about the origin and expansion. There are a few other negative

discriminants where the same thing happens and all ideals differ only by rotation

and rescaling, either expansion or contraction. One example is when ∆ = −8 so we

have R∆ = Z[
√
−2] which forms a rectangular lattice with rectangles of side lengths 1

and
√

2. For an arbitrary ideal L in Z[
√
−2] let α be a nonzero point in L closest to the

origin. Since L is an ideal, the product
√
−2α must also be in L . Since multiplication

by
√
−2 rotates the plane by 90 degrees and expands

it by a factor of
√

2, the set of all linear combinations

αx+
√
−2αy for integers x and y forms a rectangular

sublattice L′ of L obtained from Z[
√
−2] by rotation

and expansion. Since we chose α as the closest point

of L to the origin, say of distance A to the origin, there

can be no points of L within a distance less than A of

any point of L′ . In other words, if one takes the union of

the interiors of all disks of radius A centered at points

of L′ , this union intersects L just in L′ . However, this union is the whole plane
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since the ratio of the side lengths of the rectangles of L′ is
√

2. Thus L equals the

rectangular lattice L′ .

This is essentially the same geometric argument we used to show that Z[
√
−2]

has a Euclidean algorithm. There were five negative discriminants ∆ for which R∆
has a Euclidean algorithm, ∆ = −3,−4,−7,−8,−11. The argument in the preceding

paragraph shows that in each of these cases all ideals in R∆ are equivalent under

rotation and rescaling. In the case ∆ = −3 the Eisenstein integers Z[ω] form a grid

of equilateral triangles so all ideals are also grids of equilateral triangles that are

taken to themselves by multiplication by ω , rotating the plane by 60 degrees. Two

examples are shown below.

3x2 + 3xy +y2 ←→ L(3,1+ω) 7x2 + 5xy +y2 ←→ L(7,2+ω)

For ∆ = −7 and −11 the lattice R∆ = Z[ω] for ∆ = −3 is stretched vertically to form

a grid of isosceles triangles and all ideals are also grids of isosceles triangles, rotated

and rescaled from the triangles in R∆ .

We have been using the fact that multiplication by a fixed nonzero complex

number α always has the effect of rotating and rescaling the plane, keeping the origin

fixed. Since multiplication by α sends 1 to α , the rescaling factor is the distance from

α to the origin and the angle of rotation is the angle between the positive x-axis and

the ray from the origin to α . Since α can be any nonzero complex number, every

rotation and rescaling is realizable as multiplication by a suitably chosen α .

Let us look at some examples of discriminants where not all forms are equivalent

to see whether there is more variety in the shapes of the lattices LQ , so they are

not all obtained from R∆ by rotation and rescaling. The examples will all be for

negative discriminants since this is the case that the norm of an element of R∆ has

the geometric interpretation as the square of the distance to the origin, but when we

make general statements about lattices these will apply to both positive and negative

discriminants.

For a first example consider the lattices LQ in Z[
√
−6] for the two nonequivalent

forms x2 + 6y2 and 2x2 + 3y2 of discriminant −24.
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x2 + 6y2 ←→ L(1,
√
−6) 2x2 + 3y2 ←→ L(2,

√
−6)

The two lattices do not appear to differ just by rotation and rescaling, and we can verify

this by computing the ratio of the distances from the origin to the closest lattice point

and to the next-closest lattice point on a different line through the origin. For the

lattice Z[
√
−6] this ratio is 1/

√
6 while for the other lattice it is 2/

√
6. If the lattices

differed only by rotation and rescaling, the ratios would be the same.

Instead of measuring the distances from the origin to a nearby lattice point we

could measure the square of the distance, which is the norm of the lattice point. For

the forms shown above we would then get the ratios 1/6 and 4/6 =
2/3 . It is no accident

that these are the ratios between the coefficients of x2 and y2 in the two forms since

these coefficients give the two smallest values of the forms, which occur on either side

of the source edge in their topographs. The norms of points in the lattice are related

to the values of the form by the formula aQ(x,y) = N(ax+ b+
√
∆

2
y) , so the smallest

norms correspond to the smallest values of the form, with the scaling factor a in the

left side of the formula accounting for the fact that the fraction 4/6 reduces to 2/3 by

dividing numerator and denominator by a = 2.

As another example, consider the lattices LQ in Z[
√
−5] for the nonequivalent

forms x2 + 5y2 and 2x2 + 2xy + 3y2 of discriminant −20.

x2 + 5y2 ←→ L(1,
√
−5) 2x2 + 2xy + 3y2 ←→ L(2,1+

√
−5)

It is clear visually that the two lattices are not related just by rotation and rescaling

since the first lattice is rectangular while the second is not, and we can verify this by

computing the ratios of the norms of the two closest lattice points to the origin lying on

different lines through the origin. For the first lattice the ratio is 1/5 corresponding to

the topograph having a source edge with adjacent labels 1 and 5, as in the preceding

example. For the second lattice the points closest to the origin are ±2 and ±1±
√
−5

with norms 4 and 6, giving a ratio 4/6 which reduces to 2/3 via the rescaling factor

a = 2. The topograph of the second form has a source vertex surrounded by the
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labels 2,3,3 for x/y =
1/0 , 0/1 , and ---1/1 . The two 3’s correspond to the two equal

sides of the isosceles triangles in the figure, of norm 6 which rescales to 3

A slightly more complicated example is Z[
√
−14] with ∆ = −56 where there are

four proper equivalence classes of forms:

x2 + 14y2 ←→ L(1,
√
−14) 2x2 + 7y2 ←→ L(2,

√
−14)

3x2 + 2xy + 5y2 ←→ L(3,1+
√
−14) 3x2 − 2xy + 5y2 ←→ L(3,−1+

√
−14)

For the first two forms the ratios of smallest norms are 1/14 and 4/14 =
2/7 . For the

second two forms the norms of the three sides of the triangles are 9, 15, and 18 so

the ratio for the smaller two norms is 9/15 =
3/5 . The second two forms are equivalent

but not properly equivalent since their topographs have a source vertex surrounded

by the three distinct numbers 3, 5, and 6, the rescalings of the norms 9, 15, and 18.

The topographs of these two forms are mirror images obtained by changing the sign

of x or y , thus changing the sign of the coefficient of the middle term xy in the

form. The corresponding lattices are also mirror images obtained by reflecting across

either the x-axis or the y-axis, which also amounts to changing the sign of x or y .

These two lattices are not equivalent under rotation and rescaling, so none of the four

lattices in this example are equivalent by rotation and rescaling.

Recall that the three values of an elliptic form surrounding a source vertex satisfy

the triangle inequalities, so each value is less than or equal to the sum of the other two.

This means that for the triangles in the lattices the square of each side length is less

than or equal to the sum of the squares of the other two side lengths. Comparing these

inequalities with the Pythagorean theorem, this is just saying that the triangles are

acute triangles, unless the square of one side is actually equal to the sum of the squares

of the other two sides in which case it is a right triangle. This only happens when there

is a source edge instead of a source vertex. In this case the grid is rectangular, with

each rectangle subdivided into two right triangles by either of its diagonals, but there
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is no reason to choose one diagonal rather than the other so it seems best to ignore

the diagonals and just draw the rectangles.

As we noted above, the two lattices L(3,1 +
√
−14) and L(3,−1 +

√
−14) in

Z[
√
−14] are mirror images of each other under reflection across either the x-axis

or the y-axis. Reflecting a lattice across the y-axis gives the same result as reflecting

across the x-axis since lattices always have 180 degree rotational symmetry about

the origin. Reflecting a lattice across the x-axis amounts to taking the conjugates

of all elements of the lattice, so the reflection of a lattice L = L(α,β) is the lattice

L = L(α,β) called the conjugate lattice. If L is an ideal it is easy to check that L is

also an ideal, so in this case L is the conjugate ideal of L . For lattices coming from

forms, the conjugate of L(a, b+
√
∆

2
) is L(a, b−

√
∆

2
) which is the same as L(a, −b+

√
∆

2
) .

A lattice is equal to its conjugate exactly when it is symmetric with respect to

reflection across the coordinate axes. In the example of lattices in Z[
√
−14] the first

two lattices have this symmetry property while the second two do not.

Proposition 8.12. A lattice L(a, b+
√
∆

2
) is equal to its conjugate if and only if b ≡ 0

mod a . These are the rectangular lattices L(a,
√
∆

2
) with b = 0 and the isosceles

triangle lattices L(a, a+
√
∆

2
) with b = a .

Proof: Consider the points of a lattice L(a, b+
√
∆

2
) that are in the same horizontal row

as
b+

√
∆

2
. These points are equally spaced along this row at distance |a| apart. The

lattice equals its conjugate exactly when reflection across the y-axis takes this set

of points to itself, so the only possibilities are that the set contains the point
√
∆

2
or

it contains
a+

√
∆

2
. Hence the lattice is either the rectangular lattice L(a,

√
∆

2
) or the

isosceles triangle lattice L(a, a+
√
∆

2
) . In both cases these are lattices L(a, b+

√
∆

2
) with

b ≡ 0 mod a , and conversely any lattice L(a,
b+

√
∆

2
) with b ≡ 0 mod a is equal to one

of these two lattices since L(a, b+
√
∆

2
) is unchanged when multiples of a are added to

b+
√
∆

2
, thus adding multiples of 2a to b . ⊔⊓

The two types of self-conjugate lattices L(a,
√
∆

2
) and L(a, a+

√
∆

2
) correspond to

the forms ax2 + cy2 and ax2 + axy + cy2 whose topographs have mirror symme-

try. As we saw in Proposition 5.6, all forms with mirror symmetric topographs are

equivalent to forms of these two types.

In general, most ideals L(a, b+
√
∆

2
) are not self-conjugate. For example in the

Gaussian integers Z[i] all ideals are square lattices rotated and expanded from the

full lattice Z[i] , but the only ones that are vertically and horizontally symmetric are

the ones where the angle of rotation is a multiple of 45 degrees, so these are the

lattices Z[i] and L(2,1+ i) or rescalings of these.

The examples we have seen so far lead one to ask how exact a correspondence

there is between proper equivalence classes of forms of a given discriminant ∆ and

the shapes of lattices that are ideals in R∆ , where two lattices that differ only by

rotation and rescaling are regarded as having the same shape. The main theorem
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in this section will be that this is an exact one-to-one correspondence for negative

discriminants, while for positive discriminants there is an analogous one-to-one cor-

respondence using a more algebraic analogue of “shape” for lattices that works for

both positive and negative discriminants.

Before getting to the main theorem we will first explain a few general facts about

lattices in R∆ . Let us write R∆ as Z[τ] for τ =
√
D when ∆ = 4D and τ = 1+

√
∆

2
when

∆ = 4d+ 1. Let L be a lattice in Z[τ] . Since L is not entirely contained in the x-axis

there exist elements m+nτ in L with n > 0. Choose such an element α =m+nτ

with minimum positive n , so α lies in the nth row of Z[τ] and there are no elements

of L in any row between the 0th and the nth rows. Since L is a lattice all elements of

L must then lie in rows numbered an integer multiple of n . In particular the element

kα lies in the knth row for each integer k . These elements kα lie on a line through

the origin, and L must also contain elements not on this line, so some knth row must

contain another element β of L besides kα . The difference β − kα then lies in the

x-axis and is a nonzero integer in L . Choosing a minimal positive integer p in L , the

lattice property of L implies that the integers in L are precisely the integer multiples

of p . It follows that L contains the lattice L(p,α) = L(p,m + nτ) , and in fact L is

equal to L(p,m+nτ) otherwise either p or n would not be minimal. We are free to

change m by adding or subtracting any integer multiple of p without affecting the

lattice, so we may assume 0 ≤m < p .

Thus we see that every lattice L in Z[τ] has a basis of the special type p,m+nτ

for p and n positive integers and m an integer in the range 0 ≤ m < p . Such a

basis is called a reduced basis. A reduced basis for a lattice L is unique since p is

the smallest positive integer in L and the first row of L above the x-axis is in the

nth row of Z[τ] , with the elements of L in this row equally spaced p units apart so

there is a unique such element m + nτ with 0 ≤m < n . Thus one can tell whether

two lattices in Z[τ] are equal by finding a reduced basis for each lattice and seeing

whether these reduced bases are equal.

Let us describe how to compute a reduced basis for a lattice L(α1, α2) where

α1, α2 is an arbitrary given basis. There are three simple ways to change from one

basis to another basis for the same lattice:

(1) Replace one αi with αi + kαj , adding an integer k times the other basis el-

ement αj to αi . Geometrically this changes the parallelogram with vertices

0, α1, α2, α1 + α2 to a parallelogram with one side the same, the side from 0

to αj , but the opposite side with ends αi and αi+αj is translated along the line

containing it.

(2) Replace one αi by −αi .

(3) Interchange α1 and α2 .

These operations on bases can be interpreted as operations on matrices if we let
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α1 = a1 + b1τ and α2 = a2 + b2τ and then consider the matrix A =
(
a1
b1

a2
b2

)
. The

operation (1) changes one column of A by adding k times the other column to it.

Operation (2) multiplies one column by −1, and operation (3) interchanges the two

columns. The goal is to use these three operations to change the given matrix A to a

matrix of the special form
(
a
0
b
c

)
with a and c positive and with 0 ≤ b < a , so this

will be the matrix of a reduced basis.

First we focus on the second row of A . This must have a nonzero entry since α1

and α2 are not both contained in the x-axis. The nonzero entries in the second row

can be made positive by type (2) operations. If both bi entries are positive choose

a column with smallest positive entry bi . By subtracting a suitable multiple of this

column from the other column we can make the other column have its entry bj satisfy

0 ≤ bj < bi . This process can be repeated using columns with successively smaller

second entries until only one nonzero bi remains. Switching this column with the

first column if necessary, we can then assume that b1 = 0 and b2 > 0. Then a1

must be nonzero, and if it is negative we can make it positive by multiplying the first

column by −1. Finally, we can make a2 satisfy 0 ≤ a2 < a1 by adding or subtracting

a multiple of the first column to the second column to finish the process.

An important quantity associated to a lattice L in Z[τ] is the number of parallel

translates of L , including L itself, that are needed to completely cover all points of

the larger lattice Z[τ] . For example if a,b + cτ is a reduced basis for L one can

first translate L horizontally by the numbers 0,1, · · · , a−1 to cover all of the x-axis

and all rows of Z[τ] containing points of L . Then c translates of these rows in the

direction of τ will cover Z[τ] for a total of ac translates of L to cover Z[τ] .

For a lattice L in Z[τ] the number of translates of L needed to cover all of Z[τ]

is called the norm of L and written N(L) . Any two translates of L are either disjoint

or coincide exactly, so there is a unique set of translates of L covering Z[τ] . Thus

there is no ambiguity in the value of N(L) . As the reader can see by looking at the

various lattices we have pictured earlier in this section, the norm of a lattice measures

how “large” or “spread out” the lattice is compared with Z[τ] .

Another way to interpret the norm is in terms of areas. For a basis α,β for a

lattice L consider the parallelogram Pα,β with vertices 0, α , β , and α+ β .

Proposition 8.13. For a lattice L in Z[τ] with basis α,β the area of the parallel-

ogram Pα,β is independent of the choice of the basis α,β . The ratio of this area

to the corresponding area for any basis parallelogram for the full lattice Z[τ] is

equal to the norm N(L) .

Proof: The operations (1)–(3) on bases do not change the area of basis parallelograms,

so every basis parallelogram for L has area equal to the area of Pa,b+cτ for the reduced

basis a,b + cτ for L . To prove the statement about the ratio of areas, note that the

area of Pa,b+cτ does not depend on b so we can assume that b = 0. The parallelogram
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Pa,cτ decomposes as ac nonoverlapping copies of the parallelogram P1,τ for Z[τ] ,

so the ratio of the areas is ac , which is the norm of the lattice L = L(a,b+ cτ) . ⊔⊓

There is also a more algebraic description of the norm of a lattice L(α,β) in

terms of determinants. If we write α = a + bτ and β = c + dτ then we have the

associated matrix
(
a
b
c
d

)
. An operation of type (1) adding a multiple of one column to

the other does not change the determinant of the matrix, while operations (2) and (3)

only change the sign of the determinant. Since the absolute value of the determinant

is unchanged by all three types of operations, it can be computed from a reduced

basis a,b+ cτ where it is ac , the norm of the lattice. Thus for a lattice L with basis

a+ bτ, c + dτ we have N(L) = |ad− bc| .

The sign of the determinant ad− bc has a geometric interpretation as well. We

will say the basis α,β is positively ordered if the angle from the ray from 0 through

α to the ray from 0 through β is between 0 and π , and if the angle

is between 0 and −π then we say the basis is negatively ordered.

Reversing the order of two basis elements thus changes the positive

ordering to the negative ordering and vice versa. The statement is then that α,β is

positively or negatively ordered exactly according to whether ad − bc is positive or

negative. To verify this we again use the operations (1)–(3). Operation (1) does not

change whether a basis is positively ordered or negatively ordered, while operations

(2) and (3) take a positively ordered basis to a negatively ordered basis and vice versa.

The sign of the determinant behaves in exactly the same way, so if we go backwards

through the sequence of operations converting α,β into a reduced basis, which is

obviously positively ordered with positive determinant, we see that at each step the

assertion continues to be true.

Given a lattice L(α,β) and a nonzero element γ of Z[τ] we can multiply all

elements of L by γ to form a new lattice γL = L(γα,γβ) . To check that this is

indeed a lattice we should check that γα and γβ do not lie on the same line through

the origin, but if they did then we would have γα = tγβ for some real number t , and

then after canceling γ from this equation we would have α = tβ which would mean

that α and β were on the same line through the origin, so L(α,β) would not be a

lattice.

When ∆ < 0 the lattice γL is a rotation and rescaling of L , but for ∆ > 0 the

geometric relation between the two lattices is not as simple. There is however a sim-

ple formula relating the norms of L and γL , valid for both positive and negative

discriminants:

Proposition 8.14. N(γL) = |N(γ)|N(L) .

The absolute value is needed when ∆ > 0 since norms of lattices are always

positive but N(γ) can be negative when ∆ > 0. When ∆ < 0 the formula is just

N(γL) = N(γ)N(L) and can be seen geometrically since multiplication by γ rescales
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by the distance from γ to the origin, which is
√
N(γ) , so the areas of parallelograms

are multiplied by N(γ) , the square of the rescaling factor.

Proof: This is a calculation with determinants that will be easier if we regard Z[τ] as

a subset of Q(
√
∆) . Let γ = p + q

√
∆ and let α = a+ b

√
∆ and β = c + d

√
∆ where

p,q,a, b, c, d are rational numbers. Multiplication by γ is a linear transformation of

Q(
√
∆) :

(p + q
√
∆)(x +y

√
∆) = (px + q∆y)+ (qx + py)

√
∆

The matrix of this transformation is
(
p
q
q∆
p

)
. Thus γα and γβ correspond to the

columns of the product
(
p
q
q∆
p

)(
a
b
c
d

)
. The absolute value of the determinant of this

product is therefore N(γL) . This equals the product of the absolute values of the

determinants of the two individual matrices, which is |N(γ)|N(L) since the determi-

nant of the first matrix in the product is p2 −∆q2 = N(γ) and the absolute value of

the determinant of the second matrix in the product is N(L) . ⊔⊓

When L is an ideal in R∆ = Z[τ] then so is γL . This is because if α is in L and

β is in R∆ then β(γα) is in γL since it equals γ(βα) and this is in γL since βα is

in L if L is an ideal.

An important special case is when L = R∆ so γR∆ is the ideal consisting of all

multiples of γ by elements of R∆ . This is called the principal ideal generated by γ .

The usual notation for this ideal is simply (γ) , although this notation can sometimes

be a little confusing since parentheses are also used in formulas for multiplication of

elements. For example, in the previous paragraph we had an equality β(γα) = γ(βα)

in which these were just elements of R∆ , not ideals. However, this equation remains

valid when (γα) and (βα) are regarded as ideals since it is always true for principal

ideals that δ(ε) = (δε) so the equation of ideals β(γα) = γ(βα) can be written as

(βγα) = (γβα) which holds since βγ = γβ .

Since N(R∆) = 1 the preceding proposition gives a simple relationship between

the norm of an element and the norm of the ideal it generates:

Corollary 8.15. N
(
(α)

)
= |N(α)| for each nonzero element α in R∆ . ⊔⊓

For negative discriminants, principal ideals (α) = αR∆ have the same shape as

the full lattice R∆ . Conversely, if an ideal L in R∆ has the same shape as R∆ this

means that L = αR∆ for some complex number α , and α has to lie in R∆ and in

fact in L since α is the element α·1 in αR∆ = L . As the examples earlier in this

section show, for some negative discriminants such as −3,−4,−7,−8, and −11 all

ideals have the same shape and hence all ideals are principal ideals, while for other

negative discriminants there can exist nonprincipal ideals since not all ideals have the

same shape as the principal ideals.

We have been focusing on the ideals LQ = L(a,
b+

√
∆

2
) associated to quadratic

forms Q(x,y) = ax2+bxy+cy2 of discriminant ∆ , and it is natural to ask whether
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every ideal in R∆ is equal to LQ for some form Q of discriminant ∆ . One way to see

that this is not true is to observe that the lattices LQ = L(a,
b+

√
∆

2
) have the special

property that they contain an element
b+

√
∆

2
lying in the first row of the lattice R∆

above the x-axis, but this is not the case for all ideals since we can expand an ideal

LQ by a positive integer factor n to get a new ideal nLQ which has no elements in

the first row of R∆ above the x-axis if n > 1. However, nothing more complicated

than this can happen:

Proposition 8.16. Every ideal in R∆ is equal to nLQ for some positive integer n

and some form Q(x,y) = ax2 + bxy + cy2 of discriminant ∆ with a > 0 .

Since an ideal LQ has an element in the first row of R∆ above the x-axis it cannot

be a multiple nL of any other ideal L with n > 1. We call an ideal with this property

a primitive ideal , in analogy with the definition of a primitive form. The proposition

says that all ideals are positive integer multiples of primitive ideals, and the primitive

ideals are just the ideals LQ coming from forms.

Proof: We write R∆ as Z[τ] as before. Let L be an ideal in Z[τ] . Since L is a lattice

it has a reduced basis p,m + nτ . Then pτ lies in L since p does. Since pτ is

in the pth row of Z[τ] we must have p = an for some positive integer a . For

α =m+nτ the product ατ must also lie in L . In the case ∆ = 4D we have τ =
√
D

so ατ =mτ+nτ2 =mτ+nD . This is in the mth row of Z[τ] so n must divide m ,

say m = nq . In the case ∆ = 4d + 1 we have τ2 = τ + d so ατ = (m + n)τ + nd .

This is in the (m + n)th row of Z[τ] so n divides m + n and hence also m so we

can again write m = nq . Thus L = L(p,m + nτ) = L(na,nq + nτ) = nL(a, q + τ) .

Here L(a, q + τ) is an ideal since nL(a, q + τ) is an ideal.

To finish the proof we would like to find integers b and c such that q+τ = b+
√
∆

2

and ∆ = b2 − 4ac since L(a, q + τ) will then be LQ for Q = ax2 + bxy + cy2 with

discriminant ∆ . Consider first the case ∆ = 4D so q+τ = q+
√
D . This is an element

of the ideal L(a, q +
√
D) so if we multiply it by its conjugate q + τ = q −

√
D we get

an integer lying in L(a, q +
√
D) . This integer must be a multiple of a , the smallest

positive integer in L(a, q +
√
D) , so we have (q + τ)(q + τ) = (q +

√
D)(q −

√
D) =

q2−D = ac for some integer c . Hence (2q)2−4D = 4ac , and since 4D = ∆ this can

be rewritten as ∆ = b2 − 4ac for b = 2q . We also have q + τ = q +
√
D = b+

√
∆

2
so

the case ∆ = 4D is finished.

In the other case ∆ = 4d+ 1 we again look at the product (q+ τ)(q+ τ) . By the

same reasoning as in the first case this must be a multiple of a , so (q+τ)(q+τ) = ac

for some integer c . Writing this out, we have
(
q+ 1+

√
∆

2

)(
q+ 1−

√
∆

2

)
= ac . Multiplying

this equation by 4 gives
(
2q + 1 +

√
∆)(2q + 1 −

√
∆) = 4ac which simplifies to

(2q + 1)2 − ∆ = 4ac . Thus if we take b = 2q + 1 we have ∆ = b2 − 4ac and

q + τ = q + 1+
√
∆

2
= b+

√
∆

2
. This finishes the case ∆ = 4d+ 1. ⊔⊓
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The preceding proposition allows us to relate norms of ideals to the representa-

tion problem for forms. As we know, the numbers represented by the principal form

of discriminant ∆ are just the norms of primitive elements of R∆ . If we now consider

all forms, not just the principal form, then there is an analogous statement for norms

of ideals in R∆ :

Proposition 8.17. The positive numbers represented by forms of discriminant ∆ are

exactly the norms of primitive ideals in R∆ . More specifically, the positive numbers

represented by a form Q are exactly the norms of ideals LQ′ associated to forms

Q′ equivalent to Q .

Since the norms of arbitrary ideals are just squares times the norms of primitive

ideals, it follows that the norms of all ideals are just the positive values of all forms

of the given discriminant.

Proof: If a positive number a is represented by a form of discriminant ∆ then this

form is equivalent to a form ax2 + bxy + cy2 . The associated ideal L(a, b+
√
∆

2
)

has norm a and is primitive. Thus all positive represented numbers are norms of

primitive ideals. Conversely, by Proposition 8.16 every primitive ideal can be written

as the ideal L(a,
b+

√
∆

2
) associated to a form ax2+bxy+cy2 of discriminant ∆ with

a > 0. This form represents a and the ideal L(a, b+
√
∆

2
) has norm a , so all norms of

primitive ideals are represented by forms. ⊔⊓

Let us look at an example, the case ∆ = −24 with R∆ = Z[
√
−6] . Here the class

number is 2 corresponding to the forms x2 + 6y2 and 2x2 + 3y2 .

To each form ax2+bxy+cy2 of discriminant −24 we have the associated primitive

ideal L(a, b+
√
−24

2
) = L(a, b

2
+
√
−6) of norm a . This corresponds to a region labeled

a in one of the two topographs, with b the label on one of the edges bordering this

region. The sign of b depends on the orientation of this edge, and in the topographs

shown above we have oriented the edges to make all edge labels positive. We could in-

stead orient the edges surrounding the a region so that their labels form an arithmetic
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progression with increment 2a when traversed in the clockwise direction around the

border of the a region. Then there is a unique edge such that 0 ≤ b < 2a , or equiv-

alently 0 ≤ b
2
< a , which is exactly the condition for the basis a,

b
2
+
√
−6 to be a

reduced basis for the ideal L(a, b
2
+
√
−6) . Thus there is an exact one-to-one corre-

spondence between primitive ideals and regions in the two topographs since any two

regions with the same a and b labels must be related by an orientation-preserving

symmetry of the topograph, but these topographs have only mirror symmetry.

For example, ideals of norm 5 correspond to regions labeled 5 in the two to-

pographs, and there are just two of these, both in the second topograph, with the

upper region corresponding to L(5,2+
√
−6) (from the edge labeled 4) and the lower

region corresponding to L(5,3+
√
−6) (from the edge labeled 6). Thus these are the

only two ideals of norm 5. These two ideals are conjugate since the conjugate of

L(5,2+
√
−6) is L(5,2−

√
−6) = L(5,−2+

√
−6) = L(5,3+

√
−6) . This happens gen-

erally for all regions in the topographs, as conjugate ideals are obtained by reflecting

across the horizontal line of symmetry of the topographs. The two regions in each

topograph that intersect the symmetry line correspond to ideals that equal their con-

jugate, namely L(1,
√
−6) = Z[

√
−6] and L(6,

√
−6) = (

√
−6) for the first topograph,

and L(2,
√
−6) and L(3,

√
−6) for the second topograph.

Nonprimes can appear more than twice in the topographs, as happens for 35

which appears four times. From these regions we can read off the four ideals of

norm 35. In the upper half of the second topograph the two regions labeled 35 give

the ideals L(35,8+
√
−6) and L(35,13+

√
−6) and in the lower half of the topograph

we have their conjugates L(35,27+
√
−6) and L(35,22+

√
−6) .

The ideals corresponding to regions in the first topograph are principal ideals

since the form here is the norm form N(x + y
√
−6) = x2 + 6y2 . For example the

label 25 in the upper right is the norm of the ideal L(25,13+
√
−6) , from the edge

labeled 26, and similarly the label 25 in the lower right is the norm of the ideal

L(25,12+
√
−6) . These two regions correspond to the fractions x/y = ±

1/2 so 25 is

the norm of 1+2
√
−6 and 1−2

√
−6, hence also of the principal ideals (1+2

√
−6) and

(1+ 2
√
−6) . The principal ideal (5) has norm 25 as well but is not a primitive ideal.

The ideal L(25,13+
√
−6) , being primitive, must therefore be either (1 + 2

√
−6) or

(1−2
√
−6) . To decide which, we need to determine which of the two principal ideals

contains 25 and 13+
√
−6. They both contain 25 since 25 = (1+ 2

√
−6)(1− 2

√
−6)

so we need to determine whether 13+
√
−6 is a multiple of 1+2

√
−6 or of 1−2

√
−6

by an element of Z[
√
−6] . This is done by computing the relevant quotients:

13+
√
−6

1+ 2
√
−6
=

13+
√
−6

1+ 2
√
−6
·

1− 2
√
−6

1− 2
√
−6
=

25− 25
√
−6

25
= 1−

√
−6

13+
√
−6

1− 2
√
−6
=

13+
√
−6

1− 2
√
−6
·

1+ 2
√
−6

1+ 2
√
−6
=

1+ 27
√
−6

25

This last quotient is not in Z[
√
−6] so we conclude that L(25,13+

√
−6) is the principal
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ideal (1+ 2
√
−6) . Taking conjugates gives L(25,12+

√
−6) = (1− 2

√
−6) .

For most negative discriminants the same one-to-one correspondence holds be-

tween primitive ideals and regions in the topographs for that discriminant, where for

topographs without mirror symmetry we should take both the topograph itself and its

mirror image topograph. The only exceptional negative discriminants are ∆ = −3 and

∆ = −4, the two cases when the topographs have orientation-preserving symmetries.

In these cases the regions that correspond to each other under orientation-preserving

symmetries correspond to a single primitive ideal. For positive discriminants the sit-

uation is very similar, the only differences being that one only considers regions in

the topographs with positive labels, and then the primitive ideals correspond to re-

gions within one period of the periodic topograph since the orientation-preserving

symmetries are just the translations along the periodic separator line.

As we saw in Chapter 6, a key part of the problem of determining which numbers

are represented by forms of a given discriminant is determining which primes are

represented. The corresponding problem for ideals is to determine which primes p

are norms of ideals in R∆ . These ideals must be primitive, the ideals L(p, b+
√
∆

2
) for

∆ a square mod 4p , namely ∆ ≡ b2 mod 4p , coming from the equation ∆ = b2−4ac

with a = p .

In Proposition 6.15 we saw that if a prime p is represented by a form of discrim-

inant ∆ then this form is unique up to equivalence. Furthermore, by Proposition 6.16

all the appearances of p in a topograph are images of each other under symmetries

of the topograph. This means that there are at most two ideals in R∆ of norm p , the

ideal L
(
p, b+

√
∆

2

)
and its conjugate L

(
p, b−

√
∆

2

)
= L

(
p, −b+

√
∆

2

)
. When the ideal and its

conjugate are equal there is only one ideal of norm p .

Proposition 8.18. (a) The ideals in R∆ of prime norm p with p odd are:

For ∆ = 4d , the ideal L(p, B +
√
d) and its conjugate L(p,−B +

√
d) , where

d ≡ B2 mod p .

For ∆ odd, the ideal L(p, B+ 1+
√
∆

2
) and its conjugate L(p,−B−1+ 1+

√
∆

2
) , where

∆ ≡ (2B + 1)2 mod p .

(b) The ideals in R∆ of norm 2 are:

For ∆ = 4d with d even, the ideal L(2,
√
d) .

For ∆ = 4d with d odd, the ideal L(2,1+
√
d) .

For ∆ = 8k+ 1 , the ideal L(2, 1+
√
∆

2
) and its conjugate L(2,1+ 1+

√
∆

2
) .

(c) An ideal of prime norm p equals its conjugate if and only if p divides ∆ .

Proof: The condition for p to be the norm of an ideal in R∆ is that ∆ ≡ b2 mod 4p

for some integer b , and the ideal is then L(p,
b+

√
∆

2
) . If ∆ = 4d then b must be even

so b = 2B for some integer B . The congruence ∆ ≡ b2 mod 4p is then equivalent

to d ≡ B2 mod p . The ideal in this case is L(p, B +
√
d) . If ∆ is odd then so is b

and we can write b = 2B + 1. The congruence ∆ ≡ b2 mod 4p is then ∆ ≡ (2B + 1)2
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mod 4p . This implies ∆ ≡ (2B + 1)2 mod p and the converse is also true since

∆ ≡ (2B + 1)2 mod 4 when ∆ is odd, both sides of this congruence being 1 mod 4.

The ideal L
(
p,

b+
√
∆

2

)
is then L

(
p,B + 1+

√
∆

2

)
. This finishes part (a).

When p = 2 the congruence ∆ ≡ b2 mod 4p becomes ∆ ≡ b2 mod 8 which is

solvable just when ∆ ≡ 0,1,4 mod 8, with solutions b = 0,1,2. This gives the ideals

in part (b). (The first two ideals equal their conjugates so there is no need to include

their conjugates.)

For part (c) the condition for L(p,
b+

√
∆

2
) to equal its conjugate is that p divides

b , by Proposition 8.12. When p is prime this is equivalent to p dividing ∆ since

∆ = b2 − 4pc . ⊔⊓

We have seen how to go from a quadratic form Q to an ideal LQ , and it will be

useful to go in the opposite direction as well, from an ideal L in R∆ to a quadratic

form QL of discriminant ∆ . As motivation we can start with the earlier formula

aQ(x,y) = N(ax + b+
√
∆

2
y) which says that, up to the constant factor a , the form

Q(x,y) = ax2 + bxy + cy2 can be obtained by restricting the usual norm in R∆ to

the elements ax + b+
√
∆

2
y in the ideal LQ . We can try the same thing for any lattice

L = L(α,β) in R∆ , defining a quadratic form by:

Q(x,y) = N(αx + βy) = (αx + βy)(αx + βy) = ααx2 + (αβ+αβ)xy + ββy2

Here the coefficients of x2 , xy , and y2 are integers since they are equal to their

conjugates. The form Q depends on the choice of the basis α,β for L . Another basis

α′, β′ can be expressed as linear combinations α′ = pα + qβ , β′ = rα + sβ with

integer coefficients. Since the change of basis can be reversed, going from α′, β′ back

to α,β , the 2× 2 matrix
(
p
r
q
s

)
has determinant ±1, and conversely any such matrix

gives a valid change of basis for L . Changing the basis also produces a change of

variables in the form Q(x,y) since N(α′x+β′y) = N
(
(pα+ qβ)x + (rα+ sβ)y

)
=

N
(
α(px+ry)+(β(qx+sy)

)
= Q(px+ry, qx+sy) . Here the matrix is the transpose(

p
q
r
s

)
, with the same determinant ±1. Thus changing the basis for L produces an

equivalent form, and every equivalent form can be realized by some change of basis

for L .

The form N(αx + βy) depends on the ordering for the two basis elements α

and β since reversing their order interchanges x and y , which gives a mirror image

topograph. We can eliminate this ambiguity by always using the positive ordering for

α and β . If we only use positively ordered bases, then the change of basis matri-

ces have determinant +1 since a change of basis transformation takes a positively

ordered basis to a positively ordered basis if and only if its matrix has positive deter-

minant. This is because changing a basis amounts to replacing its matrix
(
a
b
c
d

)
by a

product
(
p
r
q
s

)(
a
b
c
d

)
with

(
p
r
q
s

)
the matrix of the change of basis. Thus if we always

use positively ordered bases, the lattice L gives rise to a proper equivalence class of

quadratic forms.
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The norm form N(αx + βy) associated to a lattice L = L(α,β) in R∆ might not

have discriminant ∆ . For example, if we replace L by nL = L(nα,nβ) this multiplies

the norm form by n2 and so the discriminant is multiplied by n4 . We can always

rescale a form to have any discriminant we want just by multiplying it by a suitable

positive constant, but this may lead to forms with noninteger coefficients. To illustrate

this potential difficulty, suppose we take ∆ = −4 so R∆ = Z[i] . The lattice L(2, i) in

Z[i] yields the form N(2x+ iy) = 4x2 +y2 of discriminant −16, but to rescale this

to have discriminant −4 we would have to take the form 2x2 + 1
2
y2 .

Fortunately this problem does not occur if we consider only lattices that are ideals.

By Proposition 8.16 each ideal L in R∆ is equal to a multiple nLQ = L(na,n
b+

√
∆

2
)

for some form Q(x,y) = ax2 + bxy + cy2 of discriminant ∆ with a > 0. We have

aQ(x,y) = N(ax + b+
√
∆

2
y) , hence n2aQ(x,y) = N(nax + nb+

√
∆

2
y) which is the

norm form for L in the basis na,nb+
√
∆

2
. This basis is positively ordered since a > 0.

By dividing this norm form for L by n2a we get a form with integer coefficients and

discriminant ∆ , namely the form Q . If we change the basis na,nb+
√
∆

2
for L to

some other positively ordered basis α,β it is still true that the form
1
n2a
N(αx+βy)

has integer coefficients and discriminant ∆ since this just changes Q to a properly

equivalent form.

Note that the scaling factor n2a is the norm N(L) of the ideal L = nL(a, b+
√
∆

2
) .

Thus we have shown:

Proposition 8.19. For an ideal L in R∆ with positively ordered basis α,β the form
1

N(L)N(αx + βy) has integer coefficients and discriminant ∆ . ⊔⊓

For an ideal L with positively ordered basis α,β the form
1

N(L)N(αx + βy) will

be denoted by QL , although a more precise notation might include α and β since the

form depends on the choice of basis.

Different ideals L in R∆ can give properly equivalent forms QL . Obviously a

rescaling nL of L gives the same form QnL = QL . More generally, suppose we multi-

ply all elements of an ideal L = L(α,β) by a fixed nonzero element γ of R∆ to get a new

ideal γL = L(γα,γβ) . Taking norms, we have N(γαx + γβy) = N(γ)N(αx + βy) ,

so if N(γ) > 0 the new form N(γαx+ γβy) is just a rescaling of N(αx+ βy) , with

rescaling factor N(γ) . Thus after rescaling to get discriminant ∆ we have QγL = QL

when N(γ) > 0. Specifically, if we use the formula N(γL) = |N(γ)|N(L) then when

N(γ) > 0 we have:

N(γαx + γβy)

N(γL)
=
N(γ)N(αx + βy)

N(γ)N(L)
=
N(αx + βy)

N(L)

As a technical point, we should check that γα,γβ is positively ordered if α,β is

positively oriented. When ∆ < 0 this is automatic since multiplication by γ just

rotates and rescales the plane. When ∆ > 0 we can argue as follows. As we saw in the

proof of Proposition 8.14, multiplication in Q(
√
∆) by a fixed element γ = p + q

√
∆
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is a linear transformation with matrix
(
p
q
q∆
p

)
. This has determinant p2 − ∆q2 =

N(p+q
√∆) , so if N(γ) > 0 the matrix corresponding to the basis γα,γβ has positive

determinant exactly when the matrix corresponding to α,β has positive determinant.

When ∆ < 0 we always have N(γ) > 0, but when ∆ > 0 it is possible to have

N(γ) < 0. In this case the form N(γαx + γβy) is the negative of a rescaling of

N(αx + βy) and the basis γα,γβ is oppositely ordered from α,β , so QγL is the

negative of the mirror image form of QL .

Since the forms QL and QγL are properly equivalent when N(γ) > 0, we would

like to regard the ideals L and γL as being equivalent. Any reasonable notion of

equivalence should have the property that two things equivalent to the same thing are

equivalent to each other, but this does not seem to hold for the notion of equivalence

that we just considered since if two ideals L and L′ are equivalent to the same ideal

γL = γ′L′ for some γ and γ′ in R∆ , then it does not follow that L′ = δL or L = δL′

for some δ in R∆ since the quotients γ/γ′ and γ′/γ might not lie in R∆ .

To avoid this difficulty we define two ideals L and L′ in R∆ to be equivalent ,

written L ∼ L′ , if γL = γ′L′ for some nonzero elements γ,γ′ in R∆ . If in addition

N(γ) > 0 and N(γ′) > 0 then we say L and L′ are strictly equivalent and write

L ≈ L′ . In particular we have L ∼ γL for each nonzero γ in R∆ since if we let L′ = γL

and γ′ = 1 then the equation γL = γ′L′ becomes just γL = L′ . Similarly, L ≈ γL for

every γ with N(γ) > 0.

Conversely, a general equivalence L ∼ L′ can be realized as a pair of equivalences

of the special type originally considered, namely L ∼ γL = γ′L′ ∼ L′ and likewise for

strict equivalences. Thus we have not really changed the underlying idea by defining

the two kinds of equivalence ∼ and ≈ as we did. What we have gained is the property

that two things equivalent to the same thing are equivalent to each other, which can

be expressed as the assertion that if L ∼ L′ and L′ ∼ L′′ then L ∼ L′′ . This holds since

if γL = γ′L′ and δL′ = δ′L′′ then δγL = δγ′L′ = δ′γ′L′′ so L ∼ L′′ . This reasoning

also works with ≈ in place of ∼ by adding the condition that all of γ,γ′, δ, δ′ have

positive norm, hence all their products have positive norm as well.

For negative discriminants there is no difference between equivalence and strict

equivalence of ideals since norms of nonzero elements of R∆ are always positive,

but for positive discriminants there can be a difference. This happens for example

when ∆ = 12. Here the two forms x2 − 3y2 and 3x2 − y2 correspond to the ideals

(1,
√

3) = (1) and (3,
√

3) = (
√

3) in R∆ = Z[
√

3] . These two ideals are equivalent

since (
√

3) = γ(1) for γ =
√

3. However, N(
√

3) = −3 so this does not show the

ideals are strictly equivalent. In fact they are not strictly equivalent since if they were,

then the forms x2 − 3y2 and 3x2 −y2 would be properly equivalent, but this is not

the case as one can see from their topographs or from the fact that the character χ3

takes the value +1 on the first form and −1 on the second form.

This example can be contrasted with the case ∆ = 8 with R∆ = Z[
√

2] . Here
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the two forms x2 − 2y2 and 2x2 − y2 correspond to the ideals (1,
√

2) = (1) and

(2,
√

2) = (
√

2) . Again the two ideals are equivalent since (
√

2) = γ(1) for γ =
√

2,

with N(
√

2) = −2. There is a unit ε = 1+
√

2 of norm −1 so we have (
√

2) = (ε
√

2) =

(2 +
√

2) = γ(1) for γ = 2 +
√

2 with N(2 +
√

2) > 0 and hence the ideals (1) and

(
√

2) are strictly equivalent. In fact the forms x2 − 2y2 and 2x2 − y2 are properly

equivalent as one can see from their topographs.

In the previous example with ∆ = 12 there is no unit of norm −1 since −1 is

represented by the form 3x2 − y2 but not by the norm form x2 − 3y2 . As we will

now see, the distinction between equivalence and strict equivalence of ideals is entirely

accounted for by the existence or nonexistence of units of norm −1.

Proposition 8.20. For positive discriminants ∆ the relations of equivalence and

strict equivalence of ideals in R∆ are the same if and only if there is a unit in R∆
of norm −1 .

Note that it suffices to consider only the fundamental unit since if this has norm

+1 then all units have norm +1.

Proof: Suppose there is a unit ε in R∆ with N(ε) = −1 and suppose two ideals L and

M are equivalent via an equality αL = βM . We have αL = εαL so we can arrange that

N(α) > 0 by replacing α with εα if necessary. In the same way we can arrange that

N(β) > 0. Thus L and M are strictly equivalent.

For the converse, suppose equivalence is the same as strict equivalence. Since we

assume ∆ > 0, there exist elements α in R∆ with N(α) < 0. The ideals R∆ and αR∆
are equivalent so by hypothesis they are strictly equivalent. This means βR∆ = γαR∆
for some elements β and γ in R∆ of positive norm. Since β is in βR∆ = γαR∆ we

have β = γαδ for some δ in R∆ . Also γα is in γαR∆ = βR∆ so γα = βε for some

ε in R∆ . Thus β = γαδ = βεδ and hence 1 = εδ since β ≠ 0. Thus δ and ε are

units. The equation γα = βε implies that N(ε) < 0 since N(γ) > 0, N(α) < 0, and

N(β) > 0. Since ε is a unit, its norm is then −1. ⊔⊓

Now we come to the main result in this section:

Theorem 8.21. There is a one-to-one correspondence between the set of strict equiv-

alence classes of ideals in R∆ and the set of proper equivalence classes of quadratic

forms of discriminant ∆ . Under this correspondence an ideal L with a positively

ordered basis α,β corresponds to the form QL(x,y) =
1

N(L)N(αx+βy) , and a form

Q(x,y) = ax2 + bxy + cy2 with a > 0 corresponds to the ideal LQ = L(a,
b+

√
∆

2
) .

(When ∆ < 0 we are considering only forms with positive values, as usual.)

For example, when all forms of discriminant ∆ are equivalent and hence properly

equivalent, the theorem says that all ideals are strictly equivalent. When ∆ < 0 this is

saying that all ideals have the same shape, or equivalently that all ideals are principal

ideals. The negative discriminants for which this happens are −3,−4,−7,−8,−11,
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−19,−43,−67, and −163. For the first five of these we already saw that all ideals

have the same shape using a geometric argument, but that argument does not apply

in the last four cases.

The condition a > 0 in the theorem plays a role only when ∆ > 0, but its role is

sometimes important. For example, the principal form x2 + bxy + cy2 corresponds

to the ideal L(1, b+
√
∆

2
) which equals R∆ since it contains 1, but without the condition

a > 0 the negative of the principal form would correspond to L(−1, −b+
√
∆

2
) which

also equals R∆ since it contains −1. However, for some values of ∆ such as ∆ = 12

the principal form is not equivalent to its negative.

Proof: Let Φ be the function from the set of strict equivalence classes of ideals to

the set of proper equivalence classes of forms induced by sending an ideal L with a

positively ordered basis α,β to the form Q(x,y) = N(αx+βy)/N(L) . The function

Φ is well defined since we have seen that changing one positively ordered basis for L

to another changes the associated form to a properly equivalent form, and replacing L

with basis α,β by γL with basis γα,γβ leaves the form unchanged when N(γ) > 0.

To see that Φ is onto, note first that in each proper equivalence class of forms

there are forms Q(x,y) = ax2 + bxy + cy2 with a > 0 since the topograph of an

elliptic or hyperbolic form always contains some positive numbers, so we can choose

Q so that Q(1,0) > 0. Then Q = QL for the ideal L = LQ = L(a, b+
√
∆

2
) since

QL = N(ax +
b+

√
∆

2
y)/N(L) = ax2 + bxy + cy2 , using the fact that N(L) = a .

To show that Φ is one-to-one, suppose we have two ideals L and L′ with positively

oriented bases α,β and α′, β′ such that the associated forms QL and QL′ with respect

to these bases are properly equivalent. We can assume the basis α,β is chosen so that

QL(1,0) > 0. Since QL and QL′ are properly equivalent we can then choose α′, β′ so

that we have actual equality QL(x,y) = QL′(x,y) for all x and y . We have N(α) =

QL(1,0)·N(L) > 0 and N(α′) = QL′(1,0)·N(L
′) > 0 since QL(1,0) = QL′(1,0) > 0.

The forms N(αx + βy) and N(α′x + β′y) are rescalings of each other since

they rescale to the same form QL(x,y) = QL′(x,y) . Let γ = β/α and γ′ = β′/α′ ,

elements of Q(
√
∆) . We have N(αx + βy) = N(α)N(x + γy) and N(α′x + β′y) =

N(α′)N(x+γ′y) so the two forms N(x+γy) = N(αx+βy)/N(α) and N(x+γ′y) =

N(α′x + β′y)/N(α′) are also rescalings of each other. Note that these two forms

have rational coefficients, not necessarily integers. Since the forms N(x + γy) and

N(x + γ′y) are rescalings of each other and take the same value at (x,y) = (1,0) ,

namely N(1) = 1, they must actually be equal.

Next we show that in fact γ = γ′ . Let γ = r + s
√
∆ and γ′ = r ′ + s′

√
∆ with

r , s, r ′, s′ in Q . We have N(x + γy) = N(x + γ′y) for all integers x and y so in

particular N(γ) = N(γ′) which means r 2−s2∆ = r ′2−s′2∆ . Also N(1+γ) = N(1+γ′)

so the difference N(1 + γ) − N(γ) =
(
(r + 1)2 − s2∆) − (r 2 − s2∆) = 2r + 1 equals

the difference N(1 + γ′) − N(γ′) = 2r ′ + 1 and hence r = r ′ . From the earlier

equation r 2 − s2∆ = r ′2 − s′2∆ we then get s = ±s′ . The bases 1, γ and 1, γ′ are
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positively ordered since this was true for α,β and α′, β′ and multiplication by α and

α′ preserves orientation of the plane since N(α) > 0 and N(α′) > 0. Since both 1, γ

and 1, γ′ are positively ordered we must have s > 0 and s′ > 0 so s = s′ . Thus

γ = γ′ as claimed.

The lattice L(1, γ) may not lie in R∆ since γ is only an element of Q(
√
∆) , but we

can rescale L(1, γ) to a lattice nL(1, γ) = L(n,nγ) in R∆ by multiplying by a positive

integer n such that nγ is in R∆ . Using the symbol ≈ to denote strict equivalence of

ideals, we then have:

L = L(α,β) ≈ nL(α,β) = L(nα,nβ) = L(nα,nαγ) = αL(n,nγ) ≈ L(n,nγ)

Similarly, L′ ≈ L(n′, n′γ′) for some positive integer n′ , but we can choose n′ = n

since γ = γ′ . Thus both L and L′ are strictly equivalent to L(n,nγ) so they are

strictly equivalent to each other. This finishes the proof that Φ is one-to-one. ⊔⊓

To illustrate the theorem consider the case ∆ = 60 where there are four proper

equivalence classes of forms, given by x2−15y2 , 15x2−y2 , 3x2−5y2 , and 5x2−3y2 .

The corresponding ideals in R∆ = Z[
√

15] are (1,
√

15) = (1) , (15,
√

15) = (
√

15) ,

(3,
√

15) , and (5,
√

15) . According to the theorem no two of these ideals are strictly

equivalent, although the first two are equivalent since (
√

15) =
√

15(1) and the second

two are equivalent since
√

15(3,
√

15) = 3(5,
√

15) . This corresponds to the fact that

the two forms in each pair are negative mirror images of each other, although all four

forms have mirror symmetry so taking mirror images makes no difference.

For another example take ∆ = 136 with class number 4 realized by the forms

x2−34y2 , 34x2−y2 , and 3x2±2xy−11y2 as we saw in an example in Section 7.4 that

displayed an interesting combination of symmetry and skew symmetry properties. In

R∆ = Z[
√

34] the four forms correspond to the ideals (1,
√

34) = (1) , (34,
√

34) =

(
√

34) , and (3,1±
√

34) . The first two ideals are obviously equivalent. For the second

two, if we multiply (3,1+
√

34) by some γ with N(γ) < 0, for example γ =
√

34, we

get an ideal corresponding to the negative mirror image of the form 3x2+2xy−11y2 .

The topograph of this form has rotational skew symmetries but no mirror symmetries,

so its negative mirror image is 3x2 − 2xy − 11y2 . Thus
√

34(3,1 +
√

34) must be

strictly equivalent to (3,1−
√

34) , so (3,1+
√

34) and (3,1−
√

34) are equivalent but

not strictly equivalent. This is true also for the other two ideals (1) and (
√

34) but for

a different reason since the forms x2 − 34y2 and 34x2 − y2 have mirror symmetry

but no skew symmetries rather than vice versa.

The correspondence between forms and ideals includes nonprimitive forms as

well as primitive forms, but the ideals corresponding to primitive and nonprimitive

forms behave somewhat differently. Let us illustrate this by the example of discrimi-

nant ∆ = −12 where there are two equivalence classes of forms, given by the primitive

form x2 + 3y2 and the nonprimitive form 2x2 + 2xy + 2y2 .
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x2 + 3y2 ←→ L(1,
√
−3) 2x2 + 2xy + 2y2 ←→ L(2,1+

√
−3)

The ideal for 2x2+ 2xy + 2y2 is a lattice of equilateral triangles, and this lattice has

the special property that it is taken to itself not just by multiplication by elements

of R∆ = Z[
√
−3] but also by the 60 degree rotation given by multiplication by the

element ω = (1+
√
−3)/2 in the larger ring Z[ω] which is R∆ for ∆ = −3. Hence the

lattice L(2,1+
√
−3) is taken to itself by all elements of Z[ω] and so this lattice is an

ideal in Z[ω] , not just in the original ring Z[
√
−3] .

More generally, suppose we start with a form Q = ax2 + bxy + cy2 of dis-

criminant ∆ and then consider the nonprimitive form kQ = kax2 + kbxy + kcy2

of discriminant k2∆ for some integer k > 1. The associated ideal LkQ is then

L(ka,
kb+k

√
∆

2
) = kL(a,

b+
√
∆

2
) = kLQ . This is an ideal not just in Rk2∆ but also in

the larger ring R∆ since it is k times an ideal in R∆ , namely k times LQ .

Let us say that an element α in Q(
√
∆) stabilizes an ideal L in R∆ if αL is

contained in L , and let us call the set of all such elements α the stabilizer of L . The

stabilizer of L contains R∆ and is a ring itself since if two elements α and β in Q(
√
∆)

stabilize L then so do α± β and αβ . If the stabilizer of L is exactly R∆ then we will

say that L is stable.

For example, principal ideals (γ) are stable since if α(γ) is contained in (γ) then

in particular αγ is in (γ) and so we have αγ = βγ for some β in R∆ . Canceling γ ,

we then have α = β so α is an element of R∆ .

Proposition 8.22. A form Q of discriminant ∆ is primitive if and only if the corre-

sponding ideal LQ in R∆ is stable.

Proof: We observed above that a nonprimitive form Q of discriminant ∆ gives an

ideal LQ with stabilizer larger than R∆ . For the converse we wish to show that if

Q = ax2 + bxy + cy2 is a primitive form of discriminant ∆ then LQ is not an ideal

in any larger ring than R∆ in Q(
√
∆) . Let us write LQ as L(a, τ) for τ = b+

√
∆

2
. Note

that R∆ = Z[τ] since b has the same parity as ∆ . Also Q(
√∆) = Q(τ) .

Suppose we have an element α = r +sτ in Q(τ) such that αL(a, τ) is contained

in L(a, τ) . Here r and s are rational numbers. Our goal is to show that Q being

primitive forces r and s to be integers. This will say that α is in Z[τ] = R∆ , and

hence that R∆ is the stabilizer of L(a, τ) .

Since αL(a, τ) is contained in L(a, τ) , both αa and ατ are in L(a, τ) . We have

αa = ra+saτ , and for this to be in L(a, τ) , which consists of the linear combinations

xa+ yτ with x and y integers, means that r is an integer and sa is an integer. It

remains to show that ατ being in L(a, τ) implies that s is an integer.
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To do this we first compute ατ using the fact that τ is a root of the equation

x2 − bx + ac = 0 so τ2 = bτ − ac . Then we have:

ατ = rτ + sτ2 = rτ + s(bτ − ac) = −sac + (r + sb)τ

For this to be in L(a, τ) means that sc and r +sb are integers. We already know that

r is an integer, so r + sb being an integer is equivalent to sb being an integer. Thus

we know that all three of sa , sb , and sc are integers. Let us write s as a fraction
m
n

in lowest terms. Then sa = m
n a is an integer, so n must divide a . Similarly sb and

sc being integers implies that n divides b and c . But 1 is the only common divisor

of a , b and c since the form ax2 + bxy + cy2 is primitive, so n = 1. Thus s is an

integer and we are done. ⊔⊓

A Digression on Shapes of Lattices

Let us go into a little more detail about the shapes of lattices in the plane. This

will not be used in the rest of the chapter, although it does provide some enlightening

context. Lattice shapes are mostly of interest for negative discriminants, but for the

following discussion we will consider all possible lattices in the plane, without regard

to whether they lie in some ring R∆ or not.

Recall that we say two lattices have the same shape if one can be transformed

into the other by rotation and rescaling of the plane. With this definition of shape

one can ask whether it is possible to characterize exactly all the different shapes of

lattices. We will give such a characterization and then see how this relates to forms

of negative discriminant.

First let us get a global picture of all the possible shapes of lattices in the plane.

Given a lattice L , choose a point in L that is closest to the origin, other than the

origin itself. We can rotate L about the origin until this point lies on the positive

x-axis, and then we can rescale L until this point is at distance 1 from the origin,

so it is the point (1,0) , or in other words the complex number 1. Now choose a

point α in L closest to the origin among all points of

L above the x-axis. Thus α lies on or outside the unit

circle x2 + y2 = 1. Also, α must lie in the vertical

strip consisting of points x+yi with −1/2 ≤ x ≤
1/2 ,

otherwise there would be another point of L inside

this strip that had the same y-coordinate as α and

was closer to the origin than α . This is because all

points of L lie in horizontal rows of points of distance

1 apart. The lattice L(1, α) is contained in L and in

fact must equal L by the way that we chose α . (There are no other points of L above

the x-axis and inside the circle x2 +y2 = r 2 passing through α .)
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Let R be the region of the plane consisting of the points α as above, that is, all

α = x +yi with x2 + y2 ≥ 1, −1/2 ≤ x ≤
1/2 , and y > 0.

Proposition 8.23. The lattices L(1, α) with α in R realize all lattice shapes, and of

these lattices the only ones having the same shape are the pairs L(1, 1/2+yi) and

L(1,−1/2+ yi) and the pairs L(1, x +yi) and L(1,−x +yi) with x2 +y2 = 1 .

Note that these pairs all lie on the boundary of R , either on the vertical edges

or on the circular arc forming the lower edge of R . The two points of each pair are

mirror reflections of each other across the y-axis.

Proof: We have already seen that all lattices have the shape of a lattice L(1, α) for

some α in R , and it remains to see when two of these lattices L(1, α) have the same

shape. A more basic question is when two of the lattices L(1, α) and L(1, β) with

α and β in R are the same lattice. If this happens, the y-coordinates of α and β

must be the same since this is the coordinate of points in the first row of the lattice

above the x-axis. The x-coordinates of α and β must then differ by an integer if

L(1, α) = L(1, β) , so if α and β are both in R the only possibility is that α and β are

points 1/2+ yi and −1/2+ yi on the two vertical edges of R .

For L(1, α) and L(1, β) to have the same shape means that there is a rotation

and rescaling taking one to the other. However, there can be no rescaling since the

smallest distance from nonzero points in these two lattices to the origin is 1 in both

cases. To see what sorts of rotations are possible, consider the subsets Cα of L(1, α)

and Cβ of L(1, β) consisting of the lattice points at distance 1 from the origin. If

there is a rotation taking L(1, α) to L(1, β) then this rotation carries Cα onto Cβ . In

particular, Cα and Cβ must have the same number of points. The points 1 and −1

always belong to Cα and Cβ . If these are the only points in Cα and Cβ then the only

rotations taking Cα to Cβ are rotations by 0 and 180 degrees, but these do not affect

the lattices so we must have L(1, α) = L(1, β) in this case. If Cα and Cβ have more

than two points then Cα will include ±α and Cβ will include ±β . If Cα = {±1,±α}

and Cβ = {±1,±β} then the only way for Cα to be a rotation of Cβ is for the two

arcs in the upper half of the unit circle joining α to 1 and to −1 to have the same

lengths as the two arcs from β to 1 and −1, after

possibly interchanging the two arcs for α or β as in

the figure. This implies that β is equal to either α or

the reflection of α across the y-axis. Thus L(1, α)

and L(1, β) are L(1, x + yi) and L(1,−x + yi) for

some x and y with x2+y2 = 1. The remaining possibility is that Cα and Cβ contain

more that four points, but this only happens when they are the vertices of regular

hexagons inscribed in the unit circle since the points of Cα must be of distance at

least 1 apart, and likewise for Cβ . In this hexagonal case we have L(1, α) = L(1, β) ,

finishing the proof. ⊔⊓
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Let us see now how the lattices LQ = L(a, b+
√
∆

2
) associated to elliptic forms

Q = ax2 + bxy + cy2 fit into this picture. Here a and c are positive since we only

consider positive elliptic forms. For the two basis elements of LQ we have N(a) = a2

and N(b+
√
∆

2
) = b+

√
∆

2
· b−

√
∆

2
= b2−∆

4
= ac . If we assume that Q is reduced, so

0 ≤ b ≤ a ≤ c , then N(a) ≤ N(
b+

√
∆

2
) . Also the x-coordinate of

b+
√
∆

2
, which is

b/2 , is at most a/2 . From these facts we can deduce that a is the closest point in

LQ to the origin. Then when we rescale LQ by shrinking by a factor of a we get the

lattice L(1, α) with α = b+
√
∆

2a , with α lying in the right half of the region R since

N(α) ≤ 1 and 0 ≤ b
2a ≤

1
2

. Conversely, if
b+

√
∆

2a is in the right half of R then we have

0 ≤ b ≤ a ≤ c . Thus Q is reduced exactly when the rescaled LQ is L(1, α) with α in

the right half of R .

If we replace Q by nQ then LQ is replaced by L(na,
nb+

√
n2∆

2
) = nLQ so this is

just a rescaling of LQ with the same shape and hence corresponding to the same point

α in R . Apart from rescaling Q in this way, different reduced forms give different

points α in R since the x-coordinate b/2a of α determines the ratio b/a and the

norm of α gives the ratio c/a .

Any point α in the right half of R with rational x-coordinate and rational norm

arises in this way from a reduced elliptic form Q . For example for an x-coordinate of

1/3 and a norm of 5/4 we have b/2a =
1/3 and c/a =

5/4 . Rewriting these two fractions

with a common denominator, we get 4/12 and 15/12 . Then after writing 4/12 as 8/24

we can choose a = 12, b = 8, and c = 15, producing the form 12x2 + 8xy + 15y2 .

Points in the left half of the region R are realized by replacing b by −b , so

the form ax2 + bxy + cy is replaced by its mirror image form ax2 − bxy + cy2

which is equivalent but not properly equivalent unless ax2 + bxy + cy2 has mirror

symmetry. The reduced forms with mirror symmetric topographs are those where one

of the inequalities 0 ≤ b ≤ a ≤ c becomes an equality. When b = 0 we have the forms

ax2+cy2 corresponding to the lattices L(1,
√
∆

2a ) along the y-axis in R . These are the

rectangular lattices, with mirror symmetry across the y-axis. When b = a we have

the forms ax2 + axy + cy2 whose associated lattices L(1, a+
√
∆

2a ) = L(1, 1
2
+

√
∆

2a ) lie

along the right-hand edge of R . These lattices also have mirror symmetry across the

y-axis since they equal their mirror image lattices L(1,−1
2
+

√
∆

2a ) . Finally, if a = c we

have forms ax2+bxy +ay2 corresponding to lattices L(1, b+
√
∆

2a ) with
b+

√
∆

2a having

norm c/a = 1 and hence lying on the arc of the unit circle forming the bottom border

of R . These lattices also have mirror symmetry since they form grids of rhombuses,

the distances from both basis elements 1 and
b+

√
∆

2a to the origin being equal.

Thus forms with mirror symmetric topographs give rise to mirror symmetric lat-

tices. The converse is also true since none of the lattices L(1, α) with α in the interior

of R but not on the y-axis have mirror symmetry. One can see this by noting that for

points α in the interior of R the only points in lattices L(1, α) of unit distance apart

lie on horizontal lines, so mirror symmetries of these lattices must take horizontal
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lines to horizontal lines, which forces these symmetries to be reflections across either

horizontal or vertical lines. The only time such a reflection takes a lattice L(1, α) to

itself for some α in the interior of R is when α is on the y-axis, so the lattice is

rectangular.

It is interesting to compare the picture of the region R shown earlier with the

figure in Section 5.5 showing the location of reduced elliptic forms in a triangle inside

the Farey diagram. Here is this triangle, first as it appeared in Section 5.5 and then

reflected across a 45 degree line:

The three sides of the triangle are specified by the equations a = c , a = b , and b = 0,

so we see that the triangle corresponds exactly to the right half of the region R , with

the edge a = b corresponding to the right edge of R , the edge a = c to an arc of the

unit circle, and the edge b = 0 to the central vertical axis of R .

A Digression on Hyperbolic Motions

For negative discriminants the relation of strict equivalence of ideals corresponds

geometrically to rotation and rescaling of lattices. There is an analogous interpreta-

tion for positive discriminants but it involves replacing rotations by somewhat more

complicated motions of the plane involving hyperbolas, as we shall now see.

What we want is a geometric description of the transformation Tγ of Q(
√
∆)

defined by multiplying by a fixed nonzero element γ , so Tγ(α) = γα . For a positive

discriminant ∆ we are regarding Q(
√
∆) as a subset of the plane by giving an element

α = a + b
√
∆ the coordinates (x,y) = (a, b

√
∆) . The norm N(α) = a2 − ∆b2 is

then equal to x2 − y2 and Tγ takes each hyperbola x2 − y2 = k to a hyperbola

x2 −y2 = N(γ)k since N(γα) = N(γ)N(α) .

To picture linear transformations of the plane that take hyperbolas x2 − y2 = k

to hyperbolas x2 −y2 = k′ it will be convenient to

change the coordinates x and y to X = x+y and

Y = x−y . This changes the hyperbolas x2−y2 = k

to the hyperbolas XY = k whose asymptotes are

the X-axis and the Y -axis, at a 45 degree angle

from the x-axis and the y-axis. Notice that since

(x,y) = (a, b
√
∆) , the coordinate X = x+y is just

a+b
√
∆ , the real number α we started with, while

Y = x −y is a− b
√
∆ , its conjugate α .
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The transformation Tγ sends α to γα so Tγ multiplies the X-coordinate α by γ .

To see how Tγ acts on the Y -coordinate, observe that since the Y -coordinate of α

is α , the Y -coordinate of Tγ(α) is Tγ(α) = γα = γ α , so the Y -coordinate of Tγ(α)

is γ times the Y -coordinate of α . Thus Tγ multiplies the Y -coordinate by γ , so we

have the simple formula Tγ(X, Y ) = (γX,γY) .

A consequence of the formula Tγ(X, Y ) = (γX,γY) is that Tγ takes the X-axis to

itself since the X-axis is the points (X, Y ) with Y = 0. Similarly, Tγ takes the Y -axis

to itself, the points where X = 0. In general, a linear transformation that takes both

the X-axis and the Y -axis to themselves has the form T(X,Y ) = (λX,µY) for real

constants λ and µ . In particular when µ = λ−1 we have the transformation T(X,Y ) =

(λX,λ−1Y) taking each hyperbola XY = k to itself. When λ > 1 this transformation

stretches the X-coordinate by a factor of λ and shrinks the Y -coordinate by the same

factor. Thus each hyperbola XY = k slides along itself in the direction indicated by

the arrows in the figure above. When λ is between 0 and 1 the situation is reversed

and the Y -coordinate is stretched while the X-coordinate is shrunk.

When λ > 0 and µ > 0 we can rescale the transformation T(X,Y ) = (λX,µY) to(
1/
√
λµ
)
T(X,Y ) = (

√
λ/µX,

√
µ/λY) which is a transformation of the type considered

in the preceding paragraph, sliding each hyperbola along itself. Thus a transformation

T(X,Y ) = (λX,µY) with λ and µ positive is a composition of a “hyperbola slide”

and a rescaling. This is analogous to compositions of rotations and rescalings in

the situation of negative discriminants. Allowing λ or µ to be negative then allows

reflections across the X-axis or the Y -axis as well. If both λ and µ are negative the

composition of these two reflections is a 180 degree rotation of the plane.

Now we specialize to the situation of a transformation Tγ of R∆ given by mul-

tiplication by an element γ in R∆ with N(γ) > 0. The condition N(γ) > 0 implies

that Tγ preserves the orientation of the plane and also the sign of the norm, so it

takes each quadrant of the XY -plane (north, south, east, or west) either to itself or to

the opposite quadrant. In the former case Tγ is a composition of a hyperbola slide

and a rescaling, while in the latter case there is also a composition with a 180 degree

rotation of the plane, which is just Tγ for γ = −1. The sign of γ distinguishes these

two cases since if γ > 0 the transformation Tγ takes positive numbers to positive

numbers so the positive X-axis goes to itself, while if γ < 0 the positive X-axis goes

to the negative X-axis.

If γ is a unit with N(γ) = +1 then each hyperbola x2 −y2 = k is taken to itself

by Tγ . The two branches of the hyperbola are distinguished by the sign of X , so if γ

is positive then Tγ slides each branch along itself while if γ is negative this slide is

combined with a 180 degree rotation of the plane. If we choose γ to be the smallest

unit greater than 1 with N(γ) = +1 then the powers γn for integers n lie along the

right-hand branch of the hyperbola x2 − y2 = 1, becoming farther and farther apart

as one moves away from the origin, and Tγ slides each one of these points along the
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hyperbola to the next one, increasing the X-coordinate. The case ∆ = 12 is shown

in the first figure below, with R∆ = Z[
√

3] . The unit γ is 2 +
√

3, and the figure

shows the units ±γn for |n| ≤ 2 positioned along the two branches of the hyperbola

x2 −y2 = 1, with γ2 = 7+ 4
√

3 in the upper right corner of the figure.

For some discriminants there are units γ with N(γ) = −1 in addition to those with

N(γ) = +1. The transformation Tγ for the smallest γ > 1 of norm −1 is a com-

position of a hyperbola slide and reflection across the X-axis. The powers γn then

lie alternately on x2 − y2 = +1 and x2 − y2 = −1. This happens for example in

Z[
√

2] with γ = 1+
√

2 as shown in the second figure above, where γ2 = 3+2
√

2 and

γ3 = 7+ 5
√

2.

Each ideal in R∆ is taken into itself by the transformations Tγ for γ in R∆ , but

when γ is a unit each ideal is taken onto itself since the inverse transformation (Tγ)
−1

is just Tγ−1 which also takes the ideal to itself. Thus all ideals in R∆ have “hyperbolic

symmetries”, the hyperbola-preserving transformations Tγ for units γ .

Although we can describe how the ideals corresponding to properly equivalent

quadratic forms of positive discriminant are related in geometric terms via hyperbola

slides and rescaling, the result is somehow less satisfying than in the negative discrim-

inant case. Hyperbola slides are not nearly as simple visually as rotations, making it

harder to see at a glance whether two lattices are related by hyperbola slides and

rescaling or not. This may be a reflection of the fact that hyperbolic forms do not

have a canonical reduced form as elliptic forms do, making it a little more difficult to

determine whether two hyperbolic forms are equivalent.

Exercises

1. For discriminant ∆ = −23 draw the lattice LQ for one form in each proper equiv-

alence class of forms. Prove that no two of these lattices have the same shape by

computing ratios of distances from the origin to nearby points in the lattice, with an

extra argument to deal with mirror image lattices that do not have the same shape.

2. Do the same things for ∆ = −39.
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3. (a) Given a lattice L in R∆ and a nonzero element α in R∆ , show that there is a

positive integer multiple nα that is in L .

(b) Show that the intersection of two lattices in R∆ is a lattice.

4. (a) For a form ax2 + bxy + cy2 of discriminant ∆ we have the associated ideal

L(a, b+
√
∆

2
) whose basis a, b+

√
∆

2
determines a parallelogram P . When ∆ < 0 show

that P is a rhombus if and only if a = c .

(b) Give an example of a form ax2 + bxy + ay2 with ∆ > 0 for which P is not a

rhombus.

5. Show that the norm N(L) of a lattice L in R∆ can be computed in the following

way. Choose a basis α,β for L and let Pα,β be the parallelogram with vertices 0, α ,

β , and α+ β . Then N(L) is the total number of points of R∆ in the interior of Pα,β

plus the number of points of R∆ in the interiors of two adjacent edges of Pα,β , plus

an additional 1 for the vertex of Pα,β between these two edges.

6. Show that if L and L′ are lattices in R∆ with L′ a subset of L then N(L) divides

N(L′) .

7. Show that the number of lattices in R∆ of norm n is equal to the divisor sum σ(n) ,

the sum of all the divisors of n including 1 and n itself.

8. Show that L(a,
√
n) is an ideal in Z[

√
n] if and only if a divides n .

9. (a) We know that if L is an ideal in R∆ then so is γL for each nonzero γ in R∆ .

Show the converse, that L is an ideal if γL is an ideal.

(b) Show that if γL is a principal ideal then so is L .

10. Find the four ideals in Z[
√
−14] of norm 15 and show that only two are principal

ideals, giving explicit generators for these two. (The relevant topographs are shown

in Section 6.1.)

11. (a) For ∆ = 105 determine all the equivalence and strict equivalence classes of

ideals in R∆ .

(b) Do the same for ∆ = 145.

12. For discriminant ∆ = −64 determine the stabilizers for all the ideals LQ associ-

ated to reduced forms Q , whether primitive or not.

13. Show that for each ideal L in R∆ the stabilizer of L is the same as the stabilizer

of αL for each nonzero α in R∆ .

14. Show that all ideals in R∆ are stable if and only if ∆ is a fundamental discriminant.
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8.4 The Ideal Class Group

An important feature of ideals is that there is a natural way to define a multi-

plicative structure in the set of all ideals in R∆ . Thus every pair of ideals L and M

in R∆ has a product LM which is again an ideal in R∆ . We will see that this leads

to a group structure on the set of strict equivalence classes of stable ideals, which,

under the correspondence between ideals and forms, turns out to be the same as the

group structure on the class group of forms studied in the previous chapter. If the

procedure for defining the product of forms seemed perhaps a little complicated, the

viewpoint of ideals provides an alternative that may seem more obvious and direct.

In order to form the product LM of two ideals L and M in R∆ one’s first guess

might be to let LM consist of all products αβ of elements α in L and β in M . This

does not always work, however, as we will see in an example later in this section.

The difficulty is that for two products α1β1 and α2β2 the sum α1β1 + α2β2 might

not be equal to a product αβ of an element of L with an element of M , as it would

have to be if the set of all products αβ was an ideal. This difficulty can be avoided

by defining LM to be the set of all sums α1β1 + · · · + αnβn with each αi in L and

each βi in M . With this definition LM is obviously closed under addition as well as

subtraction. Also, multiplying such a sum
∑
iαiβi by an element γ in R∆ gives an

element of LM since γ
∑
iαiβi =

∑
i γα)βi and the latter sum is in LM since each

product γαi is in L because L is an ideal. To finish the verification that LM is an

ideal we need to check that it is a lattice since we defined ideals in R∆ to be lattices

that are taken to themselves by multiplication by arbitrary elements of R∆ . To check

that LM is a lattice we need to explain a few more things about lattices.

We defined a lattice in R∆ to be a set L(α,β) of elements xα+ yβ as x and y

range over all integers, where α and β are two elements of R∆ that do not lie on the

same line through the origin. More generally we could define L(α1, · · · , αn) to be the

set of all linear combinations x1α1+· · ·+xnαn with coefficients xi in Z , where not

all the αi ’s lie on the same line through the origin (so in particular at least two αi ’s

are nonzero). It is not immediately obvious that L(α1, · · · , αn) is a lattice, but this is

true and can be proved by a generalization of the procedure that converts an arbitrary

basis for a lattice into a reduced basis, as we will now describe.

There are three ways in which the set of generators αi for L(α1, · · · , αn) can be

modified without changing the set L(α1, · · · , αn) :

(1) Replace one generator αi with αi + kαj , adding an integer k times some other

generator αj to αi .

(2) Replace some αi by −αi .

(3) Interchange two generators αi and αj , or more generally permute the αi ’s in

any way.
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After a modification of type (1) each integer linear combination of the new genera-

tors is also a linear combination of the old generators so the new L(α1, · · · , αn) is a

subset of the old one, but the process can be reversed by another type (1) operation

subtracting kαj from the new αi so the new L(α1, · · · , αn) also contains the old one

hence must equal it. For the operations (2) and (3) this is also true, more obviously.

Lemma 8.24. By applying a suitably chosen sequence of operations (1)–(3) to a

set of generators αi for L(α1, · · · , αn) it is always possible to produce a new set

of generators β1, · · · , βn which are all zero except for β1 and β2 . In particular

L(α1, · · · , αn) is a lattice.

Proof: Let us write R∆ as Z[τ] in the usual way. Each αi can be written as ai+biτ for

integers ai and bi . We then form a 2 × n matrix
(
a1 ···

b1 ···

an
bn

)
whose columns

(
a i
b i

)

correspond to the αi ’s. The operations (1)–(3) correspond to adding an integer

times one column to another column, changing the sign of a column, and permuting

columns.

These three column operations can be used to simplify the matrix until only the

first two columns are nonzero. To do this we first focus on the second row. This must

have a nonzero entry since the αi ’s are not all contained in the x-axis. The nonzero

entries in the second row can be made all positive by changing the sign of some

columns. Choose a column with smallest positive entry bi . By subtracting suitable

multiples of this column from the other columns with positive bj ’s we can make all

other bj ’s either zero or positive integers less than bi . This process can be repeated

using columns with successively smaller second entries until only one nonzero bi

remains. Switching this column with the first column, we can then assume that bi = 0

for all i > 1.

Now we do the same procedure for columns 2 through n using the entries ai

rather than bi . Since these columns have bi = 0, nothing changes in the second

row. After this step is finished, only the first two columns will be nonzero. Note that

neither of these columns can have both entries zero, otherwise L(α1, · · · , αn) would

be entirely contained in a line through the origin. ⊔⊓

Let us restrict attention now to lattices that are ideals. One way to generate

such a lattice is to start with elements α1, · · · , αn in R∆ which we can assume are

nonzero and then consider the set of all elements
∑
i γiαi for arbitrary coefficients γi

in R∆ rather than just taking integer coefficients as we would be doing for the lattice

L(α1, · · · , αn) . The usual notation for this set of all sums
∑
i γiαi is (α1, · · · , αn) ,

generalizing the earlier notation (α) for a principal ideal. The ideal (α1, · · · , αn)

is equal to the lattice L(α1, α1τ,α2, α2τ, · · · , αn, αnτ) where R∆ = Z[τ] since each

coefficient γi in a sum
∑
i γiαi can be written as xi+yiτ for integers xi and yi . To be

sure that (α1, · · · , αn) really is a lattice, we should check that α1, α1τ, · · · , αn, αnτ
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do not all lie on the same line through the origin. But this is true already for α1 and

α1τ since (α1) is an ideal as we saw in the previous section.

Observe that if a lattice L(α1, · · · , αn) is an ideal, then L(α1, · · · , αn) is equal

to (α1, · · · , αn) since every product γαi with γ in R∆ can be rewritten as an integer

linear combination of α1, · · · , αn if L(α1, · · · , αn) is an ideal. A consequence of this,

using Lemma 8.24, is that every ideal (α1, · · · , αn) with n > 2 can be rewritten as an

ideal (β1, β2) .

Now we return to products of ideals. For ideals L = (α1, α2) and M = (β1, β2)

the product LM is the ideal (α1β1, α1β2, α2β1, α2β2) since each of the four products

αiβj is in LM and every element of LM is a sum of terms αβ for α = γ1α1+γ2α2 and

β = δ1β1+δ2β2 , so αβ is a linear combination of the products αiβj with coefficients

in R∆ . Similarly, the product of ideals (α1, · · · , αn) and (β1, · · · , βk) is the ideal

generated by all the products αiβj .

As examples let us compute some products of ideals in Z[
√
−5] , which is R∆ for

∆ = −20. Consider first the ideal corresponding to the form 2x2 + 2xy + 3y2 , the

lattice L(2,1 +
√
−5) . Since this is an ideal it is the same as the ideal (2,1 +

√
−5) .

Denoting this ideal as P , let us compute its square P2 = PP . We have:

P2 = (2,1+
√
−5)(2,1+

√
−5) = (4,2+ 2

√
−5,6)

In this ideal each generator is a multiple of 2 so we can pull out a factor of 2 to

get P2 = 2(2,1+
√
−5,3) . The ideal (2,1 +

√
−5,3) contains 3 and 2 so it contains

their difference 1. Once an ideal contains 1 it must

be the whole ring, so (2,1+
√
−5,3) = (1) = Z[

√
−5]

hence P2 = 2(1) = (2) . The figure at the right shows

these ideals as lattices, with (2,1+
√
−5) indicated

by the heavy dots and its square (2) by the dots in

squares. Notice that P2 is a sublattice of P . In fact

it is always true that a product LM of two ideals L

and M is a sublattice of both L and M since each term of a typical element
∑
iαiβi

of LM lies in both L and M by the defining property of ideals.

This example also illustrates the fact that a product LM of two ideals need not

consist just of all products αβ of an element of L with an element of M since the

number 2 belongs to P2 but if we had 2 = αβ with α and β in P then, computing

norms, we would have 4 = N(α)N(β) . There are no elements of Z[
√
−5] of norm ±2

since N(x + y
√
−5) = x2 + 5y2 = ±2 has no integer solutions. Thus either α or β

would have norm ±1 and hence be one of the two units ±1 in Z[
√
−5] . However,

neither 1 nor −1 is in P , otherwise we would have P = Z[
√
−5] .

Continuing with the ring Z[
√
−5] , we consider next the ideal Q = (3,1 +

√
−5)

corresponding to the form 3x2 + 2xy + 2y2 . For the product PQ we have:

PQ = (2,1+
√
−5)(3,1+

√
−5) = (6,2+ 2

√
−5,3+ 3

√
−5,−4+ 2

√
−5)
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The last generator −4+2
√
−5 can be discarded since it is the second generator minus

the first generator. The difference between the second and third generators is 1+
√
−5

so this is in PQ , and these two generators are multiples of 1+
√
−5 so we now have

PQ = (6,1+
√
−5) . But 6 is in the ideal (1+

√
−5) since it is 1−

√
−5 times 1+

√
−5,

the norm of 1+
√
−5, so we have finally PQ = (1+

√
−5) .

Next we calculate QQ where the conjugate L of an ideal L = (α,β) is the ideal

consisting of all the conjugates of elements of L , so L = (α,β) . We have:

QQ = (3,1+
√
−5)(3,1−

√
−5) = (9,3+ 3

√
−5,3− 3

√
−5,6)

= 3(3,1+
√
−5,1−

√
−5,2) = (3)

For the product PP there is no need to do a separate calculation since P = P as one

can see in the previous figure, so PP = P2 = (2) .

Using these calculations we can see how the two different factorizations of (6)

in Z[
√
−5] as (2)(3) and as (1+

√
−5)(1−

√
−5) arise:

(6) = (2)(3) = PP ·QQ = P PQQ

(6) = (1+
√
−5)(1−

√
−5) = PQ·PQ = PQPQ

For the last equality we are using the general identity LM = L M which follows easily

from the definitions.

We defined the norm of an ideal L in R∆ geometrically as the number of parallel

translates of L , including L itself, that are needed to fill up all of R∆ , and we found

other ways to view these norms in terms of areas and determinants. For the ideals we

will be most interested in, the stable ideals in Proposition 8.22, there is yet another

interpretation of the norm N(L) that is more like the definition of the norm of an

element α as N(α) = αα .

Proposition 8.25. If the ideal L in R∆ is stable then LL = (N(L)) , the principal ideal

generated by the norm N(L) .

In the preceding example the calculations of PP and QQ are consequences of

this general result since the norm of an ideal (a,1+
√
−5) is a .

Proof: By Proposition 8.16 the ideal L is equal to nL(a, b+
√
∆

2
) for some integer n ≥ 1

and some form ax2+bxy+cy2 of discriminant ∆ with a > 0. It will suffice to prove

the proposition in the case n = 1 since replacing an ideal L by nL does not affect the

stabilizer and it multiplies N(L) by n2 , so both sides of the equation LL = (N(L)) are

multiplied by n2 . Thus we may take L = L(a, b+
√
∆

2
) for the rest of the proof. Since

we assume L is stable, the form ax2 + bxy + cy2 is primitive by Proposition 8.22.

Let τ = b+
√
∆

2
so τ is a root of the equation x2 − bx + ac = 0 and ττ = ac . We

have L = (a, τ) and L = (a, τ) . The product LL is then:

LL = (a2, aτ,aτ, ττ) = (a2, aτ,aτ,ac) = a(a,τ, τ, c)
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The ideal (a, τ, τ, c) contains the ideal (a, τ + τ, c) = (a, b, c) . The latter ideal is all

of R∆ since it contains all integral linear combinations ma + nb + qc and there is

one such combination that equals 1 since the greatest common divisor of a , b , and c

is 1 because the form ax2 + bxy + cy2 is primitive. (We know from Chapter 2 that

the greatest common divisor d of a and b can be written as d =ma+nb , and then

the greatest common divisor of d and c , which is the greatest common divisor of a ,

b , and c , can be written as an integral linear combination of d and c and hence also

of a , b , and c .)

Thus the ideal (a, τ, τ, c) contains R∆ and so must equal it. Hence we have

LL = aR∆ = (a) and this equals (N(L)) since N(L) = a for L = L(a, b+
√
∆

2
) . ⊔⊓

Proposition 8.26. An ideal L in R∆ is stable if and only if there exists an ideal M

in R∆ such that LM is a principal ideal.

Proof: The forward implication follows from Proposition 8.25 by choosing M = L .

For the opposite implication, suppose that LM = (α) , and let β be an element of

Q(
√
∆) such that βL is contained in L . Then β(α) = βLM is contained in LM = (α) .

In particular this says that βα is in (α) so βα = γα for some element γ of R∆ . Since

α is nonzero this implies β = γ and so β is an element of R∆ . This shows that the

stabilizer of L is R∆ , so L is stable. ⊔⊓

Proposition 8.27. If L and M are stable ideals in R∆ then N(LM) = N(L)N(M) .

Proof: If L and M are stable then so is LM by Proposition 8.26 since the product of

two principal ideals is principal. Since LM = LM we have LMLM = LLMM which

means (N(LM)) = (N(L))(N(M)) . We also have (N(L))(N(M)) = (N(L)N(M)) since

for principal ideals we always have (α)(β) = (αβ) . Thus (N(LM)) = (N(L)N(M)) ,

and this implies N(LM) = N(L)N(M) since if (a) = (b) for positive integers a and

b then a = b , as is evident from the lattices (a) = L(a,aτ) and (b) = L(b, bτ) for

R∆ = Z[τ] . ⊔⊓

The formula LL = (N(L)) and the multiplicative property N(LM) = N(L)N(M)

can fail to hold for ideals with stabilizer larger than R∆ . A simple example is pro-

vided by taking L to be the ideal (2,1+
√
−3) in Z[

√
−3] which we considered in the

previous section, before Proposition 8.22, as an example of an ideal corresponding

to the nonprimitive form 2x2 + 2xy + 2y2 of discriminant −12. Here L = L and

the ideal L2 = LL is (2,1+
√
−3)(2,1−

√
−3) = (4,2+ 2

√
−3,2− 2

√
−3,4) . Of these

four generators we can obviously drop the repeated 4, and we can also omit the third

generator which is expressible as the first generator minus the second. We are left

with the ideal (4,2+ 2
√
−3) = 2(2,1+

√
−3) . Thus we have L2 = LL = 2L .
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L = L(2,1+
√
−3) L2 = 2L = L(4,2+ 2

√
−3) (2) = L(2,2

√
−3)

From the figure we see that N(L) = 2 and hence N(2L) = 22N(L) = 8 so N(L2) ≠

N(L)2 = 4. This shows that N(LM) need not equal N(L)N(M) in general. Also we

see from the figure that LL ≠ (N(L)) since LL = L2 = 2L ≠ (2) = (N(L)) . In fact LL

is not even a principal ideal since 2L is a lattice of equilateral triangles while principal

ideals have the same shape as the rectangular lattice Z[
√
−3] .

Now at last we come to the construction of the ideal class group, which we will

denote ICG(∆) until we show that it coincides with the class group CG(∆) defined

in Chapter 7 in terms of forms. Let [L] denote the strict equivalence class of a stable

ideal L in R∆ and let ICG(∆) be the set of such classes [L] . The multiplication

operation in ICG(∆) is defined by taking products of ideals, so we set [L][M] = [LM] ,

recalling the fact that the product of two stable ideals is stable by Proposition 8.26.

To check that this product in ICG(∆) is well defined we need to see that choosing

different ideals L′ and M′ in the classes [L] and [M] does not affect [LM] . This

is true because [L] = [L′] means αL = α′L′ for some α and α′ , and [M] = [M′]

means βM = β′M′ for some β and β′ , hence αβLM = α′β′L′M′ , so [LM] = [L′M′] .

Here we are dealing with strict equivalence classes of ideals so we are assuming all of

α,β,α′, β′ have positive norms, hence so do αβ and α′β′ . (As always this condition

is automatic when ∆ is negative.)

Proposition 8.28. ICG(∆) is a commutative group with respect to the multiplication

[L][M] = [LM] .

Proof: The commutativity property [L][M] = [M][L] is easy since this amounts to

saying [LM] = [ML] , which holds since multiplication of ideals is commutative, LM =

ML , because multiplication in R∆ is commutative.

To have a group there are three things to check. First, the multiplication should

be associative, so ([L][M])[N] = [L]([M][N]) . By the definition of the product

in ICG(∆) this is equivalent to saying [LM][N] = [L][MN] which in turn means

[(LM)N] = [L(MN)] , so it suffices to check that multiplication of ideals is associa-

tive, (LM)N = L(MN) . The claim is that each of these two products consists of all

the finite sums
∑
iαiβiγi with αi , βi , and γi elements of L , M , and N respectively.

Every such sum is in both (LM)N and L(MN) since each term αiβiγi is in both of

the ideals (LM)N and L(MN) . Conversely, each element of (LM)N is a sum of terms

(
∑
j αjβj)γ so it can be written as a sum

∑
iαiβiγi , and similarly each element of

L(MN) can be written as a sum
∑
iαiβiγi . Thus we have (LM)N = L(MN) .



Section 8.4 — The Ideal Class Group 325

Next, a group must have an identity element, and the class [(1)] of the ideal (1) =

R∆ obviously serves this purpose since (1)L = L for all ideals L , hence [(1)][L] =

[L] . There is no need to check that [L][(1)] = [L] as one would have to do for a

noncommutative group since we have already observed that multiplication in ICG(∆)
is commutative.

The last thing to check is that each element of ICG(∆) has a multiplicative inverse,

and this is where we use the condition that we are considering only stable ideals in the

definition of ICG(∆) . As we showed in Proposition 8.25, each stable ideal L satisfies

LL = (n) where the integer n is the norm of L . Then we have [L][L] = [(n)] = [(1)]

where this last equality holds since the ideals (n) and (1) are strictly equivalent, the

norm of n being n2 , a positive integer. Thus the multiplicative inverse of [L] is [L] .

Again commutativity of the multiplication means that we do not have to check that

[L] is an inverse for [L] for multiplication both on the left and on the right. ⊔⊓

There is a variant of the ideal class group in which the relation of strict equivalence

of ideals is modified by deleting the word “strict”, so an ideal L is considered equiv-

alent to αL for all nonzero elements α of R∆ without the condition that N(α) > 0.

The preceding proof that ICG(∆) is a group applies equally well in this setting by

just omitting any mention of norms being positive. Sometimes the resulting group is

called the class group while ICG(∆) is called the strict class group or narrow class

group. However, for studying quadratic forms the more appropriate notion is strict

equivalence, which is why we are using this for the class group ICG(∆) .

Next we check that the one-to-one correspondence Φ :CG(∆)→ ICG(∆) induced

by sending a form Q = ax2 + bxy + cy2 with a > 0 to the ideal LQ =
(
a, b+

√
∆

2

)

respects the group structures defined on CG(∆) and ICG(∆) . Given two classes

[Q1] and [Q2] in CG(∆) , we can realize them by concordant forms [a1, b, a2c] and

[a2, b, a1c] with a1 and a2 coprime and positive. The product [Q1][Q2] in CG(∆) is

then the class of [a1a2, b, c] . The ideals corresponding to these three forms are L1 =(
a1,

b+
√
∆

2

)
, L2 =

(
a2,

b+
√
∆

2

)
, and L3 =

(
a1a2,

b+
√
∆

2

)
. To show that multiplication

in CG(∆) corresponds under Φ to multiplication in ICG(∆) it will suffice to show

that L1L2 = L3 . The product L1L2 is the ideal
(
a1a2, a1

b+
√
∆

2
, a2

b+
√
∆

2
, b+

√
∆

2
· b+

√
∆

2

)
.

This is certainly contained in L3 since the first generator a1a2 is in L3 and the other

three generators are multiples of
b+

√
∆

2
by elements of R∆ hence are in L3 . On the

other hand L3 is contained in L1L2 since a1a2 is in L1L2 and so is
b+

√
∆

2
which can

be written as a linear combination ma1
b+

√
∆

2
+ na2

b+
√
∆

2
for some integers m and

n , using the fact that a1 and a2 are coprime so we have ma1 + na2 = 1 for some

integers m and n .

The identity element of CG(∆) is the class of the principal form [1, b, c] and this

is sent by Φ to the class of the ideal
(
1,

b+
√
∆

2

)
= (1) which is the identity element of

ICG(∆) . The inverse of an element of CG(∆) determined by a form [a, b, c] is the
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class of the mirror image form [a,−b, c] , so under Φ these forms correspond to the

ideals
(
a, b+

√
∆

2

)
and

(
a, −b+

√
∆

2

)
. The latter ideal is the same as

(
a, b−

√
∆

2

)
which is

the conjugate of
(
a,

b+
√
∆

2

)
so it gives the inverse of

(
a,

b+
√
∆

2

)
in ICG(∆) .

Thus the group structures on CG(∆) and ICG(∆) are really the same, and we

can use the notation CG(∆) for both without any conflict.

To illustrate this let us consider CG(∆) for ∆ = −104, so R∆ = Z[
√
−26] . We

looked at this example in Section 7.2 and found that CG(∆) is a cyclic group of order

6 generated by the form Q4 = [5,4,6] . From the topographs we could see that

Q2
4 was either Q3 = [3,2,9] or Q−1

3 = [3,−2,9] , but to determine which, we had

to find a pair of concordant forms equivalent to Q4 and multiply them together.

Now we can use ideals to do the same calculation. The ideal corresponding to Q4 =

[5,4,6] is (5,2 +
√
−26) so for Q2

4 the ideal is (5,2 +
√
−26)(5,2 +

√
−26) which

equals(25,10+5
√
−26,−22+4

√
−26) . The next step is to find a reduced basis for this

ideal. As a lattice this ideal is generated by these three elements and their products

with
√
−26. Thus we have the matrix

(
25
0

0
25

10
5

---130
10

---22
4

---104
---22

)
which reduces to(

25
0

7
1

)
so the ideal is (25,7 +

√
−26) . The corresponding form is [25,14, c] and

we can determine c from the discriminant equation b2 − 4ac = −104 which gives

c = 3. The form is thus [25,14,3] . A small portion of the topograph of this form is

shown at the right. There is a source vertex surrounded by the three

values 3,9,10 in counterclockwise order. The form [3,−2,9] has

exactly this same configuration at its source vertex, so we conclude

that Q2
4 = Q

−1
3 , the same answer we got in Section 7.2.

Exercises

1. Corresponding to a lattice L(α1, · · · , αn) in Z[τ] there is a matrix
(
a1 ···

b1 ···

an
bn

)

with αi = ai + biτ as in Lemma 8.24. Show that the three operations of adding a

multiple of one column to another, changing the sign of a column, and permuting

columns do not change the greatest common divisor of the numbers in each row of

the matrix. Deduce from this that if a,b+ cτ is the reduced basis for the lattice then

c is the greatest common divisor of the entries in the second row of the matrix.

2. In Z[
√
−6] compute the powers of the ideal (2,

√
−6) and determine which powers

are principal ideals.

3. In Z[
√
−14] do the following:

(a) Compute the square of the ideal (2,
√
−14) .

(b) For the ideal L = (3,1+
√
−14) find a reduced basis for L2 and use this to draw a

picture of the lattice L2 .

(c) Find nonzero elements α and β in Z[
√
−14] such that αL2 = β(2,

√
−14) .
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4. In Z[
√
−5] compute Q2 for Q = (3,1 +

√
−5) as a principal ideal (α) after first

determining what N(α) must be.

5. Use the formula N(LM) = N(L)N(M) with L = (α) and M = (α) to give another

proof that N
(
(α)

)
= |N(α)| .

8.5 Unique Factorization of Ideals

In this section we will be restricting our attention exclusively to discriminants ∆
that are fundamental discriminants, so all forms will be primitive and hence all ideals

in R∆ will be stable. This means that we will be able to make free use of the formulas

N(LM) = N(L)N(M) and LL = (N(L)) .

Our main goal in this section is to show that all ideals in R∆ , with the trivial ex-

ception of R∆ itself, have unique factorizations as products of prime ideals, where

an ideal P different from R∆ is called a prime ideal if whenever it is expressed as a

product LM of two ideals in R∆ , either L or M must equal R∆ , so the factorization

becomes the trivial factorization P = R∆P that every ideal has. Note that R∆ , con-

sidered as an ideal in R∆ , satisfies this condition but we do not allow R∆ as a prime

ideal, just as the number 1 is not considered a prime number.

For an element α of R∆ we know that α is prime if its norm N(α) is prime in Z ,

either positive or negative. The analogue for ideals also holds:

Proposition 8.29. If the norm N(P) of an ideal P is prime then P is a prime ideal.

Proof: Suppose P = LM . Then N(P) = N(L)N(M) . If N(P) is prime then since N(L)

and N(M) are positive integers, one of them must be 1. The only ideal of norm 1 is

R∆ so this means L or M must be R∆ . Thus P is a prime ideal. ⊔⊓

Proposition 8.30. For each prime p the principal ideal (p) in R∆ is either a prime

ideal or it factors as (p) = P P for prime ideals P and P of norm p .

As we will see later in Corollary 8.34, all prime ideals in R∆ are accounted for by

this proposition, so every prime ideal is either a principal ideal (p) with p prime or

a factor P or P when (p) = P P .

Proof: If (p) is not a prime ideal then it factors as (p) = PQ for ideals P and Q not

equal to R∆ . Since the norm of (p) is p2 we must have N(P) = p and N(Q) = p .

From the general formula LL =
(
N(L)

)
we have P P =

(
N(P)

)
= (p) . Since N(P) = p

we must also have N(P) = p so P and P are both prime ideals. (From the unique

prime factorization property of ideals it will follow that Q = P , but we do not need

to know this here.) ⊔⊓
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In the case that (p) = P P the prime p is said to split in R∆ . The primes that

split in R∆ are the primes that are norms of ideals in R∆ , and as we saw in Section 8.3

these are exactly the primes that are represented by forms of discriminant ∆ . For a

split prime p we saw in Proposition 8.18 how to find an ideal P of norm p so this

now tells us how to factor (p) as P P .

A further distinction for split primes is whether the two factors of (p) = P P are

equal or not. If P = P then p is said to be ramified in R∆ . According to part (c) of

Proposition 8.18 the ramified primes are exactly the primes that divide ∆ .

Now we turn to proving the unique factorization property for ideals in R∆ . It will

be helpful to have a criterion for when one ideal L in R∆ divides another ideal M ,

meaning that M = LK for some ideal K . For individual elements of R∆ it is easy to

tell when one element divides another since α divides β exactly when the quotient

β/α lies in R∆ . For ideals, however, the criterion is rather different:

Proposition 8.31. An ideal L in R∆ divides an ideal M if and only if L contains M .

One can remember this as “to divide is to contain”. At first glance the proposition

may seem a little puzzling since for ordinary numbers the divisors of a number n ,

apart from n itself, are smaller than n while for ideals the divisors are larger, where

“larger” for sets means that one set contains the other. The puzzle can be resolved

by interpreting “m divides n” as “the multiples of m contain the multiples of n”.

The proposition gives some insight into the choice of the ideals P and Q in the

example preceding Proposition 8.25 where we factored the ideal (6) in Z[
√
−5] as

(2)(3) = PP ·QQ and as (1+
√
−5)(1−

√
−5) = PQ·PQ . Since we want PP = (2) and

PQ = (1 +
√
−5) , this means that P should divide both (2) and (1 +

√
−5) . By the

above Proposition 8.31 this is the same as saying that P should contain both (2) and

(1 +
√
−5) . An obvious ideal with this property is the ideal (2,1 +

√
−5) . Similarly

one would be led to try Q = (3,1 +
√
−5) . Then one could check that these choices

for P and Q actually work.

Before proving the proposition let us derive a fact which will be used in the proof,

a cancellation property of multiplication of ideals: If LM1 = LM2 then M1 = M2 . To

see this, first multiply the equation LM1 = LM2 by L to get LLM1 = LLM2 . Since

LL = (n) for n = N(L) , a positive integer, we then have (n)M1 = (n)M2 , which is

equivalent to saying nM1 = nM2 . Thus the rescalings nM1 and nM2 of M1 and M2

are equal, so after rescaling again by the factor 1/n we get M1 =M2 .

Now let us prove the proposition.

Proof: Suppose first that L divides M , so M = LK for some ideal K . A typical element

of LK is a sum
∑
iαiβi with αi ∈ L and βi ∈ K for all i . Since L is an ideal, each

term αiβi is then in L and hence so is their sum. This shows that L contains LK = M .

For the converse, suppose L contains M . Then LL contains ML . Since LL = (n)

for n = N(L) , this says that (n) contains ML , so every element of ML is a multiple
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of n by some element of R∆ . This means that if we write ML = (α,β) then we can

define an ideal K by letting K =
(
α/n ,

β/n
)
.

Now we have (n)K = (n)
(
α/n ,

β/n
)
= (α,β) = ML . Multiplying by L we then

have (n)KL = MLL = M(n) . Canceling the factor (n) gives the equation KL = M ,

which says that L divides M , finishing the proof of the converse. ⊔⊓

When we proved unique prime factorization for Z and those rings R∆ that have

a Euclidean algorithm, a key step was showing that if a prime p divides a product ab

then p must divide either a or b . Now we prove the corresponding fact for ideals:

Lemma 8.32. If a prime ideal P divides a product LM of two ideals, then P must

divide either L or M .

Proof: We will prove the equivalent statement that if P divides LM but not L , then P

divides M . Consider the set P+L of all sums α+β of elements α ∈ P and β ∈ L . This

set P+L is an ideal since if P = (α1, α2) and L = (β1, β2) then P+L = (α1, α2, β1, β2) .

The ideal P+L is strictly larger than P since the assumption that P does not divide L

means that P does not contain L , so any element of L not in P is in P +L but not P .

Thus P + L contains P , hence divides P , but is not equal to P . Since P is prime we

must then have P + L = R∆ .

In particular P + L contains 1 so we can write 1 = α + β for some α ∈ P and

β ∈ L . For an arbitrary element γ ∈ M we then have γ = αγ + βγ . The term αγ is

in P since α is in P and P is an ideal. The term βγ is in LM since β is in L and γ

is in M . We assume P divides LM so P contains LM and it follows that βγ is in P .

Thus both terms on the right side of the equation γ = αγ +βγ are in P so γ is in P .

Since γ was an arbitrary element of M this shows that M is contained in P , or in

other words P divides M , which is what we wanted to prove. ⊔⊓

Now we can prove our main result:

Theorem 8.33. Every ideal in R∆ other than R∆ itself is a product of prime ideals,

and this factorization is unique up to the order of the factors.

Proof: We first show the existence of a prime factorization for each ideal L ≠ R∆ . If

L is prime itself there is nothing to prove, so suppose L is not prime, hence there

is a factorization L = KM with neither factor equal to R∆ . Taking norms, we have

N(L) = N(K)N(M) . Both N(K) and N(M) are greater than 1 since R∆ is the only

ideal of norm 1. Hence N(K) < N(L) and N(M) < N(L) . By induction on the norm,

both K and M have prime factorizations, hence so does L = KM . We can start the

induction with the case N(L) = 2, a prime, hence L is prime. (The case N(L) = 1

does not arise since L ≠ R∆ .)

For the uniqueness, suppose an ideal L has prime factorizations P1 · · ·Pk and

Q1 · · ·Ql . We can assume k ≤ l by a notational change if necessary. The prime ideal

P1 divides the product Q1(Q2 · · ·Ql) so by the preceding lemma it must divide either
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Q1 or Q2 · · ·Ql . In the latter case the same reasoning shows it must divide either Q2

or Q3 · · ·Ql . Repeating this argument enough times, we eventually deduce that P1

must divide some Qi , and after permuting the factors of Q1 · · ·Ql we can assume

that P1 divides Q1 . When one prime ideal divides another prime ideal they must be

equal. For if P divides Q then Q = PM for some M , but if Q is prime then either

P = R∆ , which is impossible if P is prime, or M = R∆ , hence P = Q .

Once we have P1 = Q1 we can cancel this common factor of P1 · · ·Pk and

Q1 · · ·Ql to get P2 · · ·Pk = Q2 · · ·Ql . Repeating this process often enough, we even-

tually get, after suitably permuting the Qi ’s, that P1 = Q1 , P2 = Q2 , · · · , Pk−1 = Qk−1 ,

and Pk = Qk · · ·Ql . Since Pk is prime, as are the Qi ’s, the equation Pk = Qk · · ·Ql

can have only one term on the right side, so k = l and Pk = Qk . This finishes the

proof of the uniqueness of prime factorizations of ideals. ⊔⊓

From unique factorization we can deduce that there are no other prime ideals

beyond those we saw in Proposition 8.30.

Corollary 8.34. All prime ideals P in R∆ are factors of ideals (p) for primes p ,

with either (p) = P or (p) = PP .

Proof: Let P be a prime ideal in R∆ . We have PP = (N(P)) . Writing N(P) as a

product p1 · · ·pk of primes pi , we then have PP = (p1) · · · (pk) . Thus P divides

(p1) · · · (pk) so since P is prime it must divide one of the factors. This means there

is a prime p such that P divides (p) . Proposition 8.30 then finishes the proof. ⊔⊓

Let us consider how one can find the prime factorization of a given ideal. The

procedure will be analogous to how we factored Gaussian integers in Section 8.1. We

begin with an example in the case ∆ = −24 with R∆ = Z[
√
−6] . We looked at this case

in Section 8.3 when we considered how to find ideals of a given norm. For the norm

35 we found the two ideals (35,8+
√
−6) and (35,13+

√
−6) and their conjugates.

The prime factors of these ideals will have norms dividing 35, so either 5 or 7, with

one factor of norm 5 and one of norm 7. We found the ideals of norms 5 and 7,

which were (5,2 ±
√
−6) and (7,1 ±

√
−6) , and we need to see now which of these

ideals divide (35,8+
√
−6) and which divide (35,13+

√
−6) , or in other words, which

of these ideals contain (35,8+
√
−6) and which contain (35,13+

√
−6) . This will be

easy using the following general fact:

Lemma 8.35. A lattice L(a,b+ cτ) in Z[τ] contains another lattice L(a′, b′ + c′τ)

if and only if a divides a′ , c divides c′ , and b′ ≡ b c
′
/c mod a .

Proof: For L(a,b + cτ) to contain L(a′, b′ + c′τ) amounts to asking when a′ and

b′+c′τ are in L(a,b+cτ) . For a′ , the only integers in L(a,b+cτ) are the multiples

of a , so the condition on a′ is that it must be a multiple of a . For b′ + c′τ to be

in L(a,b + cτ) means that the equation b′ + c′τ = ax + (b + cτ)y must have an

integer solution. Equating the coefficients of τ gives c′ = cy which just says that c′



Section 8.5 — Unique Factorization of Ideals 331

is a multiple of c , with y = c
′
/c . Then the equation becomes b′ = ax + b c

′
/c which

is equivalent to the congruence b′ ≡ b c
′
/c mod a . ⊔⊓

Applying this lemma to determine which of (5,2±
√
−6) contains (35,8+

√
−6)

we see that the two divisibility conditions are satisfied and the congruence condition

is 8 ≡ ±2 mod 5 where the sign is the same as in (5,2±
√
−6) . The minus sign gives

a valid congruence so it is (5,2−
√
−6) that divides (35,8+

√
−6) . For (7,1±

√
−6) to

divide (35,8+
√
−6) the divisibility conditions are again satisfied and the congruence

condition is now 8 ≡ ±1 mod 7 so this time the plus sign is correct so (7,1+
√
−6)

divides (35,8 +
√
−6) . Thus we obtain the prime factorization of (35,8 +

√
−6) as

(5,2−
√
−6)(7,1+

√
−6) . In similar fashion one finds that (35,13+

√
−6) factors as

(5,2−
√
−6)(7,1−

√
−6) . Taking the conjugates of these two factorizations gives the

factorizations of the other two ideals of norm 35.

The general procedure for finding the prime factorization of an ideal L in R∆ can

be described as follows. As an easy first step one finds the largest positive integer n

dividing each generator for L , assuming L is given in terms of generators. This gives

a factorization L = nL′ = (n)L′ with L′ a primitive ideal. Factoring (n) into prime

ideals is done by first factoring n as a product of primes pi and then factoring the

corresponding principal ideals (pi) as in Proposition 8.30. This reduces the problem

to the case that L is a primitive ideal. To do this case one computes N(L) , say by

finding a reduced basis for L , then one factors N(L) as N(L) = p
r1

1 · · ·p
rk
k for distinct

primes pi . These must be split primes, otherwise L would not be primitive. After

factoring each principal ideal (pi) as PiP i , one can then determine which of Pi or P i

divides L by applying the preceding Lemma 8.35. Only one of Pi and P i can divide L

since L is primitive, so the prime factorization of L is then obtained from the product

p
r1

1 · · ·p
rk
k by replacing each pi by the ideal Pi or P i that divides L .

Unique prime factorization for ideals can be used to determine the number of

times each number n appears in a given topograph. Let us illustrate this by returning

to the case of discriminant −24 where there are the two forms x2+6y2 and 2x2+3y2 .

As we saw in Section 8.3, the number of appearances of n for both forms together

is the same as the number of primitive ideals of norm n . The norms of primitive

ideals are the numbers n = 2a3bp
r1

1 · · ·p
rk
k with a ≤ 1, b ≤ 1, and the pi ’s distinct

unramified split primes. The primitive ideals of norm n are then obtained by replacing

the factors 2 and 3 in 2a3bp
r1

1 · · ·p
rk
k by the ideals (2,

√
−6) and (3,

√
−6) and each

p
ri
i by either P

ri
i or P

ri
i where (pi) = PiP i . Thus there are exactly 2k primitive ideals

of norm n , so this is the number of times that n appears in at least one of the two

topographs. We know from Chapter 6 that no number is represented by both forms,

and the form representing n is x2 + 6y2 or 2x2 + 3y2 according to whether the

character values χ3(n) and χ8(n) are both +1 or both −1.
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In some cases the unique factorization property for ideals implies unique factor-

ization for elements of R∆ . The relation between the two situations is obtained by

associating to each nonzero element α in R∆ the principal ideal (α) . Multiplication

of elements corresponds to multiplication of ideals since (αβ) = (α)(β) . A key ob-

servation is that (α) = (β) if and only if α and β differ only by multiplication by a

unit. For if β = εα for some unit ε then (ε) contains εε−1 = 1 so (ε) = R∆ hence

(β) = (εα) = (ε)(α) = (α) . Conversely, if (α) = (β) then β is in (α) so β = εα for

some ε ∈ R∆ , and similarly α = ηβ for some η ∈ R∆ . Thus α = ηβ = ηεα hence

ηε = 1 so ε and η are units, showing that α and β differ just by a unit.

Proposition 8.36. If all ideals in R∆ are principal ideals then all elements of R∆
other than units and 0 have unique factorizations as products of prime elements,

where the uniqueness is up to order and multiplication by units.

Proof: This follows immediately from Theorem 8.33 since principal ideals in R∆ cor-

respond exactly to nonzero elements of R∆ up to multiplication by units. ⊔⊓

Proposition 8.37. When ∆ < 0 all ideals are principal if and only if all forms are

equivalent to the principal form. When ∆ > 0 all ideals are principal if and only if

all forms are equivalent to either the principal form or its negative.

Proof: All principal ideals in R∆ are equivalent since they are equivalent to R∆ itself.

In fact the principal ideals form a complete equivalence class of ideals since any ideal

that is equivalent to a principal ideal is also a principal ideal by the following argument.

Suppose an ideal L is equivalent to a principal ideal (α) , so βL = γ(α) for nonzero

elements β and γ of R∆ . Then γα is in βL , which means γα = βδ for some δ in L ,

and hence we have βL = γ(α) = (γα) = (βδ) = β(δ) . Thus βL = β(δ) , so after

multiplying both sides of this equation by β−1 in Q(
√
∆) we have L = (δ) , a principal

ideal.

To prove the proposition we will use the one-to-one correspondence between

proper equivalence classes of forms and strict equivalence classes of ideals. The

principal form has mirror symmetry so forms equivalent to this form are properly

equivalent to it, and the same holds for the negative of the principal form, which only

enters the picture when ∆ > 0.

We distinguish three cases:

Case 1: ∆ < 0. Here equivalence of ideals is the same as strict equivalence. The prin-

cipal form has leading coefficient 1 so it corresponds to the principal ideal R∆ . Thus

all forms are equivalent to the principal form exactly when all ideals are equivalent to

R∆ , or in other words, all ideals are principal.

Case 2: ∆ > 0 and the principal form is equivalent to its negative. The principal

form then represents −1 so equivalence of ideals is again the same as strict equiva-

lence. Thus there is a single equivalence class of forms exactly when there is a single

equivalence class of ideals, the principal ideals.
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Case 3: ∆ > 0 and the principal form is not equivalent to its negative. These forms

then give two different equivalence classes of forms, and we will show that they cor-

respond to two different strict equivalence classes of principal ideals (α) , those with

N(α) > 0 and those with N(α) < 0.

Any two ideals (α) and (β) with N(α) > 0 and N(β) > 0 are strictly equivalent

since they are both strictly equivalent to (1) . Likewise (α) and (β) are strictly equiv-

alent if N(α) < 0 and N(β) < 0 since if γ is any element with N(γ) < 0, for example

α or β , then (α) and (β) are both strictly equivalent to (αβγ) since N(βγ) > 0 and

N(αγ) > 0. Now suppose (α) and (β) are strictly equivalent with N(α) and N(β)

having opposite sign. Then (γα) = (δβ) for some γ and δ of positive norm. This

means we have elements α′ = γα and β′ = δβ with (α′) = (β′) and such that the

norms of α′ and β′ have opposite sign. Since (α′) = (β′) we have β′ = εα′ for some

unit ε . Since N(α′) and N(β′) have opposite sign we must have N(ε) < 0. This

means that the principal form represents −1 so its topograph has a skew symmetry,

making it equivalent to its negative, contrary to hypothesis. Thus we have shown the

the equivalence class of principal ideals (α) splits into two strict equivalence classes

according to the sign of N(α) .

Now we show that the negative of the principal form corresponds to a principal

ideal (α) with N(α) < 0. The principal form is x2−dy2 if ∆ = 4d and x2+xy−dy2

if ∆ = 4d + 1. The negative of the principal form has leading coefficient −1 so to

find the corresponding ideal as in Theorem 8.21 we first have to choose a properly

equivalent form with positive leading coefficient. For this we can choose dx2−y2 or

dx2 + xy − y2 , obtained from the negative of the principal form by replacing x,y

by −y,x , rotating the topograph by 180 degrees. For dx2 −y2 the associated ideal

is L(d,
√
d) which is the principal ideal (

√
d) since d =

√
d ·
√
d so d is an element of

(
√
d) . For dx2+xy−y2 the corresponding ideal is L(d,

1+
√
∆

2
) which is

(1+
√
∆

2

)
since

d = −1+
√
∆

2
· 1+

√
∆

2
. In both cases the norm of the element

√
d or

1+
√
∆

2
generating the

ideal is −d so it is negative.

Thus in Case 3 the two strict equivalence classes of principal ideals correspond

to the equivalence classes of the principal form and its negative, so these are the only

two equivalence classes of forms exactly when all ideals are principal. ⊔⊓

An example for the third case in this proof is ∆ = 12 where the class number

is 2 corresponding to the principal form x2 − 3y2 and its negative. The primes

represented in discriminant 12 are 2, 3, and the odd primes p with Legendre symbol(
12
p

)
=
(

3
p

)
=
(

---1
p

)(
p
3

)
= +1 so these are the primes p ≡ ±1 mod 12. The two

forms are of different genus, with x2 − 3y2 representing primes p ≡ +1 mod 12

and −x2 + 3y2 representing primes p ≡ −1 mod 12. By Proposition 8.7 the primes

p that factor in R∆ = Z[
√

3] are the primes represented by either of the two forms,

for example 2 = (
√

3 + 1)(
√

3 − 1) , 3 = (
√

3)2 , 11 = (2
√

3 + 1)(2
√

3 − 1) , and 13 =

(4+
√

3)(4−
√

3) . Here the factorization of 11 comes from the value −11 in the ±1/2
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regions in the topograph of the principal form while the factorization of 13 comes

from the 13 in the ± 4/1 regions.

In this example prime factorizations are unique up to units, but there are infinitely

many units for positive discriminants so there can be many factorizations that look

rather different but are obtained just by inserting units. For example the topograph

also gives 13 = (5+ 2
√

3)(5− 2
√

3) from the ±5/2 regions so 5+ 2
√

3 must be a unit

times either 4+
√

3 or 4−
√

3. One can determine which by computing which of the

two quotients (5+2
√

3)/(4+
√

3) and (5+2
√

3)/(4−
√

3) lies in Z[
√

3] . One finds that

the latter quotient is the unit 2+
√

3 so 5+ 2
√

3 = (2+
√

3)(4−
√

3) . In terms of the

topograph, multiplication by the fundamental unit 2+
√

3 translates the topograph by

one period to the right, while conjugation is reflection across the vertical line through

the 1/0 and 0/1 regions. So to get from 4/1 to 5/2 we first reflect 4/1 to ---4/1 , then we

translate by one period to get 5/2 .

As this example shows, for prime factorizations it makes little difference if the

principal form is not equivalent to its negative since changing the sign of an element

of R∆ is just multiplying it by the unit −1. The issue could be avoided entirely by

using the version of the ideal class group based on equivalence of ideals rather than

strict equivalence.

Let us conclude this section with some comments on what happens when the

discriminant ∆ is not a fundamental discriminant. One might hope that the unique

factorization property for ideals still holds at least for stable ideals, the ideals corre-

sponding to primitive forms. However, this is not the case, and here is an example.

Take ∆ = −12, so R∆ = Z[
√
−3] . The class number is 1 in this case so all stable

ideals are principal (and recall that principal ideals are always stable). Consider the

factorizations (4) = (2)(2) = (1+
√
−3)(1−

√
−3) . The ideals (2) and (1±

√
−3) are

prime since their norms are 4 so any nontrivial factorization as (α)(β) would have

N(α) = N(β) = 2 but no elements of Z[
√
−3] have norm 2 since x2 + 3y2 = 2 has

no integer solutions. The three ideals (2) and (1±
√
−3) are distinct since the only

units in Z[
√
−3] are ±1. Thus we have two different factorizations of (4) into prime

ideals when we restrict attention just to stable ideals. If one drops this restriction
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then unique prime factorization still fails since for the ideal L = (2,1+
√
−3) we saw

in the discussion following Proposition 8.27 that L2 = 2L , but unique factorization

implies the cancellation property so we would then have L = (2) , which is false.

One might ask where the proof of unique factorization breaks down for stable

ideals in the case of a nonfundamental discriminant. The answer is in the key property

in Lemma 8.32 that if a prime ideal P divides a product LM then it must divide one of

the factors L or M . In the proof of this we considered the ideal P+L , but unfortunately

this need not be a stable ideal when P and L are stable. For example, in the preceding

paragraph if we take P = (2) , L = (1+
√
−3) , and M = (1−

√
−3) then P + L is the

ideal (2,1+
√
−3) , but this is not stable as we saw after Proposition 8.27. And in fact

the ideal (2) does not divide either (1+
√
−3) or (1−

√
−3) .

Exercises

1. (a) Find the ideals of norm 39 in Z[
√

10] and find the factorizations of these ideals

into prime ideals.

(b) Do the same for the ideals in Z[
√

10] of norm 10, 15, and 30.

2. Let p1, p2, p3, p4 be distinct primes represented by the form 2x2+3y2 . Show that

there is an element of Z[
√
−6] of norm p1p2p3p4 having three different factorizations

as products of prime elements of Z[
√
−6] , where factorizations that differ just by units

are not regarded as different factorizations.

3. For a fundamental discriminant ∆ let us define two ideals L and L′ in R∆ to be

scale equivalent if there exist positive integers m and n such that mL = nL′ . Show

that the set of scale equivalence classes of ideals in R∆ forms a group with respect to

the usual multiplication of ideals, and determine the structure of this group.

8.6 Applications to Forms

As we have seen, ideals provide an alternative way of constructing the class group

CG(∆) . One of the main uses of the group structure in CG(∆) in Chapter 7 was in

Theorem 7.7 which characterized the primitive forms of discriminant ∆ representing

a given number n in terms of the forms representing the prime factors of n , or prime-

power factors in the case of primes dividing the conductor. When ∆ is a fundamental

discriminant the same characterization can be derived from the unique factorization

property of ideals in R∆ . This viewpoint provides additional insights into the some-

what subtle answer to the representation problem. Here is a restatement of the result

we will now prove using ideals:
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Theorem 8.38. Let ∆ be a fundamental discriminant and let n > 1 be a number

represented by at least one form of discriminant ∆ . If the prime factorization of

n is n = p
e1

1 · · ·p
ek
k for distinct primes pi , with ei = 1 for each pi dividing ∆

and ei ≥ 1 otherwise, then the forms of discriminant ∆ representing n are exactly

the forms Q
±e1

1 · · ·Q
±ek
k where Qi represents pi and the product Q

±e1

1 · · ·Q
±ek
k is

formed in the class group CG(∆) .

There are a few facts that are used in the proof that we will explain in advance

to avoid complicating the later arguments. The first is the elementary fact that an

element α in R∆ belongs to an ideal L if and only if the ideal (α) factors as (α) = LM

for some ideal M . This is because α is an element of L exactly when the ideal (α) is

contained in L , or in other words, when L divides (α) , which means (α) = LM for

some ideal M .

Next is a reformulation of what it means for a form QL to represent a number n .

By definition, QL(α) = N(α)/N(L) for α in L . Thus if we choose a basis α1, α2

for L regarded as a lattice and we let α = xα1 + yα2 for integers x and y , then

QL(x,y) = N(xα1 + yα2)/N(L) . For this to give a representation of n means that

x and y are coprime. In terms of α this is saying that α is not a multiple mβ of

any element β of L with m > 1. This last condition can be abbreviated to saying just

that α is primitive in L .

We have also defined what it means for an ideal L to be primitive, namely, L is not

a multiple mL′ of any other ideal L′ with m > 1, or equivalently, L is not divisible

by any principal ideal (m) with m > 1. We could require m to be a prime without

affecting the definition since if L = mL′ with m = pq for p a prime then L is p

times the ideal qL′ . By Proposition 8.16 every ideal in R∆ is equal to nLQ for some

integer n ≥ 1 and some form Q of discriminant ∆ , so the primitive ideals are exactly

the ideals LQ .

An equivalent way of formulating the condition for L to be primitive is to say that

the factorization L = P1 · · ·Pk as a product of prime ideals satisfies the following two

conditions:

(1) No Pi is a prime ideal (p) with p a prime integer. Thus each Pi has norm a prime

rather than the square of a prime.

(2) There is no pair of factors Pi and Pj with i ≠ j such that Pi = P j . In particular

if Pi = P i then Pi can occur only once in the prime factorization of L .

Proof of Theorem 8.38: Suppose that a number n > 1 is represented by a form Q .

From the correspondence between proper equivalence classes of forms and strict

equivalence classes of ideals we may assume Q = QL for some ideal L . Thus we

have n = QL(α) = N(α)/N(L) for some primitive α in L . Since n and N(L) are

positive, so is N(α) .
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We can reduce to the case that α is a positive integer by the following argument.

We have n = N(α)/N(L) = N(αα)/N(αL) = QαL(αα) . The element αα of αL is

primitive in αL since if αα = qαβ for some positive integer q and some β in L , then

α = qβ which forces q to be 1 since α is primitive in L . The integer m = αα is

N(α) which is positive as noted above. Also, m is in αL since α is in L . The ideals L

and αL are strictly equivalent since N(α) = N(α) > 0, so the forms QαL and QL are

properly equivalent. This shows that we may take n to be represented as n = QL(m)

for some primitive positive integer m in the new L .

Next we reduce to the case that L is a primitive ideal. If L is not primitive we can

write it as L = qL′ for some integer q > 1 with L′ primitive. Since m is in L = qL′ we

have m = qr for some r in L′ , and in fact r must be an integer since r = m/q and

the only rational numbers in R∆ are integers. Since m and q are positive, so is r .

Also, r is primitive in L′ since m is primitive in L and we are just rescaling m and

L by a factor of 1/q to get r and L′ . The equation n = N(m)/N(L) can be written as

n = N(qr)/N(qL′) = N(r)/N(L′) since qL′ = (q)L′ and N
(
(q)

)
= N(q) . This shows

that n is represented as QL′(r) = n . The form QL′ is properly equivalent to QL since

L = qL′ and N(q) > 0. The net result of this argument is that we can assume that n

is represented as n = QL(m) = N(m)/N(L) where L is primitive and m is a positive

integer that is a primitive element of L .

Since m is in L we have (m) = LM for some ideal M . This M must also be

primitive, otherwise if M = qM′ for some ideal M′ and some integer q > 1, then,

arguing as in the preceding paragraph, we would have m = qr for some positive

integer r in M′ with (r) = LM′ . This last equality implies that r is in L , so m would

not be primitive in L .

Since L and M are both primitive, their factorizations into prime ideals satisfy the

earlier conditions (1) and (2). Then since their product is (m) with m an integer, we

must have M = L . Thus (m) = LL and so m = N(L) . Now we have n = N(m)/N(L) =

m2/m = m so n = m and the representation of n becomes n = QL(n) with L

primitive and n = N(L) .

Let the factorization of L into prime ideals be L = P1 · · ·Pk . Then N(Pi) is a

prime pi and pi is in Pi since PiP i = (pi) . Also, pi is primitive in Pi since pi is

prime so if pi was not primitive in Pi then Pi would contain 1 which is impossible

since Pi ≠ R∆ . If we denote QPi by Qi for simplicity then Qi represents pi since

Qi(pi) = N(pi)/N(Pi) = p
2
i /pi = pi .

Since n = N(L) and L = P1 · · ·Pk we have n = p1 · · ·pk . The prime factorization

n = p1 · · ·pk is unique so the prime ideals Pi are uniquely determined by n up to

the ambiguity of replacing Pi by P i . In CG(∆) this amounts to replacing Qi by Q−1
i .

Keeping in mind condition (2), we have now shown that if a form Q represents n then

in CG(∆) we have Q = Q
±e1

1 · · ·Q
±ek
k where n = p

e1

1 · · ·p
ek
k is the factorization of

n into powers of distinct primes pi and the form Qi represents pi . Condition (2)



338 Chapter 8 — Quadratic Fields

implies that ei = 1 for each i with Pi = P i , that is, for each pi that divides the

discriminant ∆ .

To show the converse, suppose n = p
e1

1 · · ·p
ek
k is the factorization of n into

powers of distinct primes pi with ei = 1 when pi divides ∆ , and suppose the form

Qi represents pi . Our objective is then to show that Q
±e1

1 · · ·Q
±ek
k represents n . By

the arguments in the first part of the proof applied to pi in place of n there is an ideal

Li containing pi with N(Li) = pi , so Li is a prime ideal since its norm pi is prime.

If we set L = L
e1

1 · · ·L
ek
k then L is primitive since its factorization into prime ideals

satisfies conditions (1) and (2). We have n ∈ L since each pi is in Li . Also we have

N(L) = N(L1)
e1 · · ·N(Lk)

ek = p
e1

1 · · ·p
ek
k = n . Thus QL(n) = N(n)/N(L) = n

2/n =

n which means that QL represents n provided that n is primitive in L . If n is not

primitive in L then it factors as n = qr for some integer q > 1 and some r in L . By

an earlier argument r must be a positive integer. Since r is in L , we have (r) = LM

for some ideal M . Then (n) = (qr) = qLM . We also have (n) = LL since N(L) = n .

Thus qLM = LL so the cancellation property for ideals implies that L = qM . Taking

conjugates, this says L = qM . This contradicts the fact that L is primitive. Thus we

have shown that QL represents n .

We have QLi(pi) = N(pi)/N(Li) = p
2
i /pi = pi . Thus both Qi and QLi represent

the prime pi so they must be equivalent, hence in CG(∆) we have QLi = Q
±1
i . We

can choose the sign of the exponent at will since we are free to replace Li by Li in the

previous arguments. Then Q
±e1

1 · · ·Q
±ek
k = Q

e1

L1
· · ·Q

ek
Lk
= QL since L = L

e1

1 · · ·L
ek
k .

Thus Q
±e1

1 · · ·Q
±ek
k represents n since QL represents n ⊔⊓

As another application of unique factorization for ideals in the rings R∆ for fun-

damental discriminants ∆ let us consider again the problem of finding which primitive

forms represent powers of primes dividing the conductor in the case of nonfundamen-

tal discriminants. The large table in Section 6.2 shows some of the subtleties that can

occur for small negative nonfundamental discriminants. Perhaps the most interesting

cases are when infinitely many different powers of these primes are represented. The

first three cases ∆ = −28, −60, and −72 were treated in Sections 6.2, 6.3, and 8.2.

Let us consider now the fourth case ∆ = −92 where there are some new subtleties.

For ∆ = −92 the class number is 3 with the three forms x2 + 23y2 and 3x2 ±

2xy + 8y2 . The associated fundamental discriminant is ∆ = −23 which also has

class number 3, corresponding to the forms x2+xy+6y2 and 2x2±xy+3y2 . The

conductor is 2 and this is represented in discriminant −23 by 2x2±xy+3y2 , as are

all powers of 2 since 2 does not divide −23, so by Proposition 6.13 all powers 2k for

k ≥ 3 are represented by at least one of the forms x2 + 23y2 and 3x2 ± 2xy + 8y2 .

Our aim is to determine which of these powers are represented by each form.

First consider the form x2 + 23y2 . For elements x +
√
−23y in Z[

√
−23] we

have N(x +
√
−23y) = x2 + 23y2 so we are looking for coprime integers x and y

such that x +
√
−23y has norm a power of 2. We will use the larger ring Z[ω] with
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ω = (1+
√
−23)/2 since this has unique factorization of ideals, being the ring R∆ for

the associated fundamental discriminant −23. Using Proposition 8.18 we see that the

principal ideal (2) in Z[ω] factors as (2) = PP for P = (2,ω) , with P ≠ P . Since

N(2) = 4 we have N(P) = N(P) = 2, so N(Pk) = 2k . The ideal P is not principal

since there is no element of Z[ω] of norm 2, for if α in Z[ω] had norm 2 then 2α

would be an element of Z[
√
−23] of norm 8 but the form x2 + 23y2 does not take

on the value 8. Since the class number for discriminant −23 is 3 the class group is

cyclic of order 3 and P generates this group. Thus the powers of P that are principal

ideals are the powers P3n .

Suppose the element α = x +
√
−23y of Z[

√
−23] has norm 2k , so αα = 2k .

Then for ideals we have (α)(α) = PkP
k

and hence (α) = P rP
s

for some r and s with

r + s = k . We have x2 + 23y2 = 2k so x and y have the same parity. We want them

to be coprime so this means they are both odd and hence α is divisible by 2 in Z[ω] .

This is saying that (α) is divisible by both P and P since (2) = PP . Thus r > 0 and

s > 0. On the other hand if r > 1 and s > 1 this would say that (α) was divisible

by (4) and hence α was divisible by 4 in Z[ω] , so x and y would both be even, a

contradiction. Therefore one of r and s must be 1, and so in the class group where

P is the inverse of P the ideal (α) must be either 2Pk−2 if s = 1, or 2P
k−2

if r = 1.

Since (α) is a principal ideal this implies that k−2 is a multiple of 3, say k−2 = 3m ,

or k = 3m + 2. Thus the only powers of 2 that could possibly be represented by

x2 + 23y2 are the powers 2k with k = 2,5,8, · · · . Obviously 22 is not represented

so this leaves 25,28,211, · · · . as the only possibilities.

The other two forms 3x2±2xy+8y2 are equivalent, though not properly equiv-

alent, so they represent the same numbers. We will show that they cannot represent

any of the powers 25,28,211, · · · . Since each power 2k with k ≥ 3 is represented by

one of the forms x2 + 23y2 and 3x2± 2xy + 8y2 we will then know that x2 + 23y2

represents 25,28,211, · · · and 3x2 ± 2xy + 8y2 represents 23,24,26,27,29,210, · · · .

The lattice in Z[
√
−23] corresponding to 3x2 + 2xy + 8y2 is L(3,1 +

√
−23) .

This has norm 3 in Z[
√
−23] so we have N(3x + (1 +

√
−23)y)/3 = N((3x + y) +√

−23y)/3 = (9x2 + 6xy + y2 + 23y2)/3 = 3x2 + 2xy + 8y2 , the given form.

Suppose that x and y are coprime integers for which 3x2+2xy+8y2 = 2k . The

element α = 3x + (1+
√
−23)y = 3x + 2ωy in Z[

√
−23] then has N(α) = 3·2k . In

Z[ω] we have (2) = PP for P = (2,ω) , and we have (3) = QQ for Q = (3,ω) from

Proposition 8.18. Thus (α)(α) = QQPkP
k

and hence (α) is either QP rP
s

or QP rP
s

for some integers r ≥ 0 and s ≥ 0 with r+s = k . The equation 3x2+2xy+8y2 = 2k

implies that x is even, hence 3x + 2ωy is divisible by 2 in Z[ω] . This implies

that r > 0 and s > 0. If r > 1 and s > 1 then 4 divides 3x + 2ωy in Z[ω]

which implies x and y are even, violating their coprimeness. Thus either r = 1

or s = 1, say s = 1. This means (α) = 2QPk−2 or (α) = 2QPk−2 . Since (α) is a

principal ideal this means that QPk−2 or QPk−2 is a principal ideal. The product PQ
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is (2,ω)(3,ω) = (6,2ω,3ω,ω2) with ω2 = ω − 6. It follows that PQ = (ω) since

ω = 3ω − 2ω and 6 = ωω . Since PQ is a principal ideal, Q is the inverse of P in

the class group and Q is equivalent to P .

In the case (α) = 2QPk−2 the ideal (α) is principal and is equivalent to Pk−3 in the

class group so k−3 = 3n for some integer n , which means k ≡ 0 mod 3. In the other

case (α) = 2QPk−2 we have (α) equivalent to Pk−1 in the class group so k− 1 = 3n

and k ≡ 1 mod 3. This finishes the argument that the forms 3x2±2xy+8y2 cannot

represent any of the powers 25,28,211, · · · . Hence we know which powers of 2 each

form x2 + 23y2 and 3x2 ± 2xy + 8y2 represents.

It is easy to be more explicit about representing 23n+2 by x2+23y2 . As we have

seen, this amounts to writing the principal ideal 2P3n as (x+
√
−23y) . The ideal P3

has norm 8 so it must equal (β) for some β in Z[ω] of norm 8. From the topograph

of the norm form x2 + xy + 6y2 in discriminant −23 one can see that 1 +ω and

1+ω = 2−ω are the only elements of Z[ω] of norm 8, up to sign. Thus we obtain

solutions of x2 + 23y2 = 23n+2 by writing 2·(1+ω)n as x +
√
−23y , and these are

the only primitive solutions, up to changing the signs of x and y . We can compute

inductively, so if 2·(1+ω)n = x +
√
−23y then multiplying this by 1+ω gives the

solution for the next value of n . Since 1+ω = 3+
√
−23

2
the inductive formula is:

(
x +

√
−23y

)(3+
√
−23

2

)
=
(3x − 23y)+ (x + 3y)

√
−23

2

Here are the first few solutions:

n 1 2 3 4 5

(x,y) (3,1) (−7,3) (−45,1) (−79,−21) (123,−71)

One could also be explicit about solutions of 3x2 + 2xy + 8y2 = 2k but the

answers are a little more complicated so we will not do this here.
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1. Forms of Negative Discriminant

This table lists the proper equivalence classes of primitive forms for each negative

discriminant down to −120. The first column gives the discriminant (up to sign), with

an asterisk when it is not a fundamental discriminant. The second column gives the

class number. In most cases in the table the class group is cyclic so the class number

determines the class group. The exceptions are indicated by writing the class number

as a product corresponding to the factorization of the class group as a product of

cyclic groups. Thus 2·2 means class number 4 with class group the product of two

cyclic groups of order 2. The third column gives the various characters for each

discriminant. These correspond to the prime divisors of the discriminant, with a few

exceptions for the prime 2 in cases with nonfundamental discriminants. The fourth

column gives the reduced form for each equivalence class, with ax2 + bxy + cy2

abbreviated to [a, b, c] , followed by signs + and − indicating whether the characters

have value +1 or −1 on each form. The forms in each genus have the same character

values, and these forms are listed consecutively. Forms that lack mirror symmetry

have middle coefficients ±b , indicating that the form and its mirror image give distinct

elements of the class group.

|∆| h∆ Char. Forms

3 1 χ
3 [1,1,1] +

4 1 χ
4 [1,0,1] +

7 1 χ
7 [1,1,2] +

8 1 χ ′
8 [1,0,2] +

11 1 χ
11 [1,1,3] +

∗ 12 1 χ
3 [1,0,3] +

15 2 χ
3
χ

5 [1,1,4] ++

[2,1,2] −−

∗ 16 1 χ
4 [1,0,4] +

19 1 χ
19 [1,1,5] +

20 2 χ
4
χ

5 [1,0,5] ++

[2,2,3] −−

|∆| h∆ Char. Forms

23 3 χ
23 [1,1,6] +

[2,±1,3] +

24 2 χ
8
χ

3 [1,0,6] ++

[2,0,3] −−

∗ 27 1 χ
3 [1,1,7] +

∗ 28 1 χ
7 [1,0,7] +

31 3 χ
31 [1,1,8] +

[2,±1,4] +

∗ 32 2 χ
4
χ

8 [1,0,8] ++

[3,2,3] −−

35 2 χ
5
χ

7 [1,1,9] ++

[3,1,3] −−

∗ 36 2 χ
4
χ

3 [1,0,9] ++

[2,2,5] +−
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|∆| h∆ Char. Forms

39 4 χ
3
χ

13 [1,1,10] ++

[3,3,4] ++
[2,±1,5]−−

40 2 χ ′
8
χ

5 [1,0,10] ++

[2,0,5] −−

43 1 χ
43 [1,1,11] +

∗ 44 3 χ
11 [1,0,11] +

[3,±2,4] +

47 5 χ
47 [1,1,12] +

[2,±1,6] +
[3,±1,4] +

∗ 48 2 χ
4
χ

3 [1,0,12] ++

[3,0,4] −+

51 2 χ
3
χ

17 [1,1,13] ++

[3,3,5] −−

52 2 χ
4
χ

13 [1,0,13] ++

[2,2,7] −−

55 4 χ
5
χ

11 [1,1,14] ++

[4,3,4] ++
[2,±1,7]−−

56 4 χ
8
χ

7 [1,0,14] ++

[2,0,7] ++
[3,±2,5]−−

59 3 χ
59 [1,1,15] +

[3,±1,5] +

∗ 60 2 χ
3
χ

5 [1,0,15] ++

[3,0,5] −−

∗ 63 4 χ
3
χ

7 [1,1,16] ++

[4,1,4] ++
[2,±1,8]−+

∗ 64 2 χ
4
χ

8 [1,0,16] ++

[4,4,5] +−

67 1 χ
67 [1,1,17] +

68 4 χ
4
χ

17 [1,0,17] ++

[2,2,9] ++
[3,±2,6]−−

71 7 χ
71 [1,1,18] +

[2,±1,9] +
[3,±1,6] +
[4,±3,5] +

|∆| h∆ Char. Forms

∗ 72 2 χ ′
8
χ

3 [1,0,18] ++

[2,0,9] +−

∗ 75 2 χ
3
χ

5 [1,1,19] ++

[3,3,7] +−

∗ 76 3 χ
19 [1,0,19] +

[4,±2,5] +

79 5 χ
79 [1,1,20] +

[2,±1,10] +
[4,±1,5] +

∗ 80 4 χ
4
χ

5 [1,0,20] ++

[4,0,5] ++
[3,±2,7] −−

83 3 χ
83 [1,1,21] +

[3,±1,7] +

84 2·2 χ
4
χ

3
χ

7 [1,0,21] +++

[2,2,11] −−+
[3,0,7] −+−
[5,4,5] +−−

87 6 χ
3
χ

29 [1,1,22] ++

[4,±3,6] ++
[2,±1,11] −−
[3,3,8] −−

88 2 χ
8
χ

11 [1,0,22] ++

[2,0,11] −−

91 2 χ
7
χ

13 [1,1,23] ++

[5,3,5] −−

∗ 92 3 χ
23 [1,0,23] +

[3,±2,8] +

95 8 χ
5
χ

19 [1,1,24] ++

[4,±1,6] ++
[5,5,6] ++
[2,±1,12] −−
[3,±1,8] −−

∗ 96 2·2 χ
4
χ

8
χ

3 [1,0,24] +++

[3,0,8] −−−
[4,4,7] −++
[5,2,5] +−−

∗ 99 2 χ
3
χ

11 [1,1,25] ++

[5,1,5] −+
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|∆| h∆ Char. Forms

∗ 100 2 χ
4
χ

5 [1,0,25] ++

[2,2,13] +−

103 5 χ
103 [1,1,26] +

[2,±1,13] +
[4,±3,7] +

104 6 χ
8
χ

13 [1,0,26] ++

[3,±2,9] ++
[2,0,13] −−
[5,±4,6] −−

107 3 χ
107 [1,1,27] +

[3,±1,9] +

∗ 108 3 χ
3 [1,0,27] +

[4,±2,7] +

111 8 χ
3, χ 37 [1,1,28] ++

[4,±1,7] ++
[3,3,10] ++
[2,±1,14] −−
[5,±3,6] −−

∗ 112 2 χ
4, χ7 [1,0,28] ++

[4,0,7] −+

115 2 χ
5, χ23 [1,1,29] ++

[5,5,7] −−

116 6 χ
4, χ 29 [1,0,29] ++

[5,±2,6] ++
[2,2,15] −−
[3,±2,10] −−

119 10 χ
7, χ 17 [1,1,30] ++

[2,±1,15] ++
[4,±3,8] ++
[3,±1,10] −−
[5,±1,6] −−
[6,5,6] −−

120 2·2 χ
8, χ 3, χ 5 [1,0,30] + + +

[2,0,15] + − −
[3,0,10] − + −
[5,0,6] − − +
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2. Fully Symmetric Negative Discriminants

Listed below are the 101 known negative discriminants ∆ for which every prim-

itive form has a mirror-symmetric topograph. This is equivalent to saying that each

genus consists of a single equivalence class of forms, or that the class group is either

the trivial group or a product of cyclic groups of order 2. The class number h∆ is then

a power of 2 determined by the number of distinct prime divisors of ∆ . Asterisks in

the table denote nonfundamental discriminants. Among the 101 discriminants there

are 65 fundamental discriminants and, coincidentally, 65 even discriminants.

|∆| h∆

3 1

4 = 22 1

7 1

8 = 23 1

11 1

∗ 12 = 22 · 3 1

15 = 3 · 5 2

∗ 16 = 24 1

19 1

20 = 22 · 5 2

24 = 23 · 3 2

∗ 27 = 33 1

∗ 28 = 22 · 7 1

∗ 32 = 25 2

35 = 5 · 7 2

∗ 36 = 22 · 32 2

40 = 23 · 5 2

43 1

∗ 48 = 24 · 3 2

51 = 3 · 17 2

52 = 22 · 13 2

∗ 60 = 22 · 3 · 5 2

∗ 64 = 26 2

67 1

∗ 72 = 23 · 32 2

∗ 75 = 3 · 52 2

84 = 22 · 3 · 7 4

88 = 23 · 11 2

91 = 7 · 13 2

∗ 96 = 25 · 3 4

∗ 99 = 32 · 11 2

∗ 100 = 22 · 52 2

∗ 112 = 24 · 7 2

115 = 5 · 23 2

|∆| h∆

120 = 23 · 3 · 5 4

123 = 3 · 41 2

132 = 22 · 3 · 11 4

∗ 147 = 3 · 49 2

148 = 4 · 37 2

∗ 160 = 25 · 5 4

163 1

168 = 23 · 3 · 7 4

∗ 180 = 22 · 32 · 5 4

187 = 11 · 17 2

∗ 192 = 26 · 3 4

195 = 3 · 5 · 13 4

228 = 22 · 3 · 19 4

232 = 23 · 29 2

235 = 5 · 47 2

∗ 240 = 24 · 3 · 5 4

267 = 3 · 89 2

280 = 23 · 5 · 7 4

∗ 288 = 25 · 32 4

312 = 23 · 3 · 13 4

∗ 315 = 32 · 5 · 7 4

340 = 22 · 5 · 17 4

∗ 352 = 25 · 11 4

372 = 22 · 3 · 31 4

403 = 13 · 31 2

408 = 23 · 3 · 17 4

420 = 22 · 3 · 5 · 7 8

427 = 7 · 61 2

435 = 3 · 5 · 29 4

∗ 448 = 26 · 7 4

∗ 480 = 25 · 3 · 5 8

483 = 3 · 7 · 23 4

520 = 23 · 5 · 13 4

532 = 22 · 7 · 19 4

|∆| h∆

555 = 3 · 5 · 37 4

595 = 5 · 7 · 17 4

627 = 3 · 11 · 19 4

660 = 22 · 3 · 5 · 11 8

∗ 672 = 25 · 3 · 7 8

708 = 22 · 3 · 59 4

715 = 5 · 11 · 13 4

760 = 23 · 5 · 19 4

795 = 3 · 5 · 53 4

840 = 23 · 3 · 5 · 7 8

∗ 928 = 25 · 29 4

∗ 960 = 26 · 3 · 5 8

1012 = 22 · 11 · 23 4

1092 = 22 · 3 · 7 · 13 8

∗ 1120 = 25 · 5 · 7 8

1155 = 3 · 5 · 7 · 11 8

∗ 1248 = 25 · 3 · 13 8

1320 = 23 · 3 · 5 · 11 8

1380 = 22 · 3 · 5 · 23 8

1428 = 22 · 3 · 7 · 17 8

1435 = 5 · 7 · 41 4

1540 = 22 · 5 · 7 · 11 8

∗ 1632 = 25 · 3 · 17 8

1848 = 23 · 3 · 7 · 11 8

1995 = 3 · 5 · 7 · 11 8

∗ 2080 = 25 · 5 · 13 8

3003 = 3 · 7 · 11 · 13 8

∗ 3040 = 25 · 5 · 19 8

3315 = 3 · 5 · 13 · 17 8

∗ 3360 = 25 · 3 · 5 · 7 16

∗ 5280 = 25 · 3 · 5 · 11 16

5460 = 22 · 3 · 5 · 7 · 13 16

∗ 7392 = 25 · 3 · 7 · 11 16
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3. Forms of Positive Nonsquare Discriminant

This table is similar in layout to Table 1. For positive discriminants there is not a

unique reduced form within each equivalence class so we have chosen a form which

seemed simplest in some less precise sense.

∆ h∆ Char. Forms

5 1 χ
5 [1,1,−1] +

8 1 χ
8 [1,0,−2] +

12 2 χ
4
χ

3 [1,0,−3] ++

[3,0,−1] −−

13 1 χ
13 [1,1,−3] +

17 1 χ
17 [1,1,−4] +

∗ 20 1 χ
5 [1,0,−5] +

21 2 χ
3
χ

7 [1,1,−5] ++

[5,1,−1] −−

24 2 χ ′
8
χ

3 [1,0,−6] ++

[6,0,−1] −−

28 2 χ
4
χ

7 [1,0,−7] ++

[7,0,−1] −−

29 1 χ
29 [1,1,−7] +

∗ 32 2 χ
4
χ

8 [1,0,−8] ++

[8,0,−1] −+

33 2 χ
3
χ

11 [1,1,−8] ++

[8,1,−1] −−

37 1 χ
37 [1,1,−9] +

40 2 χ
8
χ

5 [1,0,−10] ++

[2,0,−5] −−

41 1 χ
41 [1,1,−10] +

44 2 χ
4
χ

11 [1,0,−11] ++

[11,0,−1] −−

∗ 45 2 χ
3
χ

5 [1,1,−11] ++

[11,1,−1] −+

∗ 48 2 χ
4
χ

3 [1,0,−12] ++

[12,0,−1] −−

∗ 52 1 χ
13 [1,0,−13] +

53 1 χ
53 [1,1,−13] +

∆ h∆ Char. Forms

56 2 χ ′
8
χ

7 [1,0,−14] ++

[14,0,−1] −−

57 2 χ
3
χ

19 [1,1,−14] ++

[14,1,−1] −−

60 2·2 χ
4
χ

3
χ

5 [1,0,−15] +++

[15,0,−1] −−+
[3,0,−5] −+−
[5,0,−3] +−−

61 1 χ
61 [1,0,−15] +

65 2 χ
5
χ

13 [1,1,−16] ++

[2,1,−8] −−

∗ 68 1 χ
17 [1,0,−17] +

69 2 χ
3
χ

23 [1,1,−17] ++

[17,1,−1] −−

∗ 72 2 χ
8
χ

3 [1,0,−18] ++

[18,0,−1] +−

73 1 χ
73 [1,1,−18] +

76 2 χ
4
χ

19 [1,0,−19] ++

[19,0,−1] −−

77 2 χ
7
χ

11 [1,1,−19] ++

[19,1,−1] −−

∗ 80 2 χ
4
χ

5 [1,0,−20] ++

[20,0,−1] −+

∗ 84 2 χ
3
χ

7 [1,0,−21] ++

[21,0,−1] −−

85 2 χ
5
χ

17 [1,1,−21] ++

[3,1,−7] −−

88 2 χ ′
8
χ

11 [1,0,−22] ++

[22,0,−1] −−

89 1 χ
89 [1,1,−22] +

92 2 χ
4
χ

23 [1,0,−23] ++

[23,0,−1] −−

93 2 χ
3
χ

31 [1,1,−23] ++

[23,1,−1] −−
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∆ h∆ Char. Forms

∗ 96 2·2 χ
4
χ

8
χ

3 [1,0,−24] +++

[24,0,−1] −+−
[3,0,−8] −−+
[8,0,−3] +−−

97 1 χ
97 [1,1,−24] +

101 1 χ
101 [1,1,−25] +

104 2 χ
8
χ

13 [1,0,−26] ++

[2,0,−13] −−

105 2·2 χ
3
χ

5
χ

7 [1,1,−26] +++

[26,1,−1] −+−
[2,1,−13] −−+
[13,1,−2] +−−

∗ 108 2 χ
4
χ

3 [1,0,−27] ++

[27,0,−1] −−

109 1 χ
109 [1,1,−27] +

∗ 112 2 χ
4
χ

7 [1,0,−28] ++

[28,0,−1] −−

113 1 χ
113 [1,1,−28] +

116 1 χ
29 [1,1,−29] +

∗ 117 2 χ
3
χ

13 [1,1,−29] ++

[29,1,−1] −+

120 2·2 χ ′
8
χ

3
χ

5 [1,0,−30] +++

[30,0,−1] −−+
[2,0,−15] +−−
[15,0,−2] −+−

124 2 χ
4
χ

31 [1,0,−31] ++

[31,0,−1] −−

∗ 125 1 χ
5 [1,1,−31] +

∗ 128 2 χ
4
χ

8 [1,0,−32] ++

[32,0,−1] −+

129 2 χ
3
χ

43 [1,1,−32] ++

[32,1,−1] −−

∗ 132 2 χ
3
χ

11 [1,0,−33] ++

[33,0,−1] −−

133 2 χ
7
χ

19 [1,1,−33] ++

[33,1,−1] −−

136 4 χ
8
χ

17 [1,0,−34] ++

[34,0,−1] ++
[3,±2,−11] −−

∆ h∆ Char. Forms

137 1 χ
137 [1,1,−34] +

140 2·2 χ
4
χ

5
χ

7 [1,0,−35] +++

[35,0,−1] −+−
[2,2,−17] −−+
[17,2,−2] +−−

141 2 χ
3
χ

47 [1,1,−35] ++

[35,1,−1] −−

145 4 χ
5
χ

29 [1,1,−36] ++

[4,1,−9] ++
[2,±1,−18] −−

∗ 148 3 χ
37 [1,0,−37] +

[3,±2,−12] +

149 1 χ
149 [1,1,−37] +

152 2 χ ′
8
χ

19 [1,0,−38] ++

[38,0,−1] −−

∗ 153 2 χ
3
χ

17 [1,1,−38] ++

[38,1,−1] −+

156 2·2 χ
4
χ

3
χ

13 [1,0,−39] +++

[39,0,−1] −−+
[2,2,−19] +−−
[19,2,−2] −+−

157 1 χ
157 [1,1,−39] +

∗ 160 2·2 χ
4
χ

8
χ

5 [1,0,−40] +++

[40,0,−1] −++
[3,2,−13] −−−
[13,2,−3] +−−

161 2 χ
7
χ

23 [1,1,−40] ++

[40,1,−1] −−

∗ 164 1 χ
41 [1,0,−41] +

165 2·2 χ
3
χ

5
χ

11 [1,1,−41] +++

[41,1,−1] −+−
[3,3,−13] −−+
[13,3,−3] +−−

168 2·2 χ
8
χ

3
χ

7 [1,0,−42] +++

[42,0,−1] +−−
[2,0,−21] −−+
[21,0,−2] −+−

172 2 χ
4
χ

43 [1,0,−43] ++

[43,0,−1] −−

173 1 χ
173 [1,1,−43] +
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4. Periodic Separator Lines

The dotted vertical lines are lines of mirror symmetry and the heavy dots along

the separator lines are points of rotational skew symmetry.

∆ Q

5 [1,1,−1]

8 [1,0,−2]

12 [1,0,−3]

[3,0,−1]

13 [1,1,−3]

17 [1,1,−4]

20 [1,0,−5]

21 [1,1,−5]

[5,1,−1]

24 [1,0,−6]

[6,0,−1]
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∆ Q

28 [1,0,−7]

[7,0,−1]

29 [1,1,−7]

32 [1,0,−8]

[8,0,−1]

33 [1,1,−8]

[8,1,−1]

37 [1,1,−9]

40 [1,0,−10]

[2,0,−5]
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In a few instances we have chosen not to use standard terminology for certain

concepts, usually because the traditional names seem somewhat awkward in the con-

text of this book, or not as suggestive of the meaning as they could be. Here is a short

summary of the main instances where translation may be needed when reading other

sources.

Quadratic Forms. These are usually divided into three types, but for our purposes it

is useful to split one of the three types into two for a total of four types as defined at

the beginning of Chapter 5. Here are the traditional names with our equivalents:

definite = elliptic

indefinite = hyperbolic or 0-hyperbolic

semidefinite = parabolic

Besides the convenience of having separate names for hyperbolic and 0-hyperbolic

forms, the other motivation for the change is that the ordinary meanings of “definite”

and “indefinite” do not seem to convey very well their mathematical meanings.

What we call a symmetry of a quadratic form is more often called an automorph

or automorphism of the form, although the latter terms are sometimes reserved just

for orientation-preserving symmetries. We call a form having an orientation-reversing

symmetry a mirror symmetric form, or a form with mirror symmetry, whereas clas-

sically such forms are called ambiguous, a term that has suffered somewhat in the

translation from Gauss’s original Latin.

Representing Numbers by Quadratic Forms. The traditional terminology is to say

that a quadratic form Q(x,y) represents a number n when there exist integers x

and y such that Q(x,y) = n . However in this book we are almost always interested

only in the case that x and y are coprime, so to avoid extra words to specify this

every time, we take the word “represent” always to mean “represent with coprime

integers x and y ”.

Primes. There is uniform agreement about what a prime number is when one is talking

about positive integers, namely a number greater than 1 that is divisible only by itself

and 1. For the sake of consistency we use the natural extension of this definition to

other sorts of numbers considered in the last chapter of the book, namely Gaussian

integers and their analogues in quadratic fields Q(
√
d) . Thus we call such numbers

prime if the only way they factor is with one factor a unit (and they are not units
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or 0 themselves). Over the years it has become more usual to call numbers with this

property irreducible rather than prime, using the term prime for numbers with the

property that if they divide a product, then they must divide one of the factors. For

example in the ring Z[
√
−5] the number 2 is prime according to our definition but

not according to the standard definition since 2 divides 6 = (1+
√
−5)(1−

√
−5) but

does not divide either factor 1±
√
−5.

We make a similar divergence from standard terminology when we define prime

ideals in Chapter 8.

Topographs. Of much more recent origin is Conway’s notion of the topograph of

a quadratic form. Here we do not always follow Conway’s picturesque terminology.

What we call a separator line he called a river, and our source vertices and edges are

his simple and double wells. He called a region with label 0 a lake but we call this just

a 0 region.
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The first group of eight books can be recommended for the quality of their exposition. They

are arranged in approximate order of increasing sophistication and mathematical background

required.

J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, 1996.

A delightful collection of the wonders of numbers.

J. H. Conway, The Sensual Quadratic Form, MAA, 1997.

Where topographs first appeared. Very enjoyable reading.

H. Davenport, The Higher Arithmetic, Cambridge U. Press, fifth ed. 1982 (orig. 1952).

A classical and accessible introduction to number theory.

M. H. Weissman, An Illustrated Theory of Numbers, AMS, 2017.

Many illuminating pictures, with chapters on topographs and quadratic forms.

J. Stillwell, Numbers and Geometry, Springer, 1998.

A pleasing intermingling of algebra and geometry.

A. Weil, Number Theory: An Approach Through History, Birkhäuser, 1984.

A scholarly historical study by one of the 20th century greats.

J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-Verlag, 1992.

A natural next step after the present book.

J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973 (French orig. 1970).

A master expositor writing at the graduate level, in spite of the title.

Other books with coverage of quadratic forms, organized in the same way as the previous list.

D. E. Flath, Introduction to Number Theory, Wiley, 1989. AMS Chelsea 2018.

H. Cohn, Advanced Number Theory, Dover, 1980.

H. E. Rose, A Course in Number Theory, Clarendon Press 1994.

J. L. Lehman, Quadratic Number Theory, AMS, 2019.

F. Halter-Koch, Quadratic Irrationals, CRC Press, 2013.

D. A. Buell, Binary Quadratic Forms, Springer-Verlag, 1989.

D. A. Cox, Primes of the form x2+ ny2 , Wiley, 1989.
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abelian group 231

ambiguous form 137

arithmetic progression rule 91

Cayley graph 238

character 194

character table 194

Chinese Remainder Theorem 60

class group for forms 224

class group for ideals 324

class number 128

complex numbers 9

concordant forms 215

conductor 129

congruent 7

conjugate lattice or ideal 296

continued fraction 36, 78, 95

convergents 38

coprime 26

cyclic group 232

dense set of points 3, 16

determinant rule 23

Diophantine equation 12

Diophantus 12

Dirichlet’s Theorem 169

discriminant 111

dual tree of Farey diagram 90

Eisenstein 206

elliptic curve 13

elliptic form 111, 113

equivalence of quadratic forms 120

equivalent ideals 307

Euclidean algorithm 36, 277, 278

Euler 50, 130, 205, 236

Euler phi function 59, 63, 236

Euler’s formula for the Legendre symbol 206

exact sequence 256

fan 37

Farey diagram 20, 37, 90

Farey series 28

Fermat 9, 13

Fermat’s Last Theorem 13

Fermat’s Little Theorem 207, 236

Fibonacci numbers 43

fixed point 79

Ford circle 33

form 89

fully symmetric discriminant 143

fully symmetric form 248

fundamental discriminant 128

fundamental unit 270

Gauss 10

Gauss conjecture on class number 129

Gauss Duplication Theorem 252

Gaussian integers 10, 264

generator of a cyclic group 232

genus 169, 202

glide reflection 79, 98

golden ratio 46

greatest common divisor 37

group 225

homogeneous 65

hyperbolic form 111, 115

ideal 274, 291

ideal class group 324

infinite continued fraction 43

infinite strip 53

Lagrange’s Theorem 49, 81, 101

Lambert 50

lattice 290

lattice point 208

Legendre symbol 178
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Legendre’s Theorem 12, 66

LF(Z) 72

linear fractional transformation 71

mediant 21

modulo 7

monotonicity property 113

multiplicative inverse mod n 58

negative Pell’s equation 107

nonunique prime factorization example 273

norm 268

norm of a lattice 298

norm of an ideal 298, 322

order of a group 231

order of a group element 231

orientations 73

p –rank 241

palindrome 49, 98

parabolic form 111, 116

partial quotient 36

Pell’s equation 9, 107

periodic continued fraction 45, 49

periodic separator line 94, 115

positively ordered basis 299

prime element 267

prime ideal 327

primitive form 90, 127

primitive ideal 301, 336

primitive pair 89

primitive Pythagorean triple 1, 4

principal form 112

principal ideal 300, 332

product of forms 215

product of groups 232

product of ideals 319

proper equivalence of forms 126

Pythagorean triple 1, 3, 5, 23

quadratic form 6, 89

quadratic reciprocity 178, 205

Ramanujan 287

ramified prime 328

rational equivalence of forms 258

rational form 259

rational point 2

rational point on a circle 2

rational points on a sphere 14

rational points on quadratic curves 10, 65

reduced basis for a lattice or ideal 297

reduced discriminant 261

reduced elliptic form 121

reduced hyperbolic form 124

relatively prime 26

representation problem 89, 157, 227

second arithmetic progression rule 112

separating edge 115

separator line 94, 115

skew symmetry 144

source edge 114

source vertex 114

split prime 328

squarefree 66

stabilizer of an ideal 311

stable ideal 312, 323

stereographic projection 16

strict equivalence of ideals 307

strip of triangles 37

subgroup 241

symmetric class group 243

symmetric class number 138, 243

symmetry of a form 131

topograph 91

trace 82

unique factorization 268

unique factorization of ideals 329

unit 267

Wilson’s Theorem 206

zero-hyperbolic form 111, 116

zigzag path 38


