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Abstract

We introduce the notion of strip complex. A strip complex is a special type of complex obtained by gluing
“strips” along their natural boundaries according to a given graph structure. The most familiar example is
the one-dimensional complex classically associated with a graph, in which case the strips are simply copies
of the unit interval (our setup actually allows for variable edge length). A leading key example is treebolic
space, a geometric object studied in a number of recent articles, which arises as a horocyclic product of
a metric tree with the hyperbolic plane. In this case, the graph is a regular tree, the strips are [0, 1] x R,
and each strip is equipped with the hyperbolic geometry of a specific strip in upper half plane. We consider
natural families of Dirichlet forms on a general strip complex and show that the associated heat kernels
and harmonic functions have very strong smoothness properties. We study questions such as essential self-
adjointness of the underlying differential operator acting on a suitable space of smooth functions satisfying
a Kirchhoff type condition at points where the strip complex bifurcates. Compatibility with projections that
arise from proper group actions is also considered.
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1. Introduction

A. The treebolic spaces HT(p, q). Let H = {x +iy: x € R, y > 0} be the hyperbolic upper half
space, and T = T, be the homogeneous tree with degree p + 1, where p € N. The treebolic space
is a Riemannian 2-complex which can be viewed as a horocyclic product of H and T. Let us start
with a picture and an informal description.

Let 1 < q € R. Subdivide H into the strips Sx = {x +iy: x € R, g1 < y < g*}, where
k € Z. Each strip is bounded by two horizontal lines of the form Ly = {x + igk: x € R}, which,
in hyperbolic geometry, are horospheres with respect to the boundary point at co (or rather ico).
In the treebolic space HT(p, q), infinitely many copies of those strips are glued together in a tree-
like fashion: for each k € Z, the bottom lines of p copies of Sy are identified among each other
and with the top line of Si_;. Each strip is equipped with the standard hyperbolic length element
and, in this way, one obtains a natural metric on HT(p, q) as well as a natural measure.

This space admits interesting isometric group actions. On the one hand, when q = p, the
amenable Baumslag—Solitar group BS(p) = (a, b | ab = bPa) acts on HT(p, p) by isometries and
with compact quotient. This fact has been exploited by Farb and Mosher [19] in order to classify
the Baumslag—Solitar groups up to quasi-isometry. See also the nice picture in Meier [25, p. 118].
On the other hand, for p # q, no discrete group can act in such a way on HT(p, q) and its isometry
group is a non-unimodular locally compact group. This isometry group admits various subgroups
that act with compact quotients, see our forthcoming paper [6].

This article is motivated by the following questions. What is Brownian motion on the treebolic
space HT(p, q)? What is the concrete description of the Laplacian, i.e., the generator of Brownian
motion? Can one prove some essential self-adjointness results for this Laplacian? How smooth is
the associated heat kernel? Can one describe explicitly the cone of positive harmonic functions?
The last question, which is at the origin of this work, will be discussed in detail in [6]. Answers
to the other questions are described in Theorems 2.13-2.17.

B. General strip complexes. The treebolic spaces HT(p, q) form one family of examples of
what we call a strip complex, and this work is devoted to the study of the heat equation and heat
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«— copies of Sy

«— copies of Sp_1

Fig. 1. A finite portion of treebolic space, with p = 2.

kernel on strip complexes. The simplest family of strip complexes are metric graphs (“quantum
graphs”). In fact, as a topological space, a strip complex is simply the direct product of a (con-
nected) metric graph and a topological space M, e.g., {0}, R, or a fixed manifold. In particular,
strip complexes are typically not smooth as they bifurcate along the bifurcation manifolds at the
vertices of the underlying graph structure. See, e.g., Fig. 1. We will equip those spaces with cer-
tain adapted geometries and adapted measures which will give rise to specific Laplacians and
heat semigroups. Our aim is to show that, because of the specific structure of strip complexes,
harmonic functions and solutions of the heat equation on such spaces have very strong global
smoothness properties. Namely, these solutions have locally bounded derivatives of all orders up
to the bifurcation manifolds even though these derivatives are typically not continuous across the
bifurcation manifolds.

In order to carry this out in spite of the singularities of the underlying strip complex structure,
we build the theory “from scratch”, using the theory of strictly local regular Dirichlet forms. See,
e.g., Fukushima, Oshima and Takeda [20, Cor. 1.3.1] and Sturm [33-35]. The Laplace operators
constructed by this approach are somewhat esoteric objects and one of our goals is to describe
them in a more concrete way as the closure of operators that are classical second order elliptic
differential operators in the smooth part of the complex and whose domains of definition involve
Kirchhoff type laws along bifurcation manifolds.

Our material and results should be compared with some previous work. First, the theory of
the Laplacian, heat kernel, etc., on metric graphs is quite well understood. See, e.g., Baxter and
Chacon [4], Cattaneo [12], Enriquez and Kifer [18] and Kuchment [23,24]. Note however that,
even in this simple setting, the exact smoothness of the heat kernel is not entirely understood.
See Bendikov and Saloff-Coste [5].

Second, Brin and Kifer [11] introduced Brownian motion on 2-dimensional Euclidean com-
plexes (strongly connected simplicial complexes, where each simplex carries the Euclidean struc-
ture) via a local probabilistic construction. The Dirichlet form approach on more general Rieman-
nian complexes is discussed by Eells and Fuglede [17] and Pivarski and Saloff-Coste [27]. None
of these references provide the type of regularity results proved below for strip complexes.

It is worth emphasizing that, despite the existence of very many different approaches to the
definition of Brownian motion on complexes such as HT(p, q), the basic problem of uniqueness
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is not adequately discussed in the literature. From this perspective, we view Theorem 2.17 (and
its much more general version Theorem 7.11) as an important result.

Many of our results are local in nature. We note that, locally, the simplest strip complex struc-
ture (a star of finitely many Euclidean half spaces, glued along their boundaries) is the model for
the neighbourhood of any generic singular point in a general n-dimensional Euclidean polytopal
complex, that is, any point & where the n-dimensional closed faces containing £ meet along an
(n — 1)-face. The strong regularity results that we obtain thus apply to small neighbourhoods of
such points in any Euclidean polytopal complex.

This paper is organized as follows. In Section 2, we exhibit our main results in the key exam-
ple of the treebolic space. We describe a two-parameter family of Dirichlet forms on HT whose
associated Laplacians and heat semigroups satisfy all regularity and smoothness properties that
one would wish to have (Theorem 2.13). In each case, the Laplacian is the unique self-adjoint
extension of a naturally defined, essentially self-adjoint operator that is elliptic inside the strips
of HT and acts on a space of smooth functions which satisfy a Kirchhoff condition along the
bifurcation lines in HT (Theorem 2.17). To the best of our knowledge, this is the first time that
essential self-adjointness is discussed is such a setting. This construction gives rise to a Hunt
process (“Brownian motion”) on HT with natural projections from HT onto the underlying (met-
ric) tree and onto the hyperbolic plane (“sliced” into a strip complex by the lines L,). On each
of those objects, there is a corresponding Dirichlet form and associated Laplacian which is the
infinitesimal generator of the respective projection of the process on HT (Theorem 2.23). Unique-
ness properties are used here to identify the projections with the natural processes intrinsically
defined on the quotient spaces.

In Section 3, we introduce the notion of strip complex as the product of a metric graph with
a manifold. In a series of definitions, we introduce several function spaces that are needed to do
analysis on such a complex. The geometry of a strip complex is obtained through the following
data: a length function describing the length of the edges of the graph, a Riemannian structure
on the manifold M, and a positive function ¢ on the metric graph that serves as a conformal
factor to define the metric on each strip. We also introduce a second positive function ¢ on the
metric graph that serves as a weight function to define the underlying measure. These data turn
the strip complex from a topological space into a geodesic metric measure space. This structure
is used to define a Dirichlet form whose basic properties are discussed (Theorems 3.27-3.29).
This Dirichlet form gives rise to the associated Laplacian, harmonic functions and heat equation.

Basic properties of the heat semigroup are derived in Section 4. Crucial geometric-analytic
ingredients are the local doubling property and local Poincaré inequality (Theorem 4.1). Via
the work of Sturm [33-35] and Saloff-Coste [28], this has far reaching consequences for weak
solutions of the heat equation and for the heat diffusion semigroup (Theorems 4.2—4.4 plus corol-
laries).

In Section 5, we consider weak solutions of the Laplace and heat equations. We show that
these weak solutions are smooth up to (but not across) the bifurcation manifolds and satisfy
Kirchhoff type bifurcation conditions (Theorems 5.9, 5.19 and 5.23). These results are the most
significant technical results contained in the present paper.

Section 6 studies how Dirichlet forms and the associated heat semigroups are compatible with
natural projections of one strip complex onto another induced by a proper, continuous group
action (Theorem 6.1).

Uniqueness of the heat semigroup is studied in Section 7. First, this question is dealt with on
the space of continuous functions that vanish at infinity, where besides completeness, a uniform
local doubling property plus uniform local Poincaré inequality is needed (Theorem 7.6). Second,
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a very precise essential self-adjointness result is obtained provided completeness and the exis-
tence of a strip-adapted sequence of functions approximating 1 (Theorem 7.11). The proof of
this uses in an essential way the heat kernel regularity results proved earlier. Since we require the
existence of an adapted approximation of 1, this question is briefly dealt with in Section 8.
Finally, Appendix A contains a hypoellipticity result for the operator /—Aj; on an arbitrary
Riemannian manifold which is a key element for the proof of the regularity results in Section 5.

2. More on HT(p, q)

A. First construction. We start with a rapid review of some relevant features of the homoge-
neous tree T = Tp. Consider T as a one-complex, where each edge is a copy of the unit interval
[0, 1]. Let TO be the vertex set (0-skeleton) of T. This space is equipped with its natural metric.
A geodesic in T is the image of an isometric embedding ¢t — w; € T of an interval I C R.

An end of T is an equivalence class of geodesic rays (parametrized by [0, 00)), where two
rays (w;) and (w;) are equivalent if they coincide except perhaps on bounded initial pieces, i.e.,
there are sg, to = 0 such that Wyt = w,0+, for all ¢ > 0. We write 9T for the space of ends, and
T=TUAJT. Forall u, v € T there is a unique geodesic ub that connects the two. We choose and
fix a reference vertex o € T? and a reference end @ € 8T. For vy, v, € T \ {z’}, their confluent
b =v; A vy with respect to @ is defined by ¥1 N v, = bw . The Busemann function by : T —
R and the horocycles H; with respect to w are defined as h(w) =d(w,w A 0) —d(o,w A 0)
and H; = {w € T: h(w) =t¢}. Every horocycle is infinite and denumerable. The vertex set TO is
the union of all Hy with k € Z. Every vertex v in Hi has one neighbour v~ (its predecessor) in
Hy—1 and p neighbours (its successors) in Hy+1. We set 3*T = 9T \ {e }.

Fix q > 1 and consider the hyperbolic plane H in its upper-half space representation. The
horocycles (with respect to ico) are horizontal lines. Recall that T is subdivided horizontally by
the horocycles Hg, k € Z. Similarly, subdivide H in the horizontal strips S delimited by the lines
y =0, k € Z, see Fig. 3. Note that all S are hyperbolically isometric.

As outlined in the Introduction, the treebolic space with parameters q and p is

HT(p, @) = {(z, w) € H x Tp: h(w) = log,(Imz)}, 2.1)

where Im z is the imaginary part of z. Thus, Figs. 2 and 3 are the “side” and “front” views of HT,
that is, the images of HT under the projections i : (z, w) = w and 7ryg : (2, w) > z, respectively.
For each end u € 3*T, treebolic space contains the isometric copy

Hy, = {(z, w) € H x Tp: h(w) =log,UImz), w € iw }

of H, and if u, v € 9*T are distinct and v = u A v (a vertex), then H,, and H, bifurcate along the
line

L, = {(z, v) eH x Tp: Imz =qb(”)} =R x {v},

that is, H,, NH, = {(z, w) € HT: w € vw }. The metric of HT is induced by the hyperbolic length
element in the interior of each Hy,.
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w

Fig. 2. The “upper half plane” drawing of T, (top down, edge lengths are not meaningful in this picture).

[0.@]
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y=1 : i
y=q'

Fig. 3. Hyperbolic upper half plane H subdivided in isometric strips.

B. Second construction. We now present an alternative construction of HT = HT(p, q) which
leads to further generalizations. It is clear that, as a topological space, HT is simply
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Note that topologically, q plays no role. Now, let us view T, as a metric tree Tp q by setting the
length of all edges between the horocycles Hy_; and Hj to be g*~1(q — 1). Hence, Teq xR
comes equipped with a natural geometry. Namely, given any edge e = [v™, v], parametrized
by s € [qk_l, qk], k = h(v), we can view [v™,v] x R as a manifold with global coordinates
(s,x) € [¢¥1, g1 x R. We can equip this manifold with the length element s ~2((ds)? + (dx)?).
Doing this for all edges yields a new metric structure on HT which is isometric to its treebolic
structure described earlier. Indeed, any doubly infinite geodesic joining @ to another end of
T determines an upper-half plane in Tp q X R, and the construction outlined above yields the
hyperbolic metric on any of these upper-half planes (with s = y, z = x +1iy). The natural measure
on Tp q x Ris given on a strip [v™, v] x R, viewed as a manifold with global coordinates (s, x) €
[g*¥ 1, g%1 x R, by s~ 2ds dx.

C. The two parameters family of Dirichlet forms £, g. Recall that the Riemannian metric and
measure of the hyperbolic plane H = ]R%L (upper half plane model) are given by y~2(dx? + dy?)
and du = y~2 dx dy, respectively. The natural Dirichlet form on H is

/ IV FPdu = f (102 1% + 18y £ ) dx dy.
H H

The Laplacian is y2(32 + 7). See, e.g., Chavel [13, pp. 263-265].

Any element £ in HT is described uniquely by a pair (z,v) withv e T and z = x +iy € H
with x € R, ¢! < y < gF and k = h(v). In this case, we write y = y(&) and v = v(§).

Thus, for each v € T?, we consider

S,,={(z,v): z=x+iyeH, x eR, qk—l <y<qk}
§0={(z,v): z=x+iyeH, xeR, ¢ <y <q}
where k = h(v). The lines
Ly={(zv): z=x+iq"®, x e R}
are called bifurcation lines. With this notation, we have

HT= [ J (S, \L,-) (adisjoint union).

veTo

Note that all the strips S are isometric and have hyperbolic width log q. However, above we have
kept the Euclidean coordinates, taking into account the “height” of the strip S, i.e., k = h(v).

As mentioned, the space HT carries a natural measure (again coming from H) that we denote
by d&. Namely,

[r©de=% [rerivony2axay. @2)
HT

veTo So
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Fora e R, B >0, set

diie,p(&) = I y* d& = YW y*~2 dx dy. 2.3)
This means that
[ 1©dnap© =3 87 [ se+iv oy axay. 2.4)
HT veTo S0

For any open strip S? equipped with the (x, y)-coordinates as above, let W!(S?) be the Sobolev
space of those functions f in EZ(S,‘)’ ) whose distributional first order partial derivatives 9y f, dy f
can be represented by functions in £2 (89) (with respect to the measure dx dy, say). By a fun-

damental theorem concerning Sobolev spaces, such functions admit a trace Trig (f) on each of
the lines bordering the strip. This trace is in fact in the fractional Sobolev space W!/2(L) of the

lines L. Namely, the trace theorem asserts that Trig defined on C*°(S,) extends as a bounded
operator

e : WY(S2) > WYA(L).

We can now describe a two parameters family of function spaces and Dirichlet forms on HT
which all share the same underlying geometry.

2.5. Definition. Fix @ € R, B > 0. Let £2 be an open set in HT. We define Woll (§2) as the space
of all functions f in £2(£2, i, g) such that the following two properties hold.

(1) For each v € TY, the function £, restricted to S?N$2,isin WI(SZ N £2), and
2 2.2 2 2
1 By 2y = 22 87 f (1f@w[y™ +[3: @ )| + 3y £ & v)[")y* dx dy
veT? ate]

= f (£ &+ |[VLE|?) dpasE) < oo,

Q

where, for £ = (z, v), we have set V £ (£§) = (y%dx f (z, v), yzayf(z, v)) and
IVF® =(VF©. VF®), =y*(0: f @ )| + |8, f . v) ).

(The inner product is with respect to the hyperbolic metric in the z-variable.)

(2) For any pair of neighbours «, v € T? such that S, N S, = L, one has Tri'c’, f= Tri‘:) f along
LNS2.

Let Wy 5,0($2) be the completion of W, 4(52) N Cc($2) with respect to the norm || - lly1  (q)-
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2.6. Definition. Let &y g be the bilinear form

fap(F.)= 2 B [ (3:f @008 0) +0,7 G 03,8, v)y* drdy

veT0 Slz))

_ / (VI ), V8®), ¢, dHtap®),

HT

with domain D(Ey ) = W), 4(HT) C L2(HT, 14,p). Here, z(€) = zif £ = (z, v) € HT.

2.7

Note that for f € W‘i ﬂ(HT), the function & — |V f(&)| is well defined as an element

of £? (HT). In the present context, |V f |2 is the carré du champ, also often denoted by

dFa,s(f f)

\VF?=I(f, )= i

where d I, g(f, f) is the energy measure associated to f € VV1 (HT) Observe that the carré
du champ does not depend on the parameters «, 8. This explams why we say that these Dirichlet

forms all share the same geometry.

2.8. Definition. We let C°°(HT) be the set of those continuous functions f on HT such that, for
each v € T, the restriction f, = f(-, v) of f to the closed strip S, has continuous derivatives

oy 3;,‘ f(z,v) of all orders in the interior SJ which satisfy, for all R > 0,

sup{|8;"8;'f(z, v)|: (z,v) €S, |Rez| < R} < 00.

Given an open set £2 C HT, we let C2°(£2) be the space of those functions in C°°(HT) that have

compact support in £2.

2.9. Remark. The condition implies that each partial derivative d;"dJ f (z, v) extends continu-

ously to the boundary of S,. We write 9,97 f, for this extension.

Note however that only the function f € C*°(HT) itself has to be continuous at the bifurcation
lines, not its derivatives. That is, if w™ = v then it is in general not true that 97" 8;,’ Sfw =207 8;,’ fo

onL,=8,NS,,unlessm =n =0.

2.10. Proposition. For each a € R and B > 0, the form (£, Wol‘ B (HT)) is a strictly local

regular Dirichlet form, and C2° (HT) is a core for this Dirichlet form.
For any open set §2, the space C°(82) is dense in Wolt,ﬂ,O(Q).

Note that the regularity of these Dirichlet forms is not obvious at all. We will prove this result

in a more general setting below.

D. The heat semigroup and Brownian motion. For each o € R, 8 > 0, the Dirichlet form
(Ea,B, Wolt ﬂ(HT)) induces a self-adjoint contraction semigroup e’2«# with infinitesimal genera-
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tor (“Laplacian”) Aq,g on £2(HT, Ma,p). The domain Dom(Ag,g) of Ag,g is the set of functions
fe Woll B (HT) for which there exists a constant C s such that

Eap(fr8)= / (VF©), V8®), ¢ dtiap ) < Crllgl 2T s
HT

for all g € Wolt ﬁ(HT). As Wolt ﬂ(HT) is dense in L2(HT, Mq,p), this condition and the Riesz

representation theorem imply that there exists a (unique) function 4 € L2(HT, Me,p) such that
Eap(fr8) = —fHT hgduy g. By definition, Ay g f = h see, e.g., [20, Cor. 1.3.1]. If f is in
Dom(Ag,g) N C*(HT) then, in each open strip,

Awpf=[y*(87 +82) +aydy]f, @.11)

but f must also satisfy the bifurcation or Kirchhoff condition

dyfo=45 Z dyfw onL, foreachve TO. (2.12)

w:w =v

Note that the parameter 8 comes into play only at the bifurcation lines where it appears in the
bifurcation condition (2.12) relating the different vertical partial derivatives in the p + 1 strips
meeting along any given bifurcation line. This will be discussed in detail later on.

2.13. Theorem. The semigroup ¢'®«#, t > 0, acting on L>(HT, Wa,p) has the following proper-
ties:

(a) It admits a continuous positive symmetric transition kernel
(09 OO) X HT X HT e (t! E’ ;) = hd,ﬂ(ts E, ;.)

such that for all f € C.(HT),

eBas £ (&) = / hap (8,6, 8) F©) dpta,s©).
HT

(b) For each fixed (t, &), the function ¢ +— hy g(t, &, ¢) is in C*°(HT) and satisfies (2.12).

(c) Foreachk €N, the function (0,00) x HT xHT > (¢, £,¢) — Btkha,ﬂ(t, &, ¢) is Holder con-
tinuous, and for each & € HT, the function ¢ — Btkha, g(t,&,¢) is in C*°(HT) and satisfies
(2.12).

(d) For any fixed € € (0,1) and k € N, there is a constant C = C(«, B, p, Q, k, €) such that for
all (¢t,€,¢) € (0,00) x HT x HT,

2
|3t’°ha,g(t, £,0)|< ¢ - exp(—M . (2.14)
BO@E) y(&)* min{1, t}z* 41+ €t

(e) It is conservative, that is, e'®*#1 = 1. Equivalently, [, ho g(t,&, ) dita,p =1.
(f) It sends L°°(HT) into C(HT) N L (HT).
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(g) It sends Co(HT) into itself.
(h) The associated Hunt process is transient, that is, for all pairs of distinct points &, ¢ € HT,

Ga,ﬁ(‘f,{):/ha,ﬁ(t,é,;‘)dt < 00.
0

() The bottom ) = A(at, B, p,q) of the L2(HT, g, g)-spectrum of — Ay, g is strictly positive if
and only if ! =% # Bp.
In particular, in addition to (2.14) the following holds.
For any fixed € € (0,1) and k € N, there is a constant C = C(«a, B, p, 9, k, €) such that for
all (t,€,¢) € (0,00) x HT x HT,

C
BOCE) y(§)* (min{1, 1}) 1 +*

d(,¢)?
4(1 +e)t

|8Fha,p(t,€,0)| < exp(—u - ) (2.15)

Proof. Statements (a) through (g) follow from more general results proved in this paper. That A
is positive if and only if g!~%/(Bp) # 1 can be obtained by the techniques and results of Saloff-
Coste and Woess [29] which also provides an explicit formula for A in terms of the parameters.
Transience is explained below after Theorem 2.23. O

2.16. Definition. Let HT? = | J,, S9 be the treebolic space without the bifurcation lines. For f €
C*®(HT?), set

o f(E) =y (92 +07) f(E) +aydy f(E),  &=(x+iy,v) eHT.

Let D%

a,B,c

be the space of those functions in C° (HT) such that:

e For any k, the function Ql’; f, originally defined on HT?, admits a continuous extension to all
of HT. (Here, X is the k-th iterate of 2,.) This implies that AX f € C2°(HT) for each k.
e Using the same notation as in Remark 2.9 and formula (2.12),

A fy =B Z 3,2k f,, on L, for each v € T,

w: wm=v

The following statement yields a clear and fundamental uniqueness result concerning the
Laplacian Ay, g introduced above. For the proof, see Theorem 7.11 and Proposition 8.3.

2.17. Theorem. The operator (U, 'Dgf’ﬂ, ) IS symmetric on L2(HT, W, ). It is essentially self-
adjoint and its unique self-adjoint extension is the infinitesimal generator (Aq, g, Dom(Aqy,g))
associated with the Dirichlet form (€, p, Woll P (HT)) on L2(HT, Ma,B)-

2.18. Remark. Let X be a topological space equipped with a Borel measure u with full sup-
port. A densely defined operator (2, Dom(2)) on £!(X, w) is called strongly Markov-unique if
and only if there is at most one sub-Markovian C%-semigroup on £!(X, ) whose infinitesimal
generator extends (2, Dom(2)). It is not hard to see that a symmetric essentially self-adjoint
operator is strongly Markov-unique. See, e.g., Eberle [16].
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E. The (a, 8)-Markov process. By the general theory of Markov processes, there is a Hunt pro-
cess associated with the conservative semigroup H,a B ethap Co(HT) > Co(HT). It is defined
for every starting point £ € HT, has infinite life time and continuous sample paths. Its family of
distributions (IP’?"B )eeHt on £ = C([0, oo] — HT) is determined by the one-dimensional distri-
butions

PP UL = [ hap(0,6, 0 it p6) = B 10®)
U

where U is any Borel subset of HT.
Setting Ty = inf{z: X; ¢ U}, we can define the exit distribution from a bounded Borel set U
by

n;;” &, B) =P [ Xy, € B]

for any Borel set B C U and set

wg P &, £) =ELP (f (X))

for any bounded Borel measurable function f. Since the process has continuous sample paths,
the exit distribution is supported by dU for any starting point & € U.

As outlined at the beginning of this section, the treebolic space HT(p, q) = {(z, w) € H x
Tp: b(w) = logg(Imz)} (here written in terms of the first construction) admits natural projec-
tions, 7y : (z, w) — z and 7T : (2, w) — w, corresponding respectively to the “side” and “front”
views of HT depicted in Figs. 2 and 3.

By the general theory of transformations of the state space, it is plain that the images of the
Hunt process (X;, Pg’ﬂ ,t 2 0,& € HT) by the projections 7y and mT are Markov processes.
What is not entirely obvious, a priori, is to describe what these processes are in intrinsic terms
in H and T. One of the multiple motivations behind this work was indeed to obtain an intrinsic
description of each of these processes.

Analogously to HT, we can describe the metric tree T = Tp q as

T= {(S, V):vE TO, s € (qb(v)—l, qb(v)]},

where {v} x (@Y™ ~1, q9®] parametrizes the “metric edge” (v, v] as a left-open interval. On T
we consider the measure ug’ B defined by d ug, B (s,v)= ﬂb(”)s_z"'“ ds, thatis, forall f € C.(T)

qb(v)
ffdugﬂ =y g f f(s,v)s~ 2 ds, (2.19)
T veT? gh®-1
and the Dirichlet form
qb(v)
ET5(f, )= / 20, fRdul g = Y B0 f 0G0 s*ds,  (2.20)
T veT  oh0)-1

https://reader.elsevier.com/reader/sd/pii/S00018708100027447..D6A3666B47709FA5D31D6DEDA96F62F49259096EC98BDDF4DC915F219755 Page 12 of 65



The heat semigroup and Brownian motion on strip complexes | Elsevier Enhanced Reader 11/12/19, 4:07 PM

1004 A. Bendikov et al. / Advances in Mathematics 226 (2011) 992—-1055

with domain
Wi (M) ={f €CT)NLX(T, uy p): s f € L2(T, g p)}-

Here 0o f denotes the distributional derivative of f along any open edge (v—,v) = {v} X
(g" @1 gb@) of T. Let AT a,ps), 1> 0, be the heat kernel associated with this Dirichlet
form.

On the hyperbolic space H, subdivided by the horocycle lines Ly = {z = x + iy: y = g¥},
consider the measure /,LE{ P which is defined for all f € Co(H) by

¢ oo

f futy =Y pt / [ ra+inyeaxay, @21

k€Z k-1 -oc0

and the Dirichlet form

€8, (f. 1) = f VR duE,
H

qk

=Zﬂk/ /(|8xf(x+iy)|2+]Byf(x+iy)]2)y°‘dxdy, (2.22)

keZ _
gk—1-00

where |V f| denotes the hyperbolic gradient length of f. The domain of this form is the space
W; p(H) of those functions in L2(H, p,g ) Which admit locally integrable first order partial

derivatives in the sense of distributions and such that |V f| is in £2(H, [.LEI’ ﬂ). Let hg}f ﬂ(t, ),
t > 0, be the heat kernel associated with this Dirichlet form on H. (All this coincides precisely
with what we have considered in the previous subsections on HT(p, q), but now we are in the
“degenerate” case when p = 1 and the tree is a two-way-infinite linear graph.)

2.23. Theorem. Fixp € {2,3,...}, q>land ¢ € R, B > 0. Let (X;) be the process on HT(p, q)
associated with the Dirichlet form (€, g, W;,ﬂ(HT)). Let Y, =n"(X;), Z, =n™(X;), t > 0, be
the projections on T and H, respectively.

(@) The process (Y;) is a Markov process on T and, for anyt >0 and y €T, the law of Y; given
Yo = yo has probability density ha ﬂ(t Y0, *) With respect to u,a 5
In other words, (Y 1) isa verszon of the Hunt process associated with the strictly local regular
Dirichlet form ( o, a,ﬂ (T)).

(b) The process (Z;) is a Markov process on H and, for any t > 0 and z € H, the law of Z; given
Zy = zo has probability density ha ﬂp(zo, -) with respect to ;LEI’ o
In other words, (Z ¢) IS a version of the Hunt process associated with the strictly local regular
Dirichlet form (€, g0, Wy 5o (HD)).

See Proposition 6.6 and Example 6.8(C) at the end of Section 6.
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2.24. Proposition. Each of the processes (X;), (Y;) and (Z;) appearing in Theorem 2.23 is
transient.

Proof. Via the projections, transience of (X;) will follow from transience of (Z;).
This amounts to showing that for every choice of « € R and B > 0, the process on HT(1, q) =
H associated with (EEI B W(i ﬁ(lHI)) is transient. Now, the associated measure /LEI p can be com-

5 where

@ = a + logB/logg and B = 1. Hence, the associated metric measure spaces are (measure)
quasi-isometric (i.e., quasi-isometric with adapted measures, see Coulhon and Saloff-Coste [14]).
This implies that the corresponding processes are either both transient or both recurrent. Hence,
it thus suffices to study the transience of the process on H associated with (Sgl, )/VEI[,1 (H)). This
process does not “see” the separating lines bounding the strips. Indeed, the associated infinitesi-
mal generator on the whole upper half plane is

pared below and above, up to multiplying with positive constants, with the measure /LEI

A&,I =y2(83 + 3y2) +C_ly8y

The process is just standard hyperbolic Brownian motion on H with an additional vertical drift
term. It is very well known to be transient. For example, one finds nonconstant positive harmonic
functions that are expressed in terms of the Poisson kernel. Another way is to identify H with the
affine group of all transformations x > ax + b, where a > 0 and b € R, via (a, b) <> b+ia € H.
Then the law of our process is invariant under the action of the affine group on itself, whence
it must be transient, compare e.g. with Guivarc’h, Keane and Roynette [22]. Namely, when we
consider the process at integer times, we obtain a random walk on the affine group, which must
be transient since that group is non—unimodular.

Also transience of (¥;) can be shown by constructing non-constant positive harmonic func-
tions. More details are deferred to forthcoming work [6], where among other things we shall
describe all positive harmonic functions associated with (Sgﬂ, W; P (T)). O

2.25. Remark. Theorems 2.13 and 2.17, which describe some basic properties of the («, 8)-heat
semigroup and Laplacian on HT have obvious versions that apply to the heat semigroups and
Laplacians on T and H (respectively) that appear in the above result on projections. All these
results illustrate the more general theory developed below in the setting of what we call strip
complexes. In fact, the introduction of the notion of strip complex is motivated in part by the
justification of the projections described above and the need to treat all these objects and their
properties in a unified way.

3. Strip complexes

A. The basic structure of strip complexes. Let V, E be countable sets equipped with a map
E—>VxYV, et—>(e_,e+).

This defines an oriented graph I with vertex set V and edge set E. We will assume throughout

that e~ # e™. Hence multiple edges are allowed, but there are no loops. The “no loops” conven-

tion will simplify our considerations. Moreover, this is no real lack of generality for our purpose:
loops can be handled by adding a virtual vertex in the middle of any existing loop.
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The vertices e, e™ are the extremities of the edge e. We set V, = {e™, et}cVand E, =
{e: v e V,}. We let I'! be the associated 1-dimensional complex. In I 1 the edge e is realized
by a subset I, of rt, homeomorphic to the closed interval [0, 1]. We will also use the notation
I, =[e,e"] and I? = (e”,e™) for the closed and open intervals corresponding to edge e,
respectively. Similarly, we write "> = I'' \ V. We assume throughout that I"! is connected and
that each vertex has only finitely many neighbours, that is, E, is a finite set. For reasons that will
become clear later, we refer to deg(v) = | E, | as the bifurcation number at v.

Although the edges are oriented, this orientation will not play an important role for us. In
particular, the notion of neighbours introduced above does not take the orientation into account.
Observe also that we can view I'! as the union of all the edges I,, e € E, with the appropriate
identification at the vertices where several edges meet.

Given a topological space M (we will be mostly interested here in the case where M is {0}, a
line, a circle, or more generally, a Riemannian manifold), the strip complex (more precisely, the
M -strip complex) associated to I” and M is simply the direct product

T™M=T!x M.

This is a topological space with a simple “coordinate system” 'M > & = (y, m). However, this
viewpoint is not entirely well suited to capture the additional structure that these spaces have in
the cases of interest to us.

Instead, it will be essential to view "M as the union of the strips

U Se, where S, =1, x M.

ecE

This is not a disjoint union, as the strips S, = I, x M, e € E,, v € V, all meet along M, =
{v} x M. We call M, the bifurcation manifold at v. This is simply the copy of M passing through
vin M.

(In Section 2, M = R, and the strips were labeled by the vertices of the tree, because there is
a one-to-one correspondence between vertices v and edges [v™, v].)

We let

e

Sg=(e”, e"') x M

be the interior of the strip S, and set

rme = J s,
ecE

the union of all open strips in "M (this is an open dense set in 'M). For any function f defined
on TM°?, we let

fe=f |S;?
be the restriction of f to the open strip So. This notation plays an important role and will be

used throughout. In addition, we make the following natural convention. Whenever f, admits a
continuous extension to the closed strip S., we (abusively) use the same notation f, to denote
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this continuous extension. Note that if f, and f,/ are defined on S, and S, with M, = S, N Sy
then it may well be that f, and f, take different values along M,,.
We also set

X,,:M,,u( U sg).

ecE,

The set X, is called the star of strips at v. It is an open set in M.

3.1. Remark. Note that the definition of a strip complex given above is of a global nature and
corresponds to what could be called “untwisted” strip complex in the context of the following
more general definition which yields the same local structure. In this more general definition,
the graph I" is decorated at each vertex by a collection {g; : e € E,} of homeomorphisms g¢:
M — M (when M is equipped with a Riemannian structure, these maps are required to be isome-
tries). Then, the boundaries M of different strips S2, e € E,, meeting at a vertex v, are identified
with a unique copy M, of M through the homeomorphisms g¢. For instance, if M = (0, 1),
and the graph I has two vertices a,a’ and two edges e, €’ joining a and d’, the strip complex
M= Il x M is a cylinder with two marked lines corresponding to a, a’. However, we could
identify the two intervals (0, 1) at a through the identity map and at a’ through the flip x > 1 —x.
In this case, we get a “twisted strip complex” which is a Moebius band with two marked lines.
Note that this “twisted strip complex” is not globally the direct product of I"! and M although,
locally, it has the same structure. We will not discuss twisted strip complexes in this paper. But
we note that all of our results (properly interpreted) will hold as well for such more general
structures. In particular, our local smoothness results will apply to these twisted structures in an
obvious way.

3.2. Remark. The treebolic space (see Fig. 1) gives a good illustration of a strip complex struc-
ture, but it may be useful for the reader to think of the case when M is the unit circle and I” is
some finite graph. Although one can easily draw sketches of such examples, in most cases, these
circle strip complexes cannot be embedded (without crossings) in three-space.

B. Smooth functions on strip complexes. Fix a graph I" as defined above. Let M be an n-
dimensional manifold and consider the associated strip complex 'M. Let C.("'M), Co(TM) and
Cp(T'M) be the spaces of continuous functions on I'M that are, respectively, compactly supported,
vanishing at infinity, bounded.

Without further comments, we will assume that M is equipped with a Radon measure which,
in any coordinate chart on M, admits a smooth positive density with respect to the Riemannian
measure. The strip complex 'M is then equipped with the product measure of one-dimensional
Lebesgue measure on I"! and the given Radon measure on M. Later we will make a more precise
choice of such a measure. For the time being, this measure is used only for the definition of
negligible sets (sets of measure zero) and the particular choice made is irrelevant.

3.3. Definition. A relatively compact coordinate chart in 'M is an open, relatively compact set
of the form I x U € 'M where I C (e”,et) C I'! for some e € E is an open interval and
(U; x1,...,xy) is a relatively compact coordinate chart in M. The associated local coordinate
system on the open subset I x U is denoted by & = (s, x1,...,%xs), s € I, (x1,...,%x,) € U. For
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any (n + 1)-tuple « = (xo, 1, ..., kn) of integers and any smooth enough function f defined
over I x U, we set

3 f(E) =908} ... 9" f(s,x1, ..., Xn).
If necessary, we can also consider Bé‘ f to be defined in the sense of distributions in 7 x U.

3.4. Remark. The above definition never involves the bifurcation manifolds, except possibly at
the boundary of I x U. Hence, smoothness of a function in a relatively compact chart 7 x U as
defined above is a classical notion.

3.5. Definition. (a) The space of strip-wise smooth functions on TM°, denoted S*°(I'M?), is the
set of those locally bounded functions f on MMC such that, for any open edge 12 = (e~, e™),
e € E, and any precompact coordinate chart (U; xy,...,x,) in M, the function f|joxy is a
bounded continuous function with bounded continuous derivatives of all orders with respect to
the coordinates (s, x1, ..., x,) in IZ x U. The vector space S (I'M?) is equipped with the family
of seminorms

N¥ 1o () =sup{|f(®)]: & e K nTM°}

+sup[|8§f(§)|: EelxU, k= (ko,K1y---,Kn), ZK,- Sk}, 3.6)
0

where k is an integer, K a compact subset of 'M and / x U a relatively compact coordinate chart
in F'M.

Abusing notation, we will also consider any function f in S (F'M?) as a function on "M that
is defined almost everywhere (a representative of a class of functions under the usual equivalence
of coinciding almost everywhere).

(b) The space of continuous strip-wise smooth functions on 'M, denoted C*°(I'M) is defined
as

CrMNSE®(rM°) ={f e CTM): flry € S*(TM°)}.
We also let
CZ(TM) =C*®(TM) N C.(TM).

The vector space C°° (I'M) is equipped with the same family of seminorms N ;‘( Ixy 3 ST (TM9).
3.7. Remarks. (i) A function f € §°°(I'M°?) is not necessarily continuous across bifurcation
manifolds (it need not even be defined on the latter). However, the functions f, are bounded con-
tinuous with bounded continuous derivatives on I x U for any relatively compact set U C M.
This implies that each f, can be extended as a smooth continuous function to the closed strip S.
According to our earlier convention, we still denote this extension by fe. In particular, for any

vertex v, a function f € §°°(I'M), yields deg(v) smooth functions

M3 x> fo(v,x) € C®(M).
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(ii) Note that a function in S°°("'M?) may not have a continuous extension to M but is always
(essentially) bounded on compact sets.

(iii) The space C*°('M) is a complete seminormed space. In view of (i), a function f €
C*®(T'M) is a continuous function on M such that its restriction f, to any closed strip S, is
a smooth function in the usual sense on the manifold S,.

Since f is continuous it follows that the partial derivatives 05 f, k = (x1, ..., k,) in the direc-
tion of M have to be continuous across bifurcation manifolds. That is, for any fixed coordinate
chart (U; x) in M, with x = (xq, ..., X,),

agfel(v’x)zaffez(v’x)’ ifel,eZGEv-

Note, however, that the partial derivatives 8;‘ 05 fe with k > 1 and computed in different strips
meeting along a bifurcation manifold M, do not have to match along M,,.

3.8. Remark. We will sometimes consider functions f of space and time variables, such as for
example (0,7) x TM > (¢,€) — f(¢,&). Since (0,T) x 'M is also a strip complex, with M
replaced by M x (0, T'), (3.5.b) also defines C*°((0, T') x I'M).

The following subspace of CZ°("'M) will be useful for our purpose. It is the subspace of those
functions in C°("'M) which are locally constant along I” I near each bifurcation manifold M,.

3.9. Definition. Let C2o. ("'M) be the subspace of CZ°(I'M) of those functions whose partial deriva-
tive d; f, in any strip S, = I, x M, s € I, has compact support in ;.

3.10. Lemma. The space CZ.(I'M) is dense in Co(I'M) for the uniform norm.

Proof. Since C.(I'M) is dense in Cy(I'M) for the uniform norm, it suffices to show that for any
f €Cc(TM) and € > 0 there is fe € CZ%.(TM) such that || f — felloo < €.

Let K be the support of f and {U,,n < N} be a finite covering of K by open precompact
subsets which are so small that for each n, sup{| f(§) — f(¢)|: &, ¢ € U,} < € (uniform continuity
of f) and U, is either of the form J, x V,, where V,, is a small coordinate chart in M and J, is
relatively compactin (e, e™) for some e, or U, = | J ecE, J? x V,, where V,, is a small coordinate
chart in M and each J? is a semi-open interval in I, with closed extremity at v. By standard
arguments adapted to the present situation, we can construct a family of functions w, € CZ%.(T'M)
such that wj, is supported in U, and an Ny @n=1o0n K. Foreachn < N, pick &, € Uy and set

fe=Y_ fGEon.

n<N

By construction, f € C2%.(I'M) and, for any £ € K,

,C

|f = fl® < D |FE) — fE)|on®) <e.

n<N
This provides the desired approximation. O

The next definition introduces smoothness (of various orders) in an open subset §2 of M.
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3.11. Definition. Let £2 be an open subset of M.

(a) A function f is in C*(£2), where k > 1, if it is continuous in £2, and for any relatively
compact coordinate chart / x U with I x U C §2, f has continuous partial derivatives of order
up to k in I x U. This space is equipped with the family of seminorms N 1"( 1xy defined as in
(3.6), where K runs over compact subsets of £2 and 7 x U over all relatively compact coordinate
charts with 7 x U C £2.

(b) A function f is in C*°(£2) if it is continuous in £2 and for any relatively compact coordi-
nate chart / x U with I x U C £2, f has continuous partial derivatives of all orders in 7 x U. This
space is equipped with the family of seminorms N ka 1<y defined as in (3.6), where k runs over
the positive integers, K runs over compact subsets of 2 and / x U over all relatively compact
coordinate charts with I x U C 2.

The spaces C*(£2) and C*(£2) are complete seminormed spaces.

C. Diffeomorphisms. Let 1My, 'o,M> be two strip complexes. Since these spaces are equipped
with a natural topology, the notion of homeomorphism is well defined. Observe that bifurca-
tion manifolds M, with bifurcation number deg(v) = 2 may be ignored by a homeomorphism.
Otherwise, by definition, a homeomorphism must send strips to strips and send any bifurcation
manifold with bifurcation number deg(v) > 2 to a bifurcation manifold with the same bifurcation
number.

3.12. Definition. Let 1M1, oMz be two strip complexes. A homeomorphism j : 1My — oMz
is called a diffeomorphism if j and j—! send any bifurcation manifold to a bifurcation manifold
and, for any pair of closed strips S1 C 1M1, S2 C '2Mz such that j(S1) = S2, the restriction
jls, : S1 = $ is a diffeomorphism.

A local diffeomorphism between open sets §2, §2, is amap j : £2; — §2, which is a homeo-
morphism, sends any trace of a bifurcation manifold to a trace of a bifurcation manifold and is a
diffeomorphism between traces of closed strips.

3.13. Remarks. (1) Diffeomorphisms must respect the bifurcation structure, even for bifurcation
manifolds with bifurcation number deg(v) = 2.

(2)If j: T{My — oMy is a diffeomorphism then for any f € C*°('2My), resp. S*°(I'2M3),
the function f oj is in C*°(I'1My), resp. S°°(F1M‘1’). If j : 21 — §2; is a local diffeomorphism
then for any f € C*°(£23), the function f oj is in C*°(£21). The same holds for functions that are
smooth up to order k.

D. Geometric structures on strip complexes. We now introduce a rather specific class of ge-
ometric structures on the strip complex 'M. This is done in two stages. The special features of
these structures will play a central role in our analysis.

In the first stage, we introduce a product geometric structure on 'M associated with given
geometric structures on I" and M as follows.

First, we assume that the edge map contains an additional information, namely, the length of
the edge e. More precisely, we have a map

E—>VxVx(00), e—(e,eL).

Thus, with this additional information, the edge I, = [e~, e*] is isometric to the real inter-
val [0,1.]. We can view I'' = (I'!, ) as a metric space in the obvious way. We will always
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use the letter s to refer to an arc length parameter on I"! or connected pieces of I'!. From now
on, we always assume that I comes equipped with a specific edge length map /.

Second, we assume that (M, g) is a Riemannian manifold with gradient V. Given these two
geometric inputs (length of edges, Riemannian metric on M), we immediately obtain a natural
metric on 'M by equipping each strip S, = I, x M with the Riemannian metric (ds)® + g« (-, ),
where (s,x) € I, x M.

Here and elsewhere, the subscript x in g, indicates that g is considered with respect to the
x-variable of (s, x).

The second stage of our construction depends on the choice of a function ¢, positive and
strip-wise smooth on I'? = ', that is, ¢ € S*(I"?). On each strip S, = I, x M, we consider
the smooth Riemannian structure

be(s) - [(@5)* + g2 (-,)] (3.14)

obtained from the product structure by multiplication by ¢. The associated Riemannian mea-
sure is ¢, (s)1+M/2 gg dx, where dx is the volume element of M (resp. area or length element,
according to the dimension of M). This induces our reference measure on I'M that reflects the
underlying geome try, given by

> ()T 150 ds dx. (3.15)

ecE

Note that 'M\ 'M?, the union of all the bifurcation manifolds, is a negligible set. (Below we shall
consider a larger class of measures, associated forms and processes.) We are led to the following.

3.16. Definition. Let f, & be functions in S*°(FM?). The gradient V f and its length square are
given at (s, x) € S by

Vf(s,x): (asfe(S,x)sVMfe(sax))

1
de(s)
and

L

5 (s)(;asms,x)lz+gx(vae<s,x>,vae(s,x))),

V£, 0| =

that is, |[Vf|> =)
(s,x) e TM is

ecE % |V felzlsg. Correspondingly, the inner product of the gradients at

1
Pe(s)

(Vf,Vh)(s,x) = Z (35 fe(s, x)0she(s, x) + gx (Vi fe(s, x), Varhe(s, x))).

ecE

Note that these definitions involve the edge length function /, the metric g on M and the
function ¢, but these are omitted in our notation.

Now, if we have a continuous path in 'M which is rectifiable (i.e., is rectifiable in each strip),
then we can compute its length by adding the lengths of the parts of the path within each strip.
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3.17. Definition. For any two points &£, € 'M, let p(&, ¢) be the infimum of the lengths of
continuous rectifiable paths in 'M joining & to ¢.

One easily checks that this defines a distance function on 'M which defines the original topol-
ogy of this space. We set

BE,r)={¢eT™: p(£,¢) <r},

the open ball with radius r around .
The (easy) proof of the following lemma is left to the reader.

3.18. Lemma. Assume that (M, g) is a complete Riemannian manifold. Then the metric space
("M, p) is complete if and only if the metric space (I'', p) is complete. This is the case if and
only if, for any infinite family F C E of edges such that | ). - I is connected in I'', we have

ecF

Zf Ve (s)ds = oo. (3.19)

€€F1e

3.20. Definition. Given two strip complexes 1M1, N'2Mz, each equipped with respective geo-
metric structures (@1, p1) and (¢,, p2) as above, we say that a diffeomorphism j : 1My — oM
is an isometry if it satisfies

p2(J(€),3(9)) = p1(&,¢) forall§,¢ e MqMy.
A local isometry between two open sets §21, §2; is defined analogously.

3.21. Remark. If j is an isometry then for any f € C°°(I'o;My) and any £ in the interior of a strip
in 1M+, we have

(Vif 0, Viho)1(§) = (V2 f, V2h)2(i(®)).

Indeed the differential map dj|¢ is an isometry between the tangent spaces at £ and j(§), when
Eerly M(1).

E. Dirichlet forms on 'M. We now equip "M with a measure du which will serve as our basic
underlying measure to define £? spaces on 'M, in particular, EZ(I'M, w). This measure wu is
described by its density ¥ € S°°(I"?) with respect to the basic measure of (3.15).

3.22. Definition. (a) Given the positive function ¢ € S*(I"?), let u = uy be the positive Radon
measure on M such that, for any f € C.(T'M),

f fdu= f £l 1)U ()b ()2 ds dx
™ ™

=) / fe(s, X)Ye(8)ge(s) 1M/ 2 ds dx,

eEESg

where ds is Lebesgue measure on (I"!, ) and dx is the Riemannian measure on (M, g).
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(b) Foreach &€ e TM and r > 0 set

VE N =n(BEN)=)_ f Ve (8)Pe(s) 1T/ 2 ds dx.

€€E p(g rnse

Above, Lebesgue measure on (I'!, 1) is of course the measure which restricted to each edge
is Lebesgue measure assigning length [, to I, while the vertex set has measure 0.

To construct Dirichlet forms on 'M, we need to recall a version of the classical trace theorem
for Sobolev spaces. For any strip S., consider the set WI(S,, n) = W! (82, p) of all functions
f in £2(S82, n) whose distributional first derivatives in S¢ can be represented by functions in
L2(82, ). Note that, by definition, W' (S,, 1) = W' (59, ). However choosing S, or S¢ makes
a difference when considering the local versions of this space since compact subsets of S and
S, are different. We let WILC(Se, ) be the space of all functions f in EIZOC(SE, ) whose distri-
butional first derivatives in S7 can be represented by functions in £1200(Se, w.

For any f in WILC(Se, 1), using the global coordinates (s, x) on S, = I, X M, we have that the
derivative 9 f, the M gradient Vj, f and the global gradient V f are well defined locally square
integrable functions on S,. In particular, for such functions, the length square and inner product
of the gradient(s) are well defined as locally integrable functions in the sense of Definition 3.16.

By the classical trace theorem, those functions admit a trace on each of the copies M,- and
M.+ of M bounding the strip S.. More precisely, there exist two continuous linear operators

Tryy . - Wie(Ses ) = Lo (Mo, dx) (3.23)

loc

which extend the natural restriction operators defined from C*°(S,) to C*°(M,+).

3.24. Definition. Given I'", (M, g) and ¢, ¥ € S®(I"°), as above, let W (I'M, 1) be the space
of those functions f in £2(I'M, u) whose restrictions f,, e € E, are all in WI{)C(Se) and satisfy:

o [rulIVfIPdu < oo,
e For any vertex v and any two edges e, ¢’ € E,, Tri;v f= Tri;/v f.

3.25. Definition. For f,h € W ("M, p), set

E(f, h) =f(Vf, Vh)dp.

™

Let W](TM, ) be the closure of C2°(T'M) in W!(TM, ).

3.26. Example. Let I" =T = T, be a p-regular tree equipped with an origin o, a reference end
w, and the associated horocycle function b. Edges are oriented away from @ so that h(e™) =
h(e™) + 1. See Fig. 2. Turn T into a metric tree by giving length g*~1(g — 1) to all edges e with
hle™) =k — 1. Define ¢ € S®(T! \ V) by ¢e(s) =s~2 on I, = [¢g*¥ 1, g¥1if he™) =k — 1.
Setting M = R, the corresponding structure on 'M is isometric to that of the treebolic space
HT(p, q). Next, for any fixed a € R, define ¥ € S®(T! \ V) by ¥.(s) = s% on I, = [¢F~1, g¥]
if h(e™) =k — 1. Then the corresponding measure w on 'M is the measure pq,g on HT(p, Q)
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(modulo the isometry mentioned earlier between these two spaces) and the associated Dirichlet
form (£, W!(I'M, w)) is the form (&,, B» Wolt ﬂ(HT)) from Definition 2.6.

3.27. Theorem. The quadratic form (£, W (TM, w)) is a strictly local Dirichlet form and the
quadratic form (€, Wé (M, w)) is a strictly local regular Dirichlet form.

Proof. The Markov character and strict locality of these forms are clear from the definitions. See
[20]. The fact that the first form is closed follows from the fact that the corresponding forms on
all strips are closed and from the continuity of the trace operators. The fact that the second form
is closed and regular is obvious from the definition and the fact that C3°(I'M) is dense in Co(I'M)
for the uniform norm (see Lemma 3.10). O

3.28. Theorem. Assume that (T'M, p) is a complete metric space (see Lemma 3.18 for a neces-
sary and sufficient condition). Then the forms (£, W'(T'M, w)) and (€, Wé (M, w)) coincide. In
particular, (E, WY(T'M, w)) is a strictly local regular Dirichlet form.

Proof. To prove this, we simply need to show that CZ°(I'M) is dense in WM, ). First, we
show that any f € W!(I'M, i) can be approximated in W!(I'M, i) by functions with compact
support. Consider the distance function p on 'M. Observe that, for any set U, the function &
p(&, U) is a contraction in each strip S,. Therefore this function is in Wlloc( M) with |[Vpy| < 1.
If follows that the functions

6, =max{1 — p(-, B(o,n))/n,O},

where o is a fixed point in 'M, are in WM, w) and satisfy |V6,| < 1/n. The function 6, is
supported in B(o, 2n), which is precompact since (I'M, p) is a complete locally compact metric
space. This yields that the compactly supported functions 6, f converge to f in W ("M, ).

Next, we show that any compactly supported function f in W!(I'M, ) can be approximated
in W!(I'M, 1) by compactly supported functions in C°(I'M). By compactness of the support
of f, we can find a finite collection of functions w; in C2°(I'M) such that ) w; =1 on the
support of f and each w; either has its compact support in an open strip (¢, e*) x M or w; has
its compact support in a star of strips X, at vertex v. At this point, it suffices to approximate each
fw; by functions in C2°(I'M). If w; has compact support within one open strip, this follows from
a classical procedure.

The interesting case is when w; is compactly supported in a star X,. In this case we can
assume that the support of w; is so small that it is contained in an open set of the form (., U,
where the U, meet on M, along an open set U, = {v} x U C M, and each U, is of the form
Jo x U where the J, C I, are semi-open intervals of the same length all containing v.

Now pick one of the edges ¢ € E,, and let f be the function which, on each U,, equals
f wilu;, and is zero outside of | J,cg, Ue- That is, we copy the values of f w; from Uj to all the
other U,, e € E,, via the obvious coordinate-wise correspondences between those sets, taking
into account the identification between U; and the other sets U, along U,. On each strip S?, the
function f w; — f isin W& (82, ) because, by construction, the functions fw; and f coincide on
Uy, C M,. Hence we can approximate fw; — f in W!(I'M, ) by functions g, whose restrictions
to each S?, e € E,, are smooth and compactly supported in the respective set U,. Those g, are
in CZ%.(TM).

,C
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Next, the function f w;|y; is in Wl(Sé, @) with compact support in Us. Recall that U; con-
tains U, as part of its boundary. By classical constructions, fw;|y,; can be approximated by

functions &, € C2°(U;z). We now use A, to define fz,, on UeeEv U, by setting, for each e € E,,
fz,, |u, = hx in the same way as above via the natural correspondence between U, and U;. Obvi-
ously, &, € C3°(I'M) and it approximates f in W!(I'M, w). This implies that g, + %,, which is
in C2°('M), approximates fw; in wWirm, n). O

In fact, the smaller space CZ%(I'M) is already dense in Wj(I'M, ), and thus in W!(T'M, )
when (I'M, p) is complete. Recall that CZ.(I'M) is the set of those functions in CZ°(I'M) such
that in any strip S, = I, x M, the partial derivative d; f'|;, has compact support contained in the
open strip S¢ (as usual, s is the variable in the interval I.).

3.29. Theorem. The subspace ng‘}(l' M) of W&(I’M, W) is dense in Wé(FM, ), and thus in
wlrwm, w), when ("M, p) is complete.

Proof. To see that this is the case, we return to the end of the argument in the proof of Theo-
rem 3.28. We claim that we can approximate fw;|y, € WL(S;, 1) by functions k, € Coo(Us).
If that is the case, we use A, to define /, on Uee E, Ue by copying the values of hy, from Uj; to
U, for each e € E,. Obviously, ﬁn € Cg,%(I'M) and it approximates f in WH(rm, w). Then, as
before, g, + h,, approximates fw; in W!(I'M, ) as desired. The function g, + &, is in Coe(TM)
because £, is in that space by construction and g, has compact support in the union Uee E, Se
of the open strips surrounding M, and thus is also in Co¢,(TM).

Thus, the only thing left to prove is that a function f € WI(R), R=[e",et) x U, with
compact support in R can be approximated in W!(R) by a sequence of functions 4, € C*°(R)
with compact support in R and such that d;4, has compact support in /2 x U. Note that, by
definition, R contains the bottom {e~} x U.

Since this is a local problem, we can regard U as a small open set in R” that contains the
origin, and ignore completely the role of the functions ¢, . Modifying notation in this sense,
we use coordinates (s, x) € R =[0,1) x U (instead of s € [e™, eT), with [ =1,) and write du =
dsdx.Forn=1,2,...,set

s+1/n

fals,x)=n / f(r,x)dt and f,,(s,x):{

s

Jn(s, x), if s e (1/n,1)
fa(l/n,x), ifsel0,1/n].

We can assume that the support of f in R is small enough so that f, and f,, are still supported
in R. Itis plain that f, tendsto f in W!(R), and we claim that the same is true for f,, Itis clear
that f,, tends to f in L2(R) and we only need to check that |V(f, — fn)l tends to 0 in L2(R).
Setting R, = [0, 1/n] x U, we write

f|V(fn — fl du =f(|asf,.|2 + Vi = f)|?) dn

R Ry

< c/(|asfn|2 + |V ful®) du + % f|VMﬁ,(1/n,x)’2dx.
U

Rn
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It is plain that

[ 08+ 1930 £uP) dia > 0.

Ry
Moreover
1 1 2/n
;/\Van(l/n,x)lzdxng n/|VMf(s,x)|ds dx
U U ' 1/n
2/n
g//|VMf(s,x)|2dsdx—>O.
1/n U

The functions f, satisfy 9, f, = 01in [0, 1/n) x U but are not smooth. To obtain smooth functions
approximating f with the desired property, extend f and f, by symmetry to R* = (—1,1) x U,
thatis, f(—s,x) = f(s,x) and f,,(—s, x) = fn(s, x). Obviously, ||f,, - f||w1(R*) — 0. For each
n, let 6, be a smooth non-negative function with integral 1 and support in the ball of radius less
than 1/(5n) around (0, 0) in (—I,7) x U. Consider h, = 6, * fN,, (* denoting convolution). Now,
the restriction of 4, to [0,/) x U is a smooth function which satisfies dsh, = 0 in a neigh-
bourhood of {0} x U and approximates f in WL(R). Indeed, 6, * f — f in WI(R*), and
160 % (Fo = Pliwi ey < I = Flrirsy = 0. O

The Dirichlet form structure on a strip complex "M is based on the choice of

(a) the geometry determined by [, ¢, and
(b) the measure u determined by .

The following definition takes this into account to introduce isometries that are compatible with
this additional structure.

3.30. Definition. Let 1My and oM, be two strip complexes equipped respectively with ¢;, ¥;
and the associated measures w;, i = 1, 2 as above. An isometry (or local isometry, with obvious
modifications) j : [{My — oM, is called measure-adapted if there is a positive constant c(j)
such that, for any compact set A C oMy,

11 (71 (A)) = c(Iua(A).

3.31. Remark. If j is a measure-adapted isometry and f; = f oj, where f, € WI(I2M,), then
f1e WL 1My) and

E1(f1, f1) =c()E(f2, f2)-

3.32. Example. For any p € {1,2...} and q > 1, the treebolic space HT(p, q) (equipped with its
stripwise hyperbolic geometry, as described in Section 2) admits a large group of isometries (see
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the introduction). These isometries are all measure-adapted whenever HT(p, q) is equipped with
any of the measures uq g (@ € R, B > 0) defined in (2.3).

F. The Laplacian and the heat equation on strip complexes. Consider a strip complex
M where (M, g) is a Riemannian manifold, and equip 'M with the data (I, ¢, {), where
¢, ¥ € S®(I'?) asin §3.D and §3.E. Let u be the associated measure. For simplicity, we write
LP(TM) = LP(TM, ), WE(TM) = W} (M, ) and WH(TM) = WH(TM, ).

By the general theory of Dirichlet forms, there is a self-adjoint operator

(A, Dom(A))
on £2(I'M) which we call the Laplacian on 'M and which is defined as follows.
3.33. Definition. Set
Dom(A) = {f € Wé(FM): there is C s such that £(f, h) < Cy||hl|2 forall h € W&(FM)}.

For f € Dom(A), there exists a unique u € £2("'M) such that £(f, h) = — Juhdp forall h €
L2(T'M) and we set

Af =u.

Since the measure u will be fixed most of the time, we will often omit it in our notation.
The operator A with domain Dom(A) is the infinitesimal generator of a strongly continuous
semigroup of self-adjoint contractions {H; = e¢'2: t > 0}, on L2('M) which has the Markov

property:
feL*rm), 0<f<1 = O<Hf<L

It follows that H; extends to a contraction on each space LP(T'M), 1 < p < oo.For 1< p < o0,
the family {H,: ¢ > 0} is a strongly continuous semigroup on L£L?("'M). We call {H;: t > 0} the
heat semigroup on I'M (more precisely, on (T'M; [, ¢, ¥)).

The following is immediate by inspection.

3.34. Proposition. Let 1M1 and I'2Mz be two strip complexes, each equipped with data l;, ¢;, ¥;
(i =1,2) as above. Let u; and (A;, Dom(A;)), i =1, 2, be the associated measures and Lapla-
cians. If j : T 1My = 2My is a measure-adapted isometry then
forall f, e Dom(A3z), f1= faojeDom(A1) and Ajf1=(A2f2)0j.
Also,
forallt >0 and f> € L2(T2My), fi=froje L2(T1My) and Hiyfi = (Hayf2) o).

In the general theory of regular strictly local Dirichlet forms (£, Dom(£)), one introduces a
notion of intrinsic distance. In the present setting, this definition reads

p(x,y) =sup{|f(x) — fF)|: feCcaMmnW (™), |Vf|< 1}
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It is not hard to see that this intrinsic distance coincides with the distance p introduced earlier.
3.35. Definition. Let £2 be an open set in 'M. Set

)/Vc1 2) = { f e WHIM): f is compactly supported in .Q}
and

W (@) = {f L2 () for every compact K C §2 there is }
lock™% 7™ et F e WI(rM) such that f|x = flx a.e. )
Fix an open set £2 and consider the topological vector spaces Wc1 £2) C Wé (M) C L2(TM)
and their duals £2(TM) C W} (TM)* € W (2)*.

3.36. Definition. Let £2 be an open set in M. Let f € W!(£2)*. We say that a function u is
a weak solution of the equation Au = f in £2 if

e uecW. (£2),and
o Eu,h) =—f(h) forall h € WL(£2).

Observe that f (k) above is well defined since f € VVC1 (£2)* and h € VVC1 (£2). Observe also
that if f is represented by a locally integrable function on 2 (again called f) and if u is such
that there exists # € Dom(A) satisfying u = #t|g; then u is a weak solution of Au = f in £ if
and only if (Ai)|e = f.

Given a Hilbert space H and an interval I, let £2(I — H) be the Hilbert space of those
functions f : I — H such that

. \2
Il 2~ my = (/"f(t) ”Hdt) < 00.
1

Let WY(I - H) c £*(I - H) be the Hilbert space of those functions f : I — H in
L2(I — H) whose distributional time derivative f’ can be represented by functions in
L%(I — H), equipped with the norm

2 , ’ 172
twaem = [Ur0l+170)a) " <.

1

Given an open time interval 7, set

FA x TM) = L2(I - Wy (TM)) N W (I - Wi (TW)*).
This notation is justified by the inclusions W!(F'M) C £2(T'M) = L2(TM)* ¢ W!(T'M)*, com-
pare with [33—35]. While in these definitions it was convenient to consider f(¢) as a function on

'M for each ¢ € I, we shall usually prefer the notation f(z, -), where we think of f as a function
onl x 'M.
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Given an open time interval I and an open set £2 C 'M (both nonempty), let
Fioc(I X §2) (3.37)

be the set of all functions f : I x £2 — R such that, for any open interval I’ C I relatively
compact in I and any open subset £2’ relatively compact in U there exists a function f* €
F(I x M) satisfying f = f* a.e.in I’ x £2’. Finally, let

FoI x £2) = {f € F(I x TM): f(z,-) has compact support in §2 for a.e.t € I}.

3.38. Definition. Let / be an open time interval. Let §£2 be an open subset in 'M and set Q =
I x £2. A function u : Q — R is a weak (local) solution of the heat equation (0; — A)u =0in Q
if

(1) u € Fioc(Q), and
(2) for any open interval J relatively compact in I and any f € F.(Q),

fff&mdudt-l—/é’(f(t, ), u(t,-))dt =0.

J U J

The following proposition follows from the relevant definitions by inspection.

3.39. Proposition. Let 1My and oMy be two strip complexes, each equipped with data ¢;, V;,
i =1,2, as above. Let u; and (A;j,Dom(A;)), i = 1,2, be the associated measures and Lapla-
cians. Letj : 21 — $§22, where §21 C 1M1 and $22 C oMz, be a measure-adapted local isometry
between the open sets §21 and $2;.

e Iffre )/VC1 (§£22)* and uy is a weak solution of Ayu = fo in §23 then fi(h) = fo(ho j_l) €
VVC1 (£21)* and uy = us oj is a weak solution of Au1 = fi.

e Forany time interval I, if uy is a weak solution of the heat equation on ' oM in Qo = I X §23,
then u1 = up oj is a weak solution of the heat equation on 1My in Q1 =1 x £2;.

4. Basic properties of the heat semigroup

In this and the next section, I'M is a fixed strip complex based on a graph I" and a Riemannian
manifold (M, g). Furthermore, M is equipped with data (I, ¢, V), where ¢, ¥ € S®°(I"?), the
associated distance p and measure u, the Dirichlet form (€, Wé ("'M)) and the corresponding
Laplacian A and heat semigroup {H; = ¢’ At > 0}. See §3.D-§3.F.

Because of the singular nature of strip complexes, the local regularity properties of weak
solutions of the Laplace or heat equations are a non-trivial and crucial issue.

4.1. Theorem. For any compact set K C I'M, there exist rx > 0 and constants Dk, Pk such that
forall§ € K, r € (0, rg) the following properties hold.

e V(&,r)< DkV(§,2r), and
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e forevery f e W'(B),

flf—f3|2du<PKr2f|Vf|2du,
B B

where B = B(§,r) and fp = ﬁfB fdu.

Proof. The first property is clear by inspection because of the continuity of ¢, Y, the Riemannian
nature of M, and the fact that the underlying graph (V, E) is locally finite. The second property,
i.e., the Poincaré inequality, is more delicate to prove. First, such a (localized) Poincaré inequality
holds on M (i.e., on any Riemannian manifold). See, e.g., [28, 5.6.3]. This applies to any strip
Se equipped with the ¢-structure. By continuity and positivity of ¢, the desired local Poincaré
inequality holds on balls that are contained in the interior of a strip.

The same is true when we have a vertex v with deg(v) = 1, so that M, sits at the boundary of
a unique strip S, and B is contained in the half-open strip S¢ U M,,.

By classical arguments, it thus suffices to prove the stated result assuming that the center &
belongs to a bifurcation manifold M,, where deg(v) > 2. We can further assume that  is small
enough so that the ball B = B(&, r) is contained in X, the star of strips around v.

The crucial observation is that for any pair of edges e,e’ € E,, the open set Xﬁ’el =
M, U S7 U S, equipped with the ¢-structure is locally bi-Lipschitz equivalent to a smooth Rie-
mannian manifold 7 x M, where the interval I corresponds to {v} U2 U1 :’

Therefore, setting B = B(§,r) and B, o = BNX f;el the following Poincaré inequalities hold:

/|f—fBe’E,|2d/L<CKr2/ IVf|?du forall f e W'(B), e, € € E,,

B B,

1
where B ,=4/ du.
f @¢ /L(Be,e') f

Now choose and fix an edge e € E, so that u(B,) is maximal among all edges in E,, where
B.= BN S. We set fp, = ﬁ J, fdu. Then

max ((B,.) < 2u(Be).

¢eE,

Then we can estimate

1
— = —4mM8M8M— — d d
| fB, — 13, | |M(Be)u(3e,e,) / / (fFm) = f©))dun) u(;)‘

e Dy of

2
<o [ [ 1= f@ldunane

e,e! Be,e’

4 1/2
<<m/ /|(f(’7)_fBe,ef)—(f(§)—fBe,e/)|2du(n)du(§))

/ /

e,e e,e
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3 ) 12
< | — JB, | dﬂ)
(M(Be,e’)B/ =7 e

< ( 8Cxr? —y )1/2
u .
= :U‘(Be,e’)

ee

In the last inequality, we have used the Poincaré inequality on B, /. Next,
[ 17 = falran=min [ 17 = cPau< [ 17 = faPdn
B B B

and

/lf—fBelsz< > f|f—fBe|2du
B

/
e'eEy\{e} B,

<2 ) ( f f —fse,eflzdu+u(Be,ef>|fBe,e,—fB,f)

/
deENC) Vg,

<18Cxr? Y IV fI2du
e’eEv\{e}Be J

< 18Ckr*(deg(v) — 1) / IVfPdp.
B

This is the desired Poincaré inequality when § € K N M,,. From this, forall¢ € K andr € (0, rg),
elementary considerations give that for all f € W!(2B),

/ |f — fal*du < PKrZ/ IV fI2du,
B 2B

where 2B = B(§, 2r). Now, it is well known (but not so elementary) that this suffices to obtain the
desired Poincaré inequality where f € W!(2B) and [, |V f|?d p are replaced by f € W!(B)
and fB |Vf|2du. See [28, 5.3]. Compare also with [17] and [27]. O

Theorem 4.1 has far reaching consequences. The next three theorems follow from the ar-
guments of [33-35], which are based on Moser iteration techniques and thus, in the present

situation, rely heavily on Theorem 4.1. See also [28] and Biroli and Mosco [7].

4.2. Theorem. Referring to the general setting of this section, the heat semigroup has the follow-
ing properties.

e For any open interval I and compact intervals J, J' of I with maxJ < minJ’ and
for any connected open set §2 C TM and compact K C §2, there are positive constants
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ar=a1(I1,2,J,K),C1=C1(,2,J,K)and C, = C2(I, 2, J, J', K) such that any weak
solution u of the heat equation (0; — A)u =0 in I x §2 admits a continuous version which
satisfies

{ |u(t,§) —uls, §)|

Pl (r =52+ pE. ) t,8),(s,0) el xK} < Cq sup |u],

Ix$2
and, if u is non-negative,

sup u < Cy inf u.
IxK J'xK

e The heat diffusion semigroup {H; = ¢'®: t > 0} admits a continuous kernel (t,€,¢)

h(t, &, £)—which we call the heat kernel of 'M—so that

Hf€) = f h £, O F @) dp().

™

The heat kernel is symmetric in &€, ¢.

e For each &,¢ € TM, the function t — h(t,&,¢) is in C*((0, 00)), and for each ¢ € TM,
the function (t,&) — Btkh(t, &,¢) is a weak solution of the heat equation in (0, 00) x 'M.
Moreover, (t,&€,8) —> atkh(t, &, ¢) is a continuous function on (0,00) x 'M x 'M.

e For any fixed compact K C TM, ¢ € K, compact time interval I = [a, b] C (0, 00) and
integer k, there are positive constants aa = ar (I, K, k) and C3 = C3(I, K, k) such that, for
all £ e TM, we have

sup{|8tkh(t,§,$): tel, te K|} < C3h(2b, &0, §)

and

k _ ak /
up{lazh(t, £,6)— 9 h(t, ¢ ,E)I: tel, ;,;’eK} < C3h(2b. 2. £),
P, 5)*

e Each operator H;, t > 0, sends bounded measurable functions to continuous bounded func-
tions, that is, H;L°°(T'M) C C,("'M) for any t > 0.

Note that no global results can be obtained under the present very general hypotheses. In
particular, we have no bound on the volume of large balls, and stochastic completeness is not
guaranteed. That is, it may very well occur that f h(t,&,¢)du(¢) <1 for some ¢, £. Indeed, we
have so far not even assumed the completeness of (I'M, p), but will do so next.

4.3. Theorem. Assume that ("M, p) is complete and that

o0

/ rdr
— =00
InV(o,7)

1
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Then unique solvability of the bounded Cauchy problem holds on (0,T) x 'M for the heat
equation. More precisely, if u : (0,T) x TM is a weak solution of the heat equation on
(0, T) x T'M which is bounded and satisfies lim;—ou(t, ) = 0 w-almost everywhere, then u =0
on (0, T) x TM. In particular, the semigroup { H; = €' A s 0}, is conservative, that is, ¢21 = 1.

In the next theorem, we also assume that (I'M, p) is complete, and make uniform local as-
sumptions on the geometry of "M that allow us to obtain more quantitative results.

4.4. Theorem. Assume that (T'M, p) is complete and that there are constants D, P,rg > 0 such
that

(i) forany & e TM andr € (0, ro), we have the doubling property V(&,r) < DV (§,2r), and
(ii) forany &€ e TMandr € (0, rg), setting B= B(&,r),

/lf—f3|2du<Pr2/|Vf|2du for every f e W\(B), where f3=$ffdu.
B B B

Then the following properties hold.

(1) For fixed R > 0 there are positive constants ¢, C4 and Cs (depending only on R) such
that for all £ e TM, r € (0, R), any weak solution u of the heat equation (3; — A)u =0 in
Q = (0,4r2) x B(&, 2r) satisfies

ut & —us, )| 1
’ [(u St oy €L } <o suplu

and, if u is non-negative,

supu < Cs iQIlf u, where
+

Q' =(r?, 3r?) x B(§,r), Q— = (r?, 2r?) x B(£,r) and Q1 = (3r?, 4r%) x B(&,r).
(2) For any fixed integer k > 0 and € € (0, 1) there is a constant C¢ x such that for all t > 0 and
all€,¢ € TM, with a as above,

k Cek _M)
|3k (2,8, 0] < tkV (€, min{1, \/7}) CXP( 4(1+e)t )

Moreover,

Ce,k
|0Fh(t,&,0)| < mh(“ +e)t,£,)

and, for all ¢’ with p(¢, ¢’) < min{l, 1},

. o , Ce,kp(g’ ;/)a
[37h @ & 8 = k(6. 8)| < o

h((1+e)t,§,¢).
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Concerning the growth of the volume of large balls, we point out that the hypothesis that the
volume doubling property holds locally uniformly as in Theorem 4.4 implies that

V(1) <eC/™V (&, o) forallr >ro,
see [28, Lemma 5.2.7]. We collect three of the main features.

4.5. Corollary. Under the hypotheses of Theorem 4.4, the following properties hold for the heat
semigroup {H, = e'®: t > 0}.

(1) It is conservative (stochastically complete), that is, e'21 = 1.
(2) It sends L (M) into Cp(TM).
(3) It sends Co(T'M) into itself.

The next corollary concerns global non-negative solutions of the heat equation.

4.6. Corollary. Under the hypotheses of Theorem 4.4, there exists a constant C such that any
non-negative weak solution u of the heat equation on (0, T) x 'M satisfies

u(s,&) < u(t,{)exp(C(l +t/s+ p(&, {)2/(t —s))) forallE,t eTM, 0<s<t<T.

Moreover, unique solvability of the positive Cauchy problem holds on (0, T) x 'M for the
heat equation. More precisely, if u : (0, T) x M is non-negative and is a weak solution of the
heat equation on (0, T') x M then there exist a non-negative Borel measure o on T'M and a > 0
such that

fe—aP(EO,E)z do(§) < oo
™
for some (equivalently, any) § € 'M, and
u(t, &)= / h(t,£,8)do (&) forall (1,€) € (0,T) x TM.
™

In particular, if u is a non-negative weak solution of the heat equation in (0, T) x 'M and there
is some ug € EIIOC(I'M) such that

lin(l)/‘u(t, -)fdu:/uofdu forall f € C°(TM),
t—>
™ ™

then u(t, &) = [, h(t, &, Juodp.

Proof. See Ancona and Taylor [1], Aronson [2,3], Grigor’yan [21, Theorem 6.2], [33, Sec. 3]
and [28, Sec. 5.5.2]. O

Next, we give some relatively simple sufficient conditions which imply that the hypotheses of
Theorem 4.4 are satisfied.
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4.7. Proposition. Assume the following.

e The manifold (M, g) is complete and satisfies the doubling property and L?-Poincaré in-
equality at all scales, that is, there are positive constants Dy and Py such that, for every
xg €M, r >0,

Vum (x0,7) < Dy Vi (x0, 2r),

where Vi (xg, r) is the Riemannian volume of the geodesic ball B = By (xg, r) of radius r
around xq in M, and

f f — faldx < PMrZ/ Y flRdx forall f € W\(B),
B B

where fg is the average of f over B, and dx is the volume element of M.
e There are finite positive constants cy and Cq such that

+

e
/\/qbe(s) ds >2co foreveryec E, and deg(v)<Co foreveryvelV.

e
Moreover, for any finite interval I C I'' with S 1 Vo(s)ds < co,

maxXié o and LY < ¢,

miny ¢ min; Y

Under these hypotheses, (TM, p) is complete, and there are constants D, P, ry such that the
properties (1) and (ii) of Theorem 4.4 hold.

Proof. Completeness follows clearly from Lemma 3.18. Moreover, under the above hypotheses
on ¢, ¥, for any fixed rg, the functions ¢ and v behave like constant functions (that is, there
is ¢ = c¢(ro) > 0 such that ¢ < ¢, ¥ < 1/c) on any ball of radius rg in M. This means that
the geometry of 'M in such a ball B is comparable to the product of a piece of I] scaled by
a constant factor ¢p (corresponding to the size of ¢ in the ball in question) and (M, ¢pg). The
uniform local doubling property thus follows from the global doubling property on M and the fact
that ¢ and ¢ are approximately constant in B. The uniform local Poincaré inequality follows by
the argument used in the proof of Theorem 4.1 that can now be carried through up to a uniformly
fixed scale. O

4.8. Examples. (a) Let (I"!, ]) be a metric graph as above with min,cg{l.} > 0. Suppose that ¢ €
S®(I'!) has the property that for any interval I C I'! of length 1, one has max; v/ min; ¢ < C
for some positive C, and that maxy deg(v) < oo.

Then the weighted 1-complex (I” L1, ¥ (s) ds) satisfies the hypotheses of Theorem 4.4. More
generally, for any £ =0, 1,2, ..., the strip complex 'M with M = Rk, ¢ =1 and ¢ as above,
satisfies the hypotheses of Theorem 4.4.
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(b) The treebolic space HT equipped with any one of the forms (&, g, Woll B (HT)) satisfies the
hypotheses of Theorem 4.4. This follows from the local result and the fact that there is a group
of measure preserving isometries acting with compact quotient for any one of these structures.

5. Smoothness of weak solutions
Throughout this section, we keep the setting and notation of Section 4.

A. Harmonic functions. By the general theory of Dirichlet forms, there is a Hunt process with
continuous sample paths defined for every starting point £ € 'M associated with the semigroup
H, =e'? - £2(I'M) — L2(TM). In general, since our semigroup is not always conservative, we
must add an isolated point co to 'M.

The distribution (PS)EGFM of this process on C([0, co] = 'M U {oo}) is determined by the
one-dimensional distributions

Pe(X; € U) = f h(t £, 0 du (@) = Hly @)
U

for any open subset U C I'M, where § is the starting point. The life time of the process is
Too = sup{t 2 0: X; € TM},

and H; is conservative if and only if Pt (oo < 00) = 0 for some (equivalently, all) £ € T'M.
For any relatively compact open set U, define the exit time

U =inf{t >0: X; € Uc}
and, for £ € U, the exit distribution
my (&, B) =E¢ (X, € B).

Since the process has continuous paths, for & € U, the measure gy (€, -) is supported on the
boundary oU of U. More generally, we set

my €, f) =E¢(f (X))

for any bounded Borel measurable function f defined everywhere on dU.
The Green potential of a continuous function ¢ > 0 with support in U can be written as

Gue(§) =EE([¢(Xt)dt> < +o0.

0

5.1. Definition. A bounded Borel function u# in an open set £2 C 'M is P-harmonic (that is,
harmonic with respect to the process X = (X;)>0 with law P) if, for any open relatively compact
set B with B C §2, we have

g€, u)=u() forall£ € B.
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Since the associated semigroup {H;: ¢t > 0} sends bounded measurable functions to bounded
continuous functions it follows that any harmonic function is continuous; see e.g. Dynkin
[15, Vol. II]. The following result is important for our purpose.

5.2. Theorem. Let $2 C 'M be an open set.

(1) If u is a weak solution of Au = 0 in S2 then the continuous version of u is P-harmonic in S2.
(i1) If u is P-harmonic in S2 then u is a weak solution of Au =0 in 2.

Proof. Part (i) is true in great generality, see [20, Theorem 4.3.2] (recall that, in our case, weak
solutions are continuous).

We now prove Part (ii). Without loss of generality, we can assume that 2 is relatively compact
and u > € >01n £2.

Consider a fixed open set V with V C £ (i.e., V is relatively compact in £2).

Let ¢ be a non-negative continuous function (not identically 0) with support in U, and let
w=Ggop¢€ Wé (£2) be its Green potential in £2.

Since u is bounded from above in U and the potential w is bounded from below in U, there
exists £ > 0 such that the excessive function # = min{z - w, u} coincides with u in U, because
w|yn = 0. Moreover, A coincides with ¢ - w near the boundary of £2. Since 4 < ¢ - w, the function
h = Ggv is the Green potential of a measure v with compact support in §2 and energy integral
which is computed as

Eh, h) =/hdv < 00.
2

See Blumenthal and Getoor [8, Ch. VI, Theorem 2.10] and Silverstein [31, Ch. 1, Sec. 3]. In
particular, & € W& (£2), and since u coincides with 4 in V, we see that u is in Wlloc (£2).

Next, u is represented inside any open set V with V C £ as u = my (-, u). Since u is in
WL(V), the function 7y (-, #) coincides with the Hilbert projection of u on the linear subspace
of weakly harmonic functions in V. See [20, Theorem 4.3.2]. O

B. The bifurcation conditions. The aim of this section is to prove that weak solutions of Au =0
are actually very regular in each strip and up to the bifurcation manifolds although their various
derivatives are typically not continuous across those bifurcation manifolds. This will allow us to
see that weak solutions verify in a strong sense a particular bifurcation condition (or Kirchhoff’s
law) along each bifurcation manifold. This bifurcation law is a crucial ingredient in the analysis
of our Dirichlet forms. It captures the influence of the jumps of the functions ¢ and Y across
bifurcation manifolds and is crucial for an understanding of the domain of the infinitesimal gen-
erator.

Let us start by observing that, in any open strip S?, the infinitesimal generator A of our heat
semigroup is simply the weighted Riemannian Laplacian

1
Af = " div(y grad(f)),
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where div and grad refer, respectively, to the divergence and gradient on the manifold

((e7,e%) x M, ¢(s)((ds)* +g(-,)))-

More concretely, this means that for any f in the domain of A and such that f € C*°(S?),

1
Af = E[as2 +Am +ndf,  where n =3, In(p"D/2y).

To be able to distinguish between the infinitesimal generator and its expression in the interior of
a strip, we make the following definition.

5.3. Definition. For any & € T'M° and any function f which coincides with a smooth function in
a neighbourhood of &, set

1

HO=3o

[02 + Ay +n(€)ds] f(E), where n=d,In(¢p®1/2y).

In particular, 2 (as well as any of its integer powers 2¥) is a well defined continuous operator
from S°(FM?) to L5 (TM).

In addition to the “differential operator” 2, there is another crucial ingredient needed in or-
der to describe harmonic functions on 'M properly. Namely, harmonic functions must satisfy
a bifurcation condition (or Kirchhoff law) along each bifurcation manifold M,. To express this
bifurcation condition, we introduce the following notation.

5.4. Definition. Given v € V and e € E,, let n,  be the outwards pointing normal unit vector
relative to S7 along M.

We start by writing down Green’s formulas for a domain §2 with piecewise smooth boundary
contained in one strip S, and for smooth functions f, & on £2. Then Green’s formulas read as

follows.
/ fAndp + / (Vf, Vh)du = / (n, Vh) fdu' (5.5)
2 2 082
and
/ (fUh —hAf)du = / ((n, VA f — (n, V f)h)dy/, (5.6)
2 082

where n is the outward unit normal vector to £2 and u’ is the induced measure on 952.
This measure has density ¥,.(s) with respect to the Riemannian hypersurface measure on
(Ses @ - ((ds)* + g(,))).

Let u be a weak solution of Au = 0 in a general domain 2 C 'M and let U be a domain in
a bifurcation manifold M = M, such that the closure of U is contained in 2.
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Fix a strip § = §? attached to M, and consider the outward unit normal derivative relative to
S¢ along M,,.

If (U; x1, ..., x,) is alocal coordinate chart in M, and (s, x1, ..., X,) denotes the correspond-
ing coordinate chart in S¢ = (¢~, e*) x U then that derivative is given by

(Nv,e, V) = £ (v) 7285, ifv=e". (5.7)

(The two signs have to coincide.) Note that it is crucial here to use the notation ¢, (v) since ¢ is
not necessarily defined at v and the values of the edge-wise extensions ¢, (v) of ¢ to the vertex
v may be distinct for different e € E,.

Suppose for the sake of simplicity that v = e~ . Given u as above, we want to define

8= (Nye, Vi) |y = —de(v) "2 8u(v, -)

as a distribution on U. For € > 0 (small enough), let L, = {(s, x) € S: s = s¢} be the “horizontal
manifold” in § where s. is the point at distance ¢ from e~ = v in the interval I.. Let U, =
{(s,x): s =s¢, x € U}. We assume that ¢ is so small that the closure of U, is contained in £2.
For 0 < ¢’ < ¢ fixed small enough we let R,/ . be the rectangle with U, and U, as horizontal
sides.

Because u is smooth inside the strip S, for any sufficiently small ¢ > 0 and any smooth
function 6 on M with compact support in U,

8¢(0) = — ¢ (se) D24 (s,) f dsuu(se, x)6(x) dx
U

is well defined, and 6 > &8, (0) is a distribution.
Now, we can compute 8¢ (¢) — 8¢/ (¢) by setting @ (s, x) = 6(x) and writing

f (OUAu — uAO) dp = f ((Ny,e, VYO — (Ny,e, VOu) d i’

Re’, e aRE/,E
Recall that 6 is a smooth function with compact supportin U . It follows that @ and V® vanish on
the vertical components of 0 R’ ¢. In addition, since @ is independent of s, (ny,., V@) vanishes

on the horizontal components of d R, .. Furthermore 2u =0 in R, .. Hence

- [ o du= [@nevwodn + [ (e V0N
Uy

R,

&'e Ue

whence

1
‘ / u(s,x)(p(—s)AMO(x) d,u‘ = |8:(0) — 8- ().

e e
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Since u and A0 are uniformly bounded in a domain containing all rectangles R, . with suffi-
ciently small 0 < ¢’ < ¢, it follows that

lim 5. (¢) = 8(¢)
e—>0
exists. If (as usually) u, denotes the restriction of u to S7, this defines

d= (nv,e, Ve (v, -))

as a distribution on U.

In this way, we obtain deg(v) distributions §, ¢, one for each edge e € E,. Each §, . corre-
sponds to the unit outward normal derivative (n, ¢, Vi, (v, )) in §7 along U C M,. Now, the fact
that u is a weak solution of Au =0 in £2 implies that

D Ve ye= Y Ye)(Nue, Vite(v,-)) =0 as distributions on U C My.  (5.8)

ecEy ecEy

We refer to this as the bifurcation condition along M, or Kirchhoff’s law, in the sense of distri-
butions.

For later purpose, it is useful to observe that the argument developed above for weak solutions
of Au =0 also works for weak solutions of the Poisson equation

Au=f

in an open set £2 with a function f that is Holder continuous in £2. To be precise, we require
here that u € W!(£2) and that for any 4 € W& (£2),

E(u,h)=—/fhdu.

Note that by classical results, such a function # has continuous partial derivatives up to second
order and satisfies 2u = f in the intersection of £2 with each open strip S7. By an argument
similar to the one used above for weak solutions, the function u must also satisfy the bifurcation
condition (5.8) in the sense of distributions.

For instance, the function u(§) = h(z, ¢, €) is a weak solution of Au = f on HT with f(§) =
a:h(t, ¢, ). Hence it satisfies (5.8) in the sense of distributions along each of the bifurcation
manifolds M, in TM.

C. Smoothness of harmonic functions. The aim of this section is to show that weak solutions
of Au =0 in an open set are smooth in the strip complex sense, that is, they belong locally
to C*°(I'M). Since A is a non-degenerate elliptic operator in each open strip, we know that
harmonic functions are smooth there (in the usual sense of having continuous partial derivatives
of all orders). The problem is to obtain smoothness up to the bifurcation manifolds in each strip
separately. Recall here that smoothness on 'M does not imply continuity of the derivatives across
bifurcation manifolds.
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5.9. Theorem. Fix an open set 2 C TM. For each e € E, set 2, = 2 N S and, if u € C(2),
ue = u|p,. A function u is a weak solution of Au =0 in 2 if and only if it has the following
properties (more precisely, the continuous version of u has the following properties):

o ucC®().
e Foranye € E, one has Au, =0 on £2,.
e Foranyv €V, one has ZeeEv Ye(V)(Ny,e, Vi) =0 along M, N $2.

5.10. Remark. The first and third conditions are the crucial ones, since we already know that the
second condition must hold by the local ellipticity of our Laplacian in each open strip. Concern-
ing the first condition, we already know that weak solutions are continuous (more precisely, have
a continuous representative) so the important part of the statement is that they belong locally to
S*®(IC'M). We already observed in (5.8) that the third condition must hold in the sense of distri-
butions but, if u € C*°(£2), this is equivalent to a classical pointwise statement as given by the
theorem.

Proof of Theorem 5.9. The proof goes through four steps and needs two auxiliary proposi-
tions.

Step 1: change of function. It will be useful to consider the functions

we(§) = Bo(s)u(€), where B, =/¢" VY, and E=(s,x) €L x M.

Recall that u satisfies
Au = ¢_1[8s2 + Ay + nas]u =0, wheren=20; ln(¢("_l)/2w)

in each set £2, = £2 N S? and the bifurcation equation
DY) (ny,e, Vitp) =0
ecE,

on each bifurcation manifold M,, where this is understood in the sense of distributions. Observe
that

295,
Be

This implies that the functions we, e € E, satisfy

=3, In(¢ ") = ne.

2
(E)s2 + AM)we = ¢ePeAu, + (3s2,Be)ue = asﬂﬂe We

in each open strip S0 and the bifurcation equation

1
EGXE:U Ve()(Ny,e, Vo) = — (m eeZEv Ev,e Ve (V)]s ﬂe(v)|we) along My,
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where
1 ifv=eT,
wemt, s
-1, ifv=e.

Step 2: folding. As smoothness is a local property, we can assume that £2 is a small neighbour-

hood of a point £y = (v, xp) on a fixed bifurcation manifold M, and that £2, = £2 N S is of the

form (v,r.) x U wherer, € I = (e™, e™), and all intervals (v, r.) in I"! have the same (small)

length [. This provides us with an obvious way to identify all the different £2, with a fixed set
2+ =0,1) xU C(0,00) x M.

Using this identification, we can consider each w, as a function defined on £2, namely,

Q+ 3 (S,x) = we(s(v,e),x)

where 5(y,¢) is the point on I, e € E,, at distance s from v. Now Theorem 5.9 will be an imme-
diate consequence of the next result.

In the following proposition, E, can be viewed as an arbitrary finite set of parameters whose
elements are denoted by e.

5.12. Proposition. Let U be a relatively compact domain in M. Let
2,=0,) xU C(0,00) x M
and I = {0} x U be the bottom of 2. Forall e, ¢’ € E,, let §, > 0, 8. €Rand Ce,e' > 0 be fixed
numbers. Let Ve, e € Ey, be functions in C*° ([0, []).
Assume that w,, e € E,, are functions defined on 2. that belong to C*°(£2) and satisfy the
Sfollowing hypotheses.
e For each e € E,, the function w, is in C* (.Q_+) for some o € (0, 1), and
Well =CeeWe|1  foralle, e € E,,
o [82 + Apylwe = yew, in 2.

o The partial derivatives o;,w.(0, -), e € E,, whose existence in the sense of distributions in U
is guaranteed by the first two hypotheses, satisfy

D 8eBswe(0,-) =) Sewe(0, )

in the sense of distributions in U.
Then w, € C*°([0,1) x U) for each e € E,, i.e., it is smooth up to the bottom I of 2.

In order to prove this proposition, set

W(s,x) = Z SeWe(s, x).

ecE,
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The function W is continuous in .Q_+ =[0,1] x U. Moreover, it satisfies

{[33+AM]W=W1 in 2, 5.13)
osW(@O0,)=W, onU,
where
Wi=) 8eyewe €C*(2y) and
’ (5.14)

j _ .
Wy = 5 Xe:aewe(o, ) eC%U), withs= Z Se.

ecEy

At this point, the proof of Proposition 5.12 requires another auxiliary result, as follows.
Step 3: improved regularity.
5.15. Proposition. With notation as in Proposition 5.12, fix a € (0, 1) and a nonnegative integer
k. Also fix hy € Ck(2) and hy € C¥+(U). Let f be a smooth function in 2. which belongs
to C¥T(27) and satisfies
[3s2 + AM]f =h; in$24,
0s f =ha in I (in the sense of distributions when k = 0).

Then f belongs to Ck+1+ (.Q—;)for everyset 2/, = (0,1") x U’, where 0 <1’ <1 and U’ is open
and relatively compact in U.

Proof. Without loss of generality (because of well-known basic extension theorems, see e.g.
Seeley [30]), we can assume that hy = k|, is the restriction to §£2; of a function h € Cke(R x
M) with compact support. Let B be a ball in R x M containing the support of 4. Let H = Ggh
be the Green potential of 4 relative to this ball B and with respect to the operator 83 + Aps. Then

H e Clt2*%(B), and within £2; we have

[0+ Am](f + H) =0.
Obviously, on the boundary I, the function f + H satisfies
as(f + H)|I :h2 + asH|I-

Note that f + H € Ck+*(£2;) and hy +0sH|j € Ck+e(T). Thus, replacing f by f + H, we are
led to study the solutions f € C¥+%(2;) of

[02+Au]f=0 ing,,
osf=h onl,

where h € C¥t%(U). Indeed, to prove Proposition 5.15, it suffices to show that such f must be
in Ckt1+e (‘Q_-ll-)
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Recall that / is the bottom of £24. Let £ = {0} x U’. Identifying {0} x M with M, there
exists a function f] € Cé“""‘(M) and a set J open in I with I’ c J C I such that f|; = fil;.
Thus, if we decompose f|; = f1 + foon I, then f, =0o0n J.

Let (s, x) — Fi(s, x) be the harmonic function on (0, o0) x M which coincides with f; on
{0} x M, that is, the Poisson integral given formally by F; (s, x) = e~V —Am f1(x). Then, in £24,
we have f = F1 + F> where F> is harmonic in §£24 with boundary values O on J. In particular,
F; has bounded continuous derivatives of all orders up to J. Moreover, along J we have in the
sense of distributions on J

h=209;f(0,-)=—v—Apmf1+ s F2(0, -).

Werite this as

[Ud +/—Aulfils = (—h+ fi + 0, F2(0,9) |,

again in the sense of distributions. (Here, Id is the identity operator.) By hypothesis, the right-
hand side is in Cﬁ;" (J). Let f3 € Cé"“"‘ (J) be a function which coincides with (—& + f1 +
35 F»(0, -))| s in a neighbourhood J’ of I’ that is contained in J. Let f3 = [Id + ~/—Ap]17 f3.
Then f4 € CEFT (M) N L2(M), and the function fi — fs € L2(M) satisfies

d++/—Aul(fi— fa)=0 inJ"

In addition, the distribution [Id+ v/ —Apm]1(f1 — fa) = (Id++/—AMm] f1) — f3 can be represented
by a function in £2(M) outside I because fi is continuous with compact support in . By the
hypoellipticity of [Id + «/—Am] (see Theorem A.4 in Appendix A) it follows that f; — f4 isin

(g ). Hence f is Cﬁ)'*c'l"'“(J ’): it has the same smoothness as f in J’. This implies that the

Poisson integral F; of fi is in Ckt1+@ (SZ). Hence f = F; + F; is in Ckt1+2 (SZ). This is the
desired result. O

Step 4: final bootstrap. We now prove Proposition 5.12 by induction on the smoothness parameter
k, using Proposition 5.15. Assume we have proved that the functions w, in Proposition 5.12 are
in Ckte (.(Z) for some integer k and any £2’ = (0,1’) x U’ relatively compact in §2,. This
implies that the functions W1, W of (5.14) are respectively in C¥T¢ (.Q_Q_) and Ckt%(U). Hence
we can apply Proposition 5.15 to the function W of (5.13). This gives that W e Ck+1+« (SZ__T_)
where 2% = (0, [*) x U* with [* an arbitrary real in (0,/") and U* an arbitrary open relatively
compact set in U’. Because I’ € (0, 1) and U’, relatively compact in U, are arbitrary, we conclude
that W e Ck+1+e (.Q_Q_) for any 2’ = (0,1") x U’ relatively compact in £2.
The functions w,, e € E,, are related on {0} x U by

We (0, x) = ce, o wer (0, x)

and thus are all equal on {0} x U to a fixed multiple of W (0, -) € C¥*1+%(U). Each of the
functions w, is solution of

[02+ Apm]f=he1 ing2y,
fQO,)=hey onU,
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where k. | = Yew, € C¥T%(24) and he 2 = we (0, -) € CKT1H(U).

Let H, 1 be the Green potential (in a large ball in R x M) of a compactly supported extension
of he,1 that belongs to CK+*(R x M). The function H, 1 is C¥2+%(2;), and w, — H, 1 is
solution of

{[a§+AM]f:0 in 24,
fQ©,)= he,2 - He,l(os ) onU,

where h, 2 — H,,1(0, -) € C¥+1+@(U). It follows that w, — H, 1 is in C¥*1+%(£2.). This means
that each of the functions w, is in Ckt1+¢ 2. o

Given an open connected set §2, consider the linear space H(§2) of all weak solutions of
the Laplace equation Au = 0 in £2. By the local Holder regularity result and the fact that weak
solutions and [P-harmonic functions coincide, it follows that H (§2) equipped with the seminorms
of the uniform convergence on compact subsets of £2 is a complete seminormed vector space.

By Theorem 5.9, any element u of H(£2) is in C*°(£2). The closed graph theorem then yields
the following result.

5.16. Corollary. Let §2 be an open connected set in M and $2¢ relatively compact in S2. Let
I x U be a relatively compact coordinate chart in TM such that K =1 x U C §2y. Fix k =
(ko, K1, .-.,Kn). Then there exists a constant C = C (829, K, k) such that

sup|0f u(€)| < Csup|u| forallu e H(S2).
EeK 20

D. Regularity of certain weak solutions of the heat equation. Let (¢, &) — u(t, £) be a weak
solution of the heat equation in (0, ') x £2, where £2 is an open set in M. We already know
that we can regard u as a Holder continuous function on (0, 7) x £2. Our aim is to show that in
some cases, including the case of the heat kernel, that u(z, -) € C*°(£2) for each ¢ € (0, T'), and
moreover, for any positive integer k, Btku(t, ) € C*®(£2). (See Definition 3.11 for the definition
of C*°(£2).) It is plausible that this result holds for any weak solution, but our proof below does
not provide this stronger result.

5.17. Definition. Fix k € {0, 1,...,00}, T >0, I = (0, T) and an open set £2 C M. See (3.37)
for the definition of Fioc(I x £2). We say that a weak solution u € Fioc(I x §2) of the heat
equation in / x £2 is time regular to order k if, for each m € {0, 1, ..., k}, the distributional time
derivative 9;"u exists and can be represented by a function un, € Fioc(I X §2) which is a weak
solution of the heat equation in /7 x £2. When u is time regular to infinite order we simply say
that u is a time regular weak solution in 7 x £2.

5.18. Example. Fix f € £2(TM). Then u(t,&) = H; f(€) = ¢'® f(£) is a time regular weak
solution up to infinite order in (0, o0) x 'M. Fix ¢ € 'M and set u(¢,&) = h(t,£,¢). Then u is
again a time regular solution up to infinite order in (0, co) x 'M. Fix an open set £2 C 'M and
consider the Dirichlet Laplacian A, in £2. This is the infinitesimal generator associated with the
closure of the form (f_Q \VfI2dpu, CX(£2)). Let f € L2(£2) and consider u(z, £) = e'22 f (&),
(t,&) € (0,00) x £2. This is a time regular weak solution up to infinite order in (0, 0o) x £2 and
so is the corresponding Dirichlet heat kernel in £2.
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5.19. Theorem. Fix T > 0 and an open set 2 C TM. For each e € E, set 2. = 2 N S? and, if
ueC((0,T) x 2), set ue = ul0,1yx2,- Any function u which is a weak solution of [0; — Alu =0
in Q=(0,T) x $2 and is time regular to order k has the following properties:

e Foranym =0,1,2,...,k, the derivative 0" u is a continuous function on (0, T) x §2. More-
over, there is o € (0, 1) such that 0" u(t, -) € Ck—m+a (82) foranyt € (0, T).

e Forany e € E, one has [0 — Ulue =0 on (0, T) X 2. In particular, u, is smooth (in the
usual sense) in the open set §2,.

e Foranyme {0,1,...,k—1}andveV,

> Ve®)(n,e, VO'ue) =0 along (0,T) x (My N £2).

ecE,

Proof. The proof goes through three steps and involves Proposition 5.20 below.

Step 1: change of function. As in the elliptic case, we consider the functions

We(t, &) = Be(s)ue(t, &), where B=1/d®D/24 and & = (s,x) € I, x M.

Recall that u satisfies

1
Au = 5[83 + Ay +nds|u=28u, wheren=3aIn(p" V%)

in each set £2, = £2 N S and the bifurcation equation

Z Ye()(Ny,e, Ve) =0

ecE,

on each bifurcation manifold M,,, where this is understood in the sense of distributions. As in the
proof of Theorem 5.9, this implies that the functions w, satisfy

2
[02 + Ay ]we = % Pe

We + G0 W,

e
in each open strip Sg and the bifurcation equation

1

Z “/fe(v)(nv,e, Vw,) = _(m

ecEy

Z Gv,ewe(v)wsﬂe(v)}we) along M,,

ecEy,

where €, ¢ is as in (5.11).

Step 2: folding and improved regularity. The following is analogous to Proposition 5.12 except
for the role played by the function w,.

5.20. Proposition. Let U be a relatively compact domain in M. Let

24 =0,1)x UC(0,00) x M
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and I = {0} x U be the bottom of 2+. Forall e, e’ € Ey, let §, > 0, Se e Rand c. o > 0 be fixed
numbers. Assume that w,, W, e € E,, are functions defined on $2 that belong to C*°(£2,.) and
satisfy the following hypotheses.

e For each e € E,, the functions w,, . are in C¥T%(82,) for some integer k and a € (0, 1),
and

Welf = Ce,eWe|] € ckte(U) foralle, e € E,,

o [32 4+ Apylwe =W, in 2.
e The partial derivatives d;w.(0, -), e € E,, whose existence in the sense of distributions in U
is guaranteed by the first two hypotheses, satisfy

D 805w (0,7 =Y 5w, (0, )

in the sense of distributions in U.
Then w, € CKT17%([0,1) x U) for each e € E,.

The proof of this result follows exactly the same line as the proof of Proposition 5.12, except
for the very last step (bootstrap) that cannot be performed in the present case because of the
presence of the functions w, on the right-hand side of the second condition. This is why we only
obtain improved smoothness from C¥*+ to Ck+1+e,

Step 3: finite order bootstrap. When applying Proposition 5.20 to weak solutions of the heat
equation, the function w, has the form

2

We = as Pe We + et We.

Be
In order to apply Proposition 5.20 repeatedly, we need to improve not only the smoothness of
w, but also the smoothness of 0, w,. For instance, in order to apply Proposition 5.20 and obtain
C1*%_regularity of w,, we need first to prove that 3w, is Holder continuous. Observe that this
property immediately follows if we know that the original weak solution u, of the heat equation
is such that osu. is also a weak solution of the heat equation.

Assume now that u and all its time derivatives 9;" up to order k are weak solutions of the heat
equation in (0, T') x £2. Then all the partial derivatives 9;"u, m € {0, ..., k} are Holder continuous
and we can apply Proposition 5.20 simultaneously to all the functions 9;" w., where e € E, and
m € {0,1,2,k — 1}, to conclude that these functions are in C 4o Using this conclusion, and
applying Proposition 5.20 to 9;"w,, where e € E,, and m € {0, 1,2, k — 2}, we conclude that
these functions are in C272. Proceeding by finite induction, Theorem 5.19 follows. O

5.21. Definition. Fix T > 0 and an open set £2 C 'M and set Q = (0, T") x £2. Let R¢(Q) be the

vector space of all weak solutions in (0, 7) x £2 that are time regular to order £ in (0, T) x £2,
equipped with the seminorms
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Ni,o/(u) =sup sup |8tmu(t,§)|
Q' mel0,....k}

+ sup /(Vu, Vaf‘u) dudt|,
UG]'-C(QI)

o o

+ sup fv&,k"'ludp,dt
veFe(Q)

where Q' = I’ x £’ is relatively compact in (0, T') x £2.

The first term in the seminorm Ny, o/ controls the sup-norms (hence the L2%-norms) in Q’ of
the time derivatives up to order k. Since these functions are weak solutions, this yields a control
of the £2-norms of |Va!"u| for m up to k — 1. The last two terms provide the additional control
needed to insure that the seminormed space Ry (Q) is complete (a limit in this topology of a
sequence of weak solutions that are all time regular up to order k is, itself, such a solution).

5.22. Corollary. Let T > 0, (a’, b’) a relatively compact interval in (0, T) and [a, b] be a com-
pact interval in (a, b). Let §2 be an open connected set in TM and 2’ be a subset that is relatively
compactin 2. Set Q = (0,T) x 2, Q' = (@', V') x 2'. Let I x U be a relatively compact co-
ordinate chart in TM such that K =1 x U C §2'. Fix integers k, Ky, kK = (Ko, K1, ...,Ky) With
Kkx+ Y o ki < k. Then there exists a constant C = C(a,a’,b,b', 2, K, k) such that ifu € Rx(Q)
is a weak solution of the heat equation in Q, time regular to order k, then we have

sup{[0f*afu(t, €)|: (1,€) € [a, b] x K} < CNg, g (w).

Applying this to the heat kernel which is a time regular weak solution up to infinite order, we
obtain the following important result.

5.23. Theorem. For any fixed ¢ € M, and integer k, the function & — Btkh(t, £,8)isin C®(T'M).

e Fix a relatively compact coordinate chart I x U and k = (kg, K1, ..., Kn). Then, for fixed
& € I x U, the function

(t,¢) > u(t, §) = df 3 h(t, §,¢)

is in C®°(I'M). It is a weak solution of the heat equation, and it satisfies the bifurcation
condition

Z ’(/Ie(v)(nv,e, Vu) = 0

ecE,
(in the classical sense) along each bifurcation manifold My, v € V.
e Fix a compact time interval [a, b] C (0, 00) and a relatively compact coordinate chart I x U

in TM with &y € I x U. Fix also integers k and ky, . .., k, and set k = (kg, ..., k). Then
there exists a constant C = C(a, b, 1, U, k, k) such that

sup{|a,"agh(t,g, O|: ¢,&) ela,bl x I x U} < Ch(2b,&,¢) forall{ e TM.
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6. Projections

Recall the following simple version of transformation of phase space. See [15, Vol. II, Theo-
rem 10.13].

Let X be a separable metrisable space equipped with a Radon measure p with full support
and with a symmetric Markov semigroup {H;: ¢t > 0} of operators on L2(X) = L3(X, ). Denote
also by H, the extension of that operator from £2(X) N L®(X) to £®(X). Assume that (H;)
admits a transition function A (%, x, -), that is, for any f € £°°(X) and for all # > 0 we have
Hif(x)= fx f()h(t, x,dy) for p-almost every x. Let ((X:);>0, Px) be the associated Markov
process. In the applications of interest to us here, X = I'M and the process is the one associated
with our Dirichlet form.

Let G be a locally compact group acting properly and continuously on X, and let X be the
topological quotient space and 7 : X — X the quotient map. Assume that H; commutes with the
action of G, that is, [H; f](gx) = H; f,(x) for all bounded measurable functions f on X, where
fg(x) = f(gx). Then H; induces a semigroup of contractions H, : L%°(X) — L*°(X) defined
by

H;f(x)=[H; for](x), wherex=m(x).

Moreover, the formula X; = 7 (X;), t > 0, defines a Markov process on X with law [P, satisfying
Py (X; € A) = H1a(x) =Py[X; € 7~1(A)], where 7 (x) = x. Note that in general there is no
obvious natural way to project the £2-structure onto X . In particular, in this abstract setting and
unless either X or G is compact, there is a priori no natural reference measure on X.

For the purpose of the next theorem, we say that a semigroup { P;: ¢t > 0} defined on L*°(X) is
a Markov semigroup if it admits a transition function p;(x, f) as defined in [15, Vol. I, Ch. 2]. By
[15, Vol. I, Theorem 2.1], this is equivalent to say that { #;: ¢t > 0} can be viewed as a semigroup
of contractions on the space B(X) of all bounded measurable functions on X (not classes of
functions!) that preserves positivity and such that Py f(xp) = 0 if f(x0) =0. As for any # > 0
and x € X, p:(x,-) is a Borel measure on X, the action of P; on £L>*(X) is determined by its
action on C.(X).

6.1. Theorem. Let 'M and ' oMo be two strip complexes. Assume that there is a locally compact
group G that acts continuously and properly on TM and such that the quotient of TM by G is
oMg (as topological spaces). Let w be the quotient map. Assume that M is equipped with the
data (1, ¢, ) that induce a geometry, measure and a Dirichlet form as discussed in the preceding
sections. Let {H; = e'®: t > 0} be the heat semigroup on I'M associated with (I, ¢, V).

Let a Markov semigroup {Hp,: t > 0} acting on L®(FoMg) be given that satisfies
lim;_,o Ho,+¢ = ¢ for all ¢ € C.(I'oMo). Assume the following hypotheses.

(1) (T'M, p) is complete and satisfies the volume condition
o0
/ rdr
—_— 0
InV (o, 1)
1
(2) H; commutes with the action of G on ' M.
(3) For any bounded function ¢g € C.(ToMy), the function ug : (0, 00) x NgMg — R defined

by uo(t, &) = Ho 1 $o(£) is such that u = ug o w is a weak solution of the heat equation on
0, T) xI'M.
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Then the semigroup {H;: t > 0}, defined on L% (I'oMo) by
H f(§)=Hfonml(§), wheren(§)=§,

coincides with Hy ;. Consequently, if (X;, P¢) and (Xo,,Po,g,) are the Markov processes asso-
ciated with {H;: t > 0} and {Ho,;: t > 0} on T'M and T oMo, respectively, then these processes
are related by

Pg,[Xo,: € Bl =P¢ [n(X,) € B], where &g = (£),
for any measurable set B C oM.

Proof. Let ¢y € C.(I'oMp). Define

for=Hoo, d=¢poom, and [f,=H.

It suffices to show that

ft =f0,to7t.

Since ¢ € C.(F'oMp) and ¢ is a bounded, uniformly continuous function, it is clear that
lim f;(¢§) =1lim fo,om(§) =¢ (&) forallé eM.
t—0 t—0

We claim that both u(t, &) = f;(§) and u(¢, &) = fo,r o w(§) are weak solutions of the heat
equation on (0, c0) x 'M. If we can prove this claim, the desired conclusion will follow from
Theorem 4.3, that is, from the uniqueness property for the bounded Cauchy problem, because
H; and Hp,; are determined on £ (I'oMp) by their action on C.(I'oMo). Note that Theorem 4.3
requires completeness of M and the volume growth condition that we are assuming here.

By hypothesis, (¢, &) — u(t, &) = fo,r o w(£) is a weak solution on M. This yields one half
of the claim. To prove the other half, we use Theorem 5.23 to see that the bounded function f;
is a weak solution of the heat equation on 'M. Note that this indeed requires some smoothness
estimates on the heat kernel on 'M since f is notin L2(T'M). Theorem 5.23 is more than sufficient
for this purpose. This yields the claim and completes the proof. O

6.2. Remarks. (A) Given that ['gMy is the quotient of 'M by a proper continuous group action,
Theorem 6.1 is based on three main hypotheses.

e Hypothesis (1) concerns 'M and its meaning is quite clear: it implies uniqueness for the
bounded Cauchy problem for weak solution of the heat equation.

e Hypothesis (2) is also clear. It is satisfied whenever the action of G on I'M is by measure-
adapted isometries.

e Hypothesis (3) is crucial and concerns the relation between the heat equation on 'M and
a certain semigroup on INgMg. This hypothesis captures a huge amount of information, and it
is a priori not entirely clear whether it is a reasonable hypothesis, or when it can actually be
verified. We thus need study it in more detail.
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(B) It can occur that a group acts properly and continuously on a strip complex 'M equipped
with data ¢, ¢ in an isometric, measure adapted way, but that the quotient 'jMp cannot be
equipped with corresponding data ¢o, ¥ such that the quotient semigroup equals the semigroup
on (oMo, ¢9, ¥0). The problem comes from the function g that defines the underlying measure.
Here is an example.

Let M = {0} be trivial. Let I" be Z with edge lengths 1, so that I'! =R, equipped with ¢ = 1.
Fix g > 1 and let ¢ be defined by

Y(s) =g, ifse (2, 2k +2),

so that i is constant along pairs of edges sharing an odd integer endpoint. Consider the obvious
isometric group action by translation by an even integer. This is measure adapted (translation by
2k changes the measure by a constant factor of q¥). The quotient of I"! by this group action is
the finite metric graph Fol with two vertices a, b and two length 1 edges e, f joining a to b. The
vertices a and b correspond to even and odd integers, respectively. The problem comes from the
following fact.

Assume that there is a function ¥ on Fol so that the projected semigroup coincides with the
semigroup on (I, ¥p). On one hand, inspection shows that /g must be continuous when passing
through a and it must have a jump of size q when going through 5. On the other hand, ¥y must
be constant over edges. These two conditions are, of course, incompatible.

To prepare for the next proposition we make the following observations. Let TM = I'! x
M and NgMg = FOI X My be two strip complexes and G be a locally compact group that acts
continuously and properly by isometries on 'M with quotient 'oMp (as a topological space).
Let 7 be the quotient map. According to our definition (Definition 3.20), isometries must send
bifurcation manifolds to bifurcation manifolds and thus send M to 'M°. Hence the action of
G on 'M induces an action of G on the vertex set V of I".

Observe further that for any s € ' and g € G, we must have g({s} x M) = {s’} x M for
some s’ € I'! because for any 7,7’ € I' and x,y € M, p((z, x), (t/, x)) = p((z, y), (', y)).
Indeed, this distance is equal to the minimum of the integral of /¢ along any path in I"! from
7 to /. Hence, the action of G on 'M induces an action of G on I'!. Moreover, topologically,
the quotient of I"! by this action is FOI. However, in general, it is not true that the quotient of
V by the action of G is Vp because it might be the case that additional vertices and bifurcation
manifolds are needed to turn TM/ G into the strip complex IN'gMg. This is best explained by two
examples:

(1) Take I'! be the natural graph of Z (= R with the integers marked as vertices), M = {0},
and G = Z acting by translation. Then the quotient is the circle with one marked point. This is
not a strip complex (as a strip complex is required to have no loop) and we need to choose a
second marked point to turn it into a strip complex.

(2) Take I'! as in (1) and G = {e, o'} where e is the identity and o is the reflexion with respect
to —1/2. The quotient is a half line with marking at 1/2 and at the positive integers. To turn this
into a strip complex, we need to add a vertex at the origin of the half line.

Fortunately, this difficulty (in the two examples above and in the general case) is solved
by adding “dummy” middle vertices and corresponding bifurcation manifolds in every strip
S2 €M, e € E. This yields a new strip complex M’ (isometric with M as metric spaces,
and equivalent with M for all analytic purposes) with the same manifold M but the new graph
I'’ obtained by subdividing each edge of I" into two new edges with a new vertex in the middle.
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Furthermore, the action of G on 'M’ (resp. (F’)l) is such that if M, and M, are two bifurcation
manifolds (resp. v, w are two vertices) in the same orbit under the action of G then the pair {v, w}
cannot be the pair of extremities of an edge e in E’. It follows that (I"”)! /G is naturally a metric
graph with vertex set Vj = V/G and with no loops. Therefore, there is no loss of generality in
assuming that Fol =(I"/G.

Consequently, without loss of generality, we can assume that 7 induces a natural graph ho-
momorphism of I" onto I'y. The latter will also be denoted by 7, so that we can speak about the
vertices and edges 7 (v) and 7 (e) of Iy, where v € V and e € E, respectively.

Consider a pair of open strips $° C 'M, §§ C oMo with 7 (§?) = S§§. Let

Gso ={g € G: g(5°) =5°}/{g € G: glso = id}

be the effective quotient for the action of G on S°. Since any g € G such that g& € S° for some
& € S§° must send S to S, it follows that 7 (§°) = S is also the (topological) quotient of S by
the action of G s (see, e.g., Bourbaki [10, 1.23]), and for any function #o on oMo, we have

0

uo o 7|so =ulsg om® (6.3)

where 75° is the projection map from S° to Sg-

Note that G so acts by isometries on the manifold S°. In what follows we will assume that G ge
is a Lie subgroup of the group of isometries of S° and that

75 (82 =1 x M, ¢((ds)* +8(-,)) = (S5 = Io x Mo, $o((dT)* + g0(-,")))

is a Riemannian submersion. This implies that the action of Gs» on SO is free. Moreover, x5
sends any set of the form {s} x M to some set of the form {r} x Mo and, for any fy € C*°(S3)

and any (s, x) € §° with x5 (s, x) = (1, x0), we have
1
é(s)

1

e 1. fo(z, x0) | (6.4)

185 foo %’ (s, x)|* =
and

ﬁ[af + Angs + [3:10gd(5)* /213, ] fo 0 75 s, )

- ¢01(t) (67 + Ang + [8: log go (1) "~ /]ac] fo(z, x0). ©6.5)

This follows from the fundamental property of a Riemannian submersion and the fact that the

expressions in (6.5) are the Laplace operators of the relevant Riemannian metrics. Observe that
the weight functions ¢ and /¢ do not appear in this formula.

6.6. Proposition. Let M and NoMg be two strip complexes. Assume that there is a locally com-
pact group G that acts continuously and properly on M and such that the quotient of TM by G is
oMo. Let it be the quotient map. Assume that T M and oMo are equipped with the data (¢, V)
and (¢, Vo), respectively, that induce a geometry, measure and a respective Dirichlet form as
discussed above. Assume furthermore that the following hypotheses are satisfied.
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(1) G acts on TM by isometries and Iy is the quotient of I under the induced action of G.

(2) For any edge e € E, the group Ggo is a Lie subgroup of the isometry group of S, the
projection map w5 is a Riemannian submersion of 82 onto Sg = m(S7) C oMo, and

(3) there exists a constant A(e) € (0, 0o0) such that

Ye(s) = A(e) Yol sg (1)

for any s, T such that 75 (s, x) = (1, xp) for some x € M and xg € M.
(4) For any pair of vertices v € V and vg € Vg such that w(M,) = My,y,, there exists a constant
a(v) € (0, 00) such that

Y Ye(v) =a()yo,e(vo) forall eg € Ey,.

ecE,: n(e)=ey

Then, for any T > 0 and any function ug € C*°((0, T) x ToMo) which is a time regular weak
solution of the heat equation on (0, T) x oMo, the function u = ug o 7 is a time regular weak
solution of the heat equation on (0, T) x M.

Proof. Because of (6.3) and assumption (2), u = ugp o w and its time derivatives 8[‘14 are in
C®(I'M). For such a function, being a weak solution of the heat equation means:

1

Opu =Au = qﬁ[as2 + Ay +ndJu=0, wheren=2d,In(¢""D/2y),
N

> Ye)(y,e, Vue) =0 along M, forallveV.

ecE,

That u satisfies the first of those two identities follows by careful inspection using (6.3), as-
sumption (2), (6.5) and assumption (3). The second line identity follows similarly from (6.3),
assumption (2), (6.4) and assumption (4). O

6.7. Example. Let 'M be a strip complex equipped with the data ¢ and . Assume that the
isometry group G of (M, g) acts transitively on M. This group also acts on 'M in an obvious
way, and this action is measure adapted (in fact, measure preserving) and isometric.

The quotient of 'M by this action is the 1-dimensional complex I"!. For each open strip S°,
G o is isomorphic with G itself, and assumption (2) of Proposition 6.6 is obviously satisfied.
Assumptions (3)—(4) of Proposition 6.6 are satisfied if we equip I"! with the data ¢, Aoy, where
Ao is any fixed positive constant.

The same applies if G is a subgroup of the isometry group that acts freely and properly on
M with quotient My. Then there exists a unique Riemannian structure on My that makes the
quotient map a Riemannian submersion. The quotient of 'M under the natural action of G is
MoMp with Iy = I'. For each open strip S, the group Ggs- is again isomorphic to G itself, and
assumption (2) of Proposition 6.6 is obviously satisfied. Assumptions (3)—(4) of Proposition 6.6
are satisfied if we equip NoMp with the data ¢ and Aoy for any fixed positive constant Ag.

6.8. Example. Let 'M be a strip complex. Assume that G is a subgroup of the group of au-
tomorphisms of the non-oriented version of the graph I'. By adding dummy vertices in the
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middle of edges if necessary, we can assume that the quotient Iy = I"/G has no loops. For
any Riemannian manifold M = My, the group G has a natural action on 'M with quotient
MoMo = I'p X Mo = I'p x M. Let mr be the quotient map from ' to 1’01 . In particular, 7 maps the
edge set of I" onto the edge set of I(. Fix data ¢¢ and 9 on IN'yMp and equip F'M with¢p =¢gom.
Then G acts on 'M by isometries. Next, we consider the conditions (3)—(4) of Proposition 6.6.
Condition (3) involves numbers A(e) > 0, e € E, such that Y. = A(e)Vo,¢, © 7|s¢. Given that
condition (3) is satisfied, condition (4) requires that

> A =a() forallveV, e€ Enp).

ecE,: m(e)=eg

Let us examine some special cases.

(A) First, assume that for any vertex v of I", we have deg(v) = deg r, (@ (v)). Then the restric-
tion of 7 from E, to E;(y) is bijective, or in other words, 7 is a graph covering. In this case,
the above condition means that A(e) = A(¢’) if the edges e and ¢’ have a common end vertex.
Since our graphs are connected, this actually implies that A(e) = A is a constant, that is, ¢ =
A- l/f() oTr.

(B) Second, consider the specific example where I = T is the regular tree with degree 3, drawn
with respect to a reference end @ as in Fig. 2. The graph I is the two-way-infinite path, which
we denote by Z (which is, more precisely, the vertex set of Iy, while the associated 1-complex
is R). The group G is the group of all graph automorphisms of the tree that fix every horocycle,
and the projection is w = f), the Busemann function with respect to @ . Here, the projection
is obviously not a graph covering. For simplicity, we assume that all edges have length 1 and
that ¢, ¢p = 1. Furthermore, we assume that ¥ is constant on each edge of Iy = Z. Recall
that in this specific example, every vertex v has one neighbouring vertex v~ in the “preceding”
horocycle and is itself the predecessor of its “forward” neighbours wy, wy that satisfy w;” = v.
(This notation should not be mixed up with the one for the endpoints e~ and e™ of an edge e.)
If h(v) =k then e, = [v~, v] is the only edge in E, that projects onto the edge [k — 1, k] of
Z. Therefore A(ey) = a(v). On the other hand, both edges e, and ey, project onto the edge
[k, k + 1] of Z. Therefore the above condition can be rewritten in terms of the positive function
v — a(v). In order to be feasible, it is necessary and sufficient that it satisfies a(w;) + a(wz) =
a(v) for any vertex v of T, where the w; are its forward neighbours. Because T, is a tree, we can
construct infinitely many functions that satisfy this property, and hence there are infinitely many
functions 1y, constant on open edges, so that conditions (3) and (4) are satisfied, whenever the
function g is chosen to have constant value, say by, on each open strip (k — 1, k) x M of 'oMp.
One solution for ¢ is given by

¥lse =2"%br, whenm(e) =[k— 1,k

This is the only solution for which the corresponding group action is measure adapted.

(C) Consider the situation described in Theorem 2.23 concerning various projections of HT(p, q).
The hypotheses (1) and (2) of Theorem 6.1 are verified, and hypothesis (3) is also satisfied
because of Proposition 6.6. Hence Theorem 2.23 follows from Theorem 6.1 and Proposition 6.6.
Note that Proposition 6.6 makes heavy use of the results of Section 5. Further related uniqueness
theorems are given in the next two sections.
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7. Uniqueness of the heat semigroup

Throughout this section, we use the basic setting of a strip complex with data, distance,
measure, Dirichlet form, Laplacian and heat semigroup as already specified at the beginning
of Section 4. Our aim is to show that, in some strong sense, there is only one semigroup of
operators whose generator coincides with the Laplacian A on a certain space of smooth com-
pactly supported functions. This property is important in many applications. We will discuss two
different uniqueness results: one concerns uniqueness on Co('M), whereas the other concerns
uniqueness on L2(TM).

A. A candidate for a core of the infinitesimal generator. In this section we introduce a very
specific space, DZ°, of compactly supported smooth functions on M that is a good candidate
to be a core for the generator of the heat semigroup, either on Co(I'M) or on L2(T'M). In some
cases, we will be able to show that DZ° is indeed a core. Please note that the spaces D> and DZ°
introduced below depend on the fixed data (I, ¢, ¥) on M.

7.1. Definition. The space D is the space of all functions f in C°°(I'M) such that

(1) For any integer k=0, 1,...,anyve V ande, e € E,,
SC SEI
Try, (Qka) =Try (Qka).

This means that the functions 2 f, originally only defined and continuous on 'M?, are in
fact continuous functions on 'M (after proper extension by continuity) and thus in C*°(I'M).
(2) For any integerk =0,1,...,andveV

Z Ye(v) (nv,e, mGfe) =0 along M,.

ecE,

This means that each function 2* f € C>(I'M) satisfies the bifurcation condition along any
bifurcation manifold M,,ve V.

The space D° is the subspace of all compactly supported functions in D*°.

7.2. Remark. Fix a coordinate chart (U; x1,...,x,) in M. Observe that any function f in
C*®(I'M) viewed as a function of (s,x) € I'' x U actually has continuous partial derivatives
of all orders 0§ f (s, x) in the x direction, but not in the s direction in general. It follows that the
continuity condition on 2 f reduces to the continuity of

92 f +n(s)ds f

across any bifurcation manifold M,. The bifurcation condition implies that, typically, the func-
tion d; f is not continuous across bifurcation manifolds. It follows that, typically, BSZ f is not
continuous and neither are af f» k > 3. An important consequence of this is that D°° and D°
are not algebras under pointwise multiplication.
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7.3. Remark. Note that D° is a subspace of Dom(A¥) for every k > 1, and
AF =9 onDX.
7.4. Lemma. The space D° is dense in Co(I'M) for the uniform topology.

Proof. This important result is an immediate corollary of Lemma 3.10 since we have Cg,’}(FM) C
DZ’. Indeed, C2%.(T'M) is the subspace of those functions f in CZ°('M) whose partial derivative
3, f along I'! vanishes in a neighbourhood of any bifurcation manifold. The desired inclusion

thus follows from Remark 7.2 above. O
The following is a simple corollary of Theorem 5.23.

7.5. Theorem. For every fixedt >0, € TM, k=0, 1, ..., every relatively compact coordinate
chart I x U 3¢ in TM and k = (ko, K1, - . ., Kn), the function

&> Of R, £,)
belongs to D*°.

B. Uniqueness of the heat semigroup on Co(I'M). Consider the operator (2, D2°) as a linear,
densely defined operator on Co(I'M). Recall that indeed, C2° is dense in Co(I'M) for the uniform
topology, see Lemma 7.4. We claim that (2, DZ°) satisfies the positive maximum principle. That
is, if & e TM and f € D2° are such that maxrm{f} = f (o) = 0, then A f (§0) < 0.

Indeed, if &y is not on a bifurcation manifold, this follows from the usual maximum principle.
If &y = (vo, x0) is on a bifurcation manifold, let (U; x1, ..., x,) be a local coordinate chart in M
around xg. Since f € D is maximal at &, the first order partial derivatives at &y along M must
be 0 and we must have 8%, f) <0,i=1,...,n.Itfollows that A, f (&) <O.

Moreover, in any strip S, containing & = (vo, xp), the outward normal derivatives
(ny,e, V fe(é0)) must be greater or equal to 0. Hence, the bifurcation condition implies that
(ny,e, V fe(€0)) = 0. It follows that in any strip S, = I, x M around &), we must have
32 f,(£0) < 0. Hence

1
2Af (%) = m[aff@o) + Am f(E0)] <0.

Without further assumption on M, we do not know how to show that (A, DS°) admits an
extension that is the infinitesimal generator of a contraction semigroup on Cy(I'M). The difficulty
lies in proving that the range (AId — 2A)DZ° is dense in Co(T'M) for some A > 0, that is, that
(A, D°) is closable in Co(I'M). However, by the results of van Casteren and Okitaloshima [36,
26], we have the following [26, Theorem 3.6 and Proposition 3.7]: if (2, Dg°) is closable, then its
closure is the only linear extension of (2, D°) that is the infinitesimal generator of a Feller semi-
group (that is, a strongly continuous semigroup of contractions on Co(I"M) preserving positivity).
This, together with Theorem 4.4, yields the following result.

7.6. Theorem. Let 'M be a strip complex equipped with a geometry and measure as above. Let
h(t,&,C) be the heat kernel associated with the Dirichlet form (&, WOI(I'M)), where (t,£,() €
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(0, 00) x 'M x 'M. Assume that ("M, p) is complete and that there are constants D, P, ry such
that (i) and (ii) hold.

(i) Forany & e TMandr € (0, ry), we have the doubling property V(§,r) < DV (&, 2r).
(ii) Forany & e TMandr € (0, rp), setting B= B(&,r),

/lf—f3|2dM<Pr2/|Vf|2du foreveryfer(B), where f3=$/fdu.
B B B

Then the densely defined linear operator (A, D°) on Co(I'M) is closable and its closure
(A, Dom(%A)) is the infinitesimal generator of the Feller semigroup defined by

CorM) > f > @@ f, 150, wheree® f(g) = f Bt £, ) £ ) du @),

™

Moreover, if (5[, Dom(‘j)) is an extension of (A, DX°) and is the infinitesimal generator of a
Feller semigroup then (A, Dom(2)) = (A, Dom(2)).

7.7. Remark. It follows from the results in [36] and [26] that, under the hypotheses of Theo-
rem 7.6, the martingale problem for the operator (A, D2°) is uniquely solvable (for any starting
point & € 'M). See [26, Theorem 3.6].

C. Uniqueness of the heat semigroup on £2("'M). Let us observe that, because of the possibil-
ity to impose various boundary conditions, uniqueness on £2('M) cannot hold unless we make
the assumption that ("'M, p) is complete.

7.8. Definition. We say that a continuous function pg : F'M — (0, 00) is a strip-adapted exhaus-
tion function if it has the following properties.

e The function pg belongs to C*°(I'M).

e For any edge e € E and any x € M the function s — 9;p0,(s, x) has compact support in
(e”,eM).

e The function pp tends to infinity at infinity.

e The functions |V pg| and | pg| are bounded on M.

Note that a strip-adapted exhaustion function is a continuous smooth function on 'M which
is locally constant in the direction of I"! near each bifurcation manifold. The existence of such
exhaustion functions is a non-trivial matter that will be discussed in Section 8.

7.9. Definition. A sequence of continuous compactly supported functions g, is called a strip-
adapted approximation of 1 if the following holds.

e Each o, belongs to C2%.(T'M).

,C

e Each g, takes values in [0, 1], and lim, . 0, (§) = 1 for all £ € T'M.
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e There is a constant C such that |Vg,| < C, |Ag,| < C,and forall £ e 'M,
lim [Von(€)| = lim |Ag, ()] =0.
n—>0o0 n—>oo

7.10. Remarks. (a) If a strip-adapted exhaustion function pg exists then a strip-adapted approx-
imation of 1 is easily obtained by setting 0, (&) = 6 (0o(€)/n), where 6 is a smooth, compactly
supported function of one variable taking value in [0, 1] and such that § = 1 in a neighbourhood
of 0.

(b) Let o, be a strip-adapted approximation of 1. Then g, f € D° for any f € D*°. Compare
this with the fact that, in general, ¢ € DZ° and f € D> does not imply of € D°.

7.11. Theorem. The operator (A, D.°) is symmetric on L2(TM). If (TM, p) is complete and there
exists a strip-adapted approximation of 1 then the symmetric operator (U, D°) is essentially
self-adjoint on L*("'M), and its unique self-adjoint extension is (A, Dom(A)).

7.12. Remark. When considering Theorem 7.11, the reader should recall that the relevant un-
derlying data include the graph I' = (V, E), the Riemannian manifold (M, g), the function
¢ € C®(I'!) which is part of the definition of the geometry on 'M and plays a crucial role
on whether (I'M, p) is complete or not, as well as the function ¢ € S*°(I"?) which appears in
the Definition 3.22 of the underlying measure 1. Indeed, £2(I'M) is the £2-space relative to that
specific measure w. It is interesting to observe how these different parameters enter the definition
of A and that of 2. Concerning %, the functions ¢ and ¢ appear in the formula defining 2 on
each open strip. However, the possible jump discontinuities of ¢ and/or Y only appear in the
definition of DZ° via the bifurcation condition. This clearly shows that one cannot replace DZ°
by C2%(I'M) in Theorem 7.11 because then the role of the possible jumps of the functions ¢ and
¥ is lost.

The proof of Theorem 7.11 requires a number of lemmas. The symmetry of (%, D2°) on
L2(I'M) follows from the various definitions by inspection. Let (2*, Dom(2*)) be the adjoint of
(A, D).

7.13. Lemma. For any function f € D N Dom(A*), one has A* f =Af in L2(TM).
Proof. By definition, for any f € Dom(*) and & € DZ°, we have

(A* £, ) = (£, AR),

where (-,-) is the inner product on £2("'M). But for f € D™ and h € D2, Green’s formula in
each strip and the bifurcation conditions imposed on f and 4 yield that

(f, 2Ah) = (A f, h).
This proves the desired result. O
7.14. Lemma. Let f € Dom(2*), h € D, and suppose that h,Ah € L>(TM). Then

(A* £, h) = (f, An).
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Proof. Consider the sequence h, = onh, where g, is a strip-adapted approximation of 1. Then
hy, € DX and h,, — h as well as 2h,, — Ah in L2(I'M). Hence the desired equality follows from
the fact that (A* f, h,) = (f,™Lhy,). O

7.15. Lemma. For any function f € Dom(2*) and t > 0, the function f; = e'® f is in Dom(*)
and

Ql*ft — etAQl*f.

Proof. For any & in £2(I'M), the function 4, = e'“h is a global weak solution of the heat equa-
tion that is time regular to infinite order. By Theorem 5.19 this implies that #; € D°°. Obviously,
h; and Ah, = Ah, are also in £L%(I"'M). Now, for f € Dom(2*) and & € DX, we have

(e"22A* £, h) = (A* f, ' 2 h).
Since h; = ¢'2h is in D™ and both A; and Ah; are in EZ(FM), Lemma 7.14 gives

(e"2A* £, h) = (A* f, hy) = (f, Uh;) = (f, Ae'™h)
=(f, e’ Ah)=(e'® f, Uh) = (f;, Ah).

This proves that 2A* f; = !2* f as desired. O
The next lemma will complete the proof of Theorem 7.11.
7.16. Lemma. D2° is dense in Dom(2*) in the graph norm.

Proof. Approximate f € Dom(2*) by f; = e'®f, where t — 0. Then f; converges to f
in £2("M) and, by Lemma 7.15, 2* f; also converges to 2*f in £2("M). This shows that
D> N Dom(A*) is dense in Dom(A*) in the graph norm. Now, we use multiplication by the
strip-adapted sequence @, that approximates 1 and set h, = f1/,0, to obtain the desired conclu-
sion. O

7.17. Remark. Assume that M = {0} is a singleton, so that ("M, ¢, ¥) reduces to the metric
graph I"'! equipped with the data ¢, ¥. Assume that (I, p) is complete. In this case, the sym-
metric operator (2, D) is always essentially self-adjoint on £2(I"!, ). This is proved in [5]
following the argument used for complete Riemannian manifolds by Strichartz [32]. It is not
clear that this argument can be adapted to the case when M # {0}. The difficulty lies in showing
that any solution f € Dom(*) of the equation A* f = Af is in fact in WILC(FM). On a manifold,
this follows from local ellipticity. On a graph, it can be checked by an adhoc argument using very
much the 1-dimensional nature of the underlying space. See [5].

8. Strip-adapted approximations of 1
Unfortunately, the existence of a strip-adapted approximation of 1 is a difficult question in full

generality. Even in the case of complete Riemannian manifolds, an adapted approximation of 1
is not known to exist in general. The proof of the essential self-adjointness of the Laplacian (see,
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e.g., [32]) on a complete Riemannian manifold has to avoid the use of an adapted approximation
of 1 and, instead, makes use of the fact that the adjoint is an elliptic operator in the sense of
distributions. See Remark 7.17 regarding the graph case. Whether or not that approach can be
made to work in the present setting is not clear, the main question being whether or not one can
prove that

Dom(2*) C Wi (TM).

This appears to be a rather subtle question although one would conjecture that the answer is
“yes”'

In this section we construct strip-adapted exhaustion functions (or strip-adapted approxima-
tions of 1) in a number of different special cases. We start with some simple-minded construc-

tions.

8.1. Proposition. Assume that (M, g) is a complete Riemannian manifold which admits an
adapted approximation (0p,,) of 1. Assume that the underlying metric graph I' satisfies

L, =inf{l.} >0,

that is, edge lengths are bounded below. Assume that T M is equipped with its bare strip complex
structure, that is, ¢ = 1 and = 1. Then 'M admits a strip-adapted approximation of 1.

Proof. Let us first construct an edge-adapted exhaustion s > p1(s) on the one-dimensional
complex I'!. (Here, the strips are the edges, so that we use “edge-adapted” instead of “strip-
adapted”.) Fix € € (0,1,/8). On I” 1. consider a function o € C®(I"'!) with the property that for
each edge e, the restriction o, of & to (e~, e™) has compact supportin (e~ +¢, et —¢), is equal
to 1 in (e~ 4 2¢,e™ — 2¢), and satisfies sup r1|9sa| < C. Such a function obviously exists be-
cause of the hypothesis /, > 0. Fix an origin vertex vy and, minimizing over all paths of the form
y :[0,a] — I'! from vy to s € I'!, parametrized by arclength, set

a

Px(s) = myin)»(y), where A(y) = /a(y(t)) dr.
0

Observe that the function p4 tends to infinity at infinity and that it is constant in a neighbourhood
of any vertex v. If we had p, € C®(I'!), it would thus be a good candidate for an edge-adapted
exhaustion function.

However, this function is not smooth at points s in the interior of an edge (e~, e™) with
the property that there are two minimizing paths y; and y», one passing through e~, the other
through e and such that p, is not constant in a neighbourhood of s. Observe that in this case,
s is a point of local maximum for py, and p4(s) > max{p4(e™), p«(e™)}. It follows that such
an edge is never used by minimizing paths except those ending within the edge itself. Thus,
changing « along such an edge has no effect on the values of p, elsewhere. Assume without loss
of generality that p«(e™) < p«(e™) and replace o, by a smaller smooth function &, satisfying

|0sée| < C and such that f:_+ @c(s)ds = ps«(e™) — px(e™). We can do this along any of those
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“bad” edges. Globally, this defines a new function &, and using the same notation as above, we
set

a

pl(s)=n}/in)-(y), where X(y):/&(y(r))dr.
0

By construction, we have p; = p, except on edges where «, # &,. In particular, p; = p, on ver-
tices. Moreover, d;01 has compact support within every open edge. Clearly, p; tends to infinity
at infinity (along with p,) and satisfies |d;p1| < 1 and |33‘p1| < C. That s, p; is an edge-adapted
exhaustion function. As explained in Remark 7.10(a), this yields an edge-adapted approximation
of 1, say 01, on I''. A strip-adapted approximation of 1 on 'M is obtained by setting

on€) =01n()omn(x), §=(s,x)elfM. O
8.2. Remark. The conditions ¢ = 1, ¥ = 1 can be relaxed to
inf¢p >0 and sup|d; In(p"V/%y)| < 0.
Our next result deals with the treebolic spaces HT(p, q).

8.3. Proposition. The treebolic space HT(p, Q) equipped with ¢, ¥ as in Example 3.26 admits a
strip-adapted exhaustion.

Proof. We will use freely the notation introduced in Section 2. First we construct a smooth
function 7 : (0, c0) — (0, 00) such thatn =1o0n (1 —1/(8q), 1+ q/8) and n(qky) = qkn(y) for
all k € Z. Obviously there is a C > 0 such that this function satisfies

cl'<ynym<c, swplnr(|<C,  supy|ln"m|}<C.
y>0 y>0

As a first step, consider the case p =1, g > 1 where HT(1, q) is the upper half-space with the
horizontal lines {z = x +1iy: y = q*} marked as bifurcation lines. Consider the function

1 2 2
8(z) = log(l + M)

Away from the point i, this is comparable with the hyperbolic distance between z and the point
i. Computing partial derivatives, one easily checks that v2(10;8(2) % + |8y8(z)|2) < C; and
y2(|8§8 @)+ |8§5 (2)]) < C; for some C; > 0. In particular, § has bounded hyperbolic gradi-
ent and bounded hyperbolic Laplacian. Set

p(z) =8(x +in(y)).

Then it is not hard to check that p is a strip-adapted exhaustion function on HT(1, q). The role of
n is to make p constant in y along the lines {y = qg*}.

Let us now consider the general case HT(p, ), p = 1, q > 1. Recall that HT(p, q) = {(z, w) €
H x Tp: h(w) = logq y}. Hence, we can consider p as a function on HT(p, q) by setting p(z, w) =
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p(2). This function satisfies all requirements for a strip-adapted exhaustion function, except that
it does not tend to oo along any fixed horocyclic level h(w) = gF.

To treat this difficulty, fix an end uy € 9*T. Let V (ug) be the set of all vertices v € ’]I‘g such that
v € up @ . For any v € V (up), let T(v) be the set of those elements w € T such that w A up = v.
This set T(v) is the maximal subtree of Tp, containing v and intersecting 1o @ only at v. The tree
T, is the disjoint union

T,,:uﬁu( U T(v)\{v}>,

ve’ﬂgﬂuo w

where (recall) g is the geodesic between ug and @ . By construction, we have h(w) = h(v) if
w € T(v). Thus, for (z, w) € HT(p, q) with z =x +1iy and w € T(v), we have y > qh @,
We define a function « on HT(p, q) by setting

0 if w e wow,

K(z, w) = {log(n(q_b(”))’))’ if w € T(v).

This function « has the property that it tends to infinity on HT(p, q) when its argument (z, w)
escapes to infinity along a fixed horocycle {(z, w) € HT(p, 9): logq () =bh(w) =t}, t € R. This
is because, as (z, w) escapes to infinity with log,(y) = h(w) =1, the vertex v = v(w) € Up®
such that w € T (v) must tend to z and thus h(v) tends to —oo.

Now, we set

p1 :HT(p, ) — (0, 00), z, w) = p1(z, w) = p(2) +&(z, w).
From the construction, it is clear that p; is a strip-adapted exhaustion function. O
Appendix A. Some results concerning /—A 5/

Let (M, g) be a Riemannian manifold (equipped with its Riemannian measure dx) and let
Ay be its Laplacian defined on C2°(M). Abusing notation, we let Ay, denote also its Friedrichs
extension. Let hp (2, x, y) be the heat kernel (the smooth positive integral kernel of e Amy and
let /— A be defined by spectral theory, that is, o/—Apy = f0°° VAdE,, where E; is a spectral

resolution of — A . The domain of /= A} is the Sobolev space W} (M) = W}.

Let W§ be the dual of W, @ (under the identification of £2(M) with its own dual). Hence, for
o > B >0, we have

We c W8 c L2y c W, P cwye.

The intersection W§° = (), W is dense in any W, and the operator (Id + +/—Ay)?, initially
defined on W;°, extends as a unitary operator from W to Wg ~. Moreover,

(d+/=Ay)*Ud+ /AP =Ud+/-Au)* B, o, BeR,
and (Id + /—Ap )° = Id. Because C° (M) C Wg° (with continuous embedding when equipped

with their natural families of seminorms), it is clear that any W* can be understood as a space of
distributions.
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On £2(M), the operator (Id + ~/—Apz)~! has an integral kernel given by

o0 o0
1 e ¥
Gx,y) = —fe—ff ——=hp (t?/4u, x, y) dudt. (A.1)
4 u
«/_0 J Vu
It obviously satisfies
/G(x,y)dy=/G(x,y)dx<1.
M M

It follows that, for any f € C3°(M), we have

V=Auf=f+ld+V=Du)f
= f+Ud+/=Ay) Ud+=An)(—Id+ /=Dy f
=f+Ud+v=DA) 7 f — Ay f]
e LY (M) N L®M).

Let now f € L1(M) 4+ £>(M). The previous observation implies that we can make sense of
/—Ap f explicitly as a distribution on M by setting,

[\/—AMf](h)=/f[\/—AMh]dx for h € C°(M).
M

By (A.1) and the local regularity of the heat kernel, for any fixed precompact compact coor-
dinate chart (U; x1, ..., x,) in M and any open set £2 D U, we have

Vye M\ £2, sup‘a;”G(x, y)l <Cu,om inlf]G(x,y) forallye M\ £2, (A2)
xeU x€

where m = (my,...,mp) and 97" f = 85" ...8;," f. Furthermore, if (U’; y1, ..., y,) is a rela-
tively compact coordinate chart with U’ C M \ £2 then

sup sup |37 XG (x, )| < Cu,v/mk- (A3)
xeU yeU’

We need the following simple hypoellipticity type result. It is certainly well known but it does
not seem very easy to find a precise reference. (See e.g. Bogdan and Byczkowski [9], where
(M, g) is Euclidean space.) In particular, note that some care is needed because 4/ — A, is not a
local operator.

A.4. Theorem. Let f € L2(M) and let F be_the distribution F = (Id + /— Ay ) f. Fix two open
relatively compact sets §2 C §2' C M with 2 C 2'. Assume that

o F=0in 2, thatis, F(u) =0 for all u € C2°(£2), and
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e Flx\o' € L2(M), that is, there exists h € L>(M) such that

F(u)=/hudx forallueCé’o(M\ST).
M

Then f € C3.(£2).

Proof. Without loss of generality, we can assume that # = 0 in a neighbourhood of £2. It then
follows easily from (A.2) that

(I4++v-Au)th=Gh e CX().

Next, for any two open sets §2o, 21 with 29 C 2 and £2; C £2, and any relatively compact
neighbourhood 2, of £2/, the distribution F — A is supported in £2; \ £2;. We can approximate
this distribution by functions in Fj € C2°(M) supported in £2; \ £21 and such that there exist
a constant C, an integer /, and a finite covering of K = £2; \ §2; by relatively compact charts
(U",x’i, ...,xfl), i € I, such that for all j

/Fjudm <Csupf[okuto|: x e U, i€l k=(a,.... ko) with Y ki <1.
M
It then follows from (A.3) that, given any local chart (U; xy, ..., x,) contained in £2y and any

integer m, the functions (Id + /— Ay )~1 Fj = GF) satisfy

sup sup{}a;"GFj(x)|: xeU, m=(my,...,mp), Zm,— <m} <C.
J

This implies that the limit distribution (Id + v/— Ay Y Y(F —h)=1lim j GF;j can be represented
by a smooth function in £2y. Hence,

f=Ud+/-Ay) 'F=Ud+/-Apm) th+Ud+/—Au) Y (F —h)

satisfies

fle=[Ud+y/—Au)"'F]|, € CRUR2).
This concludes the proof. O
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