Geometric and Functional Analysis 1016-443X/94/01001-36$1.50+0.20/0

Vol 4. No 1 (1994) © 1994 Birkhiuser Verlag, Basel

MODERATE GROWTH AND
RANDOM WALK ON FINITE GROUPS

P. DiaconNis AND L. SALOFF-COSTE

Abstract

We study the rate of convergence of symmetric random walks on finite
groups to the uniform distribution. A notion of moderate growth is in-
troduced that combines with eigenvalue techniques to give sharp results.
Roughly, for finite groups of moderate growth, a random walk supported
on a set of generators such that the diameter of the group is v requires
order 1° steps to get close to the uniform distribution. This result holds
for nilpotent groups with constants depending only on the number of gen-
erators and the class. Using Gromov’s theorem we show that groups with
polynomial growth have moderate growth.

1. Introduction

We hegin with an example of the problem under study. Let m be a
positive integer. Let Uz(m) be the Heisenberg group modm. This is the
set of 3 x 3 matrices of form

1 z =z
01 y Y,z €Ly .
0 0 1
Thus |Us(m)] = m®. A random walk can be performed on Usz(m) by re-

peatedly choosing one of the following 5 matrices with probability 1/5:

110 1-1 © 100 100
L.lo 1 o}.lo1o0]),lo1 1], {0 1-1 (1.1)
00 1 00 1 00 1 00 1

The n'" stage of the walk is the product of the first n chosen matrices.
Let ¢'™(s) be the chance that the random walk is at s after n steps. For
n suitably large, ¢!™)(s) is approximately equal to the uniform measure
u(s) = 1/m>. The following result says that “suitably large” is n > m?.
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THEOREM 1.1. Let ¢ assign mass 1/5 to the matrices in (1.1). Then,
there are universal positive constants a,b,a’,b’ such that

ale-—-b'n/m2 < ”q(n) _ U”T.V. < ae—bn/m2 )
The total variation distance is defined as

g™ = ullrv. =3 1g"™(s) = u(s)] . (1.2)

Thus, the distance to the uniform distribution is exponentially small pro-
vided n > m? and bounded away from 0 if n is small compared to m?.

The object of this paper is to prove theorems like Theorem 1.1 for
general symmetric measures on certain finite groups which we call groups
of moderate growth.

Let GG be a finite group. Let E be a set of generators for G. Throughout,
we assume that F is symmetric and id € E. The Cayley graph (G, F) is
the graph with vertex set G and edge set {(x,ze): * € G, e € E}. The
volume growth function V(n) is defined by

V(n) = |E"]. (1.3)
The diameter v of G with respect to E is defined by
v =min{n : V(n) = |G|} . (1.4)

The group G has (A, d)-moderate growth with respect to E if there are
positive constants A and d such that

Vin) _ 1 (n ¢ .
vnzals) 1ens )

To state a general result, define a probability ¢ on G by

q(s):{1/|E| if scE

0 elsewhere (1.6)

and let ¢(™) denote the n*? convolution power of gq.

THEOREM 1.2. Let G, E have (A, d)-moderate growth. Let q be defined
by (1.6). For n = (1 + ¢)|E]y?, ¢ > 0,

llg™ ~ u||rv. < Be™®
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with B = AY/224d+3)/1_ Further, for n = cy? /(24412 A2),
g™ — ullrv. > se~°

Theorem 1.2 is of interest for a family of groups of moderate growth
with |E|, A, d fixed as |G| (and so ) gets large. The results then show that,
if the number of steps n is a large multiple of 2, the walk is close to uniform
whereas, for n a small multiple of 42, the walk is far from uniform. The
transition from 1 to 0 as ¢ varies is typically smooth so that the “cutoff
phenomena” observed by Aldous and Diaconis [AD] can be proved not to
occur for the groups under study.

Remarks: 1. The group Z,, of the integers mod m (take m odd for definite-
ness) with £ = {0,+1} has diameter v = (m — 1)/2. This gives moderate
growth with A =1 and d =1.

2. The rate of growth can depend on the generators. The group Z,,
with E = {0,%1,4+|v/m]} has v of order /m and moderate growth with
A=1land d=2.

3. The Heisenberg group Us(m) with E given by (1.1) hasy =m + 1
and moderate growth with d = 3 and fixed A for all m. See section 3.B.

4. Of course, any finite group has moderate growth for suitable A. The
point is that there are many natural families of groups which have moderate
growth for fixed A and d as |G| gets large. These include nilpotent groups
(and so p groups) and affine groups.

5. It is often convenient to check (1.5) by determining v, then showing
|G| < /37 and V(n) > an?, 1 < n < 5. This gives (1.5) with A = 8/a
since V(v) = |G|.

6. It is instructive to see the difference between the two conditions of
Remark 5 and the single condition (1.5). Consider the product Z,,, X Z,,
with m; < mg and both m;, my odd. Take E={(0,0).(1,0).(-1,0),(0,1),(0,-1)}
as the generating set. The diameter is v = @2—_—1 + ﬂz{—l < mgy. The growth
function satisfies

Viny>n? for 1<n< le_ !
Vin) > myn for m — 1

<n<y.

Since |G| = myms = V(v), the group G,E has moderate growth with
A= % and d = 2. Theorem 1.2 shows that order m2 steps are necessary
and suffice to achieve randomness. However, the best that can be said using
the approach of Remark 5 is V(n) > n, 1 < n < v; |G| < 2m,v. Dividing

leads to
Vi) 5, 1 (2)
V(7)) = 2my \v/)




4 P. DIACONIS AND L. SALOFF-COSTE GAFA

Using this, Theorem 1.2 yields only that order m3logm,; steps suffice.
The lower bound shows that after (my/m;)? steps the variation distance
is bounded below by a constant over ml/ This is virtually useless.

The structure of this paper is as follows. Section 2 develops the basic
analytical tools of eigenvalues and volume growth. Some results are given
for groups of exponential growth. The basic new ingredient leans heavily
on an idea of Hebisch [He]. Theorems 1.1 and 1.2 are proved in section 3.

Section 4 gives examples which include the Heisenberg group and the
upper triangular group.

Section 5 introduces the doubling property: V(2n) < AV (n) for all n.
This implies moderate growth and is shown to hold for all nilpotent groups
with A depending only on the number of generators and the class of nilpo-
tency.

Section 6 discusses polynomial growth: V(n) < An? for all n. Gro-
mov’s theorem is used to show that polynomial growth is equivalent to the
doubling property and so implies moderate growth.

Section 7 treats normal extensions such as the affine group modp.
Some of these extensions have moderate growth but fail to have polyno-
mial growth.

In a companion paper we treat random walk on homogeneous spaces
of nilpotent groups by a different set of techniques: the walk is lifted to the
free nilpotent group. Then, Harnack inequalities of Hebisch and Saloff-Coste
[HeS-C] can be applied. See Diaconis and Saloff-Coste [DS-C3].

2. Volume Growth and Decay of Convolution Powers

A. Basics. Let G be a finite group with identity ¢d. Given real valued
functions ¢, 1 on G, their convolution is the function ¢ * ¢ defined by

o * Yz Zwﬁy o) = Zv(yw(y 'z).

We denote by ¥ the operator ¥p = ¢ * 9 and by ¢(™® the convolution
powers of . Let U be the operator associated with the uniform distribution
u(z) = 1/|G|. For 1 < s < 00, define the usual I* norms of a function ¢ as

Il = ( E1ol) " lelle = maxtlotel}

r€G
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The variation distance ||g — §||lv.v. = maxjcq {|g(I) — G(I)|} between two
probabilities g, ¢ is half the {' norm of ¢ - g.

Let g be a symmetric (i.e. g(z) = g(z™!)) probability on G. Under mild
restrictions, the convolution powers ¢{™ converge to the uniform distribu-
tion in variation distance. Analytical approaches to this result proceed by
hounding the /! norm by the /2 norm using the Cauchy-Schwarz inequality

1~ ullr.v. < 361V g™ — ull (2.1

The I? norm is bounded by eigenvalues. Because of symmetry, the associated
Markov chain has real eigenvalues 1 = 8y > 81 > 82 > -+ > Bigj-1 > —1.
A detailed discussion of this approach is given by Diaconis and Saloff-Coste
[DS-C2] which should be regarded as a companion to the present paper.
The following bound introduces a fresh ingredient.

LEMMA 2.1. Let ¢(s) be a symmetric probability on a finite group G. Let

B = max{|B31]. |81}

be the second largest eigenvalue, in absolute value, of the associated Markov
chain. Then for non-negative integers n,m,

g™+ — ullg < g™ (id) 52"

Proof: Using operator notation, the following equalities are known and easy
to verify.

g*™(id) = [lg"™|3 = Q™ 3o 0e i I1Q" = Ullz—2 = 87 .

From these, for any function f,

I (g™ —w)llse = 115 % (¢ = ) % ™|
<NQ™ 2ol f * (¢ = )2
< R™llz—o0ll@™ = Ull2—2]| fll2 -

Then
g™ +™ — ull = |Q"™ — Ul o < ¢®™(id) 32" . o
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Remark: A variety of bounds are available for 3,. These range from exact
computation using Fourier analysis, to geometric inequalities of Poincaré
and Cheeger type. Diaconis [D], Diaconis and Stroock [DStr] and Diaconis
and Saloff-Coste [DS-C2] give a picture of what is available. The only bound
needed in the present paper is the following diameter bound derived in
[DS-C2]; many versions of this bound have been published earlier by a
number of authors.

LEMMA 2.2. Let G be a finite group, E a symmetric set of generators for
G, v the diameter of G with respect to E. Let q be a probability on G such
that q(s) = q(s™!) and n = inf{q(s) : s € E\ {id}} > 0. Then the second
largest eigenvalue is bounded by

5131-——9—-

~2
Further, the smallest eigenvalue satisfies
Bigl-1 = —1+ 2q(id) .
Remarks: 1. Using Lemma 2.1 with m = 0 and the bound (2.1) gives
ld™ - ullr.v. < §1GI1367

For groups with moderate growth the |G|7 factor is extraneous. Lemma 2.1
allows the information on the decrease of ¢(*™)(id) to be used to kill this
term. The next section shows how moderate growth can be used for this
purpose.

2. All the bounds obtained in this paper are stated for variation dis-
tance. However, the upper bounds are obtained using Lemma 2.1. Thus,
our estimates hold as well for the quantity |G|?||¢™ — 1||,. Moreover, the
Cauchy-Schwarz inequality yields

1GIlg®™ ~ ulloo < 1GIllg™ — ulf3

so that, in fact, our bounds are also valid for the relative maximum error
distance ‘

sup |Glg™(z) ~ 1] .
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B. Decay of convolution powers. In this section a quantitative relation
between volume growth and decay of ¢(*)(id) is obtained. These results
are developments of an idea of W. Hebisch [He]; see also Hebisch and Saloff-
Coste [HeS-C].

THEOREM 2.3. Let E be a set of generators of the finite group G. Let ¢
be a symmetric probability on G and set n = inf{q(s) : s € E\ {id}}. If
the volume growth V(n) satisfies

V(n)Zand, 1<n<N,

for some positive o, d, and N, then

g2t (id) < ¢®™(id) < ~7 for all n < N?/q

with C' = 22"'%‘”%/((17]‘1/2).

Theorem 2.3 follows from a sequence of lemmas which will be used
further on. The first lemma says that the operator ) associated to ¢ may
be assumed positive after adjusting constants.

LEMMA 2.4. With notation as in Theorem 2.1, let ¢4 = (6;4 + q)/2. Then
Q+ is positive on L?, n(q4) = n(q)/2. and

n 2
19" e < lg% oo = lg™ 113 < 2015 M3 = 211a5™ oo -

Proof: For a symmetric probability ||g?™]|o = ¢(*™)(id). Thus

¢} (id) = 2; Z (2;) qY)(id) > % > (ij) ¢*(id)

3=0 1=0
2n q(Q")(zd)
> 2n)(;d i\
g (i )an > 2 5
The other claims are obvious. o

The following slightly mysterious Lemma is from Coulhon and Saloff-

Coste [CoS-C]. It makes a crucial appearance in the proof of Lemma 2.6
below.

LEMMA 2.5. Let q be a symmetric probability measure on a finite group
G. Suppose Q is positive on L?. Then

(I - @)2Q™ |22 < 2\/—
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Proof: Let fo, f1,..., fig|-1 be an orthonormal basis of eigenvectors for
Q on L?. Let j3; be the corresponding eigenvalue. Given f € L2, write
f=>a;fi so that

I-Q)Qmf=> (1-B)8 aifi .
Thus )
I(I-Q)FQ™flI3=> (1-B:)Bima] .

Now, for m > 1, supgc,<1(1 — x)z?™ < 1/(4m) by calculus. o

The next lemma gives a relation between the rate of decrease of con-
volutions and volume growth. It does not require moderate growth and is
used at the end of this section to give a result for exponential growth.

LEMMA 2.6. Let E be a set of generators of the finite group GG. Let q be a
symmetric probability on G such that Q is positive on L?. Let n = inf{q(s) :
s € E\ {id}}. Then, for all n,m

q(2n+m)(id) <2/V(r(n,m))

where

r(n,m) = (g) " mE g m(id) 1420 (id) .

Proof: For any x € G and z € E

g2+ ™ (z) — g2 (22)] < Y gty e) — Ty az) g™ (y)
Y

< { > g™ty ) - q("+’")(y"1xz)|2}
Yy

e}

(n) 3
q 2 n+m
< g™ llz 77%” { > gt (y) — g )(yw)|2q(w)}

yeG
weEE

< (2/m)* g ™ll2A(T = Q) ™™g )/

3 L (n)|2
=2/ lg™ | - Q)2Q™¢ ™5 < llg' ™13

V2nm

where Lemma 2.5 was used to justify the last inequality.
Let |z| denote the word. length of £ € G with respect to E. Writing z
as a sequence of generators and using ||¢(™||2 = ¢(*™)(id), we get

lg2 ™ (z) — g2+ (id)| < |z|g2™) (id)//2nm .
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Hence, if |z| < r(n,m),
¢ () = g2 ()| < i) 2,
and thus ¢?™*+™(z) > ¢(?"+™)(id)/2. Summing the last inequality over

the set |z| < r(n, m) gives the result. o

Lemma 2.6 sets up a kind of recurrence between the decay of convolu-
tion powers that appear on both sides of the inequality. This is exploited
to give a proof of Theorem 2.3.

Proof of Theorem 2.3: Assume first that () is positive on L2. Set A(n) =
¢™(id). Using V(n) > an for 1 < n < N, Lemma 2.6 yields

A(2n+m) <2V(r(n,m))' < 2/(ar(n,m)d)

2 () e

this being valid for any n,m with r(n,m) < N. From the definitions in

Lemma 2.6, r(n,m) < (Z’Zﬂ)llz. Thus (2.2) is valid for m < 2N?/n and
all n.
Rewriting (2.2), we get

swem<{(2) () ) e

for m < 2N?%/n and all n. Fix no < 4N?/5n. Let n be such that 2" <
ng < 2"*t1. Then ||¢™)|» < A(2"). Using (2.3) repeatedly, halving the
argument each time,

n n-1 n—1 2 :ll 2 % n—1 ﬁ
A(2™) = A(2"' 42 )5{(5) (772"_1) A(2 )}

{0 =) ) () () e

3 1y 0+0° 4. 40m2
2
<J(2 2 oo+ 70T 3070 4 gy07
<3 l3 ;

N

with 8 = d/(1+ d). Now

n—2

n—2
Y g =d(1-6"2), D it =(d+d*)(1-(n—1)""2 4 (n - 2)§"7}) .
i=1

i=1
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Using these. elementary manipulations show

ol+(3d+d*)/2

) £ 2
g™ oo < P EETD for 1< ng<4N?/y.

This result was proved assuming ) is positive. For general ), Lemma 2.4
along with the present calculations shows

2
|Iq(2”)l|oo < 92+(3d+d*)/2

_W for n< N?%/y.

This completes the proof. o

Theorem 2.3 will be used throughout this paper as a basic tool. It is
natural to enquire about groups with exponential growth. The next theorem
gives a result on the decrease of polynomial powers. Unfortunately, we have
been unable to use it to sharpen rates of convergence.

THEOREM 2.7. Let q be a symmetric probability measure on a finite group
G. Let E be a set of generators such that n = inf{q(s),s € E'\ {id}} > 0.
Assume that V(n) > e®” for n < N. Then, we have

¢'™(id) < 2 e"'ﬁ'("cg")% for n < 16coN?/n .
Proof: No matter what the rate of volume growth, for all 1 <m <n < o
¢""(id) < max{2' "% ¢*™(id) , 2/V((ym/8)*)} . (2.4)
To see this, fix m < n. Set A(n) = ¢(™(id), note that if
A(2n 4+ 2im) > A(2n 4+ 2(i — 1)m)/2
for an integer ¢ € [1,n/m], then Lemma 2.6 implies
A(4n) < A(2n + 2im) < 2/V((pm/8)%) .
But if for all integers i € [1,n/m] we have A(2n+2im) < A(2n+2(i—1)m)/2,

then A(4n) < 2'-"/™A(2n). This proves (2.4). Choosing m of order cn?/3,
with ¢ = 2(log 2)% /(c3n)3 proves Theorem 2.7. o
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3. Convergence under Moderate Growth
In this section we prove a slight extension of Theorem 1.2.

THEOREM 3.1. Let G be a finite group with generating set E containing
the identity. Suppose G has (A, d)-moderate growth with respect to E as in
(1.5). Let g be a symmetric probability on G with n = inf{q(s),s € E} > 0.
Then,

lg™) = ulirv. < Be™ for n=(1+ck?/n with ¢>0,

where B = A72%4+3)/4  For a lower bound, assume in addition that q is
supported on E and that v > A229%2 (so the diameter is large with respect
to the constants involved). Then,

(n)

~C

g™ — ullry > Je™ for n=cy?/(289F247%).

This result is useful when there is a sequence of groups with moderate
growth for fixed A,d and a fixed (or slowly growing) set of generators.
Theorem 3.1 then says that, if ¢ does not vary too much on its support, the
walk is close to uniformly distributed after cy? steps when c is large and far
from uniformly distributed if ¢ is small.

Proof of the Upper Bound: Lemma 2.2 shows that the second eigenvalue
of the walk satisfies 3; < 1 —n/v? and that the smallest eigenvalue satisfies

Bigl-1 = —1+2¢(id) > =1+ 2n > -1+ n/¥*.

Thus, 8, < 1—7/7? (note that for this, only g(id) > n/~? is needed). Then,
Lemma 2.1 yields

g+ — ulfhy, < S1gCm id)52" tor any n,m.

By assumption, V(j) > |G|j¢/(4y?), 1< j <. Using this in Theorem
2.3 with m = 42/ gives

(2m)(; . 2424442 [ 1Gl a2 -
q (id) < with C=2°T277% { —q .

¢
(72 /n)e/? Ard
Thus, with n = ¢y? /g

g™+ = u|l%.y, < A2dd+ore2e

Taking square roots yields the desired result. o
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Proof of the Lower Bound: We start with the well known equivalence

2(lg'*) — u = max -U .
llg lr.v. = ||f||°o<1|Q (NI

Thus, for any specific f with || f||e < 1,
g™ —wullrv. > 31Q™(F) - U]

We will choose f to be an eigenfunction for the second eigenvalue 3; suitably
normalized. Namely, let f be such that Qf = 3, f with ||f||. = f(id) =
say. Since U(f) = 0, we get for any j

1 — ullrv. 2 51QW(f)(id)] = 55 - (3.1)

To conclude the argument, a lower bound for 3; is needed. We show
B : 2d+1 42
S >1-— o with B =4 A (3.2)

To see this, consider g(z) = |z|, the distance with respect to the generating
set E. The minimax characterization of eigenvalues gives

1 -5 < E(glg)/ Var(g)

where

E(glg) =% Z(g(:r — g(zy))q(y)u(z) ,
WMQ—QE:%ﬂ D2u(z)uly)

Since ¢ is supported on E, (g(z) — g(zy))? < 1 for q(y) > 0, so &(glg) <
For the variance, write

Var(g) =3 3 (i = j)a(i)n(j) with 7() = u{z : 2] = i} .

0<i,j<y

1
5

Set S ={i:i< 1}, T={i:i>3y/4}. Clearly,

2
Var(g) 2 5 - 7($)x(T)

D[ =

Now

ﬂ&=vwmmm2AQ§f=Arw
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For T, choose z, € G so |z,| = 7. Translating a ball of radius v/4 to z*
shows that
m(T) > A4~¢ .

Combining bounds gives (3.2). Using this in (3.1) shows that for any j

. 1 42d+1A2 J
(7
q —UT,V.Z—(l— ) .
” “ 9 72

The hypothesis v > 42292 insures that the eigenvalue bound is larger than
%. Now use 1 —x > 2% for 0 < x < 1/2 to complete the proof. o

Remarks: 1. In Theorem 3.1 we have assumed that the probability ¢ puts
some mass at the identity to avoid parity problems. This is not necessary.
Diaconis and Saloff-Coste [DS-C2, section 2] describe several other ways to
work with negative eigenvalues.

2. We have used Lemma 2.2 to bound 8, and it may well happen, in
specific cases, that a better bound is known. Thus it is worth noting that
the above proof yields, after minor modifications,

THEOREM 3.2. Let GG be a finite group with generating set . Suppose
G has (A.d)-moderate growth with respect to E as in (1.5). Let q be a
symmetric probability on G with n = inf{q(s),s € E \ {¢d}} > 0. Then,

187 < |lg™ = ullpv < BAP~Y

where B = 2Ud+3)/4 g1/2p~d/4

3. David Aldous (personal communication) has pointed out that one
can use an elegant bound of Varopoulos [V] and Carne [C] to show that
727¢ steps are not enough for moderate growth problems. We observe here
that even less than moderate growth is needed.

ProposIiTION 3.3. Let G be a finite group with E a symmetric set of gen-
erators containing the identity. Suppose that G has diameter -y with respect
to E and that |G| = 3v? for some positive 3 and d. Let g be uniform on E
as in (1.6). Then,

g™ - ullrv. < %g%e—c for n= 72|E|(%dlog’r +¢) with ¢>0,

whereas

la™ = ullr.y > 3(1-28¢7) for n=1"/8(dlog7 +c).



14 P. DIACONIS AND L. SALOFF-COSTE GAFA

Proof: The upper bound follows from the diameter bound on eigenvalues,
Lemma 2.2, and ||¢™ — u||7.v. < %|G|%ﬁf.

For the lower bound, take S = {z:|z|>v/2}. Let B = {x:|z|<vy/2}.
If |B| > %|G|, then by translation |S| > 3|G|. If |B] < 1|G| then also
|S| > 1|G|. Thus, in all cases, u(S) = |S|/|G| > 3. Further, |¢(™ -u|r.v >
lgt(8) — u(S)].

Now, Carne [C] shows that if n(z), P(z,y) is a reversible Markov chain
on a countable state space X, then for all z,y, n,

K

1
TW\? _dz)?/2
P{X,=y/Xo=2a}<2| —=% y)ren
(= uxo=a)<2(7)
with d(z,y) the distance in the graph which has vertex set z and an edge
from z to y if P(z,y) > 0. Specializing to the present situation, this bound
implies that for any n

g™($) <2 eI/ < 9e=T /S
z€S

For n = v?/8(dlog~ + c), use of this bound and u(S) = |S|/|G| > 5 gives

g™ — ullry. 2 3(1 - 28e7) . o

4. First Examples

This section discusses the Heisenberg group, and some other specific exam-
ples where the growth function can be estimated well enough to show that
they have moderate growth.

We will use the following notation several times. Fix a positive integer
N and consider the set of N x N matrices with entries in a ring with unity.
For 1 <i,j £ N we define E; ; to be the N x N matrix with a 1 in position
(¢,7) and O elsewhere.
ExaMPLE 1. THE HEISENBERG GROUP modm: This is the group Us(m)
of 3 x 3 upper triangular matrices with ones on the diagonal and entries
modm. Thus |Us| = m®. Let z(t) = id + tE; 2, y(t) = id + tEq 3, 2(t) =
id + tE; 3 for t € Z,,,. Elementary manipulations show

{m(s)x(t) =z(s+1), y(s)y(t) = y(s +1), z(s)z(t) = z(s + 1) (4.1)
z(s)y(t) = y(t)z(s)z(st) . '

The generating set F in (1.1} is E = {Id, z(1), z(-1),y(1),y(~1)}. The ba-
sic geometric properties of these generators are summarized in the following

lemmma which, together with Theorem 3.1, gives a proof of Theorem 1.1
stated in the introduction.
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LEMMA 4.1. For Us(m) with generators given by (1.1), the diameter, vol-
ume growth, and group order satisfy

3
n 3

m-1<~vy<m+2; V(”)Z'é‘, 1<n<m; |G|<8".

Thus Us(m) has (48. 3)-moderate growth.

Proof: 1t is easy to see that z(t) is in the center of the group. Let z = z(1),
y = y(1). Let w be a word in x and y. Let d(w) be the minimum number
of pairwise adjacent switches required to bring all the z’s to the left of all
the y's. Thus d(zyyzzy) = 4. If a word w has j appearances of y, the
commutation relations (4.1) show

1 5 jk+d
w=1]0 1 k : (4.2)
0 0 1

This easily vields that the diameter of Us(m) in the generators « and y is
smaller than 4m; any word w with m + j appearances of x and
m + k appearances of y results in j in position (1,2) and k in position (2,3).
Transposing the values of x and y allows an arbitrary d. 0 < d < m ~1 to
be achieved. A slightly more careful version of this argument shows that
the diameter of Us(m) in the generators (1.1) satisfiesm — 1 <y <m+ 2.

For the volume growth, just using = and y as generators and products
with ¢ appearances of r and b appearances of y give an interval of a - b
distinct values of the (1,3) coordinate provided a,b > 1 and ab < m. This
implies

Vin) > %n‘l for1<n<+m

V(n) > mn? for y/m <n<m.

These clearly imply V(n) > n3/6 for 0 < n < m. o

Remark: Maria Zack [Z] suggested random walk on the Heisenberg group
as a model for cascaded random number generators. Most widely used
random number generators are based on a recurrence of the form X, =
aX,_1 4+ b (modp) for fixed a,b. Chung, Diaconis and Graham [ChDG]
studied problems where a and b are allowed to vary randomly. Zack [Z]
suggested the following scenario: Let (o, 3,,7.) be independent random
variables with value in Z3,. Define Xg =0, X411 = X, + any; and Yy = 0,
Yu41 =Y, + B.41 (modp). These are usual random walks. Define Z, = 0,
Znyr = Zn + Brs1Xn + Yo (modp). Clearly, the Z,; process proceeds
like the (1,3) coordinate of a random walk on the Heisenberg group.
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Theorem 1.1 shows that the walk on Us(p) takes order p? steps to get
random for (au,, B3y ) taking values (£1,0), (0,£1), (0,0) at random, v, = 0.
The argument shows that the same conclusion holds for o, 3, v, “small”
random variables, e.g. uniform on [—k, k] with fixed k. On the other hand,
if &, and (3, are chosen so that the random walks they generate in the (1,2)
and (2,3) positions tend to uniform at a faster rate, the walk on Us(p) gets
random at this faster rate.

The walk of interest in Zack’s scenario is not the walk on Us(p) but
rather the process generated by the (1,3) coordinate. This walk gets ran-
dom somewhat faster: for the generators (1.1), an argument based on the
Martingale central limit theorem shows that order p steps are necessary and
suffice to achieve uniformity in the (1,3) coordinate.

EXAMPLE 2. ANOTHER NON ABELIAN GROUP OF ORDER m®: For pa
prime, it is a classical theorem that there are only two non-isomorphic non
Abelian groups of order p3. When p = 2, these are the dihedral group D,
and the quaternion group. For odd p one of these groups of order p® is the
Heisenberg group Us(p). The other will be denoted here by Ms(p) ([Su2,
p. 54]) uses the notation M (p?)). This group may be described as follows.
Let Z, act on Z,2 by j-k = (1+jp)k (modp?). Here Z, and Z,,: are written
as additive groups and the multiplication takes place in the ring Z,.. This
gives a semi-direct product description of M3(p) as

{(a,b);a € Z,, b€ Z,2} withlaw (a,b)(c,d)=(a+c,c-b+d).

In particular, (a,b)™! = (—a,—(1 + ap)b). In fact, this semi-direct product
construction makes sense even if p = m is not a prime and can be used
as a definition of M3(m) for any positive integer m. With this notation, a
natural set of generators of M3(m) is given by

E = {(0,0),(1,0),(-1,0),(0,1),(0,-1)}. (4.3)
It results in a walk that goes from (z,y) € M3(m) to

(z,y), (z+1,9), (z-1,y), (z,(l-l—mx)—{—y), (xa-(1+mx)+y)

each with probability 1/5. The following lemma, coupled with Theorem 2.1
shows that Af3(m) has cubic growth and that the generators in (4.3) give a
random walk that gets random after order m? steps.

LEMMA 4.2. For the group M3(m) with generating set (4.3),

3
m-2<y<4m; V()2 %, 1Sn<m; [Gl<8) .
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Proof: Observe that

(L,0)(z,y)=(z+1,9) , (z,9)(1,0) = (z + 1, (1 + m)y)
n(0,1)(z,y) = (2, (1 + mz) +y) . (2,9)(0,1) = (z,.y+ 1) .

Thus (1,0)(0,1) = (1,1) and (1,1)) = (j,jm + j). To write (a,b), write
b=bym+by with 0 < b < m—1. Then (a.b) = (1,0)47%(1,1)%1(0,1)%2 ",
This shows v < 4m. This formula for (a,b) also shows that V(n) > n?/6
for 1 € n < m. The final result follows from |G| = m?. o

EXAMPLE 3. UPPER TRIANGULAR MATRICES: Let Uy(m) be the group
of N x N upper triangular matrices with ones on the diagonal and entries

modm. Thus |Uy(m)] = m(l’:) For generators, take the matrices id +
E;iy1.1 <4< N —1. This generalizes the Heisenberg group Uz(m). An
argument similar to the proof of Lemma 4.1 can be used to show

LEMMA 4.3. Let Un(m) be the unipotent upper-triangular matrices. Let
E={id,id+E4; 1<i<N-1}. (4.4)
Then the diameter, volume growth, and order satisfy
NIMSYSCUNIm: Vin)2eas(N)nl 2] 1<n<y: [GI<Co(N (3

This result shows that with N fixed and m large. the group Uy (m) has
moderate growth with d = (g’ ) It follows that the walk with generating
set (4.4) requires order m? steps to get random.

Remarks: 1. This walk is studied in recent work of Stong [St]. He deter-
mined that the second eigenvalue satisfies

a

1~
m2N

A .
m2N Shsl-
with a, A independent of m and N. For fixed N and m large, this eigenvalue
bound and Lemma 2.1 show that order m?logm steps suffice. For fixed
m and N large, Stong’s bounds show that order N? steps are enough to
ensure convergence. It is easy to show that at least N? steps are needed
here by considering the last column of the random walk. The volume growth
estimates are virtually useless for this fixed m large N case.

2. For prime p, Ellenberg [E] gives sharp bounds for the diameter of
Un(p) with the generators (4.4). Let f(N,p) = 2 Np+6N?logp. He shows
there are constants Ny, po, ¢, C, such that

Cf(N’p)S7SCf(N7p) for N_>.NO ’ppo-
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His proofs are constructive and he shows Ny = 10, pp = 10%, ¢ = 1/60,
C' = 32. For fixed N, these bounds are of the same order as Theorem 4.4.

3. The walk on M3(m) takes order m? steps to get random, so the
274 coordinate process (which takes values in a set of size m?) gets ran-
dom at a rate faster than a usual random walk. It is not hard to see that
it takes m? steps to get random. Essentially the same phenomena occurs
in Us(m). In general, it appears that randomness comes in “waves”. For
example, on Un(m), for N fixed and m large, the walk generated by (4.4)
has the following features. Elements just above the diagonal get random
after m? steps. Elements two above the diagonal get random after m steps.
Elements k above the diagonal get random after m?/¥ steps. This refers to
the coordinates in a particular representation. Philip Hall [Ha) introduced
a kind of coordinate system for nilpotent groups with his commutator pro-
cess. This writes a group element as a product of generators, then first
commutators, then second commutators, and so on. It would be marvellous
if these coordinates had the behavior of “probability waves” as they seem
to for Un(m).

5. The Doubling Property and Nilpotent Groups

A. The Doubling Property. Let G be a finite group and E a symmetric
set of generators for G which contains the identity. We say that G, F satisfies
the doubling property if for some A > 1

V(1) <A and V(2n) < AV(n), n=0,1,2,---. (5.1)
Iterating this inequality yields
LEMMA 5.1. Assume that G, E satisfies the doubling property (5.1). Then,
V(n) log A
V(m) — log2
In particular, G, E has (A, d)-moderate growth.

d
A(ﬁ) 0<m<n<oo, with d= (5.2)
m
Proof: It suffices to write
g Me...<cav (™ k
L(n)gAV(2) <...<A V(Qk) < AFV(m)
provided 575 < m < 5. Taking n = v in (5.2) gives

Vim) _ 1 (m log A
—_— > | — d= .
V(i) T A\~ log 2
So the doubling property implies moderate growth. o

d
) 1<m<7y, for
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Remarks: 1. The affine groups and other extensions discussed in section 7
give examples where the doubling property fails to hold uniformly but mod-
erate growth holds with useful constants.

2. Taking m =1 in (5.2) gives

log A

V(n) < A2n? 1<n<oo, with d=10g2.

This is a form of polynomial growth which has been extensively studied
in the theory of discrete groups. We discuss it below in section 6. There,
Gromov’s theorem is used to show that the doubling property is, in a sense,
a property of the group which depends only on the size of the generating
set.

3. For present purposes, the doubling property (through Lemma 5.1)
shows that we are in the domain of application of Theorem 3.1. In fact,
if G, E satisfies the doubling property (5.1), Theorem 2.3 can be used to
prove

¢™(@id) < CV(yn)~! forall n

with a constant C' depending only on A and 5. This can be refined. The
arguments of Hebisch and Saloff-Coste [HeS-C] show that for g as in The-
orem 2.3 supported on FE, there are positive constants Cy,Cs, ¢y, ¢, such
that

2

¢"(z) < C1V(vn)Lexp (—01 %) for all n,z (5.3)
2

¢ (x) > 2V (v/n) Lexp (—C’z I—QL;J—) for |z|<n. (5.4)

Here, |z| is the word length and the c;,C;’s depend only on n and the
doubling constant A.

Note that the volume growth function V(n) can be quite erratic. The
analogue of (5.3)-(5.4) with V(y/n) replaced by n%/? for some d simply fails.
Also, (5.3)~(5.4) do not hold, in general, for group of moderate growth.

B. Nilpotent Groups. The main result of this section shows that the
doubling property holds for the class of nilpotent groups with A only de-
pending on the number of generators and the degree of nilpotency.

Let G be a finite group. Define subgroups Z;(G), i = 0,1,2,--- as
follows: Zy = {id}, Z, = center of G, and Z; is the subgroup of G cor-
responding to the center of G/Z;_; in the correspondence theorem. The

group G is nilpotent if G = Z, for some £. The smallest such ¢ is called the
class of G.
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Abelian groups are nilpotent of class 1. The Heisenberg group Us(m) is
nilpotent of class 2. Any p-group is nilpotent and any nilpotent group is the
direct product of its Sylow p-groups. The affine groups A, of section 7 are
not nilpotent because they have trivial centers for p > 2. An introduction
to nilpotent groups is given by Rotman [Ro]. Suzuki [Su2] has a thorough
treatment and the survey article by Ph. Hall [Ha] is definitive.

THEOREM 5.2. Let G be a nilpotent group of class . Let E be a sym-
metric set of generators for G. Then (G, E) has the doubling property (5.1)

with A = A(|E|.¢) depending only on the number of generators and the
class £ of G.

Proof: Let G be the free nilpotent group on |E| generators of class £. This
is an infinite discrete group formed as the quotient of a free group F on |E|
generators by the normal subgroup I',. Here I'; is the commutator subgroup
[F,F] and T'; = [F,T;_1]. The group G has the property that any class ¢
nilpotent group on |E| generators is a homomorphic image of G. M. Hall
[H] or Magnus et al [MKSo] has further details.

Bass [B] showed that any finitely generated nilpotent group has its
volume growth function bounded above and below by polynomials of the
same degree. It follows from his work that G has volume growth satisfying

P < V) <en® forall n>0

with ¢ > 0 and D = Y[, ifi(|E|), with fi(z) = 3 3, p(d)z*/? for p(d)
the Mobius function of elementary number theory.

This certainly shows that G, with its canonical set of |E| generators
satisfies the doubling property (5.1) with A = ¢?2¢. To complete the proof,
we show that the doubling property passes to quotients of G. Guivarch
[Gu, Lemma 1.1], specialized to the present situation, implies that for any
subgroup H of G, and A, B finite sets in G, Y a finite subset of G/H,

|AllBY] < |BAJIA7Y]. (5.5)

Take Y = id, A = B(n), B = B(2n) balls in G of the indicated diameter.
Then (5.5) specializes to

Ve(n)Vey g (2n) < Ve(B3n)Vg, g(n) -

Since Vi5(3n) < Vi(4n) < A2Vé(n) and G/H = G, the result follows. o
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CoOROLLARY 5.3. For any positive integers ¢ and e, there exist two positive
constants B = B({,e) and C = C({,e) such that for any finite group G
nilpotent of class { and any symmetric set of generators ECGwithid€e E
and |E| = e, the random walk generated by ¢(s) = IEI els) satisfies

“q(n) —ullry. < Be™¢ if n=(1+ c)fyz|E| with ¢> 0,

and
”q(n) —ullrv. > %e—c for n=cy*/C.

C. p-groups and Frattini walks. Let p be a prime. A p-group is a
group of order a power of p. These are nilpotent groups and any group
of order p® has class at most a — 1 ([H, p. 422]) and is generated by at
most a generators. Thus, Theorem 5.2 and Corollary 5.3 applies to such
groups uniformly as p varies. Any group of order p? is Abelian. When p
is odd, the two non Abelian groups of order p® are Us(p) and M;(p) as
discussed in section 4. The groups of order p*, p® have been classified. If
f(a,p) denotes the number of isomorphism classes of groups of order p®,
then log f(a,p) ~ %a® for large a and there are bounds on f(a,p) uniform
in p. See [Su2, p. 85 95]

For p-groups, the minimal sets of generators have some structure. All
minimal generating sets have the same number of elements. These are
described by the Frattini subgroup. Recall that, for a group G of order
p”, the Frattini subgroup ® = ®(G) is defined as the intersection of all
subgroups of order p*~!. As shown below, it is often easy to identify. The
Burnside basis theorem says that G/® is an elementary Abelian p-group
which may be regarded as a vector space over Z,. The dimension d of
this vector space is the minimal number of generators of G and any set
Z1,Z2,...24 of coset representatives such that z,®,2.®,...,24® form a
basis of G/® give a generating set of G. Conversely, if 1, o, ..., zq generate
G then z,®,...24®, are a basis of G/®. Background, details, and examples
may be found in [Sul, chapter 2, section 2; Su2, chapter 4, section 4]. We
call a walk supported on a minimal set of generators a Frattini walk.

The Frattini subgroup of the Heisenberg group Us(p) is its center {id+
tE13: t € Z,} and the walk considered in Theorem 1.1 is a Frattini walk.

For M3(p) = Z, X Z,2 (see Example 2, section 4) the Frattini subgroup
18 ® = {(0,jp): 0<j<p-—1}. Again, the walk on M3(p) considered in
section 4 is a Frattini walk.

Further examples are given by Un(p) and its subgroups. Namely, let
'={@j):1<i<j< N}. For (i,5) € T, let z;;(s) = id + sE; ;.
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Elementary manipulations show that

zij(s)zi;(t) = zij(s + 1)
zij(s)xkl(t) = a:kl(t)a:,rj(s) {5.6)
xij(s)l'jk(t) = -Z'jk(t)xij(s)l'ik(St) .

Call a subset A C I' closed if (i,7) € A ,(j,k) € A then (i, k) € A. The
relations (5.6) show that the matrices in Uy(p) with non-zero entries only
in a closed set of positions (and zero’s in the remaining positions) form a
subgroup Ua(p). This subgroup is generated by {z;;(+1) : (i,j) € A}. The
following lemma identifies the Frattini subgroup of Ua(p).

LEMMA 5.4. Let A C T be a closed set of indices. Let AY = {(i,k) : for
some j,(i,j) and (j, k) € A}. Then ®(U4(p)) = Ua, (p).

Proof: The commutation relations (5.6) imply that Ua+ is normal in Ug.
Further U4/Uy+ is clearly generated by {z;;U+}. These generators com-
mute, and each has order p, so Us/U 4+ is an elementary Abelian p-group.
On the other hand, the commutation relations imply Ua+ C [Ua, U] (and
in fact Ug+ = [Ua,U4)). This implies that U4+ is the smallest normal sub-
group with elementary Abelian quotient. This characterizes ® for p-groups.

[w}

For a fixed N and A, let
E = {id, z;j(1), xij(—=1); (¢,5) € A\ Ay} (5.7)

The argument for Lemma 4.1 gives

LEMMA 5.5. Let A be a closed set of indices. The set E of (5.7) is a
generating set for Ua(p) which satisfies

a(Np<y<Ci(N)p, V(n)>e(N)nhl | |G| < Co(N)yA.

We thus see that any of the groups Uas has (C3(N),|A])-moderate
growth. It follows that the random walk takes order p? steps to achieve
randomness if NV is bounded and p is large.

For instance, take

Let A = {(1,2),(1,3)---(1,N),(2,N),(3,N)---(N = 1,N)} .

Then U4 has non-zero entries in the first row and last column only. This
example is sometimes cilled the N-dimensional Heisenberg group. Here
At = {(1,N)}. This example is not hard to analyze for large N; it is
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essentially random walk on Zf,(N—l) . For p fixed and N large, order N log N
steps are necessary and suffice to achieve randomness.
As a second example, let

A={(i,j):1<a,j>b} for 1<a<b< N fixed

Then Uy is elementary Abelian, A1 is empty. Diaconis and Saloff-Coste
[DS-C2] showed that order p?dlogd steps are necessary and suffice with
d=a(N-b+1).

As a third example, take A = {(4,5): 1 <i<j< N with j >i+2}.
Then U4 is the Frattini subgroup of Uy. Its Frattini subgroup is U4+ with
At ={(i,j): 1 <i<j < Nwithj>i+4}. The quotient Us/Uy+ has
order p?V~%. A minimal set of generators consists of the matrices with a
+1 in one of the two stripes just above the diagonal.

Remarks: 1. The above considerations carry over to Chevalley groups. The
analogue of Uy(p) is the subgroup generated by the positive roots. The
analogues of U4 are groups generated by closed sets of positive roots. All
of these groups are p-groups with explicit Frattini subgroups and associated
walks which can be successfully analyzed when the rank N is bounded and
p is large.

2. These examples allow us to present some open problems: to what
extent does the choice of generators effect the rate of convergence? To
focus we recall that for the symmetric group, even restricting attention
to generating sets of (n — 1) transpositions, the rate of convergence varies
from order nlogn (for generators (12), (13),...,(1,n)) to order n®logn (for
generators (1,2),(2,3),...,(n —1,n)). See [DS-C2] for these results.

For the Heisenberg group Us(p) it can be shown that any automorphism
of Us /® lifts to an automorphism of Uz. Thus, all minimal sets of generators
are equivalent. For M3(p) this is no longer true. We do not know the extent
to which the choice of generators can effect things for M3(p). However,
Corollary 5.3 show that things cannot vary too widely.

Experience with the circle and symmetric group suggests that if the
number of generators is fixed, most sets of generators converge at the same
rate. It seems like a difficult but tantalizing problem to make this precise.

3. One final rather specific question. The Burnside problem asks
whether or not a finitely generated group whose elements are of order r
is finite. This is known to be false for sufficiently large r. However, it is
true for r = 2,3,4,6. For such r and fixed m > 1, there is a largest finite
group B(r,m) with the property that B(r, m) is generated by m generators
and has s” = id for all s. When r is a prime power, we are in the setting
of the present section and enough may be known to make progress on the
problem of a random walk supported on a generating set.
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D. Dihedral and generalized quaternion groups. For m = 2°
the dihedral group D,, is a 2-group of class a. The constants in The-
orem 5.2 and Corollary 5.3 grow exponentially in the class so that the
bounds given are useless here. However, for any m, D,, with any set of
2 generators has linear growth, so order m? steps are enough. If D,
is represented by Zy x Z,, with Z, acting on Z,, by  — —z, the walk
generated by F = {(0,0),(1,0),(0,1),(0,—1)} can be analyzed by Fourier
Analysis to get sharp rates of convergence. A second generating set is
E' = {(0,0),(1,0), (0, 251), (0,— =) }. One can show that while both
walks require order m* steps, the second walk is faster by a factor of 2.

Entirely similar considerations hold for @,,, the group of generalized
quaternions. Here, if w is a primitive 2m'® root of 1, let

=[5 o] v=[h]

1 1

Then z and y satisfy 2™ = y?,y"lzy = 27!, and z,y generate a group of
order 4m. When m = 2 this is the quaternion group. When m = 22, it is
a 2-group of class a. Again, Fourier analysis or the moderate growth ideas
of section 2 can be used to prove that for E = {id,z,z7!,y,y "'}, order m?
steps are necessary and suffice for any m.

When m is not a power of 2, neither D,, nor @, is nilpotent.

6. Polynomial Growth and Gromov’s Theorem

Let G be a finitely generated group (possibly infinite). Let E be a symmetric
set of generators containing the identity. We say that the Cayley graph G, E
has (A, d)-polynomial growth if

Vin)<An® n=1,2,---. (6.1)

For future reference we note that if (G, E) has (A, d)-polynomial growth
then |E| < A.

The main result of this section shows that for finite groups, polynomial
growth implies the doubling property which (cf. section 5) implies moderate
growth. Thus random walk on such groups reach stationarity in order 2
steps. In the process, we also show that small extensions of groups of
polynomial growth have polynomial growth. The main tool is a celebrated
theorem of M. Gromov [Gr]. This asserts that a group G of polynomial
growth is a finite extension of a nilpotent group (i.e. G contains a nilpotent
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group of finite index). Using results of Bass described in Section 5, one can
conclude that there exist constants C, D such that

C P SV(n)SCnD, n=1,2,---.

For infinite groups of polynomial growth this gives a precise and precious
description of the volume growth. The book of Varopoulos et al. [VS-CCol]
and the article of Hebisch and Saloff-Coste [HeS-C]| give applications to
random walks.

For finite groups, these bounds contain no information since D = 0
works for an appropriate C. However, Gromov has given a version of his
theorem which does yield useful information for finite groups having (A, d)-
polynomial growth.

THEOREM 6.1 [Gromov]. Given A,d > 0, thereisa C = C(A,d) > 0 such
that any finitely generated group G of (A, d)-polynomial growth contains a
nilpotent subgroup N with

[G:N)]<C and class(N)<C.

This result will be applied in the following sections. At present the
computation of C' as a function of A and d is not effective. This means that
the results based on Gromov’s theorem have a rather theoretical flavour.

A. Subgroups of small index. Let H be a subgroup of a finite group G.
In this section we start with a given set of generators for G and construct
generators for H such that the diameter and volume growth are comparable.
This construction is applied in section B below in cases where H is nilpotent.
Then. H has the doubling property by Lemma 5.1 and so G has the doubling
property by comparability.

We begin with a preliminary lemma. The main result is Proposition 6.3
below,

LEMMA 6.3. Let R = R™! be a generating set of G and let H be a subgroup
of G. Assume that Q C G is such that Q' = Q, id € Q and G = HQ.
Then, T = QRO N H generates H and the diameters g of (G,R) and vy
of (H.T) satisfy vg < v¢.

Proof (adapted from [Sul, p. 180]): Let h € H and write
h=r...Ty

with r; € R. Set vy = id, v; = r...7;. By hypothesis there exist h; € H,
wi € {2 such that v; = h;w;. Moreover, we can choose wp = wy = id. Thus,
we have

-1 -1 —
h = woriwy wirswy . ..wn_lrnwnl =wi...wy,
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with ) ) ) )
w; = wi—riw; =hir oo oriarie] ooy by

=h h € HNQRQ =T
Thus, T generates H and vy < v6. o

It seems difficult to compare the growth of (G, R) and (H,T) without
further hypotheses.

PROPOSITION 6.3. Let G be a group. Assume that E = E~! is a finite
symmetric set of generators containing the identity. Let H be a subgroup
of G such that [G : H] = k. Then, there is an integer 1 < v < k such that
G = HEY and £ = E® N H generates H. Moreover, the diameters and
growth functions of (G, E) and (H,X) satisfy

vo <v6; Ve(n) <Ve@Buvn), n=1,2,... (6.2)
Y6 <2k +1D)Bvyg +1); Vo(vn) <|S|"Vy(n), n=1,2,.... (6.3)

Proof: First, we claim that G = HE*. To see this, consider the quotient
space X = {Hg : g € G}. The graph (G, E) induces a graph structure on
X with edge set {(Hg,Hge): g € G,e € E}. This graph is connected and
has diameter smaller or equal to k = |X|. This shows that E* contains a
set of coset representatives. Thus there is an integer 1 < v < k such that
G = HE”. We can now apply Lemma 2 with R = = E¥. This shows
that ¥ = E3 N H generates H with vy < [yg/v]. Moreover, &* C E3"
shows that Vg (n) < V(3vn). This proves (6.2).

In order to prove the diameter bound in (6.3), write yg = 2a(3vyy +1)
for some o > 0. Then, we can find at least |a| disjoint balls of radius
3vyy in (G, E). But, each of these balls has volume at least |H| since
H = X C E®74_ Thus, |a]|H| < |G]. This shows that @ < k + 1 and
thus v¢ < 2(k + 1)(3vyw +1).

Finally, to prove the volume bound in (6.3), we claim that E¥(*+1) ¢
Y"EY. This easily follows by induction from E?” C TEY. But, for r,7’ €
R = E¥, there exist t € R, h € H-such that rr’ = ht because G = HR.
Hence, rr't™! € E3%*NH = T and rr’ = rr't7*t € £8Y. This ends the proof
of Proposition 6.3.

=]

B. Examples. Simple random walk on the “circle” Z,, is well under-
stood. Order m? steps are necessary and suffice for stationarity. We begin
by studying all extensions of Z,, of degree 2. Even here there are some sur-
prises: simple random walk so extended can get random in order m steps.
We start by delineating all extensions of degree 2. Let D,, be the dihedral
group. This can be constructed by letting Z, act on Z,, by z — —z.
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PROPOSITION 6.4. Let m = p{' ...p}"' be a product of distinct odd prime
powers. There are 2! non-isomorphic extensions of degree 2 of I,,. Each
one of them is isomorphic to a direct product D,,, X Z,,, where m; is a
product of a subset of {p{*,...,p/'} and my = m/m,.

Proof: Let G be an extension of degree 2 of Z,,,. Then G = Z; X Z,,, by the
Schur-Zassenhaus theorem. Thus, G is specified once we specify an action
of Z» on Z,,; that is, an automorphism of Z,, of order 2. An automorphism
is determined by the image of 1 in Z,, and must be of the form j — bj for
be Z,, with b2 = 1. Write b = (by,...,b;) with b; € Z 3, using the Chinese
remainder theorem. Thus b; = £1 and any choice is possible. Different
choices lead to non-isomorphic extensions. Finally, fix a b and so an action.
If my is the product of prime powers where b; = —1, then G =2 D,,,, X Z,,,.
a
For instance, if m = 15, there are 4 choices for b of order 2: {1,4, 11, 14}.
The 4 extensions are Zs X Z 15, D15, D3 xZ5, D5 xZ5. Even m can be handled
by the same techniques. The extensions of degree 2 of cyclic groups of size
2F are classified in [Su2, Theorem 4.1, p. 54].

THEOREM 6.5. Let m be an odd integer. Let G = ZoXZ,, be an extension
of degree 2 of Z,,, with generating set

E = {(01 0)* (150)5 (O’ 1)(Oa _1)}'

Let my,ma be the odd integers given by Proposition 6.2 such that G =
Dy, x Zp,, and set m, = max{m;,mo}. Then, (G, E) has diameter of
order m, and satisfies the doubling property uniformly in m. Thus, order
m? steps are necessary and suffice for the associated random walk to be
close to equilibrium.

Proof: The isomorphism Zy X Z,, = D,,, X Z,,, can be taken of the form

(x, y) — ((z.y1),¥2)

with y; = y (modm;), ¢ = 1,2. Under this map the generating set E
becomes

E = {((0’0)7 0)’ ((1’0)’0)’ ((0» 1)’ 1)’ (O’ _1)’ _1)}'

It is an easy matter to see that E® contains the elements ((0,%1),0) and
((0,0),%1) and to deduce that (G, E) has diameter of order m,.

We now show that all the graphs (G, E) in Theorem 6.5 have the dou-
bling property (uniformly). By Proposition 6.3, this boils down to the fact
that the cyclic groups Z,, have the doubling property uniformly for any
possible choice of at most 64 generators (here, 64 is a crude estimate for the
size of E® NZ,,). This was proved in section 5. o
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Remark: As the action of Z on Z,, varies, m, varies in [\/m, m] and essen-
tially any values in this interval can be obtained.

It seems like a natural project to try to understand better the extensions
of Z,, by Z,, for fixed r. Namely, let G = Gy = Z, X¢ Z,,, for some action
6, and fix

E = {(0,0),(0,1),(0,-1),(1,0),(~1,0)} (6.4)

as generating set. Proposition 6.3 and further elementary considerations
show that Gy, E has (A, d)-moderate growth for some constant 4 = A(r)
and d = d(r) < r, uniformly in m and 8. It follows that the corresponding
random walk is approximately uniformly distributed after order ? steps.
This, however, does not tell us what the diameter v is in terms of r, m, 6.
Moreover, a precise study of the volume growth would be of interest.

We will not pursue this here in complete generality but we now describe
two examples with r = 3 to illustrate further what is going on.

THEOREM 6.6. Let m =k>—lorm=k>+k+1withk=2,3,.... For
suchm and i € 23, j € L, 6;(5) = k'j (modm) defines an action of Z3 on
Z,,. Let G =23 x¢ Z,, with generating set E at (6.4).
1. If m = k® — 1, the Cayley graph G, E has diameter of order k = m!/3
and cubic growth.
2. If instead m = k? + k+ 1, the Cayley graph G, E has diameter of order
k = m'/? and quadratic growth.

Proof: For (z,y) € G we have
(2.9)(x" ) = (z + 2 Ky +),
and thus
(0,y)(z,0)(0,-y) = (0,k%y) for z=0,1,2, yeZ,. (6.5)

In case 1 where m = k% — 1, we can write any 0 < y < m —1 as
y = a; + ask + azk? with 0 < @; < k — 1. Using (6.5), it follows that
the diameter v satisfies v < 3(k 4 1). Also, elementary considerations give
v > (k —1)/2. A similar argument shows that G, E has cubic growth.

For case 2 where m = k? + k+ 1, we can write any 0 <y < m — 1 as
y = a1 +agk with 0 < a; < k+ 1. Using (6.5) again, we get %(k -1)<y<
2(k +1). Similar further arguments show that the growth is quadratic in
this case, o

Here is another class of examples which seems worth making explicit.
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THEOREM 6.7. Fix A > 0. Let G be a group of order mp"™ where p is a
prime and (m,p) = 1. Also, let E be a symmetric set of generators of G
containing the identity. Then, there exists a constant C = C(A) such that
the Cayley graph (G, E) has the C-doubling property provided that

m<A, n<A and |E|<A.

Thus, if the Cayley graph (G, E) satisfies the above hypotheses and has
diameter «, order v steps are necessary and suffice for the simple random
walk on (G, E) to be close to uniform.

Proof: Let N be a p-Sylow subgroup of G. It has order p™. Thus, N is a
nilpotent group of class cl(IV) < n < A; see section 5.C. By Proposition 6.3,
the volume growth of (G, E) is comparable to the volume growth of (IV, ¥)
where £ = E®™ N N. Since ¥ has at most |E*™ < A34 and N is nilpotent
of class at most A, we know that (N, X) is C(A)-doubling for some constant
C(A). This clearly yields the desired result. o
Remark: The constant C(A) in Theorem 6.7 can be made explicit in prin-
ciple. It is probably of the type AA"

C. Groups of polynomial growth. We now present some theoretical
consequences of Proposition 6.3 and Gromov’s theorem.

THEOREM 6.8. Let (G, E) be a Cayley graph of (A, d)-polynomial growth
where E is a symmetric set of generators containing the identity. Let v be
the diameter. There exist constants C; = C;(A,d), 1 < i < 5 such that:

1. The graph (G, E) has the C1-doubling property.

2. Any probability q such that n = inf,cp{q(s)} > 0 satisfies

g™ — ullrv < Cee™ for n=(14c)y?/n with ¢>0.
3. If, moreover, q is supported in E and v is large enough, we have
g™ = ul|ry > le7® for n=cy’/C;.

4. Let E be another symmetric set of generators such that |E| < A. Then,
(G,E) is Cs-doubling. It follows that there exist A’ = A'(A,d) and
d' = d'(A,d) such that (G, E) has (4',d')-polynomial growth. This
also implies that the diameters v, ¥ satisfies

Cs'logy <log7 < Cslogy .
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Proof: The first assertion follows from Proposition 6.3 and Gromov’s the-
orem as in the proof of Theorem 6.7. Assertions 2 and 3 then follows from
section 5.A. The last statement about diameters follows from

y<IGl< 4y, <Gl <A . o

Remark: It would be nice to have a proof of this theorem that yields explicit
constants. This could be achieved either by getting explicit constants in
Gromov’s Theorem 6.1 or by avoiding the use of Gromov’s result in the proof
of Theorem 6.8. However, proving that a group having (A, d)-polynomial
growth satisfies the Cy-doubling property without using Gromov’s theorem
seemns to be a serious challenge!

7. Semi-direct Products and Normal Extensions

This section treats the affine group modp and other extensions of groups
of moderate growth. These often do not have polynomial growth but the
moderate growth theory applies.

A. The affine group. Let p be an odd prime. Let A, be the “az + b”
group (modp). This is the group of pairs (a,b) with b € Z,, a € Z}, and

(a,b)(a’,b') = (ad’,d'b+ V');, id=(1,0)

and thus (a,b)”* = (a7?, —a™'b). Random walks on A, arise in the study
of random number generators as explained in [ChDG]. They have also been
studied by Hildebrand [Hi] as discussed below.

Let a be a generator of Z;, let 3 be any non-zero element of Z,. Con-
sider

E ={(1,0), (a,0), («71,0), (1,8), (1,-B)} . (7.1)

The diameter of Z, with 3 as generator is (p — 1)/2. The diameter of Z}
with « as generator is (p — 1)/2. It follows that the diameter v of A, is at
most p (and at least (p—1)/2). It is clear that V(n) > n? for 1 < n < p and
that |A,| < v2. It follows that A, has moderate growth with A =1, d = 2.
From this, Theorem 3.2 shows that order p? steps are necessary and suffice
to drive the variation distance to zero.

THEOREM 7.1. For random walk on A, with generating set given by (7.1),
there are universal constants a,a’,b,b’ > 0 such that

d'e”VHP < )¢ — |1y, < ae”k/P"
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Remarks: 1. Diaconis [D, chapter 3] studied this problem using the char-
acter theory of A,. The analysis only managed to show that order p?logp
steps suffice. Using highly original methods, Hildebrand [Hi] showed that
the second coordinate of walks generated by a set like (7.1) get random
extremely rapidly (order (logp)? steps). The first coordinate is performing
simple random walk and so takes p? steps. A separate study of the second
coordinate does not seem possible with the technique of this paper.

2. For general odd m the group A,, is defined as Z}, x Z,,. The
minimum number of generators depends on the prime decomposition of
m. If m = pi'p3?---p;® as a product of distinct odd prime powers then
Z;, = U(pi)U(ps?) - U(pp*) with U(p®) = Z(p® — p*™') (see e.g. IR,
p. 46].) This group is generated by { generators (and this is the minimum
since Z¥, has Z% as a homomorphic image). With a fixed number ¢ of
generators, these groups have moderate growth with d = ¢ for an explicit
constant A as m varies. It follows that m? steps are necessary and suffice
to reach uniformity (for bounded ¢). The problem is open for situations like
m = pip2 - - - pe, the product of the first £ primes, as ¢ varies.

3. Let p be an odd prime. Suppose r divides p—1. Then Z7 is a cyclic
group of order p—1 and so contains a cyclic group of order r. The associated
walk on Z, X Z, can be studied by the methods of section 6 if r is “small”
(e.g. r = 2 giving a dihedral group) or by the method of this section if r
is “large” (e.g. r = (p — 1)/2). For other values of r (e.g. r ~ logp or
v/P) we do not know how to use present techniques to get the right answer.
Perhaps, Hildebrand’s method can be used to show that the walk on the
second coordinate requires order (logp)? steps whenever r > logp. The
walk on the first coordinate always requires order r? steps.

B. Normal Extensions. We now examine various ways of putting to-
gether two groups G and K having moderate growth. A succinct, readable
account of normal group extensions appears in [H, chapter 15]. One must
specify an action of G on K here denoted g - k. Further, a ‘factor set’ must
be specified. This gives, for g,¢’ € G an element (g, g’} € K which satisfies

g-(9' k) ={9,9') (99" - k){9.9")
and
(99',9")(9" - (9,9")) = {9,9'9" Mg, 9"} -
From these ingredients, an extension L of K by G can be constructed:

L={(g,k),g€G,he K}

with product
(9, k)9, k") = (99", {9, 9') (g - K)K') .
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The set {(id,h) : h € K} is isomorphic to K which is normal in L with
L/K = G. Further, all normal extensions arise from this construction.

If the factor set is trivial, {(g,g’) = id, the extension is called a semi-
direct product. The affine group A, is given by this construction. The
quaternions are a non trivial extension of Z4 by Z,.

Suppose Eg and Ejy are symmetric sets of generators of G and L.
Identify these with subsets of L as {(g,id) : ¢ € Eg}, {(id,k); h € Ex}.
The following theorem gives a sufficient condition for all extensions to have
moderate growth. It is followed by examples and a counter example showing
how things can change if its condition is violated.

THEOREM 7.2. Suppose G, Eg and K, Ex have diameters v, vyi with
i < Oy for some > 1. If G and K have moderate growth with constants
Ag,dg and Ay, dy then any extension L with generating set Ej = EqUFEy
has diameter vy, satisfying v¢ < v < (1 4+ 6)y¢ and moderate growth with
Ap = 2dG+dK0dKAgAK , dp=dg+dg.

Proof: For any extension L, we have
(g.id)(g',id) = (g9, {g,g')) and (id, k)(id, k") = (id, kk) .

These yield v¢ < 71 < ya+7k < (146)y¢. Next, fixnand ny+ny =n
with n; < yg, n2 < k.

Vi(n) _ Vi(n) > Va(ny) Vie(ng) S 1 (-@)dc (ﬁ%)dx
ILlIGIET ™ 16l (K] T AcAk \ve VK

da dg
s 1 (m n2
= AgAkbdx (’YL) <’YL) '

This inequality will be used in several cases.

Case 1. n = 2m with m < min(yg,yx). Then, with ny = no = m.

VL(n) > 1 n de n dx _ 1 n dg+dg
ILI _AGAKedK 2vp, 2’)’L - —AGAKedKQdG"'dK YL .
Case 2. n = 2m — 1 with m < min(yg,vk). Then, with ny = m,ny =
m-—1,
Vi(n) > 1 2m \ % 2(m —1) dx
|L| - AGAKedK‘ 271 2vr,

S 1 2(m -1) dx ¢y \ dotdx
~ AgAk04x2dctdk 2m — 1 YL '
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Case 3. vk < 5 < 7vg- Then,

Vi(n) _ Vo (3) Vi (3) L(_n_)“g_l_(L)"G*d"
| L] Gl |K] A \27¢ ~ Ag \ e

1 n de+dk
> o (37)
A62 gtdi YL

Case 4. 7¢ < % <vyx and n <. Then

v

Vin) _ Ve (3) Vi (3) zA—l-( n )d">__1__(")dc+dk |
.

Ll — Gl K] 2] T Ak(20)% \ e

This exhausts the cases since vy < 7 < § or y¢ < 7k < 7 implies
n=4%+%5>7 +7 = VL o
Remarks: 1. Theorem 7.2 is useful for vx small or moderate with respect
to vg. The results then show that all extensions have moderate growth so
that the convergence results of Theorem 1.2 are in force. The affine groups
offer examples where Theorem 7.2 is effective. Other examples are described
below.

2. If v¢ is small with respect to vy, Theorem 7.2 is not very useful
because the constant 6 is large. The examples of extensions of degree 2 and
3 of Z,, described in section 6.B show that the degrees of volume growth
needn’t simply add: Z; has growth of degree 0, Z,, with the canonical
generators has linear growth, but Z; x Z,, may have quadratic growth.
Thus, the condition v < 67 in Theorem 7.2 cannot be removed.

3. Semi-direct products give examples of groups of moderate growth
which do not have polynomial growth. For instance, for the affine group A4,
with generating set (7.1), one can show that V(n) > e for 1 < n < logp
where c is a universal positive constant. This proves that (6.1) cannot hold
with fixed A, d when p tends to infinity.

4. Elementary considerations show that when L above is a semi-direct
product, the center Z; of L can be identified as

s

Zp ={(id,k): k€ Zx and g-k=kforall ge G}.

Thus Z; = Zx N CL(G). For example, the affine group is centerless for
p # 2 and the dihedral groups D,, are centerless unless m is a power of 2.
In these cases, the groups are not nilpotent so the present arguments offer
the only currently available route to studying random walk.
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C. Further examples. A large class of examples can be obtained by
using the action of Z, on Z,, where (say) p is a prime and r divides p — 1.
Here, for j € Z, and a € Z}, satisfying a” = 1, define §;(z) = alzforz € Z,.
For instance, consider Z, X Us(p) where the action of Z, on Usz(p) is given
by

1 a’z a¥

1 =z =z Tz
0O; 01 vy =10 1 a'y z,y,2z€L,.
0 0 1 0 0 1

For r comparable to p (e.g. r = p — 1) Theorem 7.2 applies whereas for
small fixed » Theorem 6.7 can be used.

A second class of examples uses the natural action of G = Uy(p) on
K = 79 (see section 4 for notation). For fixed d and large p and with
their natural generators, these groups have comparable diameters of order p.
Then, Theorems 7.2 and 2.3 combine to show that order p? steps are required
for randomness. Diaconis and Graham [DG] studied walks of this type with
p = 2 and d large as examples of repetitive computer algorithms operating
in the presence of a bad bit.

The upper triangular group Tx. Let p be a prime. The group Tn(p) of
upper triangular, invertible, N x N matrices with entries mod p has order

ITn(p)| = (p - l)Np(g). It contains Un(p) as a normal subgroup. The
quotient T /Uy = (Z;)" and T is a semi-direct product of Uy by (Z})".
Let o be a generator of Z;. Let E;(c) be a diagonal matrix with a in
the i*h place and ones elsewhere. Let G = (Z;)N , with generating set
{Ei(a), E;(a™?!), -, En(a™!)} = Eg and K = Un(p) with generating set
as in (4.4). Then, for IV fixed, L = Ty with Ff = EgU Ef has diameter of
order p. Thus, for N fixed and p large the walk on Ty with these generators

gets random after order p? steps.

Polynomials under composition. Consider the set Gy of polynomials
with coefficients (mod p) taken (mod z¥+1) of form a;z +az2? +- - -+ ayz
with a; € Z; and a; € Z,, 2 < i < N. This set forms a group under
composition. The subset G’y with a; = 1 is a normal subgroup of order
pV~1. As generators for G'y choose z + 22,z + 2°,- - -z + zV. G’y in these
generators has moderate growth since it is a p-group. From here, Gy can be
handled by the theory of this section. For N fixed and p large the natural

walk requires order p? steps to get random.

The group Gy can be realized as a subgroup of Ty by mapping f € Gy
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into a matrix as follows. Write

f=az+ - -+anz®
of-rof=a’r+akc®+..-+aka?V.
1 2 N

k

Define m(f) to have i*" row beginning with i—1 zeros and then ai, a}, - - -, a% _;.
The map f — m(f) is an injective homomorphism. For small V, G is fa-
miliar: Gy 2 Z;,G2 2 Ay, G3 XL X Ly, x Ly, G4 = L X Us(p). Johnson
{1988) has further information about these groups.
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