A FIRST LOOK AT DIFFERENTIAL ALGEBRA
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1. INTRODUCTION

The object of the paper is to prove that the differential equation

u'(t) =t — [u(t)]* (1)

has no solutions which can be written using elementary functions, or anti-derivatives
of elementary functions, or exponentials of such anti-derivatives, or anti-derivative
of those, etc. We should note that Equation 1 can be solved using power series,
integrals which depend on a parameter, or Bessel functions of order 1/3. However,
as we will see, none of these methods of solution are “algebraic” in nature.

We aim to give a precise definition of “algebraic” by developing the theory of differ-
ential algebra, which is largely the work of Ritt. Other contributors are Liouville,
Picard, Vessoit, Kolchin, Rosenlicht, .... The part of differential Galois theory
which we will require is remarkably analogous to the part of Galois theory which
leads to a proof of Abel’s celebrated result that a general polynomial equation of
degree five or higher cannot be solved by radicals. In effort to derive these two
areas in parallel, we will also explain why the polynomial equation

25— 42 —2=0 (2)

has no solutions which can be written as radicals of solutions to lower degree poly-
nomial equations.

The paper is written with a reader in mind who at some point studied Galois
theory: either very recently and is therefore not an expert, or long ago has and since
forgotten many of the finer points. The examples are chosen to jog the memory: it
scarcely possible to give all the details of such proofs in this article. Theorems 1,
2, and 3 require more of an algebraic arsenal than the rest of the paper, and their
proofs have been relegated to Section 9, where the approach is less elementary. For
further reading, we recommend [2], [3],[4], and [5].

2. SPLITTING FIELDS

Our first step will to determine where solutions to Equations 1 and 2 lie. Recall
that a field is a set in which an addition, subtraction, multiplication, and division
are defined, and that they satisfy the rules which one expects from elementary
arithmetic. Three standard examples are the rational numbers Q, the real numbers
R, and the complex numbers C. All fields in the paper will have characteristic 0.

For the case of polynomials, we now have all of the background we need.
1
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Definition. Given a polynomial f(z) € Q[z] with rational coefficients, the splitting
field of f, denoted Ey, is the smallest subfield of C which contains all of the roots

of f.

The reason we can be sure that all solutions to a polynomial f lie in some subfield of
C is the fundamental theorem of algebra, which says that any degree n polynomial
with coefficients in C has n (not necessarily distinct) roots in C.

Example 2.1. Consider the polynomial f(z) = x? — 2. Then then the field
E; =Q(V2) = {a+bV2: a,b € Q}
is the splitting field of f. Why?

First, this is a field. One can obviously add, subtract, and multiply numbers of this
form and obtain another number of this form. Division is possible since

1 a—b/2

a+bv/2 T ez 202
and a? — 2b? = 0 implies that a = b = 0 (since /2 is irrational).

Second, it does contain both roots of f: £v/2 € Q(v/2). Third, it is obviously the
smallest field which contains these roots.

Remark. The splitting field need not be thought of as a subfield of C. We need only
to fix an algebraic closure of Q and we could work in there (as the fundamental
theorem of algebra on requires the field to be algebraically closed). However, we
find it easier to think of subfields of C, but that is just a crutch.

To deal with differential equations rather than polynomial ones, one must consider
fields with a bit more structure:

Definition. A differential field, here called a D-field, is a field F', together with a
derivations ¢ : F' — F which satisfies the rules

0f +9=106(f)+(9), and 6(fg) = fo(g) + gd(f).

The first example is C(t), rational functions in one variable, with usual addition
and multiplication, and with the derivation given by the ordinary derivative. The
standard rules for differentiating say that indeed the derivative of a rational function
is again a rational function. Another example is the field M(U) of meromorphic
functions on an open subset U C C, that is, quotients of two analytic functions. For
our purposes, the field C(¢) will be the smallest field of interest (analogous to Q for
polynomials), and M(U) the largest (like C). The reason we can use M(U) as our
“big field” is the existence and uniqueness theorem for differential equations, which
says that if U is a simply connected subset of C and a1 (t), ..., ax(t) are analytic
on U, then the differential equation

u™ () + ay ()uF V() + -+ ap(t)ut) =0

has a unique solution in M(U) for any to in U and any given initial conditions
ulto), u'(to), ..., u* "D (ty). If L is a differential operator, we will write Uy, for the
largest simply connected open subset of C on which the differential equation L = 0
has solutions.
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Definition. If (F,J) is a differential field, then the constants of F are the elements
f € F such that 6(f) = 0.

In this paper, the field of constants will always be C, but this will not always be
obvious; the crux of the proof of Theorem 2, given in Section 9, is precisely that
the constants of a certain differential field we will manufacture are precisely C.

We now have the background needed to define where the solutions to a differential
equation lie.

Definition. Given a differential operator L on C(t), the differential splitting field of
L, denoted Ey,, is the smallest subfield of M(U}) containing C(¢) and the solutions
of L.

Example 2.2. Consider the simplest differential operator L(c) = u'(t)—wu(t). Since
in this case the on coefficient is the number 1, it is certainly analytic on all of C, and
we may consider the splitting field as the smallest D-subfield of M(C) containing
the rational functions and the solutions of the differential equation u'(t) = u(t).,
that is, ae’. It should be clear that this subfield, Ep, is precisely the space of
functions of the form

pi(t)el + -+ pp(t)e™

e+ T gD
where the p;(t) and g;(¢) are polynomials with coefficients in C. Indeed, this is a
differential field (clearly closed under addition, multiplication, division, and differ-
entiation), and more or less obviously the smallest such field with the constants
and e. One should think of this splitting field as a close analog of the numbers of
the form a + bv/2

3. GALOIS GROUPS

We now investigate the structure of splitting fields. In particular, we try to under-
stand what happens to solutions of a polynomial or differential equation under a
field automorphism. We begin with the case of polynomials.

Definition. Let f(z) € Q[z] be a polynomial and let E be its splitting field. The
Galois group of f (or Ey), denoted Gal(E;/Q), is the group of all field automor-
phisms of E; which leave Q fixed, where the group law is given by composition of
automorphisms. Such maps necessarily respect the field operations.

Fix a polynomial f, and let o € Gal(E;/Q). Since o fixes the rational numbers and
respects field operations (both by definition), then we can see f(o(a)) = o(f(a))
for any a € E¢. In particular, if a is a root of f, i.e., f(a) =0, we see that

0= f(a) =0o(f(a)) = f(o(a)).
We conclude that elements of the Galois group of f permute the roots of f. Conse-
quently, if we denote the set of roots of f by Ry, then there is a group homomor-
phism
Gal(E;/Q) — Perm(Ry)

which can easily be seen to be an injection, so Gal(E;/Q) is a subgroup of a finite
permutation group.
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Example 3.1. If f is the polynomial 22 — 2 above, then the group Gal(E;/Q) is
the group of permutations of {v/2,v/2}.

Example 3.2. Let f(z) = 2° — 1. Then the set of roots is the set with the five
elements wy, = €2*™/% with k = 0,...,4. Clearly the Galois group is not the whole
group of permutations; no automorphism can map 1 to anything else. This is a
particular case of the following general statement: the Galois group acts transitively
on the roots if and only if the polynomial is irreducible.

In out case, 2° — 1 = (z* + 2% + 22 + # + 1)(z — 1), and the roots of the two
factors cannot get mixed up. How about the other roots? It is not quite obvious?,
but w; can be mapped to any other root wy, £ = 1,2,3,4 by an automorphism
o € Gal(Ef/Q). Knowing o(w;) completely determines o, since

wr = wr, so o(wy) = o(w)*.

Once you see that, it is not hard to see that the Galois group is the multiplicative
group of Z/5Z, which is a cyclic group of order 4. Precisely the same argument
shows that the Galois group of the polynomial xP — 1 is the multiplicative group of
the field Z/pZ for any prime p.

The notion of Galois group which we have just introduced is not general enough for
out purposes. We will need to consider a polynomial f with coefficients in a field
K C C, where K is not necessarily Q, and consider Gal(Ey/K), the automorphisms
of Et which are the identity on K. Since the coefficients are in K, again Gal(Ey/K)
is a subgroup of Perm(Ry).

Example 3.3. Consider the polynomial f(z) = 2 — 2. This has three roots, and
the Galois group Gal(E;/Q) is the full group of permutations of these roots?. The
splitting field, E'y, contains the ratios of the roots, which are cubic roots of unity.
If we set E, to be the splitting field of g(z) = 2? + z + 1, then Gal(E/E,) is cyclic
of order three. More specifically, set w = €2™/3. Then Gal(E;/Q) is generated by
multiplication by w and complex conjugation, where as Gal(Ey/E,) is generated
by just multiplication by w, since complex conjugation is not the identity on E,.

Definition. We will call and extension L/K of field normal when the set of ele-
ments of L which are fixed by all the elements of Gal(L/K) is precisely K; only
then is the Galois group really useful®.

Example 3.4. Consider the field L of real numbers of the form
a+ b2'/3 4 43

for any rational numbers a, b, c. In this case, Gal(L/Q) = {1} since any element of
the group must send 2!/3 to a cubic root of 2, and there are no other such roots in
L.

The splitting field of a polynomial f € Klxz] is always a normal extension, so we
will not consider any others.

IThis is the content of the theorem by Gauss that cyclotomic polynomials are irreducible.

21 particular, the real cubic root of 2 cannot be distinguished from the other roots.

3When L/K is not normal, the right thing to consider is the set of embeddings L C C which
are the identity on K. We will not peruse this here.
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Theorem 1. If K is a field, f is a polynomial with coefficients in K, and Ey is
the splitting field of f, then the field extension E;/K is normal.

We give a proof in Section 9. It is not perhaps the easiest proof, but it is chosen to
motivate the proof of Theorem 2, which needs all the motivation it can get.

4. DIFFERENTIAL GALOIS GROUPS

Suppose that we have a differential field K which is an extension of a differential
field M. Typically, K will be the splitting field of some differential operator L with
coefficients in M the field of rational functions.

Definition. The differential Galois Group, DGal(K /M) is the group of field au-
tomorphisms o: K — K which restrict to the identity on M, and such that
o(6(x)) = d(o(x)) for all z € K.

Example 4.1. Again, let L be the operator given by u'(t) — u(t). The splitting
field of L was determined above. Any automorphism of E;, must send one solution
of u/(t) = u(t) to another (by the same reasoning as in the polynomial case), so in
particular, it must send e’ to Ce? for some C' a non-zero complex number. Moreover,
this C completely determines the D-Galois automorphism. Consequently, the D-
Galois group is C*, the multiplicative group of the complex numbers.

Let us suppose that U C C is a simply connected open set, and that K C M(U) is a
subfield, typically the field of rational functions. Let L be a monic linear differential
operator of order £ with coefficients in K and analytic on U, so that the space Vg
of solutions of L(f) =0 in M(U) has dimension ¢.

Theorem 2. Give any element f € Ep — K, there exists T € DGal(EL/K) such
that 7(f) # f.

This is the analog of Theorem 1 for differential fields. Its proof is given in Section
9.

It is rather hard to think of the D-Galois group, because already the field K is apt
to be a big shapeless thing that is hard to grasp. However, just as in the case of
polynomials we have a concrete way of thinking. Since the D-Galois group sends
solutions of the differential operator to other solutions, we conclude that the D-
Galois group of the splitting field of a linear operator L of order ¢ is a subgroup
of GL¢(Vy). Thus, if you choose a basis of solutions of L(u) = 0, you can think of
DGal(K/M) as a group of invertible complex matrices, £ x ¢ matrices, in fact.

The proof of the following theorem is again a bit technical, and will be given in
Section 9.

Theorem 3. The differential Galois group DGal(Er /M) of a linear differential
operator L is an algebraic subgroup of GL(Vy); that is, it is a subset defined by
finitely many algebraic equations.

Let us see what this says for a few examples. the additive group C has lots of
subgroups, isomorphic to Z, Z ® Z, R, etc., but none of them are algebraic. The
group C* also has lots of subgroups, but only those consisting of the n-th roots of
unity for some n are algebraic (obviously defined by the single equation 2z —1 = 0.

The main consequence of Theorem 3 we will want is the following:
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Corollary. Let V be a finite dimensional vector space over C, and G C GL(V) be
an algebraic subgroup. Then the connected component Go C G of G containing the
identity is a normal subgroup, which is also algebraic, and the quotient group G /Gg
is finite.

Indeed, any affine algebraic variety over C has finitely many connected components,
which are each algebraic varieties.

Our next example shows that a D-Galois group can perfectly well be finite.

Example 4.2. Choose a function v/1 — 2 on the unit disc U C C, for instance the
one which is positive on (—1, 1), and consider the smallest D-subfield K ¢ M(U)
which contains v/1 — ¢2. This is a set of functions of the form f(t) 4+ g(¢t)v1 — 22
with f(0) = g(0) = 0. Then K is a normal D-extension of C(¢), and DGal(K/C(t))
is the group with two elements, which exchanges v/1 — t2 with —v/1 — ¢2. This field
is the splitting field of the linear operator
/ u(t)

and this illustrates the following fact: even if a linear differential operator is ir-
reducible, in the sense that it is not the composition of two linear differential op-
erators of lower degree, the differential Galois group of the splitting field my well
not act transitively on the non-zero solutions, which may have an “individuality”
of their own, such as the solution u(t) = v/1 —t2 of L(u(t)) = 0, which satisfies
u(t)? + 2 = 1.

The situation in this example is completely general:

Propostion 4.3. If E is a normal D-extension of a D-field K and DGal(E/K) is
finite, then all the elements of E are algebraic over K.

Proof. Choose f € E, and consider the polynomial
I[[ G@-ai)
oceDGal(E/K)

the coefficients of this polynomial are fixed under DGal(E/K), hence in K by
Theorem 2; here is a polynomial with coefficients in K which f satisfies. O

5. THE DISCRIMINANT AND THE WRONSKIAN

The resemblance between Galois theory and D-Galois theory is quite striking, but
the correspondence between the discriminant of a polynomial and the Wronskian
of a linear differential operator is positively uncanny.

Definition. If f is a polynomial with coefficients in some field K, and E; is its

splitting field, containing roots 1, ..., x4, then the discriminant of f is
A(f) =+ [ @i — =),
i#£]

where the sign is + if and only if the number of factors is divisible four.
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A priori, this looks like an element of Ey, but it is clearly fixed by Gal(E;/K),
and is therefore an element of K. In Ef, the discriminant A(f) is the square of
H(Jﬁz — x;) (that is what the sign was for), but it is not necessarily a square in
i<j

K. If it is not a square, there is an intermediate field between K and Ef, namely

K(\/A(f)). It is fairly easy to understand the relation between the various Galois
groups.

Propostion 5.1. We have Gal(E;/K(\/A(f))) = Gal(E;/K) N Alt(Ry), where
Alt(Ry) C Perm(Ry) is the subgroup of even permutations. In particular, the
discriminant is a square in K precisely when Gal(Ey/K) consists entirely of even
permutations of the roots.

Proof. An even permutation o can be written as a product of an even number of
transpositions, hence does not change the sign of H(xl — ;). O
i<j

The Wronskian of a differential operator is best understood by making the differ-
ential operator into a system of first order equations. Suppose A(t) is an n X n
matrix with entries in some D-field K, and consider the differential equation

W' = A(t)W
as s differential equation for a matrix function W (t), with W (to) = I,,.

Definition. The Wronskian of the differential equation is the function Wr(t) =
det(W (t)).

The Wronskian looks as if it belongs to the splitting field Er, but differentiating
shows the following:

Propostion 5.2. The Wronskian Wrr(t) satisfies the differential equation
Wi’y (t) = Tr(A(t)) Wr(t).

In particular, the Wronskian can certainly be expressed in terms of anti-derivatives,
since it is .
Wr(t) = exp {/ Tr(A(s))ds} .
to
Again, if the Wronskian is not in the original D-field, this gives an intermediate
D-field extension K C K(Wrp) C Epr, and it is not too difficult to understand the
effect on the D-Galois groups.

Propostion 5.3. We have
DGal(EL/K(Wrr)) = DGal(EL/K) NSL(Vy),

where SL(Vy) C GL(Vy) is the subgroup of automorphisms of determinant one.
In particular. if the Wronskian is in K, then the D-Galois group is contained in
SL(Vy).

Proof. Clearly and automorphism 7 of Vi will change the Wronskian by multipli-
cation by det 7. (I
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6. RADICAL EXTENSIONS AND SOLVABLE GALOIS GROUPS

Recall the major result in your high school algebra class: the Quadratic Formula.
Presuming that you worked mainly in characteristic 0 back then, this simple formula
allowed you to find the roots of any quadratic polynomial you were given. Not
surprisingly, a square root appeared in the solution. This basic setting provides all
the intuition needed to continue.

Definition. Suppose that you can find all the roots of a polynomial f with coeffi-
cients in a field K by the following procedure:

1/d
1

Extract a root (1 = a of some element a; € K. Consider the splitting field K3

of 2% — a;. Then extract a root (o = aé/dz of an element as € K1, and set K5 to
be the splitting field of %2 — ay. Continue in this way until you have a field K;

which has all the roots of f.

Then, we say that f is solvable by radicals.

More complicated (and probably not covered in high school) is the formula for
cubics: first, to solve the equation z3 + ax? + bz + ¢, substitute y = « — g to find

2 2a¢®  ab
3 herep=b— — andg= 2> _ L, ..
Yy~ + py + q, where p 3 and ¢ 97 3 +c

Then we find

1

/ 4p3 \ *

Y= -

2 1
3 (‘inq2+é’f’> ’

2

Note that this is a typical radical extension: first we adjoin a square root, /g2 + %,
then a cube root of an element of the field generated by the first extension.

Definition. A finite group G is said to be solvable if there is a chain of subgroups,
{1}:GnCGn_1C"'CGOCG_1:G,
such that each G, is a normal subgroup of G;_; and the quotient groups G;_1/G;

are all abelian.

Standard examples of solvable groups are the symmetric groups S; and Sy, the
latter via the chain

{1}CVCA4CS4,

where V is the Klein four group and Ay is the alternating group. The groups S,
and A,, are not solvable, however, for n > 5.

The similarity in naming is no coincidence: a polynomial is solvable by radicals if
and only if Gal(Ey/K) is a solvable group. This will be crucial shortly.
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7. LIOUVILLIAN EXTENSIONS AND SOLVABLE DIFFERENTIAL GALOIS GROUPS

Of course, we can consider radical extensions of a differential field, but they are not
the right analog of radical extensions in the context of differential fields. There, the
“simple” extensions of a D-field K are those obtained by considering an element
f € K, such that and anti-derivative F' of f is not in K, and considering the
smallest D-field containing K and either F' or ef’. We will also consider all finite
algebraic extensions as elementary.

Definition. A Liouvillian extension M of a D-field K is one such that there is a
sequence

K=KyCKiCKyC---CK,=M

such that each field K,y is either finite algebraic over K;, or generated by an
anti-derivative or exponential of an anti-derivative of an element of K.

Notice that if you are thinking of all these fields as subfields of M(U) for an
appropriate U, then it may be necessary to restrict to some U; C U: if f has a pole
in U with non-zero residue, then there will not be an anti-derivative F' defined on
all of U, but there will be one on any simply connected subset of U which avoids
the poles of f.

Propostion 7.1. All elementary functions are contained in a Liouwvillian extension

of C(t)

Proof. The difficulty is that the definition of a D-field never mentioned composi-

tions, like
et or log (\/ 1—t2+ 1) .

But such compositions are contained in the Liouvillian extensions. Indeed, any
composition will be of the form e/, log f, or sin f. Trigonometric functions are
dealt with using Euler’s formula

it 4 et it _ o—it
cost = ——— and sint = —————
2 2i
The exponentials were explicitly included in the definition of Liouvillian extensions,
and the logarithm is the anti-derivative of df/f. O

The following proposition says that Liouvillian extensions are the analogs of radical
extensions.

Propostion 7.2. Let G be the D-Galois group of a linear differential operator
L with coefficients in a D-field K, and suppose that the D-splitting field of L is
contained in a Liouvillian extension. Let Gy be the connected component of the
identity in G. There there exists a sequence of subgroups

{1} =G, CGp1C---CGyCG_1 =G

such that each Gj41 is normal in G5, and such that G;/Gj41 is isomorphic to C
or C*, or is finite.
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Proof. The splitting field field Ey, is contained in a field M, where there is a finite
sequence of extensions

KcMycMyCc---CM,=M

with each intermediate extension either generated by an anti-derivative, and expo-
nential of an anti-derivative, or an extension with finite D-Galois group.

Simply restrict these groups to Ep; the restrictions will give algebraic subgroups of
C or C*, or be finite. This is precisely what we need. ([

8. SOLUTIONS OF EQUATIONS (1) AND (2)

We now restate our goals in the new language we have developed over the previous
sections:

(i) The polynomial f(x) = 2% — 4z — 2 is not solvable by radicals, and
(ii) No solution of the differential equation u'(t) = t — [u(t)]? is contained in a
Liouvillian extension.

We begin by showing (i). Recall that a polynomial is solvable by radicals only if
the Galois group of its splitting field is a solvable group; that is, it suffices to show
that Gal(E;/Q) is not solvable.

Since f has degree five, there are five roots defined over C. The Galois group
Gal(Ef/Q) permutes these roots and is thus a subgroup of Ss. If @ € C is such
that f(a) = 0, then the field Q(«) is an extension of Q of degree five. Since
Q(a) C Ef, we must have the degree of E/Q is divisible by five. Consequently,
Gal(E;/Q) contains a 5-cycle.

Note that f(—2) <0 < f(—1) and f(0) < 0 < f(2), so that f has real roots a, b, c
satisfying
—2<a<—-1<b<0<ec<2

By considering derivatives of f, one sees that these are the only real roots. Thus,
there are two complex conjugate roots of f.

Now consider the action of complex conjugation on the field F;. It is certainly an
automorphism, and it fixes Q C R. It is therefore an element of Gal(E;/Q) C Ss.
We just concluded that three of the roots of f are real, and thus fixed by complex
conjugation, and that the two remaining roots are swapped. We can therefore
conclude that Gal(E;/Q) contains a 2-cycle as well.

That is all we need, however. It is a fact from elementary group theory that a
2-cycle and a 5-cycle generate all of S5. We conclude that Gal(E;/Q) = S5, and f
is not solvable by radicals.

We now proceed to our second goal. To do so, we introduce the Airy differential
operator

La= (u(t)) =u"(t) — tu(t).
Since the function ¢ has no poles, the splitting field Ey,, is subfield of the mero-
morphic functions on C, M(C).

Theorem 4. We have that G = DGal(EL , /C(t)) = SL(C).
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FIGURE 1. Solutions to v(t) =t — [v(t)]?

Proof. Since the Wronskian of L4 is 1, Proposition 5.3 shows that G C SLy(C).
To prove equality, let Gy be the connected component of the identity. Then G/G
is finite.

Since SLy(C) is 3-dimensional, there are very few proper connected subgroups. In
particular, they are all conjugate to one of the following four:

a 0 « | 1D ) a b X
{1}7{0 1/a]’a€(c’[0 1},beC,or{O 1/a},a€C,b€C.

Suppose now that Go was a proper subgroup of SLs(C). Then all elements of
Go would have a common eigenvector u(t) € Er,, since each of the four groups
just listed does. Since differentiation commutes with the action of G on Ey,,, we
then see that v(t) = u/(¢)/u(t) is left fixed by Go. Thus, the D-Galois extension
generated by v(t) is a subfield, M say, of Er, and DGal(M/C(t)) is a quotient of
G by a group containing Go; in particular DGal(M/C(t)) is finite, so that v(t) is
an algebraic function by Proposition 4.3.

Differentiating shows that v(t) satisfies the Ricatti equation associated to the Airy
equation:

V() =

|
o~
|
=N
—~
o~
=
[\V)

and any solution of this equation has infinitely many poles. Indeed, the key point
is that for any number ty < —1 — /2, the solution v(t) with v(ty) = 0 has domain
of definition (a,b) with tg — 7/2 < a < b < tg + 7/2, since the solution is above
tan(t + to) for t > to and beneath tan(t + tg) for t < tg (see Figure 1). Thus, v(t)
has at least as many poles as tan(t), which has infinitely many poles. Hence v(t) is
not algebraic and our guess that Gy # SL2(C) is false. O

Corollary 8.1. No non-zero solution of the Airy equation belongs to a Liouvillian
extension of C(t).

Proof. By Proposition 7.2, if one (and hence all) solutions of the Airy equation
belonged to a Liouvillian extension, then Gy = SL3(C) would have a connected
normal subgroup with commutative or finite quotient. Such subgroups of SL4(C)
do not exist. (]
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We have (finally!) reached our second goal:

Corollary 8.2. The differential equation u'(t) =t — [u(t)]? has no solutions which
belong to a Liouvillian extension of C(t).

Proof. Suppose v(t) is such a solution. Then e/ *(Y)9t is contained in a Liouvillian

extension of C(¢) and satisfies the Airy equation. This contradicts the previous
corollary. O

9. THREE TECHNICAL PROOFS

In this section, we give the proofs of Theorems 1, 2, and 3, which use some more
sophisticated tools from algebra.

Theorem 1. If K is a field, f is a polynomial with coefficients in K, and Ef is
the splitting field of f, then the field extension E¢/K is normal.

Proof. We need to show that given any a € Ey — K, there exists 7 € Gal(E;/Q)
with 7(a) # a.

Consider the K-algebra A = E ® E; the hypothesis that a ¢ K says precisely
that the element a = a®1—1® a € A is non-zero. The element a is not nilpotent
(since we are in characteristic zero, A has no nilpotents at all) and thus there is
a maximal ideal a C A which does not contain a. Let k be the residue field A/a
and a be the non-zero image of a in k. Note that since K* C A*, we have that
anN K = {0}. We can therefore view K as a subfield of k.

There are two homomorphisms i1,45: E — k; the one induced by b — db® 1 and the
one induced by b — 1 ® b. Under both of these maps, the roots of f are taken to
roots of f, and in particular, i; and is agree on these roots. Let k' be the subfield
of k generated by K and the roots of f. Then i1,i2: E — k' are field isomorphisms,
and 7 =i, ' 04;: E — E is an element of Gal(E;/K) with 7(a) =a —a#a. O

The proof of Theorem 2 follows the same outline, but we need a bit more of differ-
ential algebra first. In fact, we need even some non-differential algebra.

Lemma 9.1. Let K be a field of characteristic zero, so that Q C K and A a finitely
generated K-algebra. Any element a € A such that a — ¢ is invertible for infinitely
many rational numbers c is algebraic over K.

Proof. Since A is a finitely generated K-algebra, we can apply Noether’s Normal-
ization Lemma to find algebraically independent elements x1, ..., %, € A such that
A is integral over B = K|x1,...,2,]. Let C be the K-algebra generated by B and
(a — ¢)~! for all ¢ for which the inverse exists. Then A is integral over C.

We now apply Proposition 7.8 in [1] to conclude that C' is a finitely generated K-
algebra. Thus, there exist finitely many rational numbers ¢y, ..., ¢, such that (a —
c1)7 Y ... (a—cp) 7! satisfy an algebraic dependence over K. Clearing denominators
in this dependence gives a polynomial with coefficients in K which a satisfies. That
is, a is algebraic over K. ([
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Now for the differential algebra we will need. Besides differential fields, we will need
differential rings (A, J) which are commutative rings with units, having a derivation
6: A — A. We will of course need differential ideals, which are ideals closed under
the derivation. We leave it to the reader to check that the quotient of a differential
ring by a differential ideal is again a differential ring.

Example 9.2. Let A be an arbitrary (non-differential) C-algebra. Then the algebra
A[[T]] of formal power series with coefficients in A, and derivation dr, the ordinary
derivative with respect to T, is a differential C-algebra.

All differential algebras are more or less of this form. More precisely, let (A, d) be
an arbitrary differential C-algebra, and consider the “Taylor Series” map

A= A[T)], a—a+)T + %52(Q)T2 +...,
which is a homomorphism (A, d) — (A[[T]], Or) of differential C-algebras.

The next proposition is a nice application of this construction. In (non-differential)
algebra, if A is a ring and a € A is an element which is not nilpotent, then there
is a maximal ideal which does not contain a. In the same situation, if (4,J) is a
differential algebra, there is still, by an easy application of Zorn’s Lemma, a maximal
differential ideal which does not contain a, but it isn’t clear what properties such
an ideal might have.

Propostion 9.3. Let (A,0) be a difference C-algebra, and a € A be an element
which is not nilpotent. Then there exists a prime differential ideal p C A which does
not contain a. In particular, there exists a mazximal differential ideal not contain a
which is prime.

Proof. Choose a maximal (non-differential) ideal ¢ C A which does not contain a.
Consider the composition

p: AL AT S (A/q)[[T)).

First, ¢ is a homomorphism of differential rings, so its kernel is a differential ideal.
The image of ¢ is an integral domain, so Ker ¢ is a prime ideal, and ¢(a) #0. O

Our next statement concerns constants. For the differential fields we have been
considering, all subfields of M(U) for an appropriate U, the constants are obviously
C. But when we start considering algebras like F® F, nothing is obvious anymore,
and we must spell things out.

Let K be a differential field with field of constants C, and A be a differential K-
algebra, which is finitely generated as a K-algebra. Let p be a maximal prime
differential ideal, not the unit ideal. We can consider the differential algebra B =
A/p, and its field of fractions B.

Propostion 9.4. The field of constants of B is C.

Proof. Let b be a constant of B, and consider the set I = {h € B|bh € B}. The
set I is obviously an ideal, and it is a differential ideal because b is constant. It
is non-zero since b is the ratio of elements of B (with the denominator possibly
being 1). Therefore, there exists a differential ideal a C A such that p C a. By the
maximality of p, we have that a = A is the unit ideal, and hence b € B.
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Similarly, the ideals B(b—c) with ¢ € C are all differential ideals which are non-zero,
so they are all the unit ideal, so b — ¢ is invertible in B.

By Lemma 9.1, this shows that b is algebraic over K; let
m(x) = 2% +ap_12" 14+ ag
be its minimal polynomial with coefficients in K. Differentiating m(b) = 0 yields
S(ap_1)bF 14 4 6(ag) =0

since b is constant. But this is an equation of degree less than k which is satisfied
by b, hence the coeflicients are all zero. Thus the coefficients are all constants of K;
that is, the coefficients are all in C. Since C is algebraically closed and b satisfies a
polynomial over C, we conclude that b € C. |

Theorem 2. Let K be a differential field and L a linear differential operator defined
over K of degree £. Given any element f € Er, — K, there exists T € DGal(EL/K)

such that T7(f) # f.

Proof. Let V be the complex vector space of solutions of L = 0 in E,. Consider the
differential algebra A = F;, ® ¢ F,. First observe that it has no nilpotents because
we are in characteristic zero. The hypothesis that f ¢ K says precisely that the
element ¢« = f®1—1® f € A is non-zero. Find a maximal differential ideal p C A
which does not contain a. This time, the ideal is maximal only among differential
ideals, and there is no reason to expect it to be maximal in A. By Proposition 9.3,
however, we may take p to be prime so that B = A/p is an integral domain. Denote
by B its field of fractions and a the (necessarily non-zero) image of a.

Again, there are two homomorphisms i1,45: E;, — B; the one induced by g — g®1
and the one induced by g — 1® g, which are clearly extensions of differential fields.
By Proposition 9.4, the field of constants of A is C, and hence the space of solutions
to L =0 in B is a complex vector space W of dimension at most /.

But both i1 (V) and i5(V) are complex vector spaces of solutions of L = 0 in B,
hence i1 (V) = io(V) = W. Consider the subfield F' C B generated by K and W.
Clearly both 4; and iy are isomorphisms F — F, and 7 = i, 164y is an element of
DGal(EL/K) with f — 7(f) = f —a # 0. O

We close with the proof of Theorem 3.

Theorem 3. The differential Galois group DGal(EL/K) of a linear differential
operator L defined over a differential field K 2 C(t) is an algebraic subgroup of
GL(V1); that is, it is a subset defined by finitely many algebraic equations.

Proof. Chose a basis fi,..., fr for Ef, over K and k? variables Xij, with 1 <7<k
and 0 < j <k — 1. Denote by K [X] the K-algebra of polynomials in the variables
X]. Let U C C be such that E;, ¢ M(U). Consider the mapping ®: K[X] —
M(U) obtained by substituting fi(] ) for X‘Z. By Hilbert’s Basis Theorem, the
kernel, Ker ® C K[X] is finitely generated, say by Py,... Py.

Identify GL(V,) with the group of invertible k x k matrices in the standard way,

k
and identify the matrix A = (a; ;) with automorphism which sends f; to Zaj’i fj-
j=1
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Then the elements of DGal(E/K) satisfy the set of equations

Qm(A) :Pm ZajleJQ’Zajszjl’""Zajka;{_l ,
J J J

for 1 < m < M. This is a collection of M polynomials equations in the variables
a; j, and so DGal(EL/K) is algebraic. O
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