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A NOTE ON POINCARI, SOBOLEV,
AND HARNACK INEQUALITIES

L. SALOFF-COSTE

1. Introduction. Let M be a cg-connected manifold. Let L be a second-order
differential operator with real cg(R) coefficients on M and such that L1 0 (i.e., L
has no zero-order term). Assume that there exists a positive cgoo measure # on M
such that

<Lq, k> <(p, L@>, <Lb, > >0

for all qg, ffd(M), where < > is the scalar product on L2(M, d#). We make the
technical hypothesis that L is locally subelliptic. Denote also by L the Friedrichs
extension of L in LZ(M, d#) and consider the symmetric submarkovian semigroup
Ht e-t" acting on the spaces LZ(M, d#). The coo kernel ht(x, y) oflit is defined by

Htf(x ; ht(x, y)f(y) d#(y).

Since we assume that L is locally subelliptic, there exists a genuine distance
function p canonically associated with L; see [6, 9]. This distance is continuous and
defines the topology of M. We assume that (M, p) is a complete metric space. Set
B(x, r) {y M, p(x, y) < r} and V(x, r) #(B(x, r)). There is also a notion of
gradient associated with L. At any rate, we can set

F(tp, O)= 1/2(-L(tPO) + (pL@ +OLtp)

and define the "length of the gradient" to be IVfl F(f, f)1/2. (F(f, f) is the "carr6
du champ" of Bakry-Emery [1-1.) See also [26] for an equivalent definition of IVTI.
It can be shown (see [3, 9-1 for instance) that, under our hypotheses,

p(x, y) sup{ If(x) f(Y)l, f (M), IVf] < 1}.

What is really important for us is that, although p is not smooth, we can formally
apply the inequality IVp(xo, x)l < 1.
Given 0 < ro < +o, consider the two properties

V(x, 2r) < Cx V(x, r),
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0 < r < ro, x M (1)
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28 L. SALOFF-COSTE

and

If- f,,l 2 d/ C2 r2 f IVfl2 d/, 0 < r < to,
(x, r) (x, 2r)

xM,

(2)

where fx.r n(x.,)f dla. Property (1) is the usual doubling property. The inequality
appearing in property (2) is a (weak) form of Poincar6 inequality. It follows from
the work of D. Jerison I-8] that (1) and (2) imply the (strong) Poincar6 inequality
where the integral on the right-hand side of (2) is taken over the ball B(x, r) instead
of B(x, 2r).

In this paper we show that a parabolic Harnack inequality is equivalent to the
above two properties (see Section 3). In [15, 16-1, J. Moser proved a Harnack
inequality for parabolic equations associated with second-order uniformly elliptic
divergence form operators in Euclidean space. His approach has been used in many
other situations because it rests only on two functional inequalities usually referred
to as Sobolev and Poincar6 inequalities. Here, we show that the doubling property
(1) and the family of Poincar6 inequalities (2) imply a family of Sobolev inequalities
which is good enough to run Moser’s iteration. It is well known that Harnack
inequality is a powerful tool. Selected applications are presented which illustrate
this fact.
One aspect of this work is that it unifies important results which were obtained

in different settings by different means. For instance, consider the question whether
or not harmonic positive functions are constant. S.-T. Yau proved that the answer
is yes on manifolds with nonnegative Ricci curvature (here, L is the Laplace
operator); see [27]. Y. Guivarc’h in [7-1, T. Lyons and D. Sullivan in [13! also gave
a positive answer for manifold which are normal coveting of a compact manifold
with nilpotent deck transformation group. In [24], N. Varopoulos obtained a
similar result in the setting of Lie groups having polynomial volume growth. As
explained in the last section, all these results can be seen as corollaries of Theorem
4.3 below.

2. Sobolev inequality. In this section we show that (1) and (2) imply a family of
Sobolev inequalities on balls.

THEOREM 2.1. Assume that M, L, are as above and that (1), (2), hold for some fixed
ro > O. Then there exist v > 2 and Ca > 0 dependin# only on C, C2 such that

-2) d#) < Ca V(x, r)-2/r2 (IVfl 2 + r-2 Ifl 2) d/z

f c’(B(x, r))

for all x M and all 0 < r < to.
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POINCARf/, SOBOLEV, AND HARNACK INEQUALITIES 29

Note that for 0 < s < r we have

v(x, r) < 2v(x, s)(r/syo (3)

for some Vo > 0 depending only on Ca, C2. Indeed, consider the integer n such that
2"-a < r/s < 2". From the doubling property it follows that

V(x, r) < V(x, 2"s) < C2 V(x, s) < 2V(x, s)(r/s)TM

where v0 log(C:)/log(2). The real v appearing in Theorem 2.1 can be taken to be
any number greater or equal to Vo and strictly greater than 2. The first ingredient
of the proof of Theorem 2.1 is an abstract result.

THEOREM 2.2. Let e-tA be a symmetric submarkovian semiaroup actin# on the
spaces L’(M, d#). Given v > 2, the three followin# properties are equivalent.

1. Ile-tafll(R) < C,t-/2llfllx for 0 < < to.
2. f m a/2f2/.-2) < Cs(lla 112 + txllfll).
3. Ilfll2+’/ < C(llhX/2f ll + t f ll) llf ll2/.

Moreover, 3. implies 1. with C, (vCC6)v/2 and 1. implies 2. with Cs CC/, where
C is some numerical constant.

The proof of 1. implies 2. follows easily from [22-1, Theorem 1. The equivalence
with 3. follows from [3]. The other ingredients in the proof of Theorem 2.1 are the
two following lemmas. Denote by f(x) the mean of f over the ball B(x, s). Set
X(x, z) V(x, s)-a ln,)(z) so that

f(x) ; Z,(x, z)f(z) dl(Z).

LEMMA 2.3. There exists a constant C7 dependino only of Ca such that for all
y M and allO < s < r < ro we have

IILII2 < C7 V-1/Z(r/sy/2 Ilfllx, for all f ’(B)

where B B(y, r), V V(y, r).

Proof. Note that Z(x, z) < Ca Ks(z, x). This shows that L IIx < cx f IIx. More-
over, if B c B(x, s) # with 0 < s < r, (3) yields

V(x, s)-a < 2V(x, 2r + s)-a(2r/s + 1y < V-a(4r/sy.
Hence, f Iloo < v-x(4r/s)TM f IIx for all f d(B). The lemma follows by
interpolation.
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30 L. SALOFF-COSTE

LEMMA 2.4. There exists Ca depending only on C, C2, such that

[If-f[12 < Casl[Vf[12, f e cd’(M)

for all 0 < s < to

Proof. Fix 0 < s < ro/4. Let {Bj, j e J} be a collection of balls of radius s/2 such
that Bi Bj if d: j and M t.Ji r 2Bi, where tB B(x, tr) ifB B(x, r). Such
a collection always exists. Moreover, the doubling property implies that the over-
lapping number N(z)= # {i J, z 8Bi} is bounded by a number No depending
only on C1. Now, write

where all the integrations are taken with respect to. #x and where fB is the mean of
f over the ball B. Poincar6 inequality (2) implies

f2 If(x)- f4B’12 < f4 If(x)-- f4B’12 < C2s2 fa IVfl2"

Using (1) and (2), we also have

;: Ifn,-f(x)12<fz; z(x’z)lfn,-f(z)12dlx(z)d#x(x)

C911i-1;2 f4 [f4Bi-f(z)12dl’t(z)dli(x)
Bi Bi

< Cs2 fs IVfl2"
B!

Hence, we obtain

Ivfl: < c NosllVfllIIf-f, ll < C s2 ,
This ends the proof of Lemma 2.4.

Proof of Theorem 2.1. Fix x M, 0 < r < to, and set v ="max {3, Vo }. Assume
that 0 < s < r/4 and f c(B(x, r)). Following an idea of Robinson [17], write

Ilfll < Ill-LII + IILII.
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POINCARI, SOBOLEV, AND HARNACK INEQUALITIES 31

Using the above two lemmas, we obtain

llfl12 < C8sllVf ll2 + C V-X/2(r/s)’/2 f

where V V(x, O. Hence, for all s > 0 and f cg(B(x, r)), we have

Ilfl12 < 4Css(llVfll2 + r-’ Ilfl12)+

Optimizing over s > 0 yields

Theorem 2.1 follows from the above and Theorem 2.2. In [5], Th. Coulhon and the
author use variations of the above arguments to study isoperimetric questions on
Riemannian manifolds. In the present setting, the method of I-5] shows that (1) and
the L version of (2), namely

IVfl, 0 < r < to, x e M, f e cff(M)

imply the L version of Theorem 2.1 which reads

Ifl"/’-x d# < C’3 V(x, r)-tr (IVfl + r-t Ifl) dkt f cg(B(x, r))

for all x e M and all 0 < r < ro.

3. Harnack inequality. The power of properties (1) and (2) is better understood
through the result presented below. Indeed, we show in this section that the
conjunction of (1) and (2) is equivalent to a parabolic Harnack inequality.

THEOREM 3.1. Let M and L be as in Section 1. The followinl two properties are
equivalent.

1. The properties (1) and (2) hold for M, L, and some ro > O.
2. There exists r > O, and there exists a constant C dependint only on the parame-

ters 0 < e < r/< ( < 1, such that, for any x M, any real s, and any 0 < r <
r, any nonne#ative solution u of ((3 + L)u 0 in Q Is- r2, s[x B(x, r)
satisfies

sup {u} < C inf {u}
12- 12/

where Q_ [s 6r2, s r/r2] x B(x, 6r) and Q+ Is er2, s[ x B(x, 6r).
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32 L. SALOFF-COSTE

Proof of 1. implies 2. This part of the theorem follows from Moser’s iteration:
assuming that (1) and (2) hold, Theorem 2.1 yields the family ofSobolev inequalities

Ilfll 22v/(v-2) CV-2/r2(llWfll + r-2 IIfl122),

f rC(B(x, r)), y M, 0 < r < r0

As explained in [20] in a Riemannian setting, such a family of Sobolev inequalities
is enough to run the first part of Moser’s iteration. Hence, we have (see [15]) the
following theorem.

THEOREM 3.2. Assume that (1), (2), hold for some ro > O. Given 0 < 6 < 1, there
exists a constant C dependino on Cx, C2, and 6, such that, for any x M, any real s,
and any 0 < r < ro, any nonneffative solution of (t + L)u < 0 in Q Is r2, s[x
B(x, r) satisfies

sup {U2 } < C(r2 V)-x fQ U2

where Q Is gir2, S[ B(x, r).

In order to obtain the full Harnack inequality stated in Theorem 3.1, we first
note that the technique presented in [21] applies here and allows us to deduce from
(1) and (2) the following weighted form of Poincar6 inequality. Set p,,(z)=
(1 p(x, z)/r)2 for z B(x, r) and tI)x,,(z) 0 otherwise. Also, set(x) fibs,,. We
have ; If J(x)’2,, <Cr2flVfl2,,
for all x M, 0 < r < ro and f e rC(M). Once we have such a weighted Poincar6
inequality, we can prove statement 2. of Theorem 3.1 by using Moser’s technique;
see [15, 16, 20].

Proof of 2. implies 1. First, we show that 2. implies the doubling property of the
volume. Recall that ht is the kernel of Ht e-L. Applying 2. to h,, we obtain

V(x, r)h,2(x, x) C h2r2(x, y)dl(y) < C.

Consider now the function defined by u(s, z) Hs ln{x,,)(z) when s > 0, and u(s, z)
1 when s < 0. This function is a nonnegative solution of ( + L)u 0 in
]-, +[ x B(x, r). Hence, we have

1 u(--r2/4, x) Cu(r2/2, x) fn hr2/2(x’ y) d#(y) < C2V(x, r)hr2(x, x).
(x,r)
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POINCARI, SOBOLEV, AND HARNACK INEQUALITIES 33

The above yields

(C’V(x, r))- < h,,_(x, x) < C’V(x, r)-1

Hence, 2. implies that V(x, 2r) < C" V(x, r) for all x e M and all 0 < r < rl/2.
The fact that 2. implies Poinear6 inequality on balls follows from a remark of

Kusuoka-Stroock [11] which we now explain. Denote by Hn, the semigroup
associated with the operator L and Neumann boundary condition on the ball
B B(x, r), where x M and 0 < r < rl. Let hn, be the kernel of this semigroup.
Applying Harnack inequality to hn, as above, we find that

h,.,._(z, y) > (CV)- for all y, z B(x, r/2)

where V V(x, r). Hence, for y B(x, r/2) we have

Hn,,2(f Hn,,2f(y))Z(y) > (CV)-1 fn If(z)- Hn,,,f(y)lz d#(z)
(x,r/2)

(CV)-x fn If- f,/z(X)l 2 dl.
(x, r/2)

Integrating over B(x, r/2), we obtain

Hn,,(f Hn,,,.f(y))Z(y) d#(y) > C’-t If- f,/2(x)l 2 dl.

But, we also have

Hn,,(f Hn,,,f(y))2(y) dl(y) Ilfllz, -IIn,,f 1122,

0

This proves (2) with ro r/2 and also ends the proof of Theorem 3.1.

Remark. One can wonder whether the parabolic Harnack inequality 2. could
be replaced by an elliptic Harnack inequality for L-harmonic functions on balls. I
do not know the answer to this question.
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34 L. SALOFF-COSTE

4. Applications. The preceding section made it clear that (1) and (2) are enough
to obtain powerful results concerning the operator L. In this section we present
some further consequences of the hypothesis that L satisfies (1) and (2). Since these
results are obtained by arguments which have been explained elsewhere, I will be
sketchy. A classical corollary of Harnack inequality is the H61der continuity of the
solutions of the given equation. Namely, we have the following theorem.

THEOREM 4.1. Assume that (1), (2), hold for some ro > O. Fix 0 < < 1. There
exist 0 < a < 1 and C depending only on C1, C2, , and such that, for any x M,
s I-or, +o[, and any 0 < r < ro, any solution u of (t + L)u 0 in Q
Is r2, s[x B(x, r) satisfies

lu(t’, y’)- u(t, Y)I < C(-/r)llullo,Q

where max(It t’l /2, p(y, y’)} and (t, y), (t’, y’) Q.

See Moser’s article [15] for a proof. Another important corollary of Theorems
3.1 and 3.2 is as follows.

THEOREM 4.2. Assume that (1), (2), hold for some ro > O. Then there exist con-
stants Ck, k 0, 1, 2,..., such that

I3kht(x, x’)l < CkV(X, 1/2 A ro)-tt-k(1 + p2/t)v/2+k exp(--p2/4t)

for all x, x’ M, all > 0, and p p(x, x’). Also, there exist C, C’, such that

ht(x, x’) > (CV(x, tl/2))-1 exp(-C’p2/t)

for all x, x’ M, > O, such that p < ro and < r2o
The proofcan be adapted from the arguments in [20]. Note that, when ro +,

we obtain a global two-sided Gaussian estimate for hr. This implies that, under the
hypothesis that (1), (2), hold with ro +, the Green function G(x, y) of L exists
if and only if oo V(x, tl/2)-1 dt < +o. Moreover, G satisfies

C- V(x, t/2)- dt < G(x, y)< C V(x, t/2)-1 dt

where p p(x, y); see [12].
Consider the bottom of the spectrum of L defined by 20 inf{(Lf, f)/llfll 2

2

f d(M)}. In the case when ro < +, it is possible that 20 > 0. See [20] for a
Gaussian upper bound on ht which can be adapted to the present setting and takes
2o into account.

In i-10], Koranyi and Taylor give elegant arguments which show that the unique-
ness property for the positive Cauchy problem associated with tt + L follows from
a local uniform Harnack inequality. Hence, their results apply to operators L which
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POINCARI, SOBOLEV, AND HARNACK INEQUALITIES

satisfy (1), (2) for some ro > 0. In the process they show that any minimal solution
u > 0 of (co + L)u 0 on -I -oo, s[ x M is of the form u(t, x) eVtv(x), where v is a
minimal solution of Lv yv on M. (Recall that a solution u > 0 is minimal if any
solution v such that 0 < v < u is a constant multiple of u.)
Concerning L-harmonic functions, Theorems 3.1 and 4.1 yield the following

theorem.

THEOREM 4.3. Assume that (1), (2), hold with ro +o. Then any solution of
Lv 0 on M which is bounded below is constant. Moreover, there exists 0 < < 1
depending only on C1, C2, such that any solution v of Lv 0 which satisfies

lim (r- sup {Ivl})=0r- + B(Xo, r)

for some fixed Xo M is constant.

Finally, there is a further idea which, together with Theorem 3.2, yields interesting
results. Namely, consider the wave equation (02 + L)u 0. When L A is the
Laplace operator ofa complete Riemannian manifold, it is well known that, if u(t, .)
is supported in B(xo, r) and s > t, then u(s, .) is supported in B(xo, r + s t). In
other words, waves have finite propagation speed. We claim that this is still true
for the operator L considered in this paper. Indeed, this can be seen by replacing L
by L + cA, where A is the Laplace operator for some fixed Riemannian structure
on M, and letting e tend to zero; see [14]. The main point in this argument is to
show that the distance associated with L + eA tends to the distance associated with
L when e tends to zero; this follows from the qualitative hypothesis that L is locally
subelliptic. Once the above finite propagation speed property has been proved for
L, we can follow Section 2 of [4-1 and obtain estimates on the kernels of operators
f(L1/2), where f is a (nice) even function; see also [20-1, Section 8. Instead of writing
a general theorem, we note the following application of this technique. (See [20] for
more details in a Riemannian setting.)

THEOREM 4.4. Assume that (1), (2), hold with ro +. Fix a positive integer tr.

Then the kernel ho, of the semigroup e-a’‘ satisfies

Id,kh,,,(X, x’)l < C;, V(x, tl/Z)-lt- exp(-(p/Ctl/2)/-1))

for all > O, x, x’ M, p p(x, x’), and any fixed integer k. In particular, we have
II0ho,,(x, .)llx < C;,’t-k for all t > 0 and all x M, which shows that the semigroup
e-t’‘ is bounded analytic on Lp for all p [1, +[.

Remarks. It is worth emphasizing the fact that the above results are very stable.
For instance, if we assume that (1) and (2) hold for an operator L, then all that has
been said about L is also valid for any operator L’ symmetric with respect to a
measure #’ and such that C-1F(f, f) < F’(f, f) < CF(f, f) for all f (M) and
C-V(x, r)< V’(x, r)< CV(x, r). Here, L’ does not even need to have smooth
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36 L. SALOFF-COSTE

coefficients. For instance, Theorem 2.1 shows that Harnack inequality is stable
under quasi-isometric changes of a metric on a Riemannian manifold.
Another instance of the stability of the above is as follows. Assume that M, L,/

and M’, L’, #’, are as in Section 1. Assume that L satisfies (1), (2), for some ro > 0.
Assume also that n: M M’ is a surjection such that L(u o re) L’u o n for any
smooth function u on M’. Then (1), (2), also hold for L’ and some r > 0. This is
because Harnack inequality projects easily from M, L to M’, L’. Note that it does
not seem easy to see more directly that the doubling property holds for M’, L’, #’.

In the same spirit as the above remarks, note that operators of the form L +
lower-order terms can also be studied using Moser’s iteration; see [20] and the
references given there. In fact, most ofthe results described in [20] could be adapted
to the present setting.

5. Examples.
results apply.

In this section we describe different settings where the above

Example 1. Let M, #, be a complete Riemannian manifold of dimension n and
L A be the corresponding Laplace operator. Assume that there exists K > 0 such
that the Ricci curvature satisfies Ric > -K# on M. Classical comparison theorems
imply that V(x, r)/V(x, s) < (r/s)ne" x/(n-1)K for r > s; see [4], for instance. Moreover,
P. Buser proved in [2] that

fB(x,r) If- f(x)l2 dv < r2Crr’/’- ;B IVfl 2 dv
(x,r)

forf (M), x e M, and r > 0. Hence, we can apply the above in this setting. Note
that, when K 0, (1) and (2) hold with ro +. This gives an alternative approach
to most of the results of Li-Yau [12]. (The above method cannot yield gradient
estimates but only H61der continuity estimates.) At the same time, we also recover
the results of [19] concerning manifolds which are quasi-isometric to a manifold
with nonnegative Ricci curvature.

Example 2. Let G be a Lie group having polynomial volume growth; see [23,
18-1, for instance. Let L _k X2, where {X1, Xk} is a family of left invariant
vector fields having the H6rmander property (see [23]). Then (1) and (2) hold with

ro ; see [23, 24]. Hence, we recover the results of [23, 24, 18, 21]. The conclusion
of Theorem 4.4 is new in this setting. Note that, in this context, Poincar6 inequality
is very easy to obtain; see [24].

Example 3. Let N be a compact Riemannian manifold and let M be a normal
covering of N. Assume that the deck transformation group G of this covering has
polynomial volume growth. It follows from the arguments in [25-1 that (1), (2), hold
with ro for the Laplace operator on M. Moreover, thanks to the second remark
at the end of last section, ifH c G is closed subgroup of G (not necessarily normal),
(1), (2), also holds on M’ M/H with ro +. Many of the results obtained above,
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POINCARI, SOBOLEV, AND HARNACK INEQUALITIES 37

including the uniform Harnack inequality which follows from Theorem 3.1, are new
in this setting.

Example 4. Consider again a normal covering M of a compact Riemannian
manifold N with the deck transformation group G having polynomial volume
growth. Let Lo be the Laplace operator on M, #o be the Riemannian volume, and
Vo be the Riemannian gradient. Now let L, # be as in Section 1. Assume that L is
uniformly subelliptic with respect to the Laplace operator Lo and that d# md#o
with C- < m < C. Also, assume that IVfl < ClVofl. (In the case when M is just
the euclidean space, this last hypothesis means that L has bounded coefficients.) It
follows from the local results concerning subelliptic operators (see [9] for details
and references) and the arguments in [25] that (1), (2), holds for L with ro .
Note that our hypotheses are satisfied whenever L is the pullback of a subelliptic
operator on the compact manifold N.
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