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M O D E R A T E  G R O W T H  A N D  

R A N D O M  W A L K  O N  F I N I T E  G R O U P S  

P .  D I A C O N I S  A N D  L .  S A L O F F - C O S T E  

A b s t r a c t  

We study the rate of convergence of symmetric random walks on finite 
groups to the uniform distribution. A notion of moderate growth is in- 
troduced that combines with eigenvalue techniques to give sharp results. 
Roughly, for finite groups of moderate growth, a random walk supported 
on a set of generators such that the diameter of the group is "f requires 
order ~ 2 steps to get close to the uniform distribution. This result holds 
for nilpotent groups with constants depending only on the number of gen- 
erators and the class. Using Gromov's theorem we show that groups with 
polynomial growth have moderate growth. 

1. I n t r o d u c t i o n  

We begin wi th  an example  of the p rob lem under  study.  
posi t ive integer.  Let  Ua(m) be the Heisenberg group m o d m .  
set of 3 x 3 mat r ices  of form 

Let  ra be  a 
This  is the 

(1. i) 0 1 

0 0 
x , y , z  E Z m  �9 

Thus ]U:~(m)[ = m 3. A r a n d o m  walk can be pe r fo rmed  on U3(m) by  re- 
pea ted ly  choosing one of the  following 5 mat r ices  wi th  probabi l i ty  1/5: 

(11i) (i -1 !)(i ~176 (i ~176 /.~, 0 1 , 1 , 1 1 , 1 - 1  ( 1 . 1 )  

0 0 0 0 1 0 1 

The  n th s tage of the walk is the p roduc t  of the first n chosen matr ices .  
Let  q(")(s)  be tile chance tha t  the r a n d o m  walk is at  s af ter  n steps.  For 
n su i tab ly  large, q('~)(s) is a p p r o x i m a t e l y  equal  to the  un i form measure  
~t(s) = 1 / m  3. The  following resul t  says tha t  "su i tably  large" is n >> rn 2. 
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T H E O R E M  1.1. Let q assign mass 1/5 to the matrices in (1.1). 
there axe universal positive constants a, b, a', b' such that 

a'e - b ' " / ~  <_ [[q ( ~ ) -  UllT.V._ ~ e  - b ~ / m ~  . 

Then, 

The total variation distance is defined as 

[[q(") - UllT.V. = �89 ~-~ [ q ( ~ ) ( s ) -  u ( s ) ] .  (1.2) 

Thus, the distance to the uniform distribution is exponentially small pro- 
vided n >> m 2 and bounded away from 0 if n is small compared to rn ~. 

The object of this paper is to prove theorems like Theorem 1.1 for 
general symmetric  measures on certain finite groups which we call groups 
of moderate growth. 

Let G be a finite group. Let E be a set of generators for G. Throughout,  
we assume that  E is symmetric and id E E. The Cayley graph (G, E) is 
the graph with vertex set G and edge set {(x, xe) : x E G ,  e C E}. The 
volume growth function V(n) is defined by 

V(n) = IE"I .  (1.3) 

The diameter ~ of G with respect to E is defined by 

7 = min{n : V(n) = [GI}. (1.4) 

The group G has (A,d)-moderate growth with respect to E if there are 
positive constants A and d such that  

v(~---~ > A 1 < n ___ ~ .  (1.5) 

To state a general result, define a probability q on G by 

f 1/IEI if s e E 
q(s) = /. 0 elsewhere 

(1.6) 

and let q(n) denote the rt th convolution power of q. 

T H E O R E M  1.2. Let G, E have (A, d)-moderate growth. Let q be defined 
by (1.6). For n = (1 + c) lEl~  2, c > 0, 

Ilq (") - ullT.V. < B e  - c  
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with B = A1/22 d(d+3)/4. Further, for n = c72/(24d+2A2), 

1 - - c  Ilq (n) -ulIT.v.  > 

Theorem 1.2 is of interest for a family of groups of moderate growth 
with IEI, A, d fixed as IG] (and so ~,) gets large. The results then show that ,  
if the number of steps n is a large multiple of 72, the walk is close to uniform 
whereas, for n a small multiple of 72, the walk is far from uniform. The 
transition from 1 to 0 as c varies is typically smooth so that  the "cutoff 
phenomena" observed by Aldous and Diaconis [AD] can be proved not to 
occur for the groups under study. 

Remarks: 1. The group Z,~ of the integers modrn  (take m odd for definite- 
ness) with E = {0, +1} has diameter 7 = (m - 1)/2. This gives moderate  
growth with A = 1 and d = 1. 

2. The rate of growth can depend on the generators. The group Zm 
with E = {0,4-1,+[v/mJ} has 7 of order x / ~  and moderate growth with 
A = I  a n d d = 2 .  

3. The Heisenberg group U3(m) with E given by (1.1) has 3~ = m + 1 
and moderate growth with d = 3 and fixed A for all m. See section 3.B. 

4. Of course, any finite group has moderate growth for suitable A. The 
point is that  there are many natural  families of groups which have moderate 
growth for fixed A and d as IG[ gets large. These include nilpotent groups 
(and so p groups) and affine groups. 

5. It is often convenient to check (1.5) by determining 7, then showing 
}G I <_ /:37 d and V(n) _> c~n d, 1 _< n < % This gives (1.5) with A = ~ / a  
since V(^r) = IG I. 

6. It is instructive to see the difference between the two conditions of 
Remark 5 and the single condition (1.5). Consider the product Zml x Zm~ 
with rn, a _< rrt2 and both ,n~, m2 odd. Take E={(0,0),(1,0),(-1,0),(0,1),(0,-1)} 

rn~--I ~ K m2 The growth as the generating set. The diameter is 3' = 2 + 2 - �9 
function satisfies 

V ( n ) > n  2 for 1 < n <  r n l - 1  
- -  - -  2 

V(n) > m l n  for rnl - 1 G n _< q' . 
2 

Since ]G I = mlm2 = V(3'), the group G , E  has moderate  growth with 
1 and d 2. Theorem 1.2 shows tha t  order m22 steps are necessary . 4 =  '7 = 

and suffice to achieve randomness. However, the best that  can be said using 
the approach of Remark 5 is V(n) > n, 1 < n < 7; [G[G 2ml"y. Dividing 
lead.~ to 

V('~) >- 2ml 
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Using this, Theorem 1.2 yields only that  order m 2 log ml  steps suffice. 
The lower bound shows that  after (m2/ml)  2 steps the variation distance 

is bounded below by a constant over mll/~. This is virtually useless. 

The structure of this paper is as follows. Section 2 develops the basic 
analytical tools of eigenvalues and volume growth. Some results are given 
for groups of exponential growth. The basic new ingredient leans heavily 
on an idea of Hebisch [He]. Theorems 1.1 and 1.2 are proved in section 3. 

Section 4 gives examples which include the Heisenberg group and the 
upper triangular group. 

Section 5 introduces the doubling property: V(2n) ~ AV(n)  for all n. 
This implies moderate  growth and is shown to hold for all nilpotent groups 
with A depending only on the number of generators and the class of nilpo- 
tency. 

Section 6 discusses polynomial growth: V(n) <_ An d for all n. Gro- 
mov's theorem is used to show that  polynomial growth is equivalent to the 
doubling property and so implies moderate  growth. 

Section 7 treats normal extensions such as the affine group modp.  
Some of these extensions have moderate  growth but fail to have polyno- 
mial growth. 

In a companion paper we treat random walk on homogeneous spaces 
of nilpotent groups by a different set of techniques: the walk is lifted to the 
free nilpotent group. Then, Harnack inequalities of Hebisch and Saloff-Coste 
[HeS-C] can be applied. See Diaconis and Saloff-Coste [DS-C3]. 

2. V o l u m e  G r o w t h  and Decay  of  C o n v o l u t i o n  P o w e r s  

A.  Bas ics .  Let G be a finite group with identity id. Given real valued 
functions ~, r on G, their convolution is the function ~ * ~ defined by 

�9 V(x)  = =  (y)v(y -1  x ) .  
y y 

We denote by �9 the operator ~ -- ~ ,  ~; and by ~(~) the convolution 
powers of 9. Let U be the operator associated with the uniform distribution 
u(x) = 1/IG I. For 1 < s < oo~ define the usual 18 norms of a function ~ as 

1 

= 

xEG 



Vol.4, 1994 M O D E R A T E  G R O W T H  AND R A N D O M  WALK ON FINITE G R O U P S  5 

The variation distance ][q - 0]lT.V. ~--- m a x I c a  {Iq(I) - 0(I)l} between two 
probabilities q, 0 is half the l 1 n o r m  of q - q. 

Let q be a symmetr ic  (i.e. q(x) = q(x -~)) probability on G. Under mild 
restrictions, the convolution powers q(~) converge to the uniform distribu- 
tion in variation distance. Analytical approaches to this result proceed by 
bounding the 11 norm by the 12 norm using the Cauchy-Schwarz inequality 

_ 1 IIq (~) @T.V. _< 5lcll/2llq (~)-  ~11~. (2.1) 

The 12 norm is bounded by eigenvalues. Because of symmetry,  the associated 
Markov chain has real eigenvalues 1 = S0 > 21 _> ~2 _> "'" _> ~lal-1 > -1 .  
A detailed discussion of this approach is given by Diaconis and Saloff-Coste 
[DS-C2] which should be regarded as a companion to the present paper. 
The following bound introduces a fresh ingredient. 

LEMMA 2.1. Let  q(s) be a symmetr i c  probabil i ty  on a finite group G. Let  

/~* = m a x { I / 3 1 1 ,  I ~ I G I - 1 I }  

be the second largest eigenvalue, in absolute value, of  the associated Markov  
chain. Then for non-negative integers n, m, 

ilq(,~+ .,) _ uH 2 <_ q(2"~)(id)/32n . 

Proof: Using operator notation, the following equalities are known and easy 
to verify. 

q(2m)(id ) [ Iq( rn)  1122 rn 2 = = I[Q 112-~  ; 

From these, for any function f ,  

Then 

I[Q n - UIl~-~ = ~ 2 .  

ILf * (q(,~+m) _ u)ll ~ = IIf * (q(n) _ u) �9 q(m)l]~ 

< iiQm]]2_.~]]f,  (q(,O _ u)H2 

<- I]Qmllz-.~llQ" - u][z-..2llfl]2 �9 

]lq(n+ m) _ ull ~ = IIQ '~+m _ UII2_..,~ <_ q(2m)(id)/32,n . [] 
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Remark: A variety of bounds are available for ft.. These range from exact 
computat ion using Fourier analysis, to geometric inequalities of Poincar6 
and Cheeger type. Diaconis [D], Diaconis and Stroock [DStr] and Diaconis 
and Saloff-Coste [DS-C2] give a picture of what is available. The only bound 
needed in the present paper is the following diameter  bound derived in 
[DS-C2]; many versions of this bound have been published earlier by a 
number of authors. 

LEMMA 2.2. Let G be a finite group, E a symmetric set of  generators for 
G, 7 the diameter  of G with respect to E. Let q be a probability on G such 
that q(s) = q(s -1) and U = inf{q(s) : s 6 E \ {id}} > 0. Then the second 
largest eigenvMue is bounded by 

f l ] < l  77 
,./,2 " 

Further, the smallest eigenvalue satisfies 

~[G[-1 ~ --1 + 2q(id). 

Remarks: 1. Using Lemma 2.1 with m = 0 and the bound (2.1) gives 

_ 1 i n 

IIq (~) ullT.V. _< 5IGloO,  �9 

For groups with moderate  growth the IG] �89 factor is extraneous. Lemma 2.1 
allows the information on the decrease of q(2m)(id) to be used to kill this 
term. The next section shows how moderate  growth can be used for this 
purpose. 

2. All the bounds obtained in this paper are stated for variation dis- 
tance. However, the upper bounds are obtained using Lemma 2.1. Thus, 
our estimates hold as well for the quanti ty IGI�89 IIq (~) - l l [  2. Moreover, the 
Cauchy-Schwarz inequality yields 

l a l l lq  (~n) - ullo~ _ IGliiq ( ~ ) -  ulig 

so that,  in fact, our bounds are also valid for the relative max imum error 
distance 

s u p  I l c l q ( n ) ( x )  - 11 . 
x 
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B. D e c a y  o f  c o n v o l u t i o n  p o w e r s .  In this section a quantitative relation 
between volume growth and decay of q(2n)(id) is obtained. These results 
are developments of an idea of W. Hebisch [He]; see also Hebisch and Saloff- 
Coste [HeS-C]. 

T H E O R E M  2.3. Let E be a set of  generators of the finite group G. Let q 
be a symmetr ic  probability on G and set q = inf{q(s) : s �9 E \ {id}}. If  
the volume growth V(n)  satisfies 

V(n)  >_ an  d ,  l < n < N , 

for some positive c~, d, and N,  then 

C 
q(2n+l)(id) <- q(2n)(id) <- n - ~  for all n < X 2 / q  

d 2 
with C = 22+~d+-'U /(Oz?]d/2). 

Theorem 2.3 follows from a sequence of lemmas which will be used 
further on. The first lemma says that  the operator Q associated to q may 
be assumed positive after adjusting constants. 

LEMMA 2.4. With notation as in Theorem 2.1, let q+ = (6id + q)/2. Then 
Q+ is positive on L 2, r/(q+) = q(q)/2, and 

Itq(2"+1)11 ~ < IIq(2")l l~ = IIq(")l122 < 211q~+n)l122 _- 2[Iq~e")ll~. 

Proof: For a symmetr ic  probabili ty Ilq(2")ll~ = q(2")(id). Thus 

~ ( 2 ; )  1 s  q~"(id) = 1 q(J)(id) > ~ j=0 
2 2n - 2j 

j=o 

_ q(2"~(id) 
- , ]  2 

The other claims are obvious, u 

The following slightly mysterious Lemma is from Coulhon and Saloff- 
Coste [CoS-C]. It makes a crucial appearance in the proof of Lemma 2.6 
below. 

LEMMA 2.5. Let q be a symmetr ic  probability measure on a finite group 
G. Suppose Q is posit ive on L 2. Then 

1 m 1 
I I ( I - O ) : O  II~-~_< 2- -~  
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Proof: Let fo, f l , . . . ,  flCl-1 be an orthonormal basis of eigenvectors for 
Q on L 2. Let /3i be the corresponding eigenvalue. Given f E L 2, write 
f = ~ ai f i  so that  

1_ m 
(I  - Q) �89  = ~--~(1 - / 3 i ) , / 3  i aif i  . 

Thus 

II(Z-Q)~Q~fll ~ - -  ~--~(1 - /~,)/3,2'~ a,.2 

Now, for m >__ 1, sup0<x<l(1 - x)x 2m ~_ 1/(4m) by calculus, n 

The next lemma gives a relation between the rate of decrease of con- 
volutions and volume growth. It does not require moderate  growth and is 
used at the end of this section to give a result for exponential growth. 

LEMMA 2.6. Let  E be a set of  generators of  the ~nite group G. Let  q be a 
symmetr ic  probabili ty on G such that Q is posit ive on L 2. Let  ~ = inf{q(s) : 
s e E \ {id}}. Then, for all n, m 

q(2n+m)(id) <_ 2 / V ( r ( n ,  m)) 

where 
1 

Proof: For any x E G and z E E 

lq(2-+-,)(x)  _ q(2n+m)(Xz)l <_ ~ lq("+m)(Y-lx) -- q("+")(y-~ Xz)lq(n)(y) 
Y 

Y Y 

1 { )' _< IIq(~_ ~112 ~_, [q("+'~)(Y)--q(n+m)(YW)l~q(w) 
r /~  y e a  

w E E  

_< (2/,7) �89 IIq(n)ll2((I - O)q(m+.)lq(m+~))l/2 
, I Iq(n)ll~ 

= (2/,71: IIq(n)ll~ll(Z - Ql~Q~q(n)l l ~ <_ ~/~------~ 

where Lemma 2.5 was used to justify the last inequality. 
Let Ixl denote the word, length of x E G with respect to E. Writing x 

as a sequence of generators and using I I q ( n ) l l ~  = q(2,0(id), we get 

}q(2~+m)(X)_ q(2n+m)(id)] < ]xlq(2n)(id)/v/2-~m. 
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Hence, if Ixl <_ r(n, m), 

Iq(>~+m)(x) _ q(2n+m)(id) I <_ q(2n+m)(id)/2, 

and thus q(2m+m)(x) > q(2n+m)(id)/2. Summing  the last inequality over 
the set Ixl _< r(n,  m) gives the result. D 

Lemma  2.6 sets up a kind of recurrence between the decay of convolu- 
tion powers tha t  appear  on both  sides of the inequality. This is exploited 
to give a proof of Theorem 2.3. 

Proof of Theorem 2.3: Assume first tha t  Q is positive on L e. Set A(n) = 
q('~)(id). Using V(n) >_ a n  d for 1 <_ n _< N,  L e m m a  2.6 yields 

A(2n + m) <_ 2V(r(n,m)) -1 _< 2/(ar(n,m) d) 

= ~ \ A(2n) , (2.2) 

this being valid for any n, m with r(n,  m) 5 N.  From the definitions in 

Lemma 2.6, r ( n , m )  < (2-~) 1/2. Thus  (2.2) is valid for m <_ 2N2/~, and 
all n. 

Rewriting (2.2), we get 

{(2)( )�89 }d/(14-d) 
1 2 A(2n) (2.3) d(2n + m) < - ~  

for m <_ 2N2/q and all n. Fix no <_ 4N2/q. Let n be such tha t  2 n < 
no < 2 ~+1. Then  IIq(~~ _< A(2"). Using (2.3) repeatedly, halving the 
argument  each t ime, 

d 

A(2 ~) = A(2 ~-1 + 2 '~-1) _< A(2 '~-~) 

d d 

_< {2-[<=71)0+<'7=}0 +...+~0 I}A(2 ) 

k - -  - -  - - - - - -  9' 

with 0 = d/(1 + d). Now 

n - - 2  n - - 2  

Oi=d(1-O'~-'2), ~ i o i = ( d + d 2 ) ( 1 - ( n  -1)0  ~ - 2 + ( n - 2 ) 0 n - 1 ) .  
i = 1  i=l 
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Using these, elementary manipulations show 

21+(3dTd2)/2 
Ilq("~ _< o(qno)d/2 for I <_ no <_ 4N2/~? . 

This result was proved assuming Q is positive. For general Q, Lemma 2.4 
along with the present calculations shows 

22+(3d+d2)/2 
IIq(2=)l[~ _< c~(,m)d/2 for n <_ N2/77 . 

This completes the proof. [] 

Theorem 2.3 will be used throughout this paper as a basic tool. It is 
natural to enquire about  groups with exponential growth. The next theorem 
gives a result on the decrease of polynomial powers. Unfortunately, we have 
been unable to use it to sharpen rates of convergence. 

T H E O R E M  2.7. Let q be a symmetric probability measure on a finite group 
C. Let E be a set of generators such that 71 = inf{q(s),s e E \  {id}} > O. 
Assume that V(n)  > e c~ for n <_ N. Then, we have 

q(n)(id) < 2 e -{('~~ for n <_ 16coN3/rl. 

Proof: No mat te r  what the rate of volume growth, for all 1 < m < n < oc 

1--~ (2 ,0 .  q(4n)(id) ~_ max{2 q (zd), 2 /V( (ym/8 ) �89  (2.4) 

To see this, fix m < n. Set A(n) = q(n)(id), note that  if 

A(2n + 2ira) > A(2n + 2(i - 1)m)/2 

for an integer i E [1, n/m], then Lemma 2.6 implies 

A(4n) < A(2n + 2im) <_ 2/V((rlm/8)�89 ) . 

But if for all integers i E [1, n/m] we have A(2n+2im) < A(2n+2( i -1 )m) /2 ,  
then A(4n) < 21-"/mA(2n).  This proves (2.4). Choosing m of order cn 2/3, 
with c 2(log ~ 2 = 2)~/(c0~/)~ proves Theorem 2.7. m 
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3. C o n v e r g e n c e  u n d e r  M o d e r a t e  G r o w t h  

In this section we prove a slight extension of Theorem 1.2. 

T H E O R E M  3.1. Let G be a finite group with generating set E containing 
the identity. Suppose G has (A, d)-moderate growth with respect to E as in 
(1.5). Let q be a svmmetricprobability on G with ~ = inf{q(s), s E E} > 0. 
Then, 

IIq ( ' )  - u l l r .v .  -< B e  - c  r o ,  n = (1 + c ) - y 2 / ~  w i t h  c > 0 ,  

where B = A}2 d(d+a)14. For a lower bound, assume in addition that  q is 
supported on E and that 7 _> A22d+2 (so the diameter is large with respect 
to the constants involved). Then, 

1 - - c  
IIq ( ~  - ~l l rv  > ~ for n = c~2l(2~+=A~). 

This result is useful when there is a sequence of groups with moderate  
growth for fixed A, d and a fixed (or slowly growing) set of generators. 
Theorem 3.1 then says that,  if q does not vary too much on its support,  the 
walk is close to uniformly distributed after c72 steps when c is large and far 
from uniformly distributed if c is small. 

Proof of the Upper Bound: Lemma 2.2 shows that  the second eigenvalue 
of the walk satisfies/31 _< 1 - ~/72 and that  the smallest eigenvalue satisfies 

/3tal-1 -> - 1  + 2q(id) > - 1  + 2r /> - 1  + ~/72 . 

Thus,/3. _< 1 -  r]/72 (note that  for this, only q(id) >_ t//72 is needed). Then, 
Lemma 2.1 yields 

IIq (~+m)  - ull~.v. ___ ~q(Um)(id)/32, ~ for any n,m. 

By assumption, V(j)  >_ I a l J e / ( A ~ / )  , 1 <_ j <_ 7. Using this in Theorem 
2.3 with m = 72/7# gives 

q(2m)(id ) <_ C with C = 22+}<~+~ f IGI di2'~ 

Thus, with n = c72/~ 

]]q(m+~) _ UH2T.y. <_ A2}d+~e-2C " 

Taking square roots yields the desired result. 

- - 1  
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Proof of the Lower Bound: We start  with the well known equivalence 

2llq (k) - ullr.v. = max I Q k ( f )  - U ( f ) [ .  
Ilfll~<l 

Thus, for any specific f with Ilfll~ -< 1, 

[Iq <~) - u l l T v  >_ l l O ( k ) ( f )  -- f ( f ) l  �9 

We will choose f to be an eigenfunction for the second eigenvalue/3a suitably 
normalized. Namely, let f be such that Q f  = / ~ l f  with [ I f l l ~  -- f(id) = 1 
say. Since U ( f )  = 0, we get for any j 

IIq (j) - u l l r v  > �89  = 1 j _ 7/(~1 . ( 3 . 1 )  

To conclude the argument,  a lower bound for/31 is needed. We show 

B 
/3a > 1 72 with B = 42d+lA 2 (3.2) 

To see this, consider g(x) = Izl, the distance with respect to the generating 
set E. The minimax characterization of eigenvalues gives 

1 -/3a <_ g(glg)/Var(g) 

where 
~ ( g l g ) - - - -  71 E ( g ( x  ) --  g(xy))2q(y)u(x) 

x ,y  

1 y:~(g(x) 9(~))2u(x)~,(y). Var(g) = 7 
x ,y  

1 Since q is supported on E,  (g(x) - g(xy)) ~ < 1 for q(y) > 0, so g(glg) _< 7" 
For the variance, write 

Var(g) = 1 E ( i -  j)27r(iiTr(j) with 7r(i) = u { x :  Ixl = i} .  
O<_i,j<_'~ 

Set S = { i :  i <_ �88 T = { i :  i _> 33'/4}. Clearly, 

1 3'2 
vat(g) 2 2 4 ~ ( S ) ~ ( T ) .  

Now 

A(3'/4V ~r(S) = v ( 3 " / 4 ) / l a l  > 3"d -- A 4 - d  " 
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For T, choose x,  E G so Ix, [ = 7. Translating a ball of radius 7 / 4  to x* 
shows that 

~ ( T )  > A4 -d  

Combining bounds gives (3.2). Using this in (3.1) shows that  for any j 

1 ( 42d+lA2~ j 
IIq (j)-ull~.v.>_ ~ 1 ~ ] 

The hypothesis 7 _> A22d+2 insures that  the eigenvalue bound is larger than 
1 Now use 1 - x > e -2x for 0 < x < 1/2 to complete the proof, o 5 , _ _ 

Remarks: 1. In Theorem 3.1 we have assumed that  the probabil i ty q puts  
some mass at the identity to avoid parity problems. This is not necessary. 
Diaconis and Saloff-Coste [DS-C2, section 2] describe several other ways to 
work with negative eigenvalues. 

2. We have used Lemma 2.2 to bound /3, and it may well happen, in 
specific cases, that  a bet ter  bound is known. Thus it is worth noting that  
the above proof yields, after minor modifications, 

T H E O R E M  3.2. Let G be a finite group with generating set E. Suppose 
G has (A,d)-moderate growth with respect to E as in (1.5). Let q be a 
symmetric probability on G with 7/= inf{q(s), s E E \ {id}} > 0. Then, 

1 n 
5/3, --- IIq (~) - ullrv <_ B/32 -'2 

where B = 2d(d+3)/4A1/2rl -d/4. 

3. David Aldous (personal communication) has pointed out that  one 
can use an elegant bound of Varopoulos IV] and Came  [C] to show that  
.~2-~ steps are not enough for moderate  growth problems. We observe here 
that even less than moderate  growth is needed. 

PROPOSITION 3.3. Let G be a finite group with E a symmetric set of  gen- 
erators containing the identity. Suppose that G has diameter 7 with respect 
to E and that IGI = ~ 7  d for some positive/3 and d. Let q be uniform on E 
as in (1.6). Then, 

I n ;  - c  IIq('~)-ullr.v.<sp~e for n=721El(�89 with c > 0 ,  

whereas 

Hq (n) - U[[T.V >_ �89 -- 2/3e -~) for n = 72 /S (d log7  + c ) .  
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Proof: The upper bound follows from the diameter  bound on eigenvalues, 
Lemma 2.2, and Hq (~) UilT.V. < - �89189 

For the lower bound, take S -- {x:lxl>7/2}. Let B = {x:lxl<7/2}. 
If IBI _> �89 then by translation ISI > �89 If IB] < ~1GI1 then also 

ISI _> �89 Thus, in all cases, u(S) = ISI/IGI >_ �89 Further, IIq(n)--UlIT.V >_ 
Iq (~ ) (S)  - - ( S )  I. 

Now, Carne [C] shows that  if 7r(x), P(x,  y) is a reversible Markov chain 
on a countable state space X,  then for all x, y, n, 

1 

P { X n  = y /Xo = x} < 2 (Tr(Y) ~ ' e_d(~,y)2/2 ~ 
- 

with d(x, y) the distance in the graph which has vertex set x and an edge 
from x to y if P(x,  y) > 0. Specializing to the present situation, this bound 
implies that  for any n 

q('O(S) <_ 2 ~-~ e-I~'l=/~'~ _ 2 e - ' ~ ' l S n ] s  I . 
xES 

1 gives For n = 72 /8(d log7  + c), use of this bound and u(S) = ISI/IGI >_ 

IIq (n)  -  llr.v. >_ �89 - 2 /~e -~ ) .  D 

4. First Examples  

This section discusses the Heisenberg group, and some other specific exam- 
ples where the growth function can be est imated well enough to show that  
they have modera te  growth. 

We will use the following notation several times. Fix a positive integer 
N and consider the set of N x N matrices with entries in a ring with unity. 
For 1 < i, j <_ N we define Ei,j to be the N x N matrix with a 1 in position 
(i, j )  and 0 elsewhere. 

EXAMPLE 1. THE HEISENBERG GROUP m o d m :  This is the group U3(m) 
of 3 x 3 upper triangular matrices With ones on the diagonal and entries 
m o d m .  Thus ]U3] = m 3. Let x(t) = id + tEl,2, y(t) = id + tE2,3, z(t)  = 
id + tEl,3 for t EZm.  Elementary  manipulations show 

{ x(s)x(t)  = x(s + t), y(s)y(t)  = y(s + t), z(s)z(t)  = z(s + t) 
(4.1) x(s)y(t) y( t)x(s)z(st)  . 

The generating set E in (1.1} is E = {Id, x ( 1 ) , x ( - 1 ) , y ( 1 ) , y ( - 1 ) } .  The ba- 
sic geometric properties of these generators are summarized in the following 
lemma which, together with Theorem 3.1, gives a proof of Theorem 1.1 
stated in the introduction. 
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LEMMA 4.1. For Ua(m) with generators given by (1.1), the diameter, vol- 
rune growth, and group order satisfy 

n 3 

�9 o m - l < _ ' ? ' < _ m + 2 ;  V(n) >__ 6 ' l _ < n _ < m  IG[ <8-y 3 

Thus Ua(m) has (48.3)-moderate growth. 

Proof: It is easy to see that  z(t) is in the center of the group. Let x = x(1), 
g = g(1). Let w be a word in x and y. Let d(w) be the minimum number 
of pairwise adjacent switches required to bring all the x's to the left of all 
the g's. Thus d(xyyxxy) = 4. If a word w has j appearances of y, the 
commutation relations (4.1) show 

w =  1 
0 

j k  + 
(4.2) 

This easily yields that  the diameter of Ua(m) in the generators x and y is 
smaller than 4m; any word w with m + j appearances of x and 
m + k appearances of y results in j in position (1,2) and k in position (2,3). 
Transposing the values of z and y allows an arbitrary d, 0 _< d < m - 1 to 
be achieved. A slightly more careful version of this argument shows that  
tile diameter of b~(m) in the generators (1.1) satisfies m - 1 <_ 7 _< m + 2. 

For the volume growth, just using x and y as generators and products 
with a appearances of x and b appearances of y give an interval of a �9 b 
distinct values of the (1,3) coordinate provided a, b > 1 and ab <_ m. This 
implies 

l 4 for 1 _< n_< v/- ~ V(n) >_ ~n 

V(n) >_ mn 2 for v ~ _ <  n _< m . 

These clearly imply V(n) >_ n3/6 for 0 < n _< m. n 

Remark: Maria Zack [Z] suggested random walk on the Heisenberg group 
as a model for cascaded random number generators. Most widely used 
random number generators are based on a recurrence of the form Xn = 
aX,~_l + b (modp) for fixed a, b. Chung, Diaconis and Graham [ChDG] 
studied problems where a and b are allowed to vary randomly. Zack [Z] 
snggested the following scenario: Let (a,~, ~n,%~) be independent random 
variables with value in Z3m. Define Xo = 0, Xn+l = X,~ + ctn+l and Y0 = 0, 
};,+1 = Yn + [~**+1 (modp).  These are usual random walks. Define Z0 = 0, 
Z~+I = Z~ + ~,~+lXn + 7,~+1 (modp).  Clearly, the Zn+l process proceeds 
like the (1,3) coordinate of a random walk on the Heisenberg group. 
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Theorem 1.1 shows tha t  the walk on U3(p) takes order p2 steps to get 
r andom for (an,  L~n) taking values (=t:1,0), (0, :t=1), (0, 0) at random,  7,~ = 0. 
The  argument  shows tha t  the same conclusion holds for c~n,/3n, ~n "small" 
r andom variables, e.g. uniform on I -k ,  k] with fixed k. On the other hand,  
if C~ n a n d / ~  are chosen so tha t  the random walks they generate in the (1,2) 
and (2,3) positions tend to uniform at a faster rate, the walk on U3 (p) gets 
r andom at this faster rate. 

The  walk of interest in Zack's scenario is not the walk on U3(p) but  
ra ther  the process generated by the (1,3) coordinate.  This  walk gets ran- 
dom somewhat  faster: for the generators (1.1), an argument  based on the 
Martingale central limit theorem shows tha t  order p steps are necessary and 
suffice to achieve uniformity in the (1,3) coordinate.  

E X A M P L E  2. A N O T H E R  NON ABELIAN GROUP OF ORDER m 3 :  For p a 
prime, it is a classical theorem that  there are only two non-isomorphic non 
Abelian groups of order p3. When p = 2, these are the dihedral  group D4 

and the quaternion group. For odd p one of these groups of order p3 is the 
Heisenberg group Uz(p). The other will be denoted here by M3(p) ([Su2, 
p. 54]) uses the nota t ion M(p3)).  This group may  be described as follows. 
Let ][p act on Zp~ by j .  k = (1 +jp)k (modp2) .  Here lip and Zp~ are wri t ten 
as additive groups and the mult ipl icat ion takes place in the ring Zp~. This 
gives a semi-direct product  description of M3(p) as 

{(a,b);aeZp, b e Z p ~ }  with law (a,b)(c,d)=(a+c,c.b+d). 

In particular,  (a, b) -1 = ( - a ,  - ( 1  + ap)b). In fact, this semi-direct product  
construct ion makes sense even if p = rn is not a pr ime and can be used 
as a definition of M3(m) for any positive integer m. With  this notat ion,  a 
natura l  set of generators of Ma(m) is given by 

E = {(0, 0), (1, 0), ( - 1 , 0 ) ,  (0, 1), ( 0 , - 1 ) } .  (4.3) 

It results in a walk tha t  goes from (x, y) e M3(m) to 

(x,y) ,  ( x + l , y ) ,  ( x - l , y ) ,  ( x , ( l + m x ) + y ) ,  ( x , - ( l+mx)+y)  

each with probabil i ty 1/5. The  following lemma,  coupled with Theorem 2.1 
shows tha t  Ma(m)  has cubic growth and tha t  the generators in (4.3) give a 
r andom walk tha t  gets r andom after order m 2 steps. 

LEMMA 4.2. For the group,M3(m) with generating set (4.3), 

n 3 
m - 2 < _ 7 _ < 4 m ;  Y ( n ) > - ~ ,  l < n < m ;  [ G [ < 8 7 3 .  
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Proof: Observe that  

(1,0)(x,y) = (x + l ,y)  , (x,y)(1,O) = (x + l , ( l  + m)y) 

n(0,1)(x,y)=(x,( l+mx)+y) , (x ,y)(0 ,1)=(x,y+l) .  

Thus (1,0)(0, 1) = (1, 1) and (1, 1) j = ( j , jm  + j). To write (a,b), write 
b = him+b2 with 0 < bl _< m -  1. Then (a,b) = (1,0)~-b(1, 1)b'(0, 1) b~-~'. 
This shows ? _< 4m. This formula for (a, b) also shows that  V(n) _> n3/6 
for 1 < n ___ m. The final result follows from [G I = m 3. o 

EXAMPLE 3. UPPER TRIANGULAR MATRICES: Let UN(rn) be the group 
of N x N upper triangular matrices with ones on the diagonal and entries 

inod~,. Thus I g g ( m ) l  = For generators, take the matrices id + 
El.i+1, 1 < i < N - 1. This generalizes the Heisenberg group U3(m). An 
argument similar to the proof of Lemma 4.1 can be used to show 

LEMMA 4.3. Let UN(m) be the unipotent upper-~riangular matrices. Let 

E = { i d ,  id4-Ei.i+a l < i < N - 1 } .  (4.4) 

Then the diameter, volume growth, and order satisfy 

Cl(N)m<?<_C~(N)m; W(n)>_c2(N)n( ~), l < n < 7 ;  I G I < C 2 ( N ) ' ~ ' ( ~  ) . 

This result shows that with N fixed and m large, the group UN(m) has 

moderate growth with d = (~2'). It follows that  the walk with generating 

set (4.4) requires order ra 2 steps to get random. 

Remarks: 1. This walk is studied in recent work of Stong [St]. He deter- 
mined that the second eigenvalue satisfies 

A a 
1 r a 2 ~  ~/31 ~ 1 - rn2-- ~ 

with a, A independent of m and N.  For fixed N and m large, this eigenvalue 
bound and Lemma 2.1 show that order m 2 log m steps suffice. For fixed 
m and N large, Stong's bounds show that order N a steps are enough to 
ensure convergence. It is easy to show that  at  least N 2 steps are needed 
here by considering the last column of the random walk. The volume growth 
estimates are virtually useless for this fixed m large N case. 

2. For prime p, Ellenberg rE] gives sharp bounds for the diameter of 
UN(p) with the generators (4.4). Let f (N,p)  = �89 + 6N 2 logp. He shows 
there are constants No, p0, c, C, such that 

cf(N,p)  <_ 7 <_ Cf (N ,p )  for N _> No ,p > P0 �9 
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His proofs are constructive and he shows No = 10, p0 = 104, c = 1/60, 
C = 32. For fixed N,  these bounds axe of the same order as Theorem 4.4. 

3. The walk on M3(m) takes order m 2 steps to get random, so the 
2 nd coordinate process (which takes values in a set of size m 2) gets ran- 
dom at a rate faster than a usual random walk. It is not hard to see that  
it takes m 2 steps to get random. Essentially the same phenomena occurs 
in U3(m). In general, it appears that  randomness comes in "waves". For 
example, on UN(m), for g fixed and m large, the walk generated by (4.4) 
has the following features. Elements just above the diagonal get random 
a f t e r  m 2 steps. Elements two above the diagonal get random after m steps. 
Elements k above the diagonal get random after m 2/k  steps. This refers to 
the coordinates in a particular representation. Philip Hall [Ha] introduced 
a kind of coordinate system for nilpotent groups with his commuta tor  pro- 
cess. This writes a group element as a product of generators, then first 
commutators,  then second commutators,  and so on. It would be marvellous 
if these coordinates had the behavior of "probability waves" as they seem 
to for Ug(m). 

5. T h e  D o u b l i n g  P r o p e r t y  and N i l p o t e n t  G r o u p s  

A. T h e  D o u b l i n g  P r o p e r t y .  Let G be a finite group and E a symmetr ic  
set of generators for G which contains the identity. We say that  G, E satisfies 
the doubling property if for some A > 1 

V(1) < A and V(2n) < AV(n) ,  n = 0 ,1 ,2 , - . - .  (5.1) 

Iterating this inequality yields 

LEMMA 5.1. Assume that G, E satistles the doubling property (5.1). Then, 

V(n) ( n ) d 
V(m---~- < A  m 0 _ < m _ < n < o c ,  with d -  log logA2 (5.2) 

In particular, G, E has (A, d)-moderate growth. 

Proof: It suffices to write 

(n) 
V(n) <_ AV <_ ... <_ AkV ~-g <_ AkV(m) 

provided ~ < m _< ~ .  Taking n = 7 in (5.2) gives 

V_7----:- > -= 1 < m < %  for d =  l~ 
- - - log 2 

So the doubling property implies modera te  growth. D 
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Remarks: 1. The affine groups and other extensions discussed in section 7 
give examples where the doubling property fails to hold uniformly but mod- 
erate growth holds with useful constants. 

2. Taking m = 1 in (5.2) gives 

V(n) <A2n d l < n < o o  with d =  logA 
- - ' l o g  2 

This is a form of polynomial growth which has been extensively studied 
in the theory of discrete groups. We discuss it below in section 6. There, 
Gromov's theorem is used to show that  the doubling property is, in a sense, 
a property of the group which depends only on the size of the generating 
set. 

3. For present purposes, the doubling property (through Lemma 5.1) 
shows that  we are in the domain of application of Theorem 3.1. In fact, 
if G, E satisfies the doubling property (5.1), Theorem 2.3 can be used to 
prove 

q(n)(id) <_ CV(v/-~) -1 for all n 

with a constant C depending only on A and y. This can be refined. The 
arguments of Hebisch and Saloff-Coste [HeS-C] show that  for q as in The- 
orem 2.3 supported on E,  there are positive constants C1,C2, Cl,C2, such 
that 

q('~)(x) <_ C1V(x/~) -1 exp - c l  for all n , x  
n 

Here, Ixl is the word length and the ci,Ci's depend only on r / and the 
doubling constant A. 

Note that  the volume growth function V(n) can be quite erratic. The 
analogue of (5.3)-(5.4) with V ( v ~ )  replaced by n a/2 for some d simply fails. 
Also, (5.3)-(5.4) do not hold, in general, for group of modera te  growth. 

B. N i l p o t e n t  G r o u p s .  The main result of this section shows that  the 
doubling property holds for the class of nilpotent groups with A only de- 
pending on the number of generators and the degree of nilpotency. 

Let G be a finite group. Define subgroups Zi(G), i = 0, 1 ,2 , - . .  as 
follows: Z0 = {id}, Z1 = center of G, and Zi is the subgroup of G cor- 
responding to the center of G/Zi-1 in the correspondence theorem. The 
group G is nilpotent if G = Ze for some g. The smallest such g is called the 
class of G. 
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Abelian groups are nilpotent of class 1. The Heisenberg group U3(m) is 
nilpotent of class 2. Any p-group is nilpotent and any nilpotent group is the 
direct product of its Sylow p-groups. The affine groups Ap of section 7 are 
not nilpotent because they have trivial centers for p > 2. An introduction 
to nilpotent groups is given by Rotman [Ro]. Suzuki [Su2] has a thorough 
treatment and the survey article by Ph. Hall [Ha] is definitive. 

T HE OREM 5.2. Let G be a nilpotent group of class ~. Let E be a sym- 
metric set of generators for G. Then (G, E) has the doubling property (5.1) 
with A = A(]EI, ~) depending only on the number of generators and the 
class f of G. 

Proof: Let 8 be the free nilpotent group on IEI generators of class g. This 
is an infinite discrete group formed as the quotient of a free group F on IEI 
generators by the normal subgroup F~. Here F1 is the commutator  subgroup 
[F, F] and Fi = [F, Fi-1]. The group 8 has the property that  any class 
nilpotent group on IE] generators is a homomorphic image of G. M. Hall 
[H] or Magnus et al [MKSo] has further details. 

Bass [B] showed that any finitely generated nilpotent group has its 
volume growth function bounded above and below by polynomials of the 
same degree. It follows from his work that G has volume growth satisfying 

c - i n  D ~ ~/'(n) ~ cn D f o r  a l l  n > 0 

e 1 ~dli  Iz(d) xi/d for #(d) with c > 0 and D = Y~i=l ifi(lEI), with fi(x) = i 
the Mobius function of elementary number theory. 

This certainly shows that  G, with its canonical set of IEI generators 
satisfies the doubling property (5.1) with A = c22 d. To complete the proof, 
we show that the doubling property passes to quotients of G. Guivarc'h 
[Gu, Lemma 1.1], specialized to the present situation, implies that  for any 
subgroup i f /of  G, and A, B finite sets in G, Y a finite subset of 8//2/,  

IAIIBYI <_ I B A I I A - ~ Y I  . (5.5) 

Take Y = id, A = B(n), B = B(2n) balls in 8 of the indicated diameter. 
Then (5.5) specializes to 

Since Vd(3n) <_ Vc(4n) <_ .42V4(n) and G/ /2 /=  G, the result follows. [] 
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COROLLARY 5.3. For any positive integers ~ and e, there exist two positive 
constants B = B(f,  e) and C = C(f, e) such that for any finite group G 
nilpotent of class f and any symmetric set of generators E C G with id E E 
and }E I = e, the random wMk generated by q(s) = 1~lfE(S) satisfies 

][q(n) _ UIIT.v" < Be-C if n = ( 1 +  c)"/2[E[ wi th  c > O,  

and 
1 - - c  f o r  rt c"f2 / C . IIq (~) - u l l T v  ___ = 

C. p - g r o u p s  a n d  F r a t t i n i  wa lks .  Let p be a prime. A p-group is a 
group of order a power of p. These are nilpotent groups and any group 
of order pa has class at most a - 1 ([H, p. 422]) and is generated by at 
most a generators. Thus, Theorem 5.2 and Corollary 5.3 applies to such 
groups uniformly as p varies. Any group of order p2 is Abelian. When p 
is odd, the two non Abelian groups of order p3 are U3(p) and Mz(p) as 
discussed in section 4. The groups of order p4, p5 have been classified. If 
f(a,p) denotes the number of isomorphism classes of groups of order pa, 
then logf(a,p) ,,, 2~a 3 for large a and there are bounds on f(a,p) uniform 
in p. See [Su2, p. 85-95]. 

For p-groups, the minimal sets of generators have some structure. All 
minimal generating sets have the same number of elements. These are 
described by the Frattini subgroup. Recall that,  for a group G of order 
pa, the Frattini subgroup (I) = (I)(G) is defined as the intersection of all 
subgroups of order pa-1. As shown below, it is often easy to identify. The 
Burnside basis theorem says that  G/~  is an elementary Abelian p-group 
which may be regarded as a vector space over Zp. The dimension d of 
this vector space is the minimal number of generators of G and any set 
xl, x2, . . .  Xd of coset representatives such that Xl(I), x2(I), . . . ,  Xdq~ form a 
basis of G/ch give a generating set of G. Conversely, if xl, x2 , . . . ,  Xd generate 
G then Xlq), . . .  Xdq~, are a basis of G/q~. Background, details, and examples 
may be found in [Sul, chapter 2, section 2; Su2, chapter 4, section 4]. We 
call a walk supported on a minimal set of generators a Frattini walk. 

The Frattini subgroup of the Heisenberg group U3(p) is its center {id+ 
tel,3 : t E Zp} and the walk considered in Theorem 1.1 is a Frattini walk. 

For M3 (p) = Zp t< Zp~ (see Example 2, section 4) the Fratt, ini subgroup 
is (b = {(0, jp)  : 0 < j < p - 1}. Again, the walk on M3(p) considered in 
section 4 is a Frattini walk. 

Further examples are given by UN(p) and its subgroups. Namely, let 
F = {( i , j )  : 1 < i < j < N}.  For (i ,j)  E F, let x~j(s) = id+sE~,j .  
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Elementary  manipula t ions  show that  

{ x j(s)xu(t) = xu(s + t) 
x j(s)xk (t) = xk (t)x j(s) (5.6) 
xu(s)xjk(t) = 

Call a subset A C F closed if (i ,j)  E A ,(j, k) E A then ( i ,k)  E A. The  
relations (5.6) show tha t  the matrices in UN(p) with non-zero entries only 
in a closed set of positions (and zero's in the remaining positions) form a 
subgroup UA(p). This subgroup is generated by {x i j (+ l )  : ( i , j )  E d}.  The  
following l emma  identifies the Fratt ini  subgroup of UA (p). 

LEMMA 5.4. Let A C F be a dosed set of indices. Let A + --= {(i, k) : t'or 
some j, (i , j)  and ( j ,k )  e A}. Then r = UA+ (p). 

Proof: The commuta t ion  relations (5.6) imply tha t  UA+ is normal  in UA. 
Further  UA/UA+ is clearly generated by {x~jUA+ }. These generators com- 
mute ,  and each has order p, so UA/UA+ is an elementary Abelian p-group. 
On the other hand,  the commuta t ion  relations imply UA+ C [UA, UA] (and 
in fact UA+ = [UA, UA]). This implies that  UA+ is the smallest  normal  sub- 
group with e lementary Abelian quotient.  This  characterizes ~ for p-groups. 

D 

For a fixed N and A, let 

E = {id, xij(1), xij(-1); (i , j)  E A \ A + } .  (5.7) 

The argument  for L e m m a  4.1 gives 

LEMMA 5.5. Let A be a dosed set of indices. 
generating set for UA (p) which satisfies 

c ,(N)p < ~ <_ C,(N)p , V(n) >__ c2(g)n lal , 

The set E of (5.7) is a 

Ial C2(N)~ IAI �9 

We thus see tha t  any of the groups UA has (C2(N), lAD-moderate 
growth. It follows tha t  the random walk takes order p2 steps to achieve 
randomness  if N is bounded  and p is large. 

For instance, take 

Let A = {(1, 2), (1, 3) . . . (1, N) , (2 ,  N) ,  (3, N ) . . . ( N -  1 , N ) } .  

Then  UA has non-zero entries in the first row and last column only. This  
example is somet imes called the N-dimens ional  Heisenberg group. Here 
A + = {(1, N)}.  This  example is not  hard  to analyze for large N; it is 
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72(N-1) For p fixed and N large, order N l o g N  essentially random walk on ~p 
steps are necessary and suffice to achieve randomness. 

As a second example, let 

A = { ( i , j ) : i < a , j > _ b }  for l<_a<b<_N fixed. 

Then UA is elementary Abelian, A + is empty. Diaconis and Saloff-Coste 
[DS-C2] showed that  order p2dlogd steps axe necessary and suffice with 
d = a ( N -  b + 1). 

As a third example, t a k e A = { ( i , j ) :  l _ < i < j _ < N w i t h j > i + 2 } .  
Then UA is the Frattini subgroup of UN. Its Frattini subgroup is UA+ with 
A + = { ( i , j ) :  l _ < i < j _ <  N w i t h j  >_ i + 4 } .  The quotient UA/UA+ has 
order p2N-5. A minimal set of generators consists of the matrices with a 
+1 in one of the two stripes just  above the diagonal. 

Remarks: 1. The above considerations carry over to Chevalley groups. The 
analogue of UN(p) is the subgroup generated by the positive roots. The 
analogues of UA are groups generated by closed sets of positive roots. All 
of these groups are p-groups with explicit Frattini subgroups and associated 
walks which can be successfully analyzed when the rank N is bounded and 
p is large. 

2. These examples allow us to present some open problems: to what  
extent does the choice of generators effect the rate of convergence? To 
focus we recall that  for the symmetr ic  group, even restricting at tention 
to generating sets of (n - 1) transpositions, the rate of convergence varies 
from order n log n (for generators (12), (13 ) , . . . ,  (1, n)) to order n a log n (for 
generators (1, 2), (2, 3) . . . .  , (n - 1, n)). See [DS-C2] for these results. 

For the Heisenberg group U3 (p) it can be shown that  any automorphism 
of U3/q) lifts to an automorphism of U3. Thus, all minimal sets of generators 
are equivalent. For M3 (p) this is no longer true. We do not know the extent 
to which the choice of generators can effect things for M3(p). However, 
Corollary 5.3 show that things cannot vary too widely. 

Experience with the circle and symmetric group suggests that  if the 
number of generators is fixed, most  sets of generators converge at the same 
rate. It seems like a difficult but  tantalizing problem to make this precise. 

3. One final rather specific question. The Burnside problem asks 
whether or not a finitely generated group whose elements axe of order r 
is finite. This is known to be false for sufficiently large r. However, it is 
true for r = 2, 3, 4, 6. For such r and fixed rn > 1, there is a largest finite 
group B(r, rn) with the property that  B(r, rn) is generated by rn generators 
and has s" = id for all s. When r is a prime power, we are in the setting 
of the present section and enough may be known to make progress on the 
problem of a random walk supported on a generating set. 
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D. D i h e d r a l  and generalized quaternion groups. For m = 2 a 
the dihedral group Dm is a 2-group of class a. The constants in The- 
orem 5.2 and Corollary 5.3 grow exponentially in the class so that  the 
bounds given axe useless here. However, for any m, Dm with any set of 
2 generators has linear growth, so order m 2 steps are enough. If Dm 
is represented by Z2 ~ Z m  with Z2 acting on Zm by x ~-~ - x ,  the walk 
generated by E - {(0, 0), (1, 0), (0, 1), ( 0 , - 1 )}  can be analyzed by Fourier 
Analysis to get sharp rates of convergence. A second generating set is 
E ' =  (m-l) - 2 )}. One can show that  while both 
walks require order m 2 steps, the second walk is faster by a factor of 2. 

Entirely similar considerations hold for Qm, the group of generalized 
quaternions. Here, if w is a primitive 2 m  th root of 1, let 

1 x:[o o]  [o10] 
Then x and y satisfy x m = y 2 , y - l x y  = x -1, and x ,y  generate a group of 
order 4m. When m - 2 this is the quaternion group. When m = 2 a, it is 
a 2-group of class a. Again, Fourier analysis or the moderate  growth ideas 
of section 2 can be used to prove that  for E = {id, x , x - l , y , y - 1 } ,  order m 2 
steps axe necessary and suffice for any m. 

When m is not a power of 2, neither Dm nor Qm is nilpotent. 

6. Polynomial  Growth and Gromov's Theorem 

Let G be a finitely generated group (possibly infinite). Let E be a symmetric  
set of generators containing the identity. We say that  the Cayley graph G, E 
has (A, d)-polynomial growth if 

V(n) <_An d n = l , 2 , . - -  . (6.1) 

For future reference we note that  if (G, E)  has (A, d)-polynomial growth 
then IEI < A. 

The main result of this section shows that  for finite groups, polynomial 
growth implies the doubling property which (cf. section 5) implies moderate  
growth. Thus random walk on such groups reach stationaxity in order 7 2 
steps. In the process, we' also show that  small extensions of groups of 
polynomial growth have polynomial growth. The main tool is a celebrated 
theorem of M. Gromov [Gr]. This asserts that  a group G of polynomial 
growth is a finite extension of a nilpotent group (i.e. G contains a nilpotent 
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group of finite index). Using results of Bass described in Section 5, one can 
conclude that there exist constants C, D such that 

C - i n  D <_ V(n)  <_ Cn D,  n = 1 , 2 , . . .  

For infinite groups of polynomial growth this gives a precise and precious 
description of the volume growth. The book of Varopoulos et al. [VS-CCo] 
and the article of Hebisch and Saloff-Coste [HeS-C] give applications to 
random walks. 

For finite groups, these bounds contain no information since D = 0 
works for an appropriate C. However, Gromov has given a version of his 
theorem which does yield useflfl information for finite groups having (A, d)- 
polynomial growth. 

T H E O R E M  8.1 [Gromov]. Given A, d > 0, there is a C = C(A,  d) > 0 such 
that any finitely generated group G of ( A, d)-polynomiM growth contains a 
nilpotent subgroup N with 

[a:X]<_C and  c l a s s ( X )  <_ C . 

This result will be applied in the following sections. At present the 
computation of C as a function of A and d is not effective. This means that  
the results based on Gromov's  theorem have a rather theoretical flavour. 

A. S u b g r o u p s  o f  s m a l l  i ndex .  Let H be a subgroup of a finite group G. 
In this section we start  with a given set of generators for G and construct 
g~nerators for H such that the diameter and volume growth are comparable.  
This construction is applied in section B below in cases where H is nilpotent. 
Then. H has the doubling property by Lemma 5.1 and so G has the doubling 
property by comparability. 

We begin with a preliminary lemma. The main result is Proposit ion 6.3 
below. 

LEMMA 6.3. Let R = R -1 be a generating set of G and let H be a subgroup 
of G. Assume that f~ C G is such that ~ - I  = f~, id E f~ and G -~ Hf~. 
Then, T = DRD N H generates H and the diameters 73 of (G, R) and 7/~ 
of (H, T) satisfy 7H <_ ?a. 

Proof (adapted from [Sul, p. 180]): Let h e H and write 

h -= r l  �9 �9 �9 r n  

with r i E R. Set v0 = id, vi = r l . . .  ri. By hypothesis there exist h i E H ,  

~i E Q such that vi = hiaJi . Moreover, we can choose a;0 = aJn = id. Thus, 
We h a v e  

h = a J o r l c O l l W l r 2 a J 2 1  . . . c O n _ l r n W n  1 = w 1 . . .  W n  
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with 
Wi -~ W i - l r i ~ ) [  -1 -~ h i - l l r l  . . .  r i - l r i r i - 1 . . ,  r l l h i  

= h~-_~l hi E H M QRQ -- T 

Thus, T generates H and '~H _~ "YG. [] 

It seems difficult to compare the growth of (G, R) and (H, T) without 
further hypotheses. 

PROPOSITION 6.3. Let G be a group. Assume  that E -= E -~ is a finite 
symmetr ic  set of generators containing the identity. Let  H be a subgroup 
of G such that [G : H] = k. Then, there is an integer 1 <_ v <_ k such that 
G = H E  ~ and E = E 3~ M H generates H.  Moreover, the diameters and 
growth functions of  (G, E)  and (H, E) satisfy 

7H <_ 7c. ; VH(n) <<_ Va(3vn)  , n = 1 , 2 , . . .  (6.2) 

7G < 2(k + 1)(3~7H + 1) ; VG(z,n) < IS]~VH(n) , n = 1 , 2 , . . . .  (6.3) 

Proof: First, we claim that G = H E  k. To see this, consider the quotient 
space X = { H g  : g E G}. The graph (G, E)  induces a graph structure on 
X with edge set { (Hg,  H g e ) : g  E G, e E E}. This graph is connected and 
has diameter smaller or equal to k = IX[. This shows that  E k contains a 
set of coset representatives. Thus there is an integer 1 < ~ < k such that  
G = H E  ~. We can now apply L e m m a 2  w i t h R =  f~ = E ' .  This shows 
that E = E 3" M H generates H with 7H _< [Ta/~]. Moreover, ~ C E 3"n 
shows that  VH(n) <_ V a ( 3 , n ) .  This proves (6.2). 

In order to prove the diameter bound in (6.3), write 7a  = 2a(3VTH + 1) 
for some a > 0. Then, we can find at least [aJ disjoint balls of radius 
3VTH in (G, E).  But,  each of these balls has volume at least IH[ since 
H = E ~ C E 3~7H. Thus, [aJ[H[ < [G[. This shows that  a _ k + 1 and 
thus 7a  _< 2(k + 1)(3vTH + 1). 

Finally, to prove the volume bound in (6.3), we claim that  E "(~+1) C 
E ~ E  ~. This easily follows by induction from E 2" C E E  ~. But,  for r, r '  E 
R = E ~, there exist t E R, h E H~such that  rr '  = ht because G = H R .  
Hence, r r ' t  -1 E E3VMH = ~ and r #  = r r ' t - l t  E E S ' .  This ends the proof 
of Proposit ion 6.3. 

n 

B.  E x a m p l e s .  Simple random walk on the "circle" Z,~ is well under- 
stood. Order m 2 steps are necessary and suffice for stationarity. We begin 
by studying all extensions of l m  of degree 2. Even here there are some sur- 
prises: simple random walk so extended can get random in order m steps. 
We start  by delineating all extensions of degree 2. Let Dm be the dihedral 
group. This can be constructed by letting Z2 act on l m  by x ~ - x .  
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PROPOSITION 6.4. Let m = p~l . . .p~,  be a product  of distinct odd prime 
powers. There are 2 z non-isomorphic extensions of  degree 2 of  Zm. Each 
one of them is isomorphic to a direct product  Dml x Z,~ where ml  is a 

at m / m l  . product of a subset o[ { p ~ , . .  . ,pt ) and m2 = 

Proof: Let G be an extension of degree 2 of Zm. Then G = ]'2 ~( Zm by the 
Schur-Zassenhaus theorem. Thus, G is specified once we specify an action 
of •2 on Zm; that  is, an automorphism of Zm of order 2. An automorphism 
is determined by the image of 1 in Z~ and must be of the form j -~ bj for 
b EZm with b 2 = 1. Write b--  ( b l , . . . ,  hi) with bi C Zp% using the Chinese 
remainder theorem. Thus bi = • and any choice is possible. Different 
choices lead to non-isomorphic extensions. Finally, fix a b and so an action. 
If ml is the product of prime powers where bi -- - 1 ,  then G ~ Dm 1 • Z,~:. 

D 

For instance, if m = 15, there are 4 choices for b of order 2: { 1, 4, 11, 14}. 
The 4 extensions are Z2 • D15, D3 • D5 • Even m can be handled 
by the same techniques. The extensions of degree 2 of cyclic groups of size 
2 k are classified in [Su2, Theorem 4.1, p. 54]. 

T H E O R E M  6.5. Let m be an odd integer. Let  G = Z2 ~< Zm be an extension 
of degree 2 of Zm, with generating set 

E -- {(0, 0), (1,0), (0, 1) (0 , -1)} .  

Let m l ,  m2 be the odd integers given by Proposition 6.2 such that G = 
Dm~ x Z,~ 2 and set m,  = max{ml ,m2} .  Then, ( G , E )  has diameter of 
order m ,  and satisfies the doubling property  uniformly in m. Thus, order 
rn2, steps are necessary and suffice for the associated random walk to be 
c/ose to equilibrium. 

Proof: The isomorphism 12 ~< Zm = Dml x Fm 2 can be taken of the form 

((x, yl), 
with Yi - Y (modmi) ,  i = 1,2. Under this map the generating set E 
becomes 

E = {((0, 0), 0), ((1,0), 0), ((0, 1), 1), (0, - 1 ) ,  -1)} .  

It is an easy mat te r  to see that  E 3 contains the elements ((0, +1),  0) and 
((0, 0), + l )  and to deduce that  (G, E)  has diameter of order m. .  

We now show that  all the graphs (G, E) in Theorem 6.5 have the dou- 
bling property (uniformly). By Proposition 6.3, this boils down to the fact 
that the cyclic groups Zm have the doubling property uniformly for any 
possible choice of at most 64 generators (here, 64 is a crude est imate for the 
size of E 3 n Ira). This was proved in section 5. 
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Remark: As the action of Z2 on Zm varies, m.  varies in [v/-m, m] and essen- 
tially any values in this interval can be obtained. 

It seems like a natural  project to t ry  to understand bet ter  the extensions 
of l m  by L ,  for fixed r. Namely, let G = Go = Z, t~0 Zm for some action 
0, and fix 

E = {(0, 0), (0, 1), (0, -1 ) ,  (1,0), ( -1 ,  0)} (6.4) 

as generating set. Proposition 6.3 and further elementary considerations 
show that  Go, E has (A, d)-moderate growth for some constant A = A ( r )  
and d = d(r) < r, uniformly in m and 0. It follows that  the corresponding 
random walk is approximately uniformly distributed after order 3,2 steps. 
This, however, does not tell us what the diameter  3, is in terms of r, m, 0. 
Moreover, a precise s tudy of the volume growth would be of interest. 

We will not pursue this here in complete generality but  we now describe 
two examples with r = 3 to illustrate further what is going on. 

T H E O R E M  6.6. L e t  m = k 3 - 1 or m = k 2 + k + 1 wi th  k = 2, 3 , . . . .  For 
such m and i e Z3, j EZm,  Oi(j) = k i j  ( m o d m )  defines an action of Z3 on 
Zm. Le t  G = ][3 t<o 7m with generating set E at (6.4). 

1. I f  m = k 3 - 1, the Cayley graph G , E  has d iameter  of  order k = m 1/3 

and cubic growth. 
2. I f  instead m = k 2 4- k 4- 1, the Cayley graph G, E has diameter  of  order 

k = m 1/2 and quadratic growth. 

Proof: For (x, y) E G we have 

x ~'x ~ ~" (x Jr k x' , y ~  , y ~ =  x',  y + y ' )  

and thus 

( O , y ) ( x , O ) ( O , - y ) = ( O ,  kXy) for x = 0 , 1 , 2 ,  y E Z m .  (6.5) 

In case 1 where m = k 3 -  1, we can write any 0 < y < m -  1 as 
y = a] + a2k + a3k 2 with 0 < ai < k - 1. Using (6.5), it follows that  
the diameter  3' satisfies 7 < 3(k + 1). Also, elementary considerations give 
3, >_ (k - 1)/2. A similar argument  shows that  G, E has cubic growth. 

For c a s e 2 w h e r e m = , k  2 + k + l , w e c a n w r i t e a n y 0 < y < m - 1  as 
y = a] + a 2 k  with 0 < a~ < k +  1. Using (6.5) again, we get l ( k -  1) _< 7 _ < 
2(k + 1). Similar further arguments show that  the growth is quadratic in 
this case. D 

Here is another  class of examples which seems worth making explicit. 
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T H E O R E M  6.7. Fix A > O. Let G be a group of order rap n where p is a 
prime and (re,p) = 1. Also, let E be a symmetric set of generators of G 
containing the identity. Then, there exists a constant C : C(A) such that 
the Cayley graph (G, E) has the C-doubling property provided that 

m < _ A ,  n < A  and IEI<A. 

Thus, i f  the Cayley graph (G, E) satisfies the above hypotheses and has 
diameter 7, order 72 steps are necessary and suffice for the simple random 
walk on (G, E) to be close to uniform. 

Proof: Let N be a p-Sylow subgroup of G. It has order p~. Thus, N is a 
nilpotent group of class cl(N) < n < A; see section 5.C. By Proposition 6.3, 
the volume growth of (G, E)  is comparable to the volume growth of (N, E) 
where E = E am Cl N. Since E has at most IE[ am <_ A 3A and N is nilpotent 
of class at most A, we know that  (N, E) is C(A)-doubling for some constant 
C(A). This clearly yields the desired result, o 

Remark: The constant C(A) in Theorem 6.7 can be made explicit in prin- 
ciple. It is probably of the type A AA . 

C. G r o u p s  o f  p o l y n o m i a l  g r o w t h .  We now present some theoretical 
consequences of Proposition 6.3 and Gromov's theorem. 

T H E O R E M  6.8. Let (G, E) be a Cayley graph of ( A, d)-polynomial growth 
where E is a symmetric set of generators containing the identity. Let 7 be 
the diameter. There exist constants Ci = C i ( A ,  d), 1 < i < 5 such that: 

1. The graph (G, E) has the Cl-doubling property. 
2. Any  probability q such that rl = inf~EE{q(s)} > 0 satisfies 

Ilq (n) - ullTv < C2e -c for n = (1 + c)72/rl with c > O. 

3. If, moreover, q is supported in E and 3' is large enough, we have 

1- -c  for n c"~2/C3 [Iq ( " ) -   llrv _> 5e = . 

4. Let E be another  symmetric set of generators such that ]E'I <- A. Then, 

(G, E) is Cs-doubling. It follows that there exist A' = A'(A, d) and 
d' = d'(A,d) such that (G ,E)  has (A',d')-polynomial growth. This 
also implies that the diameters 7, ;Y satisfies 

C~ -1 log'7 _< logS' < C5 log')' . 
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Proof: The first assertion follows from Proposition 6.3 and Gromov's the- 
orem as in the proof of Theorem 6.7. Assertions 2 and 3 then follows from 
section 5.A. The last s ta tement  about diameters follows from 

IGI A7 'i , z/ Ial A'Z/d' . 

Remark: It would be nice to have a proof of this theorem that  yields explicit 
constants. This could be achieved either by getting explicit constants in 
Gromov's Theorem 6.1 or by avoiding the use of Gromov's result in the proof 
of Theorem 6.8. However, proving that  a group having (A, d)-polynomial 
growth satisfies the Cl-doubling property without using Gromov's theorem 
seems to be a serious challenge! 

7. Semi-d irect  P r o d u c t s  and N o r m a l  Extens ions  

This section treats the affine group m o d p  and other extensions of groups 
of modera te  growth . .These  often do not have polynomial growth but the 
moderate  growth theory applies. 

A.  T h e  af l lne  g r o u p .  Let p be an odd prime. Let Ap be the "ax + b" 
group (modp).  This is the group of pairs (a, b) with b E Zp, a E Z; and 

(a, b)(a', b') = (aa', a'b + U);,  id = (1,0) 

and thus (a, b) -1 = (a -1 ,  -a-lb). Random walks on Ap arise in the s tudy 
of random number generators as explained in [ChDG]. They  have also been 
studied by Hildebrand [Hi] as discussed below. 

Let a be a generator of Z~, let B be any non-zero element of Zp. Con- 
sider 

E = {(1,0), (or, 0), ( a - l , 0 ) ,  (1,/3), (1 , - /~ )} .  (7.1) 

The diameter  of Zp with ~ as generator is ( p -  1)/2. The diameter  of Z~ 
with a as generator is (p - 1)/2. It follows that  the diameter  7 of Ap is at 
most p (and at least ( p -  1)/2). It is clear that  V(n)  > n 2 for 1 < n < p and 
that  IApl <_ 7 2. It follows that  Ap has modera te  growth with A = 1, d = 2. 
From this, Theorem 3.2 shows that  order p2 steps are necessary and suffice 
to drive the variation distance to zero. 

T H E O R E M  7.1. For random walk on Ap with generating set given by (7.1), 
there are universal constants a, a ~, b, U > 0 such that 

a'e-b'k/P _ IIq ( k ) -  UlIT.v. ae-bk/P . 
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R e m a r k s :  1. Diaconis [D, chapter 3] studied this problem using the char- 
acter theory of Ap. The analysis only managed to show that  order p2 logp 
steps suffice. Using highly original methods,  Hildebrand [Hi] showed that  
the second coordinate of walks generated by a set like (7.1) get random 
extremely rapidly (order (logp) 2 steps). The first coordinate is performing 
simple random walk and so takes p2 steps. A separate s tudy of the second 
coordinate does not seem possible with the technique of this paper. 

2. For general odd m the group Am is defined as l *  D< Zm. The 
minimum number of generators depends on the prime decomposit ion of 

a t  m. If m = p ~ i p ~  .. "Pt as a product  of distinct odd prime powers then 
7/* = U ( p ~ i ) U ( p ~ ) . . . U ( p ~  ~) with U ( p  a) ~- Z (p  a - p a - 1 )  (see e.g. [IR, 
p. 46].) This group is generated by ~ generators (and this is the minimum 
since Z*  has Z~ as a homomorphic image). With  a fixed number ~ of 
generators, these groups have moderate  growth with d = ~ for an explicit 
constant A as m varies. It follows that m 2 steps are necessary and suffice 
to reach uniformity (for bounded ~). The problem is open for situations like 
m = PiP2 "" "Pt, the product  of the first ~ primes, as f varies. 

3. Let p be an odd prime. Suppose r divides p - 1. Then Fp is a cyclic 
group of order p -  1 and so contains a cyclic group of order r. The associated 
walk on Z~ D< Zp can be studied by the methods of section 6 if r is "small" 
(e.g. r = 2 giving a dihedral group) or by the method  of this section if r 
is "large" (e.g. 7" = ( p -  1)/2). For other values of r (e.g. r ,,~ logp or 
v~)  we do not know how to use present techniques to get the right answer. 
Perhaps, Hildebrand's method can be used to show that  the walk on the 
second coordinate requires order (logp) 2 steps whenever r > logp. The 
walk on the first coordinate always requires order r 2 steps. 

B. N o r m a l  E x t e n s i o n s .  We now examine various ways of put t ing to- 
gether two groups G and K having moderate  growth. A succinct, readable 
account of normal group extensions appears in [H, chapter 15]. One must 
specify an action of G on K here denoted g. k. Further, a 'factor set'  must 
be specified. This gives, for g, g' E G an element (g, gr / E K which satisfies 

g .  ( 9 ' .  k)  = ( 9 , 9 ' ) - 1 ( 9 9  ' �9 k ) ( 9 , 9 ' )  

and 

(99 ' , 9") (g" .  (9 ,9 ' ) )  = (g, 9'9") (9, 9") . 
From these ingredients, an extension L of K by G can be constructed: 

L = { ( g , k ) , g  ~ G , h  ~ K }  

with product  
(g, k)(g', k') = (gg', (g, g')(g' " k ) k ' ) .  
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The set {(id, h) : h E K}  is isomorphic to K which is normal in L with 
L / K  -~ G. Further, all normal extensions arise from this construction. 

If the factor set is trivial, (g, g') =- id, the extension is called a semi- 
direct product. The affine group Ap is given by this construction. The 
quaternions are a non trivial extension of Z4 by 72. 

Suppose Ea and EK are symmetric sets of generators of G and K.  
Identify these with subsets of L as {(g, id) : g E EG}, {(id, k); h E El,'}. 
The following theorem gives a sufficient condition for all extensions to have 
moderate growth. It is followed by examples and a counter example showing 
how things can change if its condition is violated. 

T H E O R E M  7.2. Suppose G, EG and K, EK have diameters 7a,  7K with 
7K ~_ 07G for some 0 ~_ 1. If  G and K have moderate growth with constants 
AG, dc and AK, d~ then any extension L with generating set EL = EcUEK 
has diameter 7L satisfying 7C < ~/L < ( l  "4- O)~[G and moderate  growth with 
AL = 2d~+dKOdKAGAK , dL =dG -4- dK. 

Proof: For any extension L, we have 

(g, id)(9', id) = (9g', (g,9')) and (id, k)(id, k') = (id, kk) . 

These yield "Yc < ~'L < ~G'4-~h" <_ (lq-0)3'G. Next, fix n and nl +n2 = n 
with nl < 7G, n2 < 7K. 

WL(n) UL(n) > WG(nl)UK(n2) > 1 ( n  I )dG ( n  2 )dK 
ILl -IGI[I/I- IGI IKI - AGAh -'---'-C -~c 

1 (nl~dG (n2)  d" 

This inequality will be used in several cases. 

Case 1. n = 2m with m < min(TG, 7K). Then, with nl = n2 = m. 

VL(n)> 1 ( n ) 
ILl -- AGAKO dK ~TL 

d e (  n ~dK 1 ( n )  dc'+dK 

\ ~TL ] =AGAKO dK2dC+dK -~L 

Case 2. 
m u l ~  

n = 2m - 1 with m _< min(vc,"fK).  Then, with nl = m, n2 = 

1 (2m) o(2,m 1,)dK 
JL--V- AGA, edK 

> 2 dG+dK \ 2m 1 
- AGAK ~dK \"~L ] 
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n Case 3. 7K_< 7 - < 7 a "  Then, 

VL(n) > re(g)  VK(~) > 1 n 1 n 

IL-----~- l a l  I/el - )--g - 
d a + d K  

>-- AG2dc+dK 

dG"l'dK 

< a n d  < Then Case 4. 9'a ~ ~ _ ")'K n _ ")'L- 

VL(n) VG(2)  Vt ( (~  ) 1 (2__~K)dK 1 (@L)  
~ -  >_ IG I II(-----~ >_ ~ >- AI~.(20)dK 

dG-l-d K 

n n implies This exhausts the cases since 7K _< 7a  < 7 or 9'a <_ 7K < 7 
n n 

n = y + 7 > " /K -I- "YG ~ ")'L. [] 

Remarks: 1. Theorem 7.2 is useful for 7K small or modera te  with respect 
to 7G. The results then show that  all extensions have modera te  growth so 
that  the convergence results of Theorem 1.2 are in force. The affine groups 
offer examples where Theorem 7.2 is effective. Other examples are described 
below. 

2. If 7a  is small with respect to 7K, Theorem 7.2 is not very useful 
because the constant 0 is large. The examples of extensions of degree 2 and 
3 of Zm described in section 6.B show that  the degrees of volume growth 
needn' t  simply add: ][2 has growth of degree 0, Zm with the canonical 
generators has linear growth, but Z2 ~< Z,~ may have quadratic growth. 
Thus, the condition 7a" _< 07a in Theorem 7.2 cannot be removed. 

3. Semi-direct products give examples of groups of moderate  growth 
which do not have polynomial growth. For instance, for the affine group Ap 
with generating set (7.1), one can show that  V(n) >_ e cn for 1 _< n _< logp 
where c is a universal positive constant. This proves that  (6.1) cannot hold 
with fixed A, d when p tends to infinity. 

4. Elementary considerations show that  when L above is a semi-direct 
product,  the center ZL of L can be identified as 

ZL = {(id, k) : k E ZK and g . k = k f o r a l l  g E G } .  

Thus Z L = Z K [ t  CL(G). For example, the affine group is centerless for 
p 7~ 2 and the dihedral groups Dm are centerless unless m is a power of 2. 
In these cases, the groups are not nilpotent so the present arguments offer 
the only currently available route to studying random walk. 
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C. Further examples. A large class of examples can be obtained by 
using the action of Zr on lp ,  where (say) p is a prime and r divides p - 1. 
Here, for j E l r  and a E Z~ satisfying a r = 1, define Oj(x) = aJx for x E Zp. 
For instance, consider Z~ t~ U3(p) where the action of l r  on U3 (p) is given 
by 

((i x aJx a2 z) Oj 1 y = 0 1 a3y x ,y ,  z E Zp.  
0 1 0 0 1 

For r comparable to p (e.g. r = p - 1) Theorem 7.2 applies whereas for 
small fixed r Theorem 6.7 can be used. 

A second class of examples uses the natural  action of G = Ud(p) on 
K = I f  (see section 4 for notation). For fixed d and large p and with 
their natural  generators, these groups have comparable diameters of order p. 
Then, Theorems 7.2 and 2.3 combine to show that  order p2 steps are required 
for randomness. Diaconis and Graham [DG] studied walks of this type with 
p = 2 and d large as examples of repetitive computer  algorithms operating 
in the presence of a bad bit. 

The upper triangular group TN. Let p be a prime. The group TN (p) of 
upper triangular, invertible, N • N matrices with entries m o d p  has order 

ITN(P)I = (p- I)Np It contains UN(p) as a normal subgroup. The 
quotient TN/UN ~- (-]~)N and TN is a semi-direct product of UN by (I~) N. 
Let a be a generator of Z~. Let Ei(~)  be a diagonal matr ix  with a in 
the ith place and ones elsewhere. Let G = (I~) N, with generating set 
{El (~), E1 (a - 1 ) , - ' ' ,  EN(O~ -1)}  = E a  and K = UN (p) with generating set 
as in (4.4). Then, for N fixed, L = TN with EL = EG U E~: has diameter  of 
order p. Thus, for N fixed and p large the walk on TN with these generators 
gets random after order p2 steps. 

Polynomials under composition. Consider the set GN of polynomials 
with coefficients (modp)  taken (rood x N+I) of form al x + a2x 2 + . . .  + aNx N 
with al E 1'~ and ai E Zp, 2 < i < N. This set forms a group under 
composition. The subset G~v with al  = 1 is a normal subgroup of order 
pN-1.  As generators for G~v choose x + x 2, x + x3, . . .  x + x N. G~N in these 
generators has modera te  growth since it is a p-group. From here, GN can be 
handled by the theory of this section. For N fixed and p large the natural  
walk requires order p2 steps to get random. 

The group GN can be realized as a subgroup of TN by mapping f E GN 
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into a matr ix  as follows. Write 

f ---- a l x  --{- " " " + a N  x N  

f o S...o S = a ~ x  + ak2x 2 + . . .  + akN x N  . 
"i 

Define rn(f) to have ith row beginning with  i - 1  zeros and then  a~, a ~ , . . - ,  aiN_i . 
The map  f ~ rn(f) is an injective homomorph i sm.  For small  N, GN is fa- 

Z. ,  Ap, * = ~ * ( )  miliar: G1 "~ * G2 ~ G3 " Zp p p, p = ~(Z •  G4 Z D<U3p Johnson 
(1988) has fur ther  in format ion  about  these groups. 
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