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This paper develops bounds on the rate of decay of powers of Markov kernels 
on finite state spaces. These are combined with eigenvalue estimates to give 
good bounds on the rate of convergence to stationarity for finite Markov chains 
whose underlying graph has moderate volume growth. Roughly, for such chains, 
order (diameter) 2 steps are necessary and suffice to reach stationarity. We con- 
sider local Poincar6 inequalities and use them to prove Nash inequalities. These 
are bounds on (,_-norms in terms of Dirichlet forms and l~-norms which yield 
decay rates for iterates of the kernel. This method is adapted from arguments 
developed by a number of authors in the context of partial differential equations 
and, later, in the study of random walks on infinite graphs. The main results do 
not require reversibility. 

KEY WORDS: Markov chains; Dirichlet forms; infinite graphs; Nash 
inequalities. 

1. I N T R O D U C T I O N  

We begin with an example of a natural problem which is (partially) solved 
by using present techniques. Let C be the lattice points inside a compact 
convex set in R '1. Assume that two points in C can be connected by a 
lattice path within C. A random walk proceeds by uniformly choosing one 
of the 2d possible neighbors of x s C. If the neighbor is inside C, the walk 
moves to the chosen point. If the neighbor is outside C, the walk stays 
at x. This gives a Markov kernel: 

K, , f l / 2 d  for x e y n e i g h b o r i n g p o i n t s i n  C (1.1) 
~x, y )  = ~ g ( x ) / 2 d  for x = y ~ C 
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where g(x) is the number of neighbors of x that do not belong to C. This 
is a reversible Markov chain on C with a uniform stationary distribution. 
Such walks arise in the age-old problem of computing the volume of a 
convex set (Dyer and Friezet'8~; Lovasz and Simonovits127~). They also 
arise in statistical computing (Diaconis and Sturmfelst'7~). The following 
theorem is proved in Section 6. 

Theorem 1.1. Let C be a connected set of lattice points inside a com- 
pact convex set S in •2 and let U be the uniform distribution on C. Let 
y~> I be the Euclidean diameter of S. There are universal constants 
a~, a2 > 0 such that, for any x e C, the walk in Eq. (1.1) satisfies 

a ,,-a,c for 17=c) ,2, c > 0  I IK"(x , - ) -  U( ')IITv~ < 1~ " , 

Further, there are universal constants a3, a 4 > 0 such that 

supllK"(x,.)--U(.)llTv>~a3 e-' ' ' ,  for n=c?,-', c > 0  
x 

Roughly, Theorem 1.1 says that order y2 steps are necessary and suffice to 
approach the uniform distribution in total variation distance. For  c large, 
this distance is exponentially close to zero whereas, for c small, the distance 
is bounded away from zero. The result stated in Theorem 1.1 does not hold 
in this generality in higher dimensions. 

We now turn to our general setting and explain the main techniques of 
this paper. Let X be a finite set, K(x, y) a Markov kernel on X with station- 
ary distribution rr(x). Write Ki~.(y) = K"(x, y) = Z_-~ x K " -  l ( x ,  Z)  K(z, y). 
Our goal is to bound the rate of convergence of K" to ~ for irreducible 
aperiodic Markov chains. Define total variation distance by 

IIKI,'.--Z01TV = max IK"(x, A)--rc(A)l = �89 ~ IK"(x ,y ) - -~ (y) l  
A ~ X  y E ~" 

(1.2) 

All our bounds on variation distance proceed by bounding the El-norm in 
Eq. (1.2) by the s 

2 IIgT.-~IITv ~ I I ( g ' . ~ . / ~ )  - -  1112 (1.3) 

Here, s has inner product ( f ,  g) =Y'..,.~xf(x)g(x)re(x) for real functions 
f,  g. The Ez-norm is divided into parts as follows 

m a x  II(K.,'./~)- 1112 = IIK"-~II2_~_~ < IIK"'II_,-~ IIK"'--~II2-,_ (1.4) 
x 
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where n ~ + n 2 ----- n and K and rr denote also the operators corresponding to 
the kernels K(x,y) and n(y) (the end of the introduction has further 
details). The norms on the right-hand side can be represented as 

t lK"-~rll2~z=sup{ 11(I~'-Tr)fllz:fet.,Or), Ilfl12 = 1} ~f/~(n) (1.5) 

IIK"[I 2 ~ ~ -- sup IlK JTrl[ ~_ %r D(n) (1.6) 
x 

The quantity p(n) of Eq. (1.5) can be estimated by eigenvalue techniques. 
The decay rate D(n) of Eq. (1.6) can be estimated by the Nash inequalities 
developed next. As an illustration, the bounds above give 

Lemma 1.1. Assume the notation of Eqs. (1.2)-(1.6). Let 7r ,= 
minx 7r(x). Then, for any n/> 1, 

2 ]lK~.-TrllTv~ II(g;./Tr)- 1112~ min D(n~)lt(n2) ~<rr,l/21L"(1) 
I t |  - ~  1 | 2  = I t  

The final bound in Lemma 1.1 has been frequently used to give non- 
asymptotic bounds for reversible Markov chains (c.f., Sinclair and 
Jerrum(S21). It bounds total variation by a power of a second eigenvalue. 
It correspond to the choice n l = 0 ,  n2=n and uses the easy facts that 
D(0) = 7['~ - I / 2 ,  fl(n)~fl(1)". To see the improvement possible, consider the 
chain in Eq. (1.1), in dimension d =  2. As shown in Section 6, for this 
example, ll( 1 ) ~< 1 - a/y 2 for a universal a > 0, and re, 1/2 = I C[ i/2 ~< y. Thus 
the final bound requires n large enough to make y ( 1 -  a/y2) " small. This 
needs n of order y2 log y which is off by a factor of log y. This factor can 
be picked up by using the decay rate D(n). In Section 6, it is shown that 

~< ~< "~ . . . .  D(n) <~ A(y/v/nO- for 1 -.~ 11 ~ y- and a umversal constant A. Usmg this with 
n~ =y2, n2=c~2, c > 0 ,  the middle bound of Lemma 1.1 proves that n of 
order y2 suffices. Section 6 proves a complementary lower bound showing 
that order y2 steps are actually needed. For a continuous time version of 
Lemma 1.1, see Lemma 2.3. 

Bounds for the 2 ~ 2 norm are developed in Section 2. These involve 
various symmetrizations suggested by Lawler and Sokal(26); Mihail~2S); and 
Fill, (1) which allow eigenvalues to be used for nonreversible Markov 
chains. We discuss bounds in discrete and continuous time. 

One main theoretical contribution comes in Section 3 which develops 
Nash-type inequalities as a tool for bounding the 2--, oo norm. In the 
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context of partial differential equations, Nash (29) introduced an inequality 
which, transplanted to our setting, reads 

,:,,',.~ 

where ~' is the underlying Dirichlet form defined in Section 2. Adapting 
developments of the ideas of Nash along the line of Carlen et a/.(2); 
Coulhon and Saloff-Coste(4"5); and Varopoulos, (35-37) we will show that 
Eq. (1.7) is equivalent to decay-rate estimates of the type 

D(n) =sup  IIg'~./~ll2 <~ f /n  D, 1 <<.n<<,N (1.8) 
x 

where D and N are the same in Eqs. (1.7) and (1.8). Theorem 3.1 states one 
form of the bounds on total variation distance achieved by combining the 
2--+ 2 and 2 ~  ~ bounds. Section 3 also makes the connection with 
Sobolev inequalities. 

Section 4 describes how Nash inequalities can be used together with 
comparison arguments to study certain chains. This is illustrated for ran- 
dom walk on a box in 7/a. 

Section 5 contains our second main contribution. It shows how local 
Poincar6 inequalities can be combined with the notion of moderate growth 
of the graph underlying the chain to prove Nash inequalities. This techni- 
que is adapted from an original idea introduced by Robinson, (1) in the con- 
text of Lie groups and further developed in Ref. 6. Path techniques along 
the lines of Jerrum and Sinclair(25); see also Refs. 9 and 16, are introduced 
to prove these Poincar~ inequalities. A volume growth condition that we 
call moderate growth plays a crucial role here. It generalizes a notion intro- 
duced for groups in Ref. 11. 

Section 6 proves Theorem 1.1 and discusses the difficulties of extending 
the result to convex sets in higher dimensions. 

Section 7 shows how Nash inequalities extend to time inhomogeneous 
problems, e.g., random walk on groups with time varying step distribution. 

To conclude, we collect together frequently used notation. The kernel 
K(x, y) satisfies K(x, y) >1 O, Zy K(x, y) = 1 for each fixed x e X. The station- 
ary distribution satisfies n(x) t> 0, ~y  :r(y) = 1 and Y'.x n(x) K(x, y) = It(y) 
for all yeX. The space s has norm Ilfllp=(Elf(x)lPTr(x)) l/p, 
1 ~< p < oo, and Ilfll co = supx If(x)l. If Q: :p ~ s is a linear map, we write 
IlOUp-.p, for the smallest number b such that IIQfllp, ~<b Ilfllp for all f~&p. 
The kernel K(x, y) defines an operator (also denoted by K) which acts on 
:p by 

Kf(x) = ~ K(x, y) f ( y )  
Y 
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Jensen's inequality shows that K is a contraction on gp for 1 <~ p ~< oo, so 
Ilgllp ~p ~< 1. We often regard the stationary distribution rt as a map n from 
ft, to Ej, which takes f into the constant function rcf(x)= Y~ f(y)r~(y). 

Sinclair (33) gives a book length treatment of related material with a 
thorough review of the literature. The present paper builds on Refs. 9-11, 
and 16, which may be consulted for background and examples. 

2. E IGENVALUE B O U N D S  

This section gives bounds on I lK"-nl l2~2 of Eq. (1.5) by using the 
eigenvalues of the multiplicative symmetrization of the operator K, namely 
K'K, where K* is the adjoint of K on E2(rc) with kernel 

K*(x, y) = K( y, x) rt(y)/r~(x) (2.1) 

An easy calculation shows that K*K is reversible with respect to rt and so 
self-adjoint on s It follows that K*K has nonnegative real eigenvalues 

fl0 = 1 > - - f l 1 > ~ # 2 ~  > "'" > - - t i m - 1 / > 0  

Define 

/, =p(hO = ~ (2.2) 

The minimax characterization for eigenvalues of reversible chains gives 

1 _/ ,2 = min{g,(f ,  f ) :  i t ( f ) = 0 ,  llfl12 = 1} (2.3) 

where the Dirichlet form g,  is given by any of the expressions 

g , ( f  f )  = ( ( I -  K*K)f  f )  = �89 ~ If(x)  - f ( y ) l  2 K*K(x, y) n(x) 
X, y 

= I[f[l~-liKfl] ~ (2.4) 

See Ref. 16, for background and references. The use of singular values to 
analyze non-selfadjoint operators is classical. See e.g., Gohberg and 
Krein. (22) The following lemma originates with Elena Mihail. (2s) It was 
isolated, developed, and applied in nontrivial problems by Jim Fill. (2n We 
give a short proof for completeness. 

L e m m a  2.1. Let K, = be a Markov chain on a finite state space X. 
Then 

I IK-nl l2~,_=# 

I I / ~ -  nll,_~2 ~<#" for any n>~l 

where p is defined at Eq. (2.2). 

860/9/2--14 
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Proof Observe that (K - r 0 f =  K(f--  nf) and I I f -  ~fll~ : 
Ilfll@ - (~f)2. Thus, 

IIg-~rll=_= : max{ Ilgfll2: ~ f = 0 ,  Ilfl12 : 1} : /~  

where the last equality follows from Eqs. (2.3) and (2.4). 

Example 2a. Take X = S , ,  the symmetric group. Using cycle nota- 
tion, let the probability Q be defined by 

Q(id) = Q(( 1, 2 ) ) =  Q(( 1, 2 ..... n)) : 1/3 (2.5) 

The associated kernel is K(a, r / ) = Q ( q a - ' ) .  This corresponds to a card- 
shuffle random walk which proceeds by choosing the identity, transpose 
top two, or the n-cycle top to bottom, each with equal probability. The 
invariant measure for this walk is the uniform distribution n ( a ) =  l/n!. The 
walk is connected and aperiodic but not symmetric. Define the reversed 
walk Q*(id) = Q*((1, 2)) = Q*((n, n -  1 ..... I)) = 1/3. The multiplicative 
symmetrization K*K corresponds to the probability 

Q* * O( id)=  1/3, Q* * a((  1, 2 ) ) =  2/9 

Q* * Q((1, 2 ..... n) +') = Q* * Q([(1,  2)(1, 2 ..... n)] +') = 1/9 

Using comparison techniques of Diaconis and Saloff-Coste, c1~ Section 3, it 
is straightforward to show 

~2(Q) =fit(Q'Q) ~< 1 - 1/(41n 3) 

One problem with the symmetrization K'K, is that it can destroy 
connectivity. As an example, modify Eq.(2.5) by setting Q( (1 ,2 ) )=  
Q((I,..., n ) ) =  1/2. The multiplicative symmetrization corresponds to the 
probability Q* * Q(id) = 1/2, Q* * Q([(1, 2)(1 ..... n)] +1) = 1/4. The 
support of Q* * Q does not generate the symmetric group but only a cyclic 
subgroup of size n - 1. Here, symmetrizing the measure Q2 = Q ,  Q leads 
to a successful analysis. We will return to this example at the end of this 
section. 

Example 2b. Consider the walk on Zp=~_/pZ defined by Y,,+l= 
2X,, + e,,. Here, p is a prime, ei are idd taking values 0, + 1 with probability 
1/3 each. Chung et al., ta~ show that this walk gets random in order 
[log p]  [log log p]  steps. The multiplicative symmetrization takes order p2 
steps to get random and/x 2 = 1 - c/p 2 + O( l/p 4) for a fixed constant c. 
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We turn next to continuous time and the additive symmetrization. Let 
the Markov semigroup associated with K be defined by 

~, t" H t = e - t ( I - K )  = e - t  ,,=o ~ K", H o = I  (2.61 

We consider the Dirichlet form associated with K and defined by. 

g ( f , f ) = ( ( I - - K ) f , f ) = � 8 9  [ f ( x ) - f ( y ) [ Z K ( x , y ) g ( x )  (2.7) 
x , y  

for any real valued function f 
For complex valued function, set 

g+(f, f )  = ( ( I - -  �89 + K*]  )f, f )  

One has ( K * f , f ) = ( f , K f  ) = ( K f  , f ) and this yields 

o~+(f, f )  = Re( ( (I--  K)f,  f )  ) 

Since we work here with real valued funtions only, there is no distinction 
to be made between g and g+. The proof of the next statement shows how 
the Dirichlet form 6 ~ appears naturally when studying the semigroup H,. 

Lemma 2.2. The semigroup H, satisfies 

IIH, - ~ll 2 ~ 2 < e - a  

where 

2 = min{g(f ,  f ) :  g ( f ) = 0 ,  [Ifl[2 = 1} (2.8) 

Moreover, 2 is the largest number 0~ such that [IH,-~l[2~2~<e -=' for all 
t > 0. In particular 1 - 2 <~/t, where It is defined at Eq. (2.2). 

Proof Observe that (d/dr)H, = - - ( I - K ) H  t. This implies 

d 
d--t IIH,fl[;_ = - ( ( 2 1 -  [ K + K * ] )  H,f ,  H , f )  = --26~(H,f, H , f )  (2.9) 

For f such that g ( f )  = 0, the definition of 2 and Eq. (2.9) give 

d 
IlH, fl[~ ~< - 2 2  IlH,fll~ 
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2 ~ --2t2 If also Ilfl12 = 1, integrating from 0 to t gives IIH, fI[2 ..~e which implies 
the first bound claimed. 

To show that 2 is optimal, again let f satisfy n ( f ) = 0 ,  Ilfll2= 1. If 
IIn,-nl12_~2<...e-'% we get II(n,-~)fl l , ' -= IIH,fll~<~e -2'~ or Iln, f l l2-1 ~< 
e - ' - '~-  1. Thus, 

d t = o  dt IIH, f[l~ = - 2 g ( f ,  f )  ~< - 2 ~  

and so 0c ~< 2. Finally, writing 

ov t n 

H,--n=e-'~o ~ (K-n)" 

and using Lemma 2.1, we get [[H,-  rE I[ 2 ~ 2 ~ e-"~-t,~ and so 1 - / z  ~< 2. 
It will be useful to have the following continuous-time version of 

Lemma 1.1. 

Lemma 2.3. Let K be a Markov chain on a finite set X with invariant 
probability measure r~. Let H, be defined by Eq. (2.6). Then 

2 IIHr II(H~/~)-11124 min {D+( t , ) e  -~'-'} <~n,~/2e-;" 
l l + 1 2 = l  

where 2 is defined at Eq. (2.8), •. = min,. re(x), and D+(t)= Iln, ll2~ +o~. 
We now discuss the discrete time applications of the additive sym- 

metrization l [ K + K * ]  of K. This is irreducible and aperiodic if K is. The 
following examples show that this symmetrization can change the rates in 
unpredictable ways. 

Example 2c. Consider the deterministic Markov chain on Zp which 
always moves one step clockwise. If started at 0, it never gets random! The 
multiplicative symmetrization is the chain that stays still at its starting 
point. The additive symmetrization is the usual random walk on Zp. 

Example2d. Define a Markov chain on Z a by Xo=0,  X, ,+ l=  
SX,+e,,+l with e~ idd taking values (0,..., 0, 0) and (0 ..... 0, 1) with equal 
probability, and S(x~, x2,..., Xd) =(X2,..., xa, X~). This chain is exactly 
uniform after d steps. It is not hard to show that the additive symmetriza- 
tion takes at least order d 2 steps to get random. The multiplicative 
symmetrization isn't connected. 
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Example 2e. In the other direction, let p be an odd integer and con- 
sider the random walk on 7/p which takes steps 1 or [_~/P_I with equal 
probability. This walk takes order p2 steps to get random (it is, up to an 
affine transformation, the walk taking value _ 1 with equal probability). 
The additive symmetrization takes order p steps to get random (see e.g. 
Ref. 11, Section 1 ). Here, the symmetrization speeds things up. 

Despite these examples, both symmetrizations are often useful. (e.g., see 
the discussion in Fill's paper ~2~)). In general, the additive symmetrization is 
easier to use and gives bounds for the first eigenvalue of the process in con- 
tinuous time. The multiplicative symmetrization is crucial for the Nash 
inequalities of Section 3. We find it instructive to look carefully at the 
following simple example of a nonreversible chain with a nonobvious 
stationary stationary distribution which can be analyzed in detail by the 
techniques developed in this paper. 

Example 2L Let n >13 be an odd integer. Consider the usual nearest 
neighbor walk on an n-point path with an extra directed edge from 1 to n 
(Fig. 1 ). 

1 n \ . . . . . . . . . . .  j 
IP. 

Fig 1. The neighbor walk on an n-point path with an extra directed edge from 1 to n. 

This gives a nonreversible Markov chain 

K(i,i+l)=K(i,i-1)=�89 if 

K(1, 2) =K(1,  n) = �89 

K(n,n-- 1)=  1 

K(i,j) =0 

2 <~i<~n-1 

otherwise 

(2.1o) 

While the usual random walk on a path has essentially a uniform station- 
ary distribution, adding the extra edge gives 

Lemma 2.4. The Markov chain K at Eq. (2.10) has stationary dis- 
tribution 

2i 1 
lt(i)=---~, if l~< i~<n-1 ,  ~ ( n ) = -  

n -  n 
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Proof The equations for stationarity become 

n(2)=n(1)  ' n(1) 
2 - ~ - - +  =n(2) .... 

n ( n -  3) n ( n -  1) n ( n -  2) 
.... - -  q - - - = n ( n - 2 ) ,  ~-n(n) = n ( n -  1) 

2 2 2 

Solving inductively for n(i) in terms of n(1) gives n(i)=in(1) for 
l ~ < i ~ n - I  and n(n)=nn(1)/2. Then, use n ( 1 ) + - . - + n ( n ) = l  to solve 
for n(1). 

Let us compute the additive and multiplicative symmetrizations. First, 
recall that K*(x, y) = K(y, x) n(y)/n(x); thus 

1 1 
K*(i , i+ l ) = - } + ~  for 2~<i~<n-1 

K*(1 ,2 )= l ,  K*(n, 1)=l/n, K * ( n , n - 1 ) = l - 1 / n ,  and 
otherwise. 

The additive symmetrization K+ = �89 + K*) becomes 

1 1 
K+(i,i+_l)=~+_~ for 2<~i<~n-1 

K*(x, y) = 0 

K+(1, 2) =3/4, K+(1, n )=  1/4, K+(n, 1)= I/(2n), K+(n, n - l ) =  1-1/(2n), 
and K+(x, .v) = 0 otherwise. 

The multiplicative symmetrization has kernel 

P(x, y) = [ K*K](x, y) = ~" K*(x, z) K(z, y) 
.7 

Thus 

1 I 
P(i, i + 2 ) = ~ + ~  

1 1 
P(i, i--2) . . . .  

4 4i 
1 

e( i, i) =-~ 

1 
P(1, 1)--~, 

1 1 
P(n, 17 - 2) = ~-- 2---n' 

for 1 <i<<.n-2 

for 3 <~ i <~ n - 1  

for 2 <~ i <~ n - 2 

1 
e(2, n )=~ ,  

1 
P(n, n)=~, 

3 1 
P ( n -  1, n -  1) = z  + 4 ,n_  a" t 1) 

1 
P(n, 2) = 2-n 
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Using techniques as in Refs. 16 and 32, the quantities p, 2 defined at Eqs. 
(2.2) and (2.8) can be bounded as p ~< 1 - c/n z and 2/> c/n 2 for a universal 
constant c. The geometric techniques developed in Section 5 allow us to 
show that the chain K defined at Eq. (2.10) is closed to equilibrium after 
order n 2 steps. See Lemmas 5.5 and 5.6 for details. [] 

We conclude this section with two results on higher eigenvalues 
suggested to us by Jim Fill. 

Lemma 2.5. Let K be a Markov chain on a finite set X. Let K * K  
have eigenvalues fig, in nonincreasing order, and set /t* = x / ~ -  Let 
� 8 9  have eigenvalues p+,  in nondecreasing order. Then 

p+ ~<lt* for all i 

If in addition we assume that min x K(x, x)>/e > 0, then 

g,  >/2eg (2.11 ) 

and so 

p*~< 1 - e ( 1 - p + )  

inequality follows from a classical inequality for 

Lemma 2.6. 

yields Eq. (2.11) 
implies 

pF ~<J1 -2e(1 -p~+)~< 1 - e (1  - / t ? )  [] 

With the same notation as in Lemma 2.5, 

I x l -  ] 

E E P7 
x 1 

Proof Let fir(n) be the eigenvalues of K*"K' ,  and observe that these 
are the same as the eigenvalues of K"K*". Let (q;g), i = 0,..., [X[ - 1, be the 
corresponding basis of orthonormal eigenfunctions for K"K*" (these eigen- 
functions also depend on n). Elementary linear algebra shows that 

I X l - I  

I [ (g .ure)- l l i~= y '  fli(n)[IPi(x)l 2 
1 

Proof The first 
singular values. See e.g., Marshall and Olkin, (3~ or Horn and Johnson, (24~ 
(p. 150). In the other direction, the identity 

I -  K * K  = 2 e ( I -  �89 K + K* ] ) + ( 1 -- e)2[ I -  ( 1 - e)-2(K* - e I ) ( K -  el) ] 

(see also Ref. 21). Then, the minimax characterization 
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Thus, 
I X l -  l 

Y'. II(K~Jn)- lll2rc(x)= ~ fl,(n) 
x I 

Now, a classical inequality (see e.g., Horn and Johnson, (24) p. 190) gives 

IX] - I I x I -  1 

Y, fl , ( . ) <<. Z fl'; [] 
I I 

Remark 2.1. Lemma 2.6 gives bound on the average s (and so 
the average s l-norm) in terms of the eigenvalues of K*K. For random walk 
on groups, the t'p-norms involved here do not depend on the starting 
points so that Lemma2.6 gives bounds on II(K'~./rt)-lil2 and on 
][K~.--nllTv. As an example, consider the probability Q on the symmetric 
group S, defined at Eq. (2.5). Here, rt = U is the uniform distribution. As 
shown earlier,/t  = ~ ~< 1 -c/n 2 for an explicit constant c > 0. The final 
bound o Lemma 1.I shows 

2 II Q"' - UII TV (n! )  '/2(1 - -  c/n3) "' 

Thus, m of order n 4 log n suffices to make variation distance small. This 
can be improved to order H 3 log n (which is presumably the right answer) 
using Lemma 2.6. For a proof, bound the •2 rate of convergence of Q*Q 
using the comparison technique of Ref. 10. The same argument applies to 
the slightly different measure considered at the end of Example 2a. 

3. NASH INEQUALITIES AND DECAY B O U N D S  

The main result of this section shows that a Nash inequality implies 
a bound on the decay of K ~. Following this a converse: for reversible 
chains, decay bounds are equivalent to Nash inequalities. Similar results 
are given for continuous time. At the end of the section we give some 
history of these techniques in partial differential equations and probability 
theory. We also sketch their connection to Sobolev inequalites. Methods 
for proving Nash inequalities are given in Sections 4 and 5. 

Theorem 3.1. Let K(x, y) be a Markov kernel of a finite set X. With 
the notation as in Eqs. (1.2)-(1.6), (2.1)-(2.4), assume that the Nash 
inequality 

( 1 ~) I/D 
Ilfll2+'/~ C g , ( f , f ) + ~  Ilfllfi Ilfll (3.1) 
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holds for some constants C, D > O, N f> 1 and all functions f Then, 

[[K"l[2_oo=D(n)<~(4CB/(n+l)) D for O<~n~N (3.2) 

with B = B(D, N) = ( 1 + I/N)( 1 + [-4D-I). Moreover, if K is irreducible and 
aperiodic, then for any x ~ X and any 0 > 0, 

II(K~./zO-1ll2<~e -~ for n>~N+I--~[Dlog(4C(I+f-4D-])IN)+O ] 

(3.3) 

This yields exactly the same bound for 2 IIgT,'-- ~llTv. When K is reversible 
(i.e., K = K * )  the factor 4C can be replaced by C in Eqs. (3.2) and (3.3). 

To set up the proof of Theorem 3.1, fix a function f with [Ifll~ = 1. Set 
t(n) = IIK'~fll~ and notice that t(n) <<. t(n - 1) for n t> 1. The following argu- 
ment, the heart of the proof, works for any nonincreasing sequence t(n). 

Lemma 3.1. Suppose t(n), O<<.n<~N, is a nonincreasing sequence of 
nonnegative real numbers that satisfies 

t(n)~+~l~2~ for O<<.n<~N-I (3.4) 

with C, D > 0. Then 

t(n)<<.(CB/(n+l)) 20 for O<<.n<<.N 

where B = B(D, N) = ( 1 + I/N)( 1 + [-4D-I). 

Proof Note that t(O)~/r C(I + I/N). Thus, for any integer b and 
any integer n < b, 

b ,~2D t(n) <<. t(O) <~ ( C ( l +1)_~__~ ) 

Regard b as fixed and let no >/b be the first integer less than or equal to N 
(if any) such that 

t ( n ~  b-~2Dno+ l /  (3.5) 

Then 

+ JCJ 
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Using this in Eq. (3.4) gives 

t(no)~<(1 +l)  t(no-1) t(n~ 

,,0+ 

We now argue that, if b is chosen so that b = 1 + [-41)7, the factor in square 
brackets is at most 1 for all O<~no<~N. This contradicts Eq.(3.5) and 
shows that 

t(n)<~(C(1 4 - 1 )  1 4- +__2 ',] 

for all 0 ~< n ~< N which is the desired conclusion. 
We set 0c = 2D, b = 1 + [-20(] and proceed to prove the inequality 

14- 14- b n + l  ~<1 for b<~n<~N (3.6) 

in stages. Once this is done, we will have proved Lemma 3.1. 

For  positive integers k, n and any real positive 0~ such that Claim 1. 
k- l<cz~k ,  

~ ~ +oc (~ -  1 ) . . . ( ~ - k +  1) 1+  1 ~ 1 + - + - . .  
n / n kI n k 

Proof. The remainder is nonpositive. 

Claim 2. Let k - 1 < oc. Set b = 1 4- [-2~t-]. Then, for n ~ b, 

_~4- . . .  4-oc(oc- 1 ) . . . ( ~ - k 4 -  l) b 1 
n k! n* n +----1 ~< - n +---i- 

Proof. Consider that ct and n/> b are fixed and set 

zl(k)=Ct_4- ... 4 - o r  b - 1  
n k! n k n + 1 

We wish to show that , 4 (k )~0  for all k such that k - 1  <oc. Observe that 

~t b - 1  ~ 2ct o r ( n - l )  
d ( 1 ) =  - - <  

n n + l  n n + l  = n ( n + l )  
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This proves the claim for k = 1 and also shows that, 

oc b - 1  ~(oc- 1) 

n n + l  n (n+  I) 

since n > o t > 0 .  Proceeding by induction on k, assume that 1 ~<.k-1 <oc 
and that we have shown A ( k - 1 ) ~ < 0  and 

.<ot(or 1) . . .  ( o c - k +  1) 

Then 

~ ( ~ - l ) . . . ( ~ - k +  1) 
A(k) = A ( k -  1)4 k!nk 

~<0r 1) �9 .. (oc--k + 1) 0c(or 1) . . .  (oc -k  + 1) 
k!n k ( k -  1)!nk-l(n + 1) 

o ~ ( o r  
= k!  n k ~ - 1 

This shows that A(k) ~< 0 if 1 ~< k -  1 < a and that 

(k).n ( n + l )  

To obtain this last inequality, we have used the fact that k(n + 1)>/ 
2n + 1/> a + n + 1. This completes the induction and proves Claim 2. 

Claim 3. Fix o~ > 0. For  b = 1 + I-2or and b ~< n ~< N, 

(1 + 
n]  n + l J  ~<1 

Proof. From Claims 1 and 2, 

( 1;_ l +  b 1 1 
n + l  --n---~ N + I  

and (1 + l/N)(1 - 1 / (N+ 1) )=  1. 
Claim 3 with o~=2D proves Eq. (3.6) and thus finishes the proof of 

Lemma 3.1. 
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Proof of  Theorem 3.1. As said before, take t(n)=llK'~Cll_~ with 
[Ifll~ = 1. The assumption of Eq. (3.1), i.e., the Nash inequality, applied to 
K'~ c shows that Eq. (3.4) holds. Thus, Lemma 3.1 yields 

IIIC'II~2<<.(C(I+I/N)(I+F4Dq)/(n+I))  D for O<~n<<.N 

By duality, this gives 

IIg*"llz~ ~ = IIK"II ~ ~2 

<<.(C( l+l /N) ( l+V4Dq) / (n+l ) )  ~ for 0~<n~<N (3.7) 

if K =  K*, this ends the proof of the bound in Eq. (3.2). If K g: K*, we need 
a further argument which is adapted from Ref. 4. Fix f with Ilfll~ = 1 and 
set 

M ( f ) =  max {(n+ 1) 20 IIg*"fllo~} 
0~<n~<N 

We want to get a bound on M(f ) .  For any integer 0~<n~<N, write 
17 = n~ + nz where nl = [_n/2/and observe that 

Ilg*'~fll ~ ~< ( cg/(n ,  + 1 ))D iig,,,Zfll ~_ 

<~(CB/(n I + 1)) ~ K*"'-f ~/~ 

<<. (4CB/(n + 1)2) D M ( f )  I/2 

Here, B = B(D, N) = ( 1 + l/N)( 1 + I-4D-]). The first inequality follows from 
Eq. (3.7), the second from 

*n~ I/2 
IlK *n'-fll2 ~< IIK*"-'f[I ~/~ IIK*"-'f[I I1/2 ~< IlK -'fll 

and the third follows from the definition of M ( f )  and the fact that 
(n I + 1 )072 + 1 ) >~ (n + 1 )2/4. This yields M ( f )  <<. (4CB) ~ M(f)i/~_ or M ( f )  <<. 
(4CB) 2D. It follows that 

IIK*"lll~o~ <~(4CB/(n+l)) 2D for 0<~n~<N 

By duality, 

I l g " l l l ~ ( 4 C B / ( n + l ) )  zD for O<<.n<~N 

Now, by the Riesz-Thorin interpolation theorem (see Ref. 34, p. 179), this 
gives 

IIIC'llz_o~<~(4CB/(n+l)) D for 0 ~<n-~<N 

which is the first inequality stated in Theorem 3.1. The bound for the {2 
norm in Eqs. (3.3) follows from (3.2) and Lemma 1.1. 
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Remark 3.1. 

I. For Q a symmetric probability distribution on a finite group G, 
the decay rate satisfies D(n)2=IG[ Q2"(id)~> I. For example 
random walk on Zp, p odd, D(n)2=p(~")/22"~p/v/-~ for 
1 <~ n <~ p/2, as n becomes large. 

2. When there is a natural dimension d (e.g., random walk on a 
square box in Z a has dimension d), the decay rate has exponent 
D=d/4. 

3. We have chosen to symmetrize K to K*K. The Dirichlet form 
associated with the other symmetrization on KK* is 

g#(f, f )  = I lf l l~-IIK*fl l~ 

This proof works for this symmetrization also. It shows that the 
Nash inequality 

II/i,} +'/'> r {e#(/, f ) + 1  'lfl' } li/i' I/~ 

implies 

D(n)<~(CB/(n+ I)) D for O<~n<~N 

where B is as in Theorem 3.1. This is better than Eq. (3.2) by a factor 
of 4 D. There is often no practical difference between bounding ~# 
and r  so this may offer a useful improvement. 

4. There is a universal inequality between r defined at Eq. (2.7) and 
r  namely, 8 , ( f ,  f )  ~< 2r f )  for any real function f. To see this, 
observe that 0 ~< I l f -  gfll'~ = Ilfll,'_- - <Kf, f >  - <f, Kf> + r lgf l l~ .  
For any real function f ,  this gives [[fll @ - < g f , f >  >t 
<gf, f >  - I lgf l [  g. Thus, 

g,(f f) = [Ifll~- < Kf f> + < Kf, f> -[[KfFI2 ~ 2g 

The same inequality holds with g# instead of g, .  There is no converse 
inequality, even for reversible chains. Any reversible chain with - 1  as an 
eigenvalue provides a counter example. Thus, direct use of Theorem 3.1 for 
reversible Markov chains requires working with g,  which may be more 
complex than g. The following result allows direct use of g'. 
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Corollary 3.1. Let K, n be a reversible Markov chain on a finite set 
X. With notation as in Eqs. (1.2)-(1.6), (2.1)-(2.4), assume that the Nash 
inequality 

.lli  +''~ -<. ill. .I.'. '~ 

holds for some constants C, D > 0, N/> I, and all functions f Then 

IlK"ll2~=D(n)<~v/2[2fn/(n+l)] D for O<~n<~2N 

with B = ( 1  + (2N)-1)(1 +[-4D-I). 

Proof. Let K+=�89 have ~+ and ~f~- as corresponding 
Dirichlet forms. These satisfy 

e:>_.e+ =�89 

The hypothesis and Theorem 3.1 yield 

IIK"+II2_~<~(2CB/(n+I)) ~ for O<~n<~2N 

Fix a function f~> 0 and note that IIK'7~112 is nonincreasing in n. Write 

I Ig+f l l2=  f '  = 0 \ i / 

>~ ~---~'~o (2n) (Kz~ 

1 "(2n)[lgefl, 2>.l 
= ~ ~ 2i ~ ~" 2 IIK'~fll~ 

0 

This completes the proof, for it shows that 

IIK"[I 2 - ~ = IIK"ll1-2 ~< ~ ILK"+ IIi - 2  = ~ ILK'+ 112 ~ 

Here, we have used the fact that 

IlK"llp_.q= sup IlK'SCllo= sup IlK'Y'llq [] 
Ilfllp ~< I Ilfllp ~< 1 

f > ~ 0  

Remark 3.2. Example 2c shows that the hypothesis that K is revers- 
ible cannot be comitted in this corollary. Indeed, the form g corresponding 
to this example is the same as the form of the usual symmetric random 
walk on the circle. Thus, ~' satisfies a Nash inequality with C and N of 
order p2 and D = 1/4. However, D(n) = ~ for all n. 
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The next result gives a converse to Theorem 3.1. It shows that, for 
reversible Markov chains, polynomial decay of the kernel implies a Nash 
inequality. This is a direct adaptation of arguments from Carlen et al. (2) It 
is quite useful for comparison of different chains. See Section 4 for an 
example. 

Theorem 3.2. 
X. If there are C, D > 0, N i> 1 such that 

IIK"II2 ~ ~ = O(n) <~ C(n + 1) - n  

then 8, satisfies the Nash inequality 

Ilfll ~+ ~/z~ ~< C' {~,(f ,  f )  

with C' = (1 + 1/2D)[((1 + 2D)'/2C] up. 

Let K, n be a reversible Markov chain on a finite space 

for O<~n<<.N 

1 ilfll~ t Ilfll ll/Z~ +N 

Proof Since K is self-adjoint, the hypothesis and duality imply that 

IIK"III ~2 ~< C(n + 1) - ~  for O<<.n<<.N 

Hence we have, for 0 ~< n ~< N and any f ~ 0, 

n - -  1 

Ilfl122 = }-'. (llgSCll ~ + IlK '§ ~fll 2) + iiK~fll ~ 
i = 0  

n - -  1 

= E II(I-g2)V2g'fll~-+ IIK"fll,'_- 
i = 0  

<<.n~,(f,f)+ C2(n+ 1) -20 Ilfll~ 

Here, ( I - K 2 )  ~/2 is the symmetric square root given by spectral theory. 
This gives 

( 1 ) 
Ilfll~ ~< n g, ( f ,  f )  + N Ilfll ~ + C2( n + 1 ) -2o Ilfll ~ for any integer n 

Now choose n as the integer with 

(2DC2IIfI[~ )l/(l + 2D) 

g , ( f , f ) + N  -~ Ilfll~ - l < n  

f 2DC 2 Ilfll~ ~l/(~ +2D) 
.N< - - -  ~-7-2--i - , \ ~ , ( f , f ) +  N Ilfll_;J 
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It follows that 

[If I] 22 ~< ((2D)-2D/( 1 + 2D) ..[_ (2D)l/~l +2o)) 

{ 1 ilfll2)'-w" +2~ (C ilfll,)2/,, +2o, x g,(f ,  f )  + ~ 

Raising this to the power (1 + 2D)/2D gives the stated conclusion. [] 

Remark 3.3. A little calculus shows that the constant C' = ( 1 + 1/2D) 
[(I  + 2D)~/2C] I/D in Theorem 3.2 can be bounded by 21 + '/2PC'l~ 

2. Theorem 3.2 really needs reversibility. Example 2d gives a chain K 
that has nontrivial decay D(n)<~C(n+l)  -D for O<~n<~N, with some 
constants C, D, N. However, the multiplicative symmetrization K ' K =  Q 
does not decay at all. This and Corollary 3.1 show that ~, does not satisfy 
a useful Nash inequality. 

3. Theorem 3.2, Theorem 3.1 and the inequality o~, ~<2~ show that, if 
Q = K*K satisfies II Q"II2~ o~ ~< C(n + 1 ) - o  for 0 ~< n ~< N, then IIK"II2~ ~ ~< 
C'(n -t- 1 ) - o  for 0 ~< n ~< N with C' = B(D) C where B(D) depends only on D. 

We now briefly discuss the use of Nash inequalities in continuous time. 
The links between decay rates and Nash inequalities for continuous time 
semigroups have been actively studied. Nash ~29) introduced the inequalities 
named after him to study divergence form, uniformly elliptic, second order 
differential operators with measurable coefficients in R d. He showed how a 
Nash inequality implies a polynomial decay in time of the corresponding 
heat kernel. We refer the reader to Nash ~29) and to the more recent works 
of Varopoulos and his students t4"5"35"361 and of Carlen et al. c2) Fabes cl9~ 
gives a nice survey of the use of Nash inequality in PDE. Chapter 2 of 
Ref. 37 contains information about this and related techniques. The proofs 
of the following results are similar to, although easier than, those earlier. 

Theorem 3.3. Let K be an irreducible Markov kernel on a finite set 
X with invariant probability measure re. Let n t = e  - t t l -x)  be the corre- 
sponding semigroup. With the notation as in Eqs. (1.2)-(1.6), (2.1)-(2.7), 
assume that the Nash inequality 

2.,,~ 
Ilfll2 <~C g ( f f ) +  II/ll IlfllV ~ 

holds for some constants C, D, T >  0 and all functions f. Then, 

[[H, ll,__oo <~e(DC/t) ~ for O<~t<<,T (3.8) 
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Moreover, 

2 IIH,(x, . ) -n( . ) l [ - rv  ~< II(H,(x, . ) /vr( . ) ) - l l lu  ~ e  1-c (3.9) 

for 

1 ( O  log (-D-~) + c)  t >>. T +-~ with c > 0 

Conversly, for self-adjoint K, if there exist positive constants 
C, D, T > 0 such that 

IIH, I I2_o~Ct  -D for O<~t<~T 

then, for all functions f, 

1 9t I/D I l f l l 2 + ' / z ' < ~ c  ' r  Ilfll_; Ilfll, 

with C' = 2( 1 + 1/(2D))(( 1 + 2D)i/o_ C)l/D ~< 22 + I/t2O) cI/D. 
We close this section with some comments about Nash inequalities 

and how they compare to Sobolev inequalities. In terms of Dirichlet forms, 
a Sobolev inequality is an inequality of the type 

Ilfllq<<. f s  N ( f , f ) +  (3.10) 

where q > 2, and Cs, T> O. These functional inequalities were introduced 
by Sobolev in the thirties and have played an important role in analysis, 
PDE and geometry ever since. For instance, they provide the basic 
compactness properties for the study of solutions of elliptic PDE. 
Varopoulos 136~ (see also Ref. 37, Chs. 6 and 7) introduced these Nash- 
Sobolev techniques in the study of random walk on finitely generated 
groups where they proved to be very effective. 

If we set q = 4D/(2D -- 1 ) with D > 1/2, and use H61der's inequality 

Ilfll ~ + I/D ~ Ilfll 4z,/~2z,-1 ~ Ilfll 1/~ 

we see that the Sobolev inequality in Eq. (3.10) implies the Nash inequality 

Ilfll ~+ ' /~< CN {g(f, f ) +  1 Ilfll ~_ } Ilfll 1/~ (3.11) 

with CN = Cs. Lest out notation anger a classical analyst, we hasten to add 
that, classically, 4D = d, the natural dimension. The value of the parameter 

860/9/2-15 
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q in terms of d >  2 is then q =2d/(d-2). We stick to D to match notation 
with the rest of this paper. 

Less obvious is the converse, that Eq. (3.11) implies Eq. (3.10) with 
Cs <<. ADCN for a universal constant A. One way to see this is to use the 
equivalence of each of these two inequalities with the polynomial decay of 
the corresponding semigroup. See e.g., Ref. 37, Ch. 2. A more direct proof 
in a very general setting is given in Ref. 1. We have chosen to work with 
Nash inequalities because they appear to be more convenient in the present 
setting. 

4. R A N D O M  WALK IN A BOX 

This section analyzes an example of the Metropolis algorithm on the 
lattice points inside a box of side n in d-dimensions. This should be an easy 
problem but it is not (at present). In outline, the argument proceeds by 
comparison with an auxiliary product chain. A detailed eigenanalysis leads 
to sharp decay rates for the product chain. This implies a Nash inequality 
for this auxiliary chain and, by comparison, a Nash inequality for the 
original chain. This finally gives decay rates for the original chain. 

4.1. The Metropolis Algorithm in a Box 

Let C(n, d) be a discrete box of side length n in d-dimensions. The 
extreme points of C(n, d) are the 2 a vectors with coordinates 0 or n. 

The usual nearest neighbor walk in C(n, d) has stationary distribution 
proportional to the degree 6(x) of the vertex x e C(n, d). This varies 
between d and 2d and so is not uniform. The Metropolis algorithm is a 
method for changing the transition probabilities to have a given stationary 
distribution. In this section, we analyse the Metropolis algorithm for the 
uniform stationary distribution. This is a Markov chain on the points in 
C(n, d) with transitions P(x, y ) =  0 unless x = y  or x and y differ by __+ I in 
a single coordinate, in which case P(x, y) is given by: 

(l/O(x) 

~ l /6(y)  
P(x, y) = [(1/6(x)) 

if J(x)>~O(y) and x r  
if 6(x)<6(y) 

(1 -(O(x)/O(z))) if x = y  
: :  6(x)  </~( : )  

(4.1) 

Here z ~  x stands for z, x neighbors on the grid. As an example, in 
2-dimensions, the walk becomes the weighted nearest neighbor walk on 
C(n, 2) with loops added and weighted as in Fig. 2). 
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Fig. 2. 
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In two-dimensions, the walk becomes the weighted nearest neighbor walk on C(n, 2) 

with loops added and weighted. 

For general 17 and d, P is a reversible, aperiodic, irreducible Markov chain 
on C(n, d) with uniform stationary distribution 

1 
n(x) (t7 + 1 ),i (4.2) 

The analysis to follow gives 

Theorem 4.1. Let d~>2. For P and n defined at Eqs. (4.1) and (4.2), 

IIP~-nllTv<~ale -'-" for k=n2d(d logd+c) ,  c > 0  

where a , ,  a 2 > 0 are universal constants. For k = cn-d log d, 

2sup [Ie~.-nllTv~a3 e-'4c for c > 0  
X 

with a3, a4 > 0 universal constants. 

4.2. Analysis for the Comparison Chain 

We build a product chain with known eigenvalues and eigenvectors. 
Consider the Markov kernel W on {0, 1 ..... n} defined by 

W ( x , x + l ) = l / 2  for xe{O  ..... n - l }  

W ( x , x - 1 ) = l / 2  for x e { 1  ..... n} (4.3) 

w ( o ,  o) = W(n, n) = 1/2 
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This is a symmetric kernel with uniform stationary distribution. Feller, t2~ 
(p. 436) gives its eigenvalues and eigenfunctions as 

f lo  = 1, ~ko(X) = I 

f l j=cos  nj Oj(x)=x/~cos(nj(x--1/2)/(n+l)) for j = l  ..... n 
n + l '  

We need an analysis of this process in continuous time. Let II, = e - '(*- w) 
and write 

1(+. ) 
V,(x ,y )=27-  f 1 ~ 49(x)%(y)e-,~, . . . .  ~.J/o,+~m 

1( ) 
~ n +  1 1 + 2  e -2o- ' /u '+ l ) - '  

j = l  

1 
~< --v-q-, ( 1 + 2e - z,/~,, +, )2( 1 + ~/(n + 1 ) 2/2t)) 

n-5-1 

To obtain the last inequality, use 

f foo e-"2 du ~ e-2'J:/l" + 1) 2 ~ o~ e-'-"a/t" + ~-' ds = 
, /2t ,/57/,, 2 I + 1 

and 

2 I ~176 " = 2e-:- f ~ --{ . . . .  ) 2 - -2{  . . . .  I :  . <  ' x / ~ e - " - a u  x/-~ j e au..~e-: 

Next, consider the kernel/~ on C(n, d) which proceed by choosing one 
of the d coordinates at random and changing that coordinate using W from 
Eq. (4.3). Thus, 

- 1 d 
e=~l ~ I |174174174174 

i = 1  i - - I  

(4.4) 

In fact, the transition kernel Eq. (4.4) is exactly given by Eq. (1.1) for this 
case. As an example, when d =  2, the walk becomes the weighted nearest 
neighbor walk on C(n, 2) with loops and weighted as in Fig. 3. 

For general n, d,/~ is a reversible Markov chain with uniform distribu- 
tion r7 = n on C(n, d) as stationary distribution. The eigenvalues of such a 
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Fig. 3. 
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When d =  2, the walk becomes the weighted nearest neighbor on C(n, 2) with loops. 

product chain are easy to derive in terms of the eigenvalues of W (see 
Ref. 10, Sec. 6). Here 

] ~ l = l - ~  1-COSn+ 1 ~<1 d ( n + l )  2 

The semigroup / q , = e  -'~z-p) has the property that the coordinates 
evolve independently of each other, each according to V, defined earlier. It 
follows that 

II/~,ll ~ ~ o~ = max{ (n + 1) '1Vz,/d(xl, y, )... Vz,/a(xu, Ya)} 
),% y 

<. ( 1 + 2e-4'/a~" + l)'-( 1 + ~/d(n + 1 )2/4t))d 

<~(4d(n+l)Z/t) a/2 for t<~d(n+l)Z/16 

For this last inequality, let f ( u ) = u + 2 u e - " + 2 e - " ' -  and check that 
f(u)~<4 for 0~<u~< 1/2. 

From this, the converse in Theorem 3.3 yields the Nash inequality 

( 8 ,) 
tlfll~_+4/a<~64d(n+ 1) 2 ~ ( f , f ) - t  d(n+ 1) 2 [If[I;_ [[fll~/a (4.5) 

From Eq. (4.5), we have a Nash inequality for the Dirichlet form 
associated to P. Corollary 3.1 gives decay rates for the discrete time chain 
pk. Using these and the second eigenvalue of p2 in Lemma 1.1 implies that 
the upper bound of Theorem 4.1 holds with P replaced by P. However, for 
P, it can shown that order nZdlog d steps suffice to reach approximate 
equilibrium by a direct elementary comparison with the continuous time 
chain. It is not hard to prove the lower bound of Theorem 4.1 for/~ or P. 
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Remark 4.1. 1. The walk P defined at Eq. (4.4) is exactly of the form 
defined at Eq (1.1). The Euclidean diameter of the convex hull of C(n, d) 
is ),,.d=n x/d. The argument outlined before shows that order y~,,alog d 
steps are necessary and suffice for P to reach equilibrium. For the walk P, 
Theorem4.1 only says that order y~,dlogd steps are necessary and that 
order dT~,. d log d suffice. This last result can be improved to order "~,.d Iog d 
steps suffice" by using the present technique and logarithmic Sobolev 
inequalities; see Ref. 13 for details. Direct use of geomtric techniques lead 
to far cruder bounds when d is large. See Example 5b. 

2. Bounding rates of convergence of/3 required an excursion in con- 
tinuous time. This is also true for the product walks in Section 6 of Ref. 5. 

4.3. Proof  of  Theorem 4.1 

We argue by comparing P and P. Observe that 7r=~. For 
x, y e  C(n, d), and x # y ,  

fi(x, y) <~ P(x, y) 

Thus, o v ~ ~. This implies fl~ ~</~. For the lowest eigenvalue, flixi- 1, use of 
Corollary 2, p. 41 of Ref. 16, gives 

1 
fllxl- 1 >>- - 1 + dn 2 

To see this, use the loops at the boundary of C(n, d) and paths along the 
first coordinate direction. All of this shows 

1 
lt(1) ~< 1 d ( n + l )  2 (4.6) 

Further, the Nash inequality Eq. (4.5) implies 

( )4#, 
[Ifl[~_+4/"<64d(n+l) 2 g ( f f ) +  d ( n + l )  2 [[fl]~ ][fl[ (4.7) 

Now, Corollary 3.1 gives 

[[PkH2_o~ <,x/~[2CB/(k+l)]a/4 ,  for O<~k<d(n+l)2/4  

with C = 64d(n + 1 )2 and B = ( 1 + 4/d(n + 1 )2)( 1 + d). Thus, 

[[Pk[]2_oo<x/'21256(l+d)]a/4, for k = d ( n + l ) 2 / 4  (4.8) 
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C 3 

\ �9 c /  \ 
: I 

Fig. 4. An example when d = 2, n = 3, and M = 3. 

Finally, using Eqs. (4.6) and (4.8) in Lemma 1.1 gives the upper bound in 
Theorem 4.1. The proof of the lower bound is straightforward and omitted. 

The techniques used to prove Theorm 4.1 give results for a variety of 
graph structures on C(n, d) obtained by adding and subtracting edges. For 
example, diagonally adjacent points could be connected. To be specific, fix 
M~> 1 and consider adding and erasing edges according to the following 
rules: 

�9 When erasing edges, for each basic unit cube at most one edge is 
erased, and for each edge left in, there are at most M cubes con- 
taining this edge and an erased edge. 

�9 When adding edges, the degree of any vertex x~ C(n, d) stays 
bounded by Md. 

An example with d =  2, n = 3, and M = 3 is shown in Fig. 4. 
This defines a new Markov chain P on C(n, d), with stationary distribution 

proportional to the degree of each vertex. To avoid parity problems, we 
work in continuous time with/~,  = e - " z - ~ .  

C o r o l l a r y  4.1. For each fixed M i> I, any Markov chain ~r  as pre- 
viously satisfies 

IIl~l,--~llTv<<.ale -~2" for t>~dn2(dlogd+c), c > 0  

where at ,  a2 do not depend on d or n. 

5. GEOMETRIC THEORY 

5 .1 .  I n t r o d u c t i o n  

The section introduces volume growth conditions and path arguments 
as a way of proving Nash inequalities and bounding rates of convergence 
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to stationarity. Let K(x, y) be a Markov chain on a finite set X. Assume 
that K is irreducible with stationary distribution n. 

The geometric arguments developed in this section use an underlying 
graph structure on the finite set ;( which is given by a set J of oriented 
edges. This graph structure must be compatible with the chain K. A precise 
general definition will be given in Section 5.2. 

In this introduction, we describe only the simplest and most useful 
way to associate a graph structure with K. Namely, let d r  be the set of 
pairs (x, y) such that either K(x, y) > 0 or K(y, x) > 0. This defines a sym- 
metric graph structure on L Let d(x,y) be the shortest path distance 
corresponding to the edge-set d r  and let B(x, r) = {z: d(x, z) ~<r} be the 
closed ball around x with radius r. We define the volume of B(x, r) by 
setting V(x, i")= Z:~B(.,.,.)n(z). 

Definition 5.1. For A,d>>, 1, the finite Markov chain (K,n)  has 
(A, d)-moderate growth if 

1 ( r +  1") a 
V(x, ,-) for a l lxeX and integers r e  {0, 1 ..... y} (5.1) 

where ? is the diameter of the graph (X, ~r 
Moderate growth is a variation of polynomial growth which has 

proved effective in studying random walk on groups. A thorough exposi- 
tion and many examples appear in Ref. 11. Several other example are given 
in Section 5.2. 

The second geometric notion needed is that of local Poincar6 
inequalities. For any real function f and integer r, set 

1 
f,.(x) ~ f(y) re(y) V(x, I') yEB(x,r) 

Definition 5.2. Let K, n be a Markov chain on the finite set X. Let 8 
be the Dirichlet form of Eq. (2.7) associated with K. We say that (K, n) 
satisfies a local Poincar6 inequality if there exists a > 0 such that, for any 
real function f and integer r, 

[]f-f~[] ~ ~< ar2#(f, f )  (5.2) 

As motivation, when r = y and K, g is reversible, the bound becomes 

I I f - f r [ I  ~ = Var , ( f )  ~< a~,2g(f, f )  



Nash Inequalities for Finite Markov Chains 487 

and the minimax characterization of the second largest eigenvalue gives 
fll ~< 1 -  1/(ay2). Even when K, z~ is not reversible, Eq. (5.2) yields the 
inequality 21> 1/(ay 2) for the quantity 2 defined at Eq. (2.8). Thus, spe- 
cializing a local Poincar6 inequality to the case r = y  ( = t h e  diameter) 
yields a Poincar+ inequality as considered in Ref. 16. Such Poincar6 
inequalities have proved classically useful. In Ref. 16, geometric path 
techniques were shown to yield Poincar~ inequalities. Section 5.2 shows 
how paths yield useful local Poincar~ inequalities. For instance, it will be 
shown that random walk on any finite group satisfies Eq. (5.2). 

The following result will be proved in greater generality in Section 5.3. 
It shows that, for chains with moderate growth satisfying a local Poincar~ 
inequality, order ),2 steps are necessary and sufficient to guarantee con- 
verge. For simplicity, we state the result in continuous time. Several dis- 
crete analogs are given in Section 5.3. 

Theorem 5.1. Let K, n be a Markov chain of a finite set X. Assume 
that (K,n) has moderate growth (5.1) and satisfies a local Poincar6 
inequality of Eq. (5.2). Then, the continuous time semigroup H, = e - '~ t -m 
defined at Eq. (2.6) satisfies, for all t > 0, 

2 IIn~ - r0lvv <~ale -'/('~) 

with al = (e5(1 +d)A)l/2(d/4) d/4. 
Conversely, if K, rc is reversible, there are constants a2, a3 > 0 depend- 

ing only on A, a, d from Eqs. (5.1) and (5.2) such that 

sup IIH~'-r~lF-rv>~a2e -'3'/~''- for t > 0  
X 

Remark 5.1. Of course, any irreducible chain on a finite set satisfies 
Eqs. (5.1) and (5.2) for some A,a,d.  Unfortunately, the constants a;, 
i = 1, 2, 3, depend exponentialy on these parameters, especially on d. The 
bounds work well for chains with small values of A, a, d. As shown later, 
there are many natural families of graphs with bounded parameters. 

Section 5.2 introduces path techniques and uses these to treat simple 
examples. It also treats random walk on groups, showing how Theorem 5.1 
implies the main result of Ref. 11. 

Section 5.3 shows that moderate growth and local Poincar6 
inequalities imply a Nash inequality. It contains the proof of Theorem 5.1 
and develops its discrete time analogs. 

5.2. Path Techniques and Examples 

As stated in Section 5.1 introduction, the geometric techniques to be 
develop later use an underlying graph structure. Of course, this graph 
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structure must be related to the chain K we want to analyze. However, 
there is some freedom in the way the graph and the chain have to be 
related. We think that it is useful and instructive to present the argument 
in some generality. 

The first notion we need to introduce is the notion of compatibility 
between a graph (X, d ) ,  symmetric or not, and a Dirichlet form r 
associated with a nonnegative kernel Q by 

~Q(f, f )  = �89 ~ I f (x)  __f(y)[2 O(x, y) 
X, y 

Definition 5.3. Let gQ be the Dirichlet form on X associated with a 
nonnegative kernel Q. Let d c X x X be a set of oriented edges. We say that 
Q (or d~ and .~/ are compatible if Q(x, y) > 0 for all (x, y) �9 ~ .  

In most applications, we are given a chain K, rc on X and we construct 
the edge-set sr from K. There are several interesting possible choices for 
doing that. 

�9 The most obvious choice is to define a graph with vertex set X and 
an edge from x to y is K(x, y) > 0. This graph may well not be sym- 
metric if K, rc is not reversible. This graph is compatible with 
Q(x,y)=K(x,y)  r~(x) which corresponds to the Dirichlet from 

N(f , f )  = < ( I - K ) f , f > .  
�9 Another possible choice is to put an edge from x to y if either 

K(x,y)>O or K(y,x)>O. This corresponds to the edge-set dtr 
introduced in Section 5.1. This graph is symmetric by construction. 
It is compatible with 

Q(x, y) = �89 y) re(x) + K(y, x) re(y)) 

which corresponds to the same Dirichlet form g ( f , f ) =  
< ( I - - K ) f ,  f >  as before. This is the construction that we will use in 
most applications. 

�9 We can also build the edge set d as the set of pairs (x, y) such that 

Q(x, y) = ~, K(z, x) K(z, y) re(z) > 0 
2 

This always gives a symmetric graph that corresponds to the 
Dirichlet form ~,.  

�9 Finally, in some cases, we may want to use only a part of the 
obvious edges previously considered. For  instance, we may want 
to fix e > 0  and define d as the set of pairs (x,y) such that 
K(x, y)n(x)>t ~. Indeed, using pairs (x, y) with very small weight 
K(x, y) re(x) produces bad factors in the bounds developed later. 
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Any fixed oriented graph structure (X, d )  defines a shortest path dis- 
tance d(x, y) between x and y. This distance need not be symmetric if d 
is not symmetric. Let B(x, r) = { y: d(x, y) <~ r} be the closed ball around x 
with radius r. By definition, this ball has volume 

V(x,r)= ~ n(y) (5.3) 
y ~ B ( x , r )  

where n is a given fixed probability measure on X. We also set 

1 
f , (x)  = V(x, r) v~ ~ f ( y )  n(y) (5.4) 

. B ( x , r )  

Let ), be the diameter of the graph, so B(x, ~) = X for any x e X. We now 
extend to the present general setting the notion of moderate growth and 
local Poincar6 inequality introduced in Section 5.1. 

Definition 5.4. Fix an edge set d and a probability measure n on X. 
For A, d>_- 1, (X, d ,  n) has (A, d)-moderate growth if 

V(x, r) > l  ( r+ 1y  I 
,,--7/ for all x e X  and integers r c  {0, 1 ..... y} (5.5) 

Definition 5.5. Fix an edge set d and a probability measure n on X. 
Let d~ be a Dirichlet form compatible with d .  We say that ( d ,  n, d'Q) 
satisfies a local Poincar6 inequality if there exists a > 0 such that, for any 
real function f and integer r, 

] l f - f ,  lI,Z- ~< ar2~Q(f f )  (5.6) 

To relate these definitions to the ones given in Section 5.1, observe 
that we say that a Markov chain (K, n) has moderate growth as in Eq. (5.1) 
or that (K, n) satisfies a local Poincar6 inequality as in Eq. (5.2) if, respec- 
tively, Eqs. (5.5) or (5.6) are satisfied by ( d r ,  n, SQ) where Q(x,y)= 
�89 y) n(x) + K(y, x) n(y)), ~Q(f f )  = e ( f  f )  = < (I-- K ) f  f> and d r =  
{ (x, y): Q(x, y) > 0}. 

We can now give a first result concerning local Poincar6 inequalities. 
Throughout,  if e = (z, w) is an edge of the graph, we set e+ = w and e_ = z 
and Q(e) = Q(z, w). We assume that (X, d )  is a connected graph and let ? 
be its diameter. 

For  each pair of points x, y ~ X, choose a path ?.,. y joining x to y in 
(X, d ) .  Usually, these paths are geodesics but this is not necessary. The 
following result is a local version of results in Ref. 16. The quality of the 
bounds given next depends on the choice of paths. 
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Lemma 5.1. Let X, d ,  n be a finite graph equipped with a probability 
measure n. Let o~q be a Dirichlet form and assume that ~r and Q are com- 
patible. Let y.,.y be a path from x to y in the underlying graph (X, ~r 
Then, with notation as in Eqs. (5.3) and (5.4), for each integer 0 ~< r ~< 7, 

with 
Ilf -f~[I ~ ~< '7(r) O~Q(f f )  

{ 2 =(x) _.!_y) l 
q(r) = max ~ ~ [Y"" "[ V(x, r) J (5.7) 

e ~ , e /  }'x. y ~ e " 

d ( x ,  y )  <.r  

Proof For any x e X, 

1 
[ f ( x ) -  f"(x)12 <~ V(x, r----~ ~ ]f(x) - f(Y)12 n(Y) 

I'~ B x r) 

1 r ) i . J ( ,  e~.~,,~ r 2 - V(x, ,.~.,,,~ y~ f ( e + ) - f ( e _ )  ~(v) 

1 
~< V(x, r---~ ~ lY.,- ,.] n(y)  ~ I f ( e + ) - f ( e _ ) l  2 

y c B i x ,  r) e C y x .  y 

Multiply both sides by ~(x) and sum in x. Bring the sum over directed 
edges e outside to get 

[If-f,.[] ~ ~< ~, [f(e + ) - f ( e  _ )[z Q(e)Q(e) y, [y ....... [ ~z(X)v(x,~Z(r) y) <~ q(r) gQ(f, f )  
e }'x. y ~ e 

d ( x ,  y )  <~r 

We proceed to some examples. In each case, we use path techniques 
to show that local Poincar+ inequalities are satisfied. We also determine 
moderate growth so that Theorem 5.1 is in force and shows that order y2 
steps are necessary and suffice to achieve randomness. 

Example 5a. The n-point path. Take X = { 1 ..... n}, K(x, x + 1) = 1/2 
for l ~ < x ~ < n - 1 ,  K ( x , x - l ) = l / 2  for 2~x<.n, K(1,1)=K(n,n)=l/2.  
This is nearest neighbor random walk on a path with holding probabilities 
on the ends. We use the obvious underlying graph. The chain has station- 
ary distribution n ( x ) =  1/1, and is reversible, aperiodic, and irreducible. 
Take y,,. y as the unique geodesic path from x to y. Then y = n - 1. Further, 
moderate growth with A = n/(n - 1 ), d = 1, follows from 

r +  1 2 r +  1 
<~ V(x, r) ~ -  

FI n 

for any x and r ~< y. 
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Finally, for any edge e, Q(e)= 1/(211). Using these ingredients, the 
quantity ~/(r) of Lemma 5.1 satisfies 

r n 
r/(r) ~<4n ~n- ~ N(r), N(r) =max,~.~, 1{7 ....... ~ e: 17.,-,,I ~<r} 

Clearly, N(r) <% r(r + 1 )/2. Combining bounds, r/(r) ,%< 2r 2, so 

IIf-f~[I ~ ~< 2r2g(f, f )  

Thus, Theorem 5.1 yields 2 IIH~ - n II Tv <~ a t e -  ~'-'/'2 for t > 0 with explicit 
constants a i, a2. 

Example 5b. Random walk on a box. It is instructive to see how 
these bounds work out for the example of the discrete box studied in 
Section 4. In summary, they work well in bounded dimension but are 
exponentially off in high dimensions. Again, we use the obvious underlying 
graph. 

With notation as in Section 4, consider the chain in Eq. (4.1) on the 
box C(n, d). Paths between x, y e  C(n, d) are chosen inductively (in d) as 
follows. For d =  2, there is a unique shortest path making at most one 90 
degrees counterclockwise turn. For d =  3, given, x, y e  C(n, d), project y to 
the plane {(Zl, z2, z3): z3 =x3}. Connect x to this projected point using the 
two-dimensional paths and then connect the third coodinates. Continuing 
inductively defines paths from x to y in any dimension. The resulting paths 
have at most d -  1 "turns." Note that the diameter is 7 = nd. 

Let e be a directed edge in C(n, d). We will bound the number of paths 
of length at most r that use that edge. For any path 7.,-.y using this edge, 
suppose the edge appears after turn i - 1  and before turn l', i e { 1,..., d}. 
There at most r; starting points x and at most  (2r)  d + l - i  ending points y. 
Hence, bounding 17.,-.:,] by 17.,-.y[ ~<r yields 

~. ly ....... I ~(2r) '+2 
}',t', t, ~1 e 

I~'.,., ~. I -<," 

The quantity V(x, r) can be bounded between 

1 ( r + l ~  a ( r + l y  I 
dad! \n  + lJ  <~ V(x, r) <~ (2d) a \I-~+--1/ for 0~<r~<7 (5.8) 

The upper bound is needed for x in the center of the box and the lower 
bound for x in a corner. 
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Using these ingredients, r/(r) of Eq. (5.7) can be bounded by 

,. d ( n + l ) a . a . . ( n + l ' y  ' 
,Itrl~<(--~--~1-~a a!\~,/ 2 l~'.,-.:.l~<(2d) a+'d!r- 

Yx, y 9 e 

I;'x. yl ~<r 

This gives a local Poincar~ inequality. Moderate growth follows from 
Eq. (5.8). These ingredients and Theorem 5.1 show that, at fixed d, order y2 
steps are necessary and suffice to achieve randomness. Evidently, the result 
becomes useless for large d. Section 4 gives much sharper results for this 
case. 

For some Markov chains, there are many geodesic paths and it is 
natural and effective to average over paths. See Refs. 9, 16, 21, and 33 for 
examples. The bounds above fit well with such averages. We proceed to 
details. 

Let L(x, y) be the set of all geodesic paths connecting x to y. Set 

LAx)= U L(x,y), L,.=UL,.(x), L= U L(x,y) 
y E B { x . r )  x x v~X 

For : , eL ,  let VI denote its length. A function co: L--+ [0, 1] is a flow if 

~2 co(l) = g(x)  ~ (y)  
g ~ L ( x , y )  

Lemma 5.1 used a trivial flow co(y.,, y ) = n ( x ) n ( y ) ,  co(g)=0 for other 
paths in L(x, 3'). The argument for Lemma 5.1 gives 

Lemma 5.2. Let the edge-set d and the Dirichlet form gQ with 
kernel Q be compatible. Fix a flow co. Then, for all integers r and all real 
functions f ,  

I I f - f ,  II _~ ~< '7,0(") go(J; f )  

where 

e~.~, g(x, r) Y. IWI co(W) 
." E E L r ( x }  

f ~ e  

The following corollary makes use of a nontrivial flow to derive local 
Poincar6 inequalities for graphs with symmetry. It is used in Example 5d. 
Say that a one to one map ~: X--+X preserves Q and ~ if Q(x,y)= 
Q(~(x), ~(y)) for all (x, y) e d ,  and n(x) = rc(~(x)) for all x E X. Note that 
we consider only the pairs (x, y) in ~/. 
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Corollary 5.1. Let the edge d and the Dirichlet form gQ with kernel 
Q be compatible. Let F be a group of permutations of X which preserves 
Q and re. Suppose that the set of oriented edges ~r partitions as 

I 

with F operating transitively on each ~ .  Then, for each integer r t> 0, 

I l f - f r l l  ;-~ max go(f '  f )  
- ,~<i~<~ ~1~-1 Q(ei) j 

Here, e; is any element in M. 

Proof Define a flow co supported on geodesic paths with 

re(x) re(y) 
co(s for { ~ L(x, y) (5.9) # L(x, y) 

By hypothesis, 

1 
~• V(x, r) ~ Ig'l co(g') 

- ,4 ~ L r ( X )  

, 4 ~ e  

does not depend on the edge e s ~,.. Averaging over all e e ~ ,  gives 

max ~ Itl co(t) 
~.~/~ V(x, r) 

. s  

1 I r z 
<~-- ~ ~ dZ(x, y) re(x) re(y) <~-- 

I~1 ,.~, W(x, r) [d,.[ ." y ~ B { x , r )  

To see the first inequality, consider the inner sum on the left also averaged 
over eE d,.. Only paths {EL(x,y) for yeB(x, r) can appear. Such a path 
can appear for at most [l'l = d(x, y) edges. Summing first over t" e L(x, y) 
and using Eq. (5.9) yields the second inequality and completes the proof. 

[] 

Example 5e. Random walks on groups. Let G be a finite group and 
S a set of generators. Define a random walk on G as 

K(x,y)={lo/]S I if y x - ~ S  
if yx- t r  (5.10) 



494 Diaconis and Saloff-Coste 

The stationary distribution is the uniform probability n ( x ) =  1/[GI. The 
next lemma shows that the random walk in Eq. (5.10) satisfies the local 
Poincar6 inequality. 

Lemma 5.3. Let G be a finite group with generating set S. Consider 
the graph with edge set d = { (x, sx): x ~ G, s E S w S -  ~ }. Then the random 
walk Eq. (5.10) with Dirichlet form g(f, f )  = ( ( 1 -  K)f, f )  satisfies 

Ilf-f~ll~ 42  ISI r2g ( f f )  for all integer r, if S = S  -~ 

and 

] [ f - L t l  ~ ~ 4 I SI r2~(f, f )  for all integers r 

if S is not symmetric. 

Proof Set Q(x,y)=(1/2 IGI)(g(x, y)+K(y,x)) .  Then g ( f , f ) =  
�89 Y,..y I f ( x ) - f ( y ) l  2 Q(x, y) and Q is compatible with d .  Any element g 
of the group G acts as an automorphism of the chain by right multiplica- 
tion since Q(xg, yg)=Q(x,y). Each G-edge-orbit has size at least IGI. 
If S is symmetric, we have Q(e)= 1/(ISI Ial). If S is not symmetric, 
I/(2ISIIGI)<<,Q(e)<~I/(ISIIG[). In both cases, Corollary5.1 yields 
Lemma 5.3. [] 

Remark 5,2. Assume for simplicity that S = S -  ~. For y E G, write y = 
z~ z2...zk with zi e S and k = l yl = d(id, y). Let W(z, y) = I{i: za = z} I <~ l yl. 
Arguing as in Ref. 10, the bound above can be refined to 

IIf-LIl~_-~ 2 ISI rn(r) o~(f,f) 

with 

m ( r ) = m a x  ~ [w I W(z, w) <~r 2 
z E S  . ' ~ B ( r )  

2. In Ref. 11, random walks on groups with moderate growth were 
studied. Lemma 5.3 shows that such groups also satisfy local Poincar6 
inequalities. Thus, Theorem 5.t gives a different proof of the main results 
of Ref. 11. That paper contains many examples which may serve as motiva- 
tion for the present paper. In fact, Theorem 5.1 and its discrete time varia- 
tions extend the results of Ref. 11 to the nonsymmetric case. Some further 
examples appear later. 
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3. The factor ISI that appears in Lemma5.3 can sometimes be 
eliminated by symmetry. As an example, take G = 7/d with generating set 

S= { ++_el ..... +_ed} 

with el = (0 ..... 0, 1, 0,..., 0) the 1 being in ith position. For this example, 
using obvious paths and Remark5.2, condition 1 gives IIf-frll~< 
2r- 'g(f ,f) .  This improves upon Lemma 5.3 by a factor of 2 ISI. Here, an 
edge (x, x _  e,.) can be moved to (y, y __+ eft by first transposing the ith and 
j th coordinates and then translating. This shows that the automorphism 
group of the chain acts transitively on oriented edges. Thus, Corollary 5.1 
also yields IIf-frll2<~2rZ~(f,f). The next example contains further 
illustration. 

Example 5d. Random walk generated by conjugacy classes. Let G be 
a finite group and consider the random walk defined at Eq. (5.10). We 
show that if the set S is invariant under conjugation, i.e., t-~St= S for all 
t ~ G, then the bounds of Lemma 5.3 can be improved. The random trans- 
positions walk of Refs. 8 and 15, or the Hildebrand's random transvections 
walk, c23~ are examples of natural walks which are constant on conjugacy 
classes. If S is invariant under conjugation, write 

S = C 1 u  ... uC~ (5.11) 

with Ci disjoint conjugacy classes. We set ! = {i E { 1 ..... tr}: Ci :~ { id} }. 

Lemma 5.4. Let G a finite group with generating set S. Consider the 
graph with edge set ~r = { (x, sx): x E G, s ~ S u S-~ }. For the random walk 
in Eq. (5.10), with S satisfying Eq. (5.11), 

~__<4 ISI r 2 
I I f -  f~ll; ~ - - - - ~ ,  ~(f ,  f )  

with C .  = min;~/[C; u C711. If we further assume that S is symmetric, then 

21Si r  2 
IIf-fAl_; ~< ~ g(f ,  f )  

Proof An oriented edge is a pair (x, sx) with xeG,  s e S  • The 
group G acts on edges both on the right ((x, sx) g = (xg, sxg)) and on the 
left (g(x, s x )=(g- l x ,  g-lsgg-lx)).  These actions preserve Q(x,y)= 
( 1/2 I al )(K(x, y) + K(y, x)). Moreover, the map x ~ x-~ also preserves Q 
because 

(X-I,X-lS--1)=(X--I,U--lX -l) where u = x - l s x  

86o/9/2-16 
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These actions generate a group F. It is easy to see that a F-edge-orbit is 
precisely given by 

o~={(x, sx):xeG, seCiwCTI}, 2<~i~a 

Thus Id,.I = IGI ICiu  C,.-~[. Now the result follows from Corollary 5.1. 
It is interesting to specialize Lemma 5.4 to the case where S is sym- 

metric and r = y = the diameter. In this case, the argument yields easily 

_< ISl y2 
I I f - fy l l  ~_ = Var(f)  _ ~ d~ f )  

which improves by a factor of 2 the bound of Lemma 5.4. In particular, this 
implies the eigenvalue bound 

p ~ < l -  C ,  
ISI ~,-" 

for the random walk on G associated with the generating set S. 

Remark 5.3. Usually, walks that are constant on conjugacy classes 
are analysed by using the fact that the eigenvalues can be expressed in 
terms of the characters Z of the group. Lemma 5.4 offers the opportunity of 
turning this around, giving bounds on the ratio Re(x(s)/x(id)) in terms of 
the diameter of the group generated by the conjugates of s. This is 
developed in Ref. 14. 

5.3. Moderate  Growth and Local  Poinear6 Imply Nash  Inequalities 

This section proves Theorem 5.1. The first result leans on an idea of 
Robinson 13~ which is also used in Ref. 6. 

Theorem 5.2. Let X be a finite set equipped with a probability 
measure rc and an edge set d .  Let doQ be a Dirichlet form with kernel Q 
compatible with d .  Suppose that, for some integer R, there are reals M, 
d>/1 a n d a > 0 s u c h t h a t  

( r + l )  a 
V(x, I") > ~ -  and 

M 
~ 2 

[If--f,.l[ _; "-~ ar gQ(f, f )  

for all xeX, r e  [0, R],  and all functions f Then 

r 
I[fll ~_+4/, < C L ~Q(f, f )  

with C =  (1 + l/d)'-(1 +d)2/aMZ/aa. 

1 1 +~z_, Ilfl15 Ilfl14/" 
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Proof Write 

IIf]l _~ = ( f ,  f )  = ( f - f ~ ,  f )  + (Jr, f )  

Then, for any integer rE [0, R],  

( f - f , f )  <~ I I f -  f~ll,_ lift_, ~< al/2rgQ(f f)l/,_ Ilfll_, 

and 

497 

<f~, f >  ~< IIf~ll~ Ilfll, <~M(r+ 1) -'/Ilfll~ 

This gives, for all integers r e  [0, oz[, 

Ilfll~_<~a'/er[g~(f,f) +(aR'-)-'  II/ll~] '/'- Ilfll2+M(r+ 1) -a II711~ 

Thus, for all reals s t  [0, oo[, 

Ilfll ~_ <<. a l/as[ ~Q(.f, f )  + (aR'-) -1 IIf[I 2] 1/2 Ilfll ,_ + Ms-'1 Ilfll 

Minimizing the right-hand side in s gives 

Ilfll ~ ~< (d-a/~a+J)+ dl/la+ I~)[ a(d~ f )  

+ (aR'-) - '  Ilfll 2"-) Ilfll ~_-I '1/'-~'1+ a~EM Ilfll i ]  l/~a+~ 

The result now follows from routine simplifications. [] 

Remark 5.4. 1. The factor (1 + I/d)'-(1 +d) TM is bounded by 16 for 
all d>~ 1. 

2. This argument works as well if we replace the local Poincar6 
inequality with an inequality of the form 

Ilf-f, . l l  _,'- ~< ar~fQ(f, f )  

for some c~>0. This and the volume growth hypothesis V(x,r)>~ 
(1"+ 1 )aiM yields the Nash inequality 

[Ifll~+2~/a<~_ C (f,f)+aR-'--g Ilfll_; Ilfll~ ~/'1 

with C=(l+o~/(2d))'-(l+2d/e)~/aM~/aa. Moreover, the volume V(x,r) 
and the mean value fr(x) do not need to be defined in terms of balls: any 
family of sets depending on the parameter r could be used instead. 
However, it is not clear that this extra generality is of any real use. 
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Proof of Theorem 5.1. We can now give the proof  of the upper 
bound in Theorem5.1. Here, we work with g Q ( f , f ) = r  
( ( I - K ) f f )  and the symmetric edge-set associated with Q(x,y)= 
�89 y) rr(x) + K ( y ,  x) n(y)). 

Under the assumption of Eqs. (5.1) and (5.2), the quantity M in 
Theorem 5.2 can be taken as A), d with R = 9,..Now, the Nash inequality in 
Theorem 5.2 together with Theorem 3.3 give the decay bound 

IIH, II 2 ~ oo ~ e(dC/4t) d/4 

for t E [0, ay-'] with C = ( 1 + l/d)2(1 + d)2/aA2/d)p2a. 
For t = a) ,2 -4- s =def t n + t2 ' use of Lemma 2.3 along with 2 >i 1/(a~ '2) 

gives 

[l(H,'/rO-111,_<~e3( l + d)A)'/2(d/4)d/4 exp ( -  + )  

which yields the desired result. More precisely, we proved 

Theorem 5.3. Let K, n be a Markov chain on a finite set X. Assume 
that (K, rt) has moderate growth in Eq. (5.2) and satisfies a local Poincar6 
inequality in Eq. (5.3). Then, the continuous time semigroup at Eq. (2.6) 
satisfies, for all t > 0, 

II( HT/rr ) - 1112 <~ a, e -s/l"~e~ 

for all t>~ay2+s with s > 0 .  Here, a~ = (e3(1 +d)A)l/2(d/4) a/4. 
For the proof of the lower bound of Theorem 5.1 for reversible chains, 

we refer the reader to the arguments developed in Refs. 11 and 12. These 
arguments are elementary and can easily be adapted to the present setting. 

We now describe discrete time results that are the analogs of 
Theorem 5.1. 

Theorem 5.4. Let K, n be a Markov chain on a finite set X. Assume 
that (K, n) has moderate growth in Eq. (5.1) and satisfies a local Poincar6 
inequality Eq. (5.2). Assume further that inf x K(x, x) = e > 0. Then, 

II(I('/lr)--llla<<,ale .... /t"~el for n = ( 2 e ) - t a y 2 + m + l  

with rn>~0 and an =(e(1  +d)A)n/2(2+d)d/4. 

Proof Use Theorem 5.2, the comparison in Eq. (2.11) between o ~ and 
~ , ,  Theorem 3.1 and Lemma 1.1. In fact, we used the form ~# instead of 
~. as in Remark 3.1 following Theorem 3.1. [] 
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Theorem 5.5. Let K, re be a reversible Markov chain on a finite set X. 
Assume that (K, re) has moderate groth (5..1) and satisfies a local Poincar6 
inequality in Eq. (5.2). Assume further that the least eigenvalue fllxl-I 
satisfies /?lxl- 1 >t -- 1 + I/a?'-. Then 

I[(Ki~./re)-lllz<,.ale-"'m'?) for n = 2 a ? ' - + m +  l 

with m~>0 and al=(2e( l+d)A) t /2 (2+d)a /4 .  Moreover, there exists 
a2, a3 > 0 such that, for 

aze -~3~ ~ <~ sup [IK~. -- rellTv ~ ale  -'#'? 
X 

Proof For the upper bound, use Theorem 5.2, Corollary 3.1, and 
Lemma 1.1. For the lower bound, adapt the arguments given in Refs. 11 
and 12. 

Theorem 5.6. Let K, re be a Markov chain on a finite set ;(. Let d ,  
be the set of edge (x, y) such that Q,(x ,  y) = 5.: K(z, x) K(z, y) re(z) > O. 
Assume that (X, d , ,  re) has moderate growth as in Eq. (5.5) and that 
( ~ , ,  re, g,)  satisfies a local Poincar~ inequality as in Eq. (5.6). Then 

[[(gi~./re)--l[l,_<<.ale -"'/c"r2) for n=ay2 + m +  l 

with m/> 0 and al = (e(l + d)A( I/2(4(2 + d)) a/4. 

Proof Use Theorem 5.2, Theorem 3.1, and Lemma 1.1. 

We close this section by showing how these results apply to the non- 
reversible chain in Eq. (2.10) of Example 2f. Recall that K is the nearest 
neighbor random walk on a n point path with an extra directed edge from 
I to n. By Lemma 2.4, this chain has stationary distribution re given by 

re(i)=(2i)/n z for l < ~ i ~ n - - 1 ,  re(n)=l/n (5.12) 

Lemma 5.5. The n point path with the probability measure n at 
(5.12) has 4-2-moderate growth. 

Proof Consider first V(I, r). We have 

r+l 2i 
V(1, r) = }-" -s 

h -  i 

( r +  1 ) ~ f + 2 ) > l ( ' r +  l'~'- 
n- -14 \n  ---SlJ 

Now, the diameter of the n point path is n -  1, so this is just what is 
needed. Further, V(i, r) >>. V( 1, r) for all i = 1 ..... n and all r. 
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Lemma 5.6. The kernel Q(x, y) = K(x, y) r~(x) associated with the 
chain in Eq. (2.10) is compatible with the graph structure of the n point 
path and the corresponding Dirichlet form g ( f  f )  = ( ( 1 -  K ) f  f )  satisfies 
the local Poincar6 inequality 

I I f -  f,-I[_, ~< 24r2g(f, f )  

Proof First consider the edge (i, i + 1). Then Q(i, i + 1) = i/n 2 for 
1 ~< i ~< n - 1. We must bound, for all i, r, 

2 
q(i, r) Q(i, i+ 1) ~ I k - j l  n(j) ) 

Ik--j[ <~r.j<~i V(j, r) 
k>~i+l  

We may bound I k - j l  by r. Consider two cases: i<2 r ,  i~2r. 

C a s e  1. i < 2r. Then, for j ~ i, 

V(j,r) >~I E f - r ( r + l ) > -  r2 
n -  e .< r 2112 ,1 2 n  2 

Using this, we get 

16 
qCi, r) ~<-z-- 

It" 

= 4  

j k -  ~16 i(i +2 1) (!i  + r +2l )(i + r) 
j<~i 

i+ I <~k<~i+r 

i + 1  (2ir + I" + r 2) ~< 24r 2 
I" 

i(i+ 2 11) 

C a s e  2. i/> 2r. Then, for j ~< i, 

V(Lr)> V(i_r,r)>~ 2 i-r 
- Z 
H- g ~ i - - 2 r  

Using this, we obtain 

>. 2 f ( i --r)  2 (i r)2~ 
s 2 --~ ,]--4ir+5r=n 2 

8 r  

~l(i, r) <.4i(ir+r2 ) ~, jk 
i--r<~j<~i 

i-I-l<~k<~i+r 

/, 

--2i(ir +r2 ) ([(2i+r)(r + 1)][(2r + 1)i+r(r + 1)]) 

r 

- 2i(ir + r 2) (4(i + r) r)(6ri) <<. 12r 2 

The edges (i, i - 1 )  can be treated similarly. Lemma 5.6 follows. 
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The two last lemmas show that Theorem 5.1 applies to the present 
chain and shows that the continuous time chain is close to equilibrium 
after a time of order n z. 

It is interesting to see what has to be done to reach the same conclu- 
sion for the discrete time chain. In Example 2f, we computed the kernel 
P =  K*K. The natural graph corresponding to this kernel is a different n 
point path: starting from 2 it goes to 4, 6 ..... n -  1, 1, and then 31 .... n. The 
stationary distribution is given (of course) by Eq. (5.12). Working as 
before, one can argue moderate groth and a local Poincar~ inequality. 
Thus, Theorem 5.11 applies. It shows that order n 2 steps are sufficient to 
reach stationary in discrete time as well. 

6. CONVEX SETS IN TWO-DIMENSIONS 

Let C be a connected set of lattice points inside a compact convex set 
S ~- R-'. Let U be the uniform distribution, and let K be the Markov kernel 
defined at Eq. (1.1). Theorem 1.1, stated in the introduction, asserts that 
order )~ steps are necessary and suffice for K" to reach approximate 
equilibrium in total variation. Here, 7~ stands for the maximum of the 
Euclidean distance between two points of C. We shall see shortly that this 
Euclidean diameter is comparable with the diameter y of C for the graph 
distance induced by Z 2. This section proves Theorem 1.1 as a corollary of 
Theorem 5.5 by showing that the Markov chain in Eq. (l.1) has moderate 
growth with d =  2 for a constant A independent of the convex set S c R 2 
and satisfies a local Poincar6 inequality with a constant a independent of 
S. From now on, we fix an orthonormal basis (e~, e2) of R 2 and identify 
7/2 with {njej +nle2 :  nj,  nz~Z  }. 

Lemma 6.1. Let C = S N 7/2 be a set of lattice points inside a convex 
set S c R E. Assume that the graph induced by Z 2 on C is connected. For  
x :# y e C, let D(x, y) be the straight line passing through x and y. Then, for 
any x, y ~ C, there exists a graph geodesic path yx.y~ Z 2 such that 

1. The path ~,,..y stays in C. 

2. Each edge of ~x.y belongs to a unit square that intersects D(x, y). 

It follows that 

where y is the graph diameter of C and ?e is the euclidean diameter of the 
convex hull of C in R 2. Moreover, the graph distance between two points 
in C is the same as the graph distance between these points in ~2. 



502 Diaconis and Saloff-Coste 

Proof Start at X=Xo and construct xj , . . . , xk=y inductively as 
follows. Let v denote a unit vector for D(x, y), pointing from x to y. 
Without loss of generality, we can assume that v.ej > 0  and v.e2>O. 
Suppose that xj has been constructed such that Xo=X, Xl ..... xi is the 
beginning of a geodesic path from x to y staying in C, and that each of the 
edges (xj, xj+ 1 ), J = 0,..., i -  1, belongs to some unit square that intersects 
D(x, y). Look at wl = xi + el, w2 = x~ + ez. Consider two cases: 

1. If wl, w2 are on the same side of D(x, y), one of the halflines 
[xi, eli,  [xi, e2[ intersects D(x,y)  between x and y, say [xi, el[. 
Then, by convexity, w ~ is in C and we set xi+ ~ = w~. It is easy to 
check that (x;, xi+ 1) belongs to a squate intersecting D(x, y). 

2. If wj, w2 are separated by D(x,y),  let W be the straight line 
defined by w 1, w 2. This line cuts D(x,y)  between Wl and w2. 
Moreover, we know that there is a lattice path s in C that goes 
from x to y. This path must intersect W somwhere, and it can 
not be in the segment ]wl ,w2[ .  Thus, we have two points 
g'c~ W r  1, w2[ and D ( x , y ) n  W ~ [ w l , w 2 ]  that are in S. By 
convexity, it follows that one of the points wl or w2 belongs to C. 
If only one of them belongs to C pick that one to be x~+ i. If both 
belong to C, pick the one closest to y in Euclidean distance. 

In any case, we have succeeded in constructing x~+~ with the required 
properties. Observe that each step decreases the Euclidean distance from y 
by at least a fixed amount. It is thus clear that this process ends and 
produces a geodesic path from x to y. 

Remark 6.1. The result given by Lemma6.1 (in dimension 2) is 
simply wrong in higher dimensions. Consider, in Z 3 = { n i el + n2 e2 + n3 e3: 
nl, 112, n 3 E 7/}, the set 

C =  {(n,O, 0): O~<n~<N} ~J {(0, l, 0)} w {(n, l, 1): O<~n<~N} 

and let S be the convex hull of C. The Euclidean distance between (N, 0, 0) 
and (N, 1, 1) is x/~ whereas the graph distance in C between these two 
points is 2 ( N +  1 ). Using this type of construction, it is possible to produce 
a set C =  Z3 c~ S with S a convex set in •3 such that C is connected with 
graph-diameter 7 and for which equilibrium is not reached after order y2 
steps (e.g., two 2-dimensional squares of side a attached by a path of length 
b with a and b arbitrary). 

We now want to describe some properties of the number of lattice 
points in C that are at (lattice) distance less than or equal to r from a fixed 
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point x e C. Let N(r) denote the number of lattice points that are at dis- 
tance less than or equal to r from the or!gin in 7/2 (here we are using the 
graph distance d in 7/2). We have 

N ( r ) = l + 2 r + 2 r  2 

Now, in C, equipped with the lattice graph structure, consider the ball 
B(x, r) of radius r around x. By Lemma 6.1, we have 

B(x, r ) =  {z e 7/2: d(x, z) ~<r} c~ C 

Let N(x, r) = IB(x, r)l be the number of points in B(x, r). 

Proposition 6.1. Let C = S c~ Z 2 be a set of lattice points inside a con- 
vex set S c •2 and assume that the graph induced by 7/2 on C is connected. 
Then we have 

N(x, ~)) N(r) 
VxeC, VO<~s<~r, N(x, ~<81N(s) 

Specializing to r =  y, it follows that the Markov chain K defined at 
Eq. (1.1) has (A, 2)-moderate groth for some universal constant A. 

Proof For r I> 0, let N'(x, r) be the number of points in C at distance 
exactly r from x and let N'(r) be the number of points in 7/2 at distance 
r from (0, 0) (i.e., N'(O) = 1, N'(r) --4r if r t> 1 ). The points of C at distance 
r from x lie on the boundary of a Euclidean square (see Fig. 5). Call the 
boundary of this square J(x, r). 

Let l'(x, r) be the length of the part of J(x, r) that is inside the convex 
set S and let d ( r )=  4 x/~ r be the total length of J(x, r). An elementary 
argument involving dilation and convexity--as in Fig. 6--shows that 

V 0 < s < r ,  

Since N'(r) = g(r)/v/2 and 

N'(x, r) < 4 + s r)/~/~, 

d(x, r) .< ~(x, s) 
d(r) "~ - ~ )  (6.1) 

s r)/.q/2 <~ 4 + N'(x, r) 

we deduce from Eq. (6.1) that 

V O <~ s <~ r, 
N'(x,  r) <<. N'(x ,  s) + 8 
N'(r) N'(s) 
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Fig. 5. The points of C at distance r from x lie on the boundary of a Euclidean square. 

It follows that  

N'(x, r) N'(x, s) 
VO<~s<~r, - - ~ < 9 - -  (6.2) 

N'(r) N'(s) 

since N'(x, r) >/1 implies N'(x, s)/> 1 for all 0 ~< s ~< r. 
Now,  given 0 ~< s ~< r, write 

N(x,r)  Z~N ' ( x , t )  l+~,'.~+lN'(x,t) 
N(x, s) Y~ N'(x, t) ~,~o N'(x, t) 

= 1 +Z~+~ N'(t)[N'(x,  t)/N'(t)] 
Y.~ N'( t)[ N'(x, t)/N'( t) ] 

~<1+ 
[ 9 N ' ( x ,  s)/N'(s)][Z]+I N ' ( t ) ]  

[ N'(x, s)/9N'(s) ][ Z~o N ' ( t ) ]  

~< 1 + 81 Z ~ +  ~ N'(t) <~ 81 y'~ N'(t) 
s , s N, Eo N (t) Eo (t) 

N(r) 
~<81 - -  

N(s) 

Here, we have used Eq. (6.2) to obtain the first inequality. This ends the 
p roof  of  Proposi t ion 6.1. []  

Proposi t ion 6.2. Let C = S n Z 2 be a set of  lattice points inside a con-  
vex set S c R 2 and assume that  the graph  induced by 7/2 on C is connected. 
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Fig. 6. An example of an elementary argument involving dilation and convexity. 

Then the Markov chain defined at Eq. (1.1) satisfies the local Poincar6 
inequality 

Vr>~O, Vf, IIf-f~ll~_~ar'-g(f,f) 

for some universal constant a. 

Proof We use Lemma 5.1 with the paths y.,.y constructed in 
Lemma 6.1. Here, rt = U =  1/ICI, Q(e) = 1/4 ICI for any edge e, and 

q(r)=max{8 ~ IB(x,r)lJ 
~x,),~e 

dIx, y) <~ r 

(6.3) 

Fix an edge e, and let x, y be such that e ~ Yx.y and d(x, y) <~ r. Without loss 
of generality, we can further assume that d ( x , e _ ) ~ d ( y , e _ )  (if not, 
exchange the roles of x and y). Fix x and count how many y can qualify. 
Since e ~ Yx.;,, the construction of y.,..y implies that the straight line D(x, y) 
is at Euclidean distance at most x/~ from e_ .  This forces y to be in a 
Euclidean rectangle of length at most r/2 and width at most 4 x/~. Thus 
the number of y that qualify for a given x is bounded by 8 x/~ r. See Fig. 7. 
It follows that the number of pairs (x, y) such that d(x, y)<~ r and e ~ ~.,.y 
is bounded by 

16 v /}  r max{N(e_ ,  r), N(e§ r} (6.4) 

Now, for any x, z~  C with d(x, z) <<.r, Proposition 6.1 implies 

N(z, r)<~ N(x, 2r)<~alN(X, r) 
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Fig. 7. The number  of pairs (x, y) such that d(x, y)<~ r and e ~ ),,.. ,. is bounded by 16 x/~ r 
max{N(e , r ) , N ( e + , r ) } .  

for some universal constant a~. Using this and Eq. (6.4) in Eq. (6.3) yields 
a universal constant a such that tl(r)<~ar z, and this is the desired 
inequality. 

In order to use the results of Section 5, we will have to check the 
condition f l l c l - ~ > -  1 + 1/(ay 2) for the least eigenvalue of the chain (cf. 
Theorem 5.5). 

For  the chain in Eq. ( 1.1 ) we are dealing with, Proposition 2, p. 40, of 
Ref. 16 yields 

1 
fl~cl - ~ >1 - I  + - -  a~ 2 

The details are left to the reader (hint: use the loops at the boundary). 
Putting all these ingredients together, we get 

Theorem 6.1. Let C = S c~ Z 2 be a set of lattice points inside a convex 
set S c  R 2 and assume that the graph induced by Z 2 on C is connected. 
Then the Markov chain defined at Eq. (1.1) satisfies 

I I (K~. /U)-- l l l2<~ale- ' -" '  for all 

and 

a3e - '4 ' '  <~ sup liKe. - U[Iwv <~ a~ e-"'-"' 
x 

n>l(1 + m )  ~2, m > 0  

for all n = FmyZT, m > 0 

Here, the ai's a r e  positive universal constants. 

7. I N H O M O G E N E O U S  CHAINS 

Consider a sequence of Markov chains K, on the same give finite state 
space Z having a common stationary distribution 7r. Form the product 

P , , = K 1 K 2 . . . K , ,  (7.1) 
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There is very little theory to help understand the convergence of P, to n 
given rates of convergence for the K:s. The following result shows that, if 
the K~ have comparable second eigenvalues and satisfy comparable Nash 
inequalities, then, the product with variable factors P,, converges at least as 
rapidly as the power of a single factor. 

Theorem 7.1. Let K~, be a family of irreducible aperiodic Markov 
kernels on a finite state space X with common stationary distribution n. 
With notation as an Theorem 3.1, if the Nash inequalities 

,:rl + " -<. :)+ ,: H_ )i:H ': 

hold for some constants C, D > 0, N i> 1 and all i = 1, 2 ..... then, P,, defined 
at Eq. (7.1) satisfies 

IIP,,I[2_~<~[4CB/(n+I)] D for O<~n<<.N 

with B = B(D, N) = ( 1 + I/N)( I + [-4D-]). If, moreover, p~( 1 ) ~</l for all 
i = 1, 2 ..... then, 

2 liP,'; - nil Tv ~ I[(P;~'/n) - 111 2 ~< e -~  

for 

n >/N + ~ [ D log(4C( 1 + F4D-])/N) + O] 

Proof Observe first that liP,, - nil 2 ~ 2 ~ 1-- In= 1 ~s ). This follows, as 
in Lemma2.1, from the identity P,--n=l--I']=l(K~--n). The Nash 
inequalities imply the decay bound by using Lemma 3. I and slight modifi- 
cations of the argument for Theorem 3.1. We omit further details. [] 

Example 7a. Let p be an odd number. Let ai, i= 1,2,..., be a 
sequence of integers, all relatively prime to p. Define random walks on 
71, by 

K~(x,y)={lo/2 if y=x+_a, 
otherwise 

These are symmetric Markov kernels with uniform stationary distributions. 
For each i, p,.(1) = cos(2n/p) by simple Fourier analysis. Recall that g,.. = 
( (I-- K2)f, f } and observe that K~ is supported by { id, +__ 2ai}. Since 2a,. is 
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also relatively prime to p, {id, 2ai, -2ag}  generates gp. Using Lemma 5. I, 
it can be checked that 

2 ~  
I I f - f r l l  2 "-~ 4r-~, . ( f ,  f )  

Since Zp has moderate growth (with d =  1) for any ___2ag as generators, 
Theorem 5.3 implies that each Kg satisfies the same Nash inequality. Now, 
Theorem 7.1 shows that, for any choice of the a;, P,, = K I K 2  ... K,, is close 
to uniform if nip 2 is large. 

In this example, special choices of a; can drastically change the rate of 
convergence. If a~ = 2;- i, 1 ~< i < + oo, we will show that KI ... K,, is close 
to uniform if n / logp  is large. To see this, consider the random integer 
e o + e 1 2 + . . . + e j 2  j with t~ independent random variables taking values 
0 or 1 with probability 1/2. This has a uniform distribution on 
{0, 1 ..... 2 j + 1 -  1}. It is thus close to uniform, taken modp,  provided 2i/p 
is large. The convolution K I K2... Kj has this same distribution up to affine 
change of variables. It follows that lIP. - n [I-rv is small for n/log p large. 

Remark 7.1. 1. Many variations on this example are possible. The 
group Zp can be replaced by any other finite p-group having moderate 
growth. Examples of such groups are given in Ref. 11. The reversible 
Markov chains Ka can be replaced by the similar but nonreversible chains 
supported on {id, a,} instead of {al, - a ;} .  

2. In the other direction, there are two random walks KI, K2 on the 
symmetric group S,, where K~ is exactly uniform but (KI K2)" is slow to 
converge. See Ref. 7, Section 6. 

3. We do not know how to get similar bounds for such combinations 
if the rate for each individual has been established by other means (e.g., 
coupling). 
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