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Nash Inequalities for Finite Markov Chains
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This paper develops bounds on the rate of decay of powers of Markov kernels
on finite state spaces. These are combined with eigenvalue estimates to give
good bounds on the rate of convergence to stationarity for finite Markov chains
whose underlying graph has moderate volume growth. Roughly, for such chains,
order (diameter)? steps are necessary and suffice to reach stationarity. We con-
sider local Poincaré inequalities and use them to prove Nash inequalities. These
are bounds on ¢,-norms in terms of Dirichlet forms and ¢,-norms which yield
decay rates for iterates of the kernel. This method is adapted from arguments
developed by a number of authors in the context of partial differential equations
and, later, in the study of random walks on infinite graphs. The main results do
not require reversibility.

KEY WORDS: Markov chains; Dirichlet forms; infinite graphs; Nash
inequalities.

1. INTRODUCTION

We begin with an example of a natural problem which is (partially) solved
by using present techniques. Let C be the lattice points inside a compact
convex set in R” Assume that two points in C can be connected by a
lattice path within C. A random walk proceeds by uniformly choosing one
of the 2d possible neighbors of x € C. If the neighbor is inside C, the walk
moves to the chosen point. If the neighbor is outside C, the walk stays
at x. This gives a Markov kernel:

1/2d for x # y neighboring points in C

g(x)2d for x=yeC (L.1)

K(x,y)={
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where g(x) is the number of neighbors of x that do not belong to C. This
is a reversible Markov chain on C with a uniform stationary distribution.
Such walks arise in the age-old problem of computing the volume of a
convex set (Dyer and Frieze!'®; Lovasz and Simonovits’*”’). They also
arise in statistical computing (Diaconis and Sturmfels''”’). The following
theorem is proved in Section 6.

Theorem 1.1. Let C be a connected set of lattice points inside a com-
pact convex set S in R? and let U be the uniform distribution on C. Let
y=1 be the Euclidean diameter of S. There are universal constants
a,, a, >0 such that, for any x e C, the walk in Eq. (1.1) satisfies

K (x, )= U(rv S a, e, for n=cy’>, ¢>0
Further, there are universal constants a3, a, >0 such that

sup |[K*(x, - ) — U()|lpv = ase ™%, for n=cy’, ¢>0

Roughly, Theorem 1.1 says that order y* steps are necessary and suffice to
approach the uniform distribution in total variation distance. For ¢ large,
this distance is exponentially close to zero whereas, for ¢ small, the distance
is bounded away from zero. The result stated in Theorem 1.1 does not hold
in this generality in higher dimensions.

We now turn to our general setting and explain the main techniques of
this paper. Let X be a finite set, K(x, y) a Markov kernel on X with station-
ary distribution n(x). Write K(y)=K"(x,y)=Y..x K"~ '(x, 2) K(z, y).
Our goal is to bound the rate of convergence of K" to = for irreducible
aperiodic Markov chains. Define total variation distance by

1K — 7llry = max |K"(x, A) —m(A)| =3 2 |K"(x,p)—=(»)] (1.2)

rekX

All our bounds on variation distance proceed by bounding the /,-norm in
Eq. (1.2) by the /,-norm:

2 | KL —mllrv < (KL /7) — 1 (1.3)

Here, £, has inner product {f, g> = . x f{x) g(x) n(x) for real functions
f, & The £,-norm is divided into parts as follows

max [(Ky/m) — =K"=zl o < |K"[2. o [K® =7l (14)
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where n, +n,=n and K and zn denote also the operators corresponding to
the kernels K(x,y) and =(y) (the end of the introduction has further
details). The norms on the right-hand side can be represented as

1K™ — 2l =sup{[(K" = 7) fll: f€ £a(m), I flla=1} = p(n) (1.5)

1K o =sup | K% /nll, = D(n) (16)

The quantity u(n) of Eq.(1.5) can be estimated by eigenvalue techniques.
The decay rate D(n) of Eq. (1.6) can be estimated by the Nash inequalities
developed next. As an illustration, the bounds above give

Lemma 1.1. Assume the notation of Egs. (1.2)-(1.6). Let =, =
min, z(x). Then, for any n>1,

2K = nllrv < [(Ky/m)—1l2< min  D(n)) u(ny) <my'2u(1)

ny4m=n

The final bound in Lemma 1.1 has been frequently used to give non-
asymptotic bounds for reversible Markov chains (cf, Sinclair and
Jerrum?). It bounds total variation by a power of a second eigenvalue.
It correspond to the choice n, =0, n,=n and uses the easy facts that
D(0)==;"?2 u(n) <u(1)". To see the improvement possible, consider the
chain in Eq.(l.1), in dimension d=2. As shown in Section 6, for this
example, u(1) <1 —a/y* for a universal a>0, and n;'?=|C|'?<y. Thus
the final bound requires n large enough to make y( l—a/yz)" small. This
needs # of order y* log y which is off by a factor of logy. This factor can
be picked up by using the decay rate D(n). In Section 6, it is shown that
D(n) < A(y/y/n)* for 1 <n<y® and a universal constant 4. Using this with
n,=y% ny=cy? ¢>0, the middle bound of Lemma 1.1 proves that n of
order y* suffices. Section 6 proves a complementary lower bound showing
that order y? steps are actually needed. For a continuous time version of
Lemma 1.1, see Lemma 2.3.

Bounds for the 2 — 2 norm are developed in Section 2. These involve
various symmetrizations suggested by Lawler and Sokal®®; Mihail‘*®); and
Fill,'" which allow eigenvalues to be used for nonreversible Markov
chains. We discuss bounds in discrete and continuous time.

One main theoretical contribution comes in Section 3 which develops
Nash-type inequalities as a tool for bounding the 2 — o0 norm. In the



462 Diaconis and Saloff-Coste

context of partial differential equations, Nash® introduced an inequality
which, transplanted to our setting, reads

1
11372 <B {61 1)+ MAIZ 1Y 1)

where & is the underlying Dirichlet form defined in Section 2. Adapting
developments of the ideas of Nash along the line of Carlen et al.®;
Coulhon and Saloff-Coste*>’; and Varopoulos,**>”) we will show that
Eq. (1.7) is equivalent to decay-rate estimates of the type

D(n)=sup | K" /x|, < C/n®, Il<n<N (1.8)

where D and N are the same in Eqgs. (1.7) and (1.8). Theorem 3.1 states one
form of the bounds on total variation distance achieved by combining the
2—-2 and 2— o0 bounds. Section3 also makes the connection with
Sobolev inequalities.

Section 4 describes how Nash inequalities can be used together with
comparison arguments to study certain chains. This is illustrated for ran-
dom walk on a box in Z¢.

Section 5 contains our second main contribution. It shows how local
Poincaré inequalities can be combined with the notion of moderate growth
of the graph underlying the chain to prove Nash inequalities. This techni-
que is adapted from an original idea introduced by Robinson,!!? in the con-
text of Lie groups and further developed in Ref. 6. Path techniques along
the lines of Jerrum and Sinclair®”; see also Refs. 9 and 16, are introduced
to prove these Poincaré inequalities. A volume growth condition that we
call moderate growth plays a crucial role here. It generalizes a notion intro-
duced for groups in Ref. 11.

Section 6 proves Theorem 1.1 and discusses the difficulties of extending
the result to convex sets in higher dimensions.

Section 7 shows how Nash inequalities extend to time inhomogeneous
problems, e.g., random walk on groups with time varying step distribution.

To conclude, we collect together frequently used notation. The kernel
K(x, y) satisfies K(x, y) =0, 3, K(x, y) =1 for each fixed x € X. The station-
ary distribution satisfies n(x) >0, 3>, 7n(y)=1 and X, n(x) K(x, y) =n(y)
for all yeX. The space ¢,(n) has norm |f|,=(X |f(x)”n(x))"?,
l< p<oo, and || fllo =sup, | f(x)|. If Q: £,— £, is a linear map, we write
Qll, - , for the smallest number b such that |Of ||, <b || fll, for all feZ,.
The kernel K(x, y) defines an operator (also denoted by K) which acts on
£, by

Kf(x)=3 K(x,y) f(¥)
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Jensen’s inequality shows that K is a contraction on £, for 1< p< oo, so
IKll, -, < 1. We often regard the stationary distribution 7 as a map n from

¢, to £, which takes f into the constant function nf(x) =3 f(y) z(y).

Sinclair®® gives a book length treatment of related material with a
thorough review of the literature. The present paper builds on Refs. 9-11,
and 16, which may be consulted for background and examples.

2. EIGENVALUE BOUNDS

This section gives bounds on | K" —=||,_, of Eq. (1.5) by using the
eigenvalues of the multiplicative symmetrization of the operator X, namely
K*K, where K* is the adjoint of K on /,(n) with kernel

K*(x, y) = K(y, x) n(y)/n(x) (21)

An easy calculation shows that K*K is reversible with respect to = and so
self-adjoint on £,(x). It follows that K*K has nonnegative real eigenvalues

Bo=12p,28,= - 2P1x_1 20

u=u(K)=./B(K*K) (22)

The minimax characterization for eigenvalues of reversible chains gives

1 —p?=min{&,(/, /): () =0, If1,=1} 23)

where the Dirichlet form &, is given by any of the expressions

Define

SN =KU-K*K) [, [> =1 Z If(x) = f()I? K*K(x, y) m(x)
=112~ IKf13 (24)

See Ref. 16, for background and references. The use of singular values to
analyze non-selfadjoint operators is classical. See e.g, Gohberg and
Krein.*?® The following lemma originates with Elena Mihail.®® It was
isolated, developed, and applied in nontrivial problems by Jim Fill.?" We
give a short proof for completeness.

Lemma 2.1. Let K, = be a Markov chain on a finite state space X.
Then

IK—7ls2=p

K" —mllo <" forany n>=1

where u is defined at Eq. (2.2).

860/9/2-14
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Proof. Observe that (K—n)f=K(f—=nf) and |f—n=f|3=
/13— (nf)*. Thus,

IK—nll,.,=max{|Kfl;: af =0, | fll,=1} =p

where the last equality follows from Egs. (2.3) and (2.4).

Example 2a. Take X=S§,, the symmetric group. Using cycle nota-
tion, let the probability Q be defined by

Q(id)=0((1,2))=0((1,2,...,n))=1/3 (2.5)

The associated kernel is K{(o,#)= Q(nys~"). This corresponds to a card-
shuffle random walk which proceeds by choosing the identity, transpose
top two, or the n-cycle top to bottom, each with equal probability. The
invariant measure for this walk is the uniform distribution n(c)=1/n!. The
walk is connected and aperiodic but not symmetric. Define the reversed
walk QO*(id)=0*((1,2))=0*((n,n—1,..,1))=1/3. The multiplicative
symmetrization K*K corresponds to the probability

Q** 0d)=1/3,  Q** Q((1,2))=2/9
0* % 0((1,2,.., ) ") = 0* % Q([(1,2)(1, 2,.., )] *") =1/9

Using comparison techniques of Diaconis and Saloff-Coste,'® Section 3, it
is straightforward to show

1(Q)=p(Q*0) < 1—1/(41n?)

One problem with the symmetrization K*K, is that it can destroy
connectivity. As an example, modify Eq.(2.5) by setting Q((1,2))=
0((1,.., n))=1/2. The multiplicative symmetrization corresponds to the
probability Q* % Q(id)=1/2, Q* * Q([(1,2)(1,.,n)]*")=1/4. The
support of 0* * Q does not generate the symmetric group but only a cyclic
subgroup of size n— 1. Here, symmetrizing the measure Q°= Q * Q leads
to a successful analysis. We will return to this example at the end of this
section.

Example 2b. Consider the walk on Z,=Z/pZ defined by X, ,=
2X,+e¢,. Here, p is a prime, ¢; are idd taking values 0, &1 with probability
1/3 each. Chung et al,’”® show that this walk gets random in order
[log p][loglog p] steps. The multiplicative symmetrization takes order p*
steps to get random and x> =1—¢/p*+ O(1/p*) for a fixed constant c.



Nash Inequalities for Finite Markov Chains 465

We turn next to continuous time and the additive symmetrization. Let
the Markov semigroup associated with K be defined by

o0 t"
H=e"""F=e™' ¥ —K', Hy=I (2.6)

n=0""

We consider the Dirichlet form associated with K and defined by.

ELN ==K =3 /)= f)I? K(x, y)nlx)  (2.7)

Xy

for any real valued function f.
For complex valued function, set

EL L) ={UT—3[K+K*D S f>
One has (K*f, > ={f, Kf > =< Kf, f and this yields
E S, /)=ReKUI-K)f, [>)

Since we work here with real valued funtions only, there is no distinction
to be made between & and &, . The proof of the next statement shows how
the Dirichlet form & appears naturally when studying the semigroup H,.

Lemma 2.2. The semigroup H, satisfies
IH =7l <e "
where
A=min{&(f, /): n(f)=0, [ fl.=1} (2.8)

Moreover, A is the largest number « such that |H,—x|,_,<e~* for all
t>0. In particular 1 — 1<z, where u is defined at Eq. (2.2).

Proof. Observe that (d/dt)H,= —(I— K)H,. This implies
d 2
7 VH, fll3=—<2I-[K+K*DH [, H f>=-26(H,f H[f) (29)
For f such that =(f) =0, the definition of 1 and Eq. (2.9) give

d 2 2
ZIH, fI3< —2L |H.f13
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If also || f]|,=1, integrating from O to ¢ gives | H,f| 3 <e~** which implies
the first bound claimed.
To show that 1 is optimal, again let f satisfy =(f)=0, |fll.=1. If
|H-n|,,,<e™™ we get |(H, ﬂ)flla—IIH fli3<e ™ or |H, fll3-1<
e~ 2*—1. Thus,

d , _
SUHS =284 <~

=0
and so a < A. Finally, writing

H,—n=e"zm(K—7t)"

0

and using Lemma 2.1, we get |H,— x|, ,<e ™" andso 1 —u<A.
It will be useful to have the following continuous-time version of
Lemma 1.1.

Lemma 2.3. Let X be a Markov chain on a finite set X with invariant
probability measure n. Let H, be defined by Eq. (2.6). Then

2 |HY —allry < |(H7/m) = < min {D (1) e "2} <m'Pe™*

nh+n=t

where A is defined at Eq. (2.8), n, =min, n(x), and D . (£) = ||H, |2, 4 e-

We now discuss the discrete time applications of the additive sym-
metrization 3[ K+ K*] of K. This is irreducible and aperiodic if X is. The
following examples show that this symmetrization can change the rates in
unpredictable ways.

Example 2c. Consider the deterministic Markov chain on Z, which
always moves one step clockwise. If started at 0, it never gets random! The
multiplicative symmetrization is the chain that stays still at its starting
point. The additive symmetrization is the usual random walk on Z,.

Example 2d. Define a Markov chain on Z¢ by X,=0, X,,,=
SX,+¢,,, with ¢, idd taking values (0,..., 0, 0) and (0,..., 0, 1) with equal
probability, and S(x,, x5,.., X4) =(X2,.., X4, X1). This chain is exactly
uniform after 4 steps. It is not hard to show that the additive symmetriza-
tion takes at least order d> steps to get random. The multiplicative
symmetrization isn’t connected.
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Example 2e. In the other direction, let p be an odd integer and con-
sider the random walk on Z, which takes steps 1 or I_\/‘;J with equal
probability. This walk takes order p? steps to get random (it is, up to an
affine transformation, the walk taking value +1 with equal probability).
The additive symmetrization takes order p steps to get random (see e.g.
Ref. 11, Section 1). Here, the symmetrization speeds things up.

Despite these examples, both symmetrizations are often useful.(e.g., see
the discussion in Fill’s paper?"). In general, the additive symmetrization is
easier to use and gives bounds for the first eigenvalue of the process in con-
tinuous time. The multiplicative symmetrization is crucial for the Nash
inequalities of Section 3. We find it instructive to look carefully at the
following simple example of a nonreversible chain with a nonobvious
stationary stationary distribution which can be analyzed in detail by the
techniques developed in this paper.

Example 2f. Let n>3 be an odd integer. Consider the usual nearest
neighbor walk on an n-point path with an extra directed edge from 1 to n
(Fig. 1).

1 n

N . J

Fig 1. The neighbor walk on an n-point path with an extra directed edge from 1 to n.

This gives a nonreversible Markov chain
Ki,i+1)=K(i,i—1)=4% if 2<ign—1
K(1,2)=K(l,n)=1
Kn,n—1)=1

(2.10)

K(i, j)=0 otherwise

While the usual random walk on a path has essentially a uniform station-
ary distribution, adding the extra edge gives

Lemma 24. The Markov chain K at Eq.(2.10) has stationary dis-

tribution

2i 1

n(i)==, if 1<i<n—1, n(n)=-
n- n
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Proof. The equations for stationarity become

M A w0
I B

n(n—3) nn-1) n(n—2)
T + 2 =n(n—2),

+n(n)=n(n—1)

Solving inductively for z{i) in terms of =n(1) gives =(i)=in(1) for
1<ig<n—1 and n(n)=nn(1)/2. Then, use n(l)+ --- +xn(n)=1 to solve
for =(1).

Let us compute the additive and multiplicative symmetrizations. First,
recall that K*(x, y)=K(y, x) n( y)/=(x); thus

K*(i,iil)=lil_ for 2<ign—1
272
K*(1,2)=1, K*nm1)=1/n, K*(n,n—1)=1—1/n, and K*(x,y)=0
otherwise.
The additive symmetrization K, = (K + K*) becomes

1

K+(i,ii1)=§i- for 2<ign—1

1
4i
K, (1,2)=3/4, K, (1,n)=1/4, K (n, 1)=1/(2n), K (n,n-1)=1-1/(2n),
and K (x, y) =0 otherwise.

The multiplicative symmetrization has kernel

P(x, y)=[K*K](x,y) =} K*(x, z) K(z, y)

Thus
. 1
P(1,1+2)=—+4—I, for 1<ig<n—-2
P( 2)—l l i 3<ig 1
i, =1 T or 3<i<n
1
P(i,z)=§ for 2<i<n-2
1 1 3 1
P(l,l)—-z-, P(2,n)—§, P(n—l,n—l)=z+4(n_1)
1 1 1 1
P —_— = —_——— N = —
(n,n—2) T P(n, n) X P(n,2) o
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Using techniques as in Refs. 16 and 32, the quantities u, A defined at Egs.
(2.2) and (2.8) can be bounded as u < 1 —c/n? and A > ¢/n’ for a universal
constant ¢. The geometric techniques developed in Section 5 allow us to
show that the chain K defined at Eq. (2.10) is closed to equilibrium after
order n? steps. See Lemmas 5.5 and 5.6 for details. O

We conclude this section with two results on higher elgenvalues
suggested to us by Jim Fill

Lemma 2.5. Let K be a Markov chain on a finite set X. Let K*K
have eigenvalues f;, in nonincreasing order, and set ,u,.*=\/E. Let
I K+ K*] have eigenvalues u;", in nondecreasing order. Then

nr<uk forall i
If in addition we assume that min K(x, x) = ¢>0, then
6, =226 (2.11)
and so
ur<l—e(l—pt)

Proof. The first inequality follows from a classical inequality for
singular values. See e.g.,, Marshall and Olkin,”® or Horn and Johnson,**
(p. 150). In the other direction, the identity

I—K*K=2e(I-{K+K*])+(1—¢e)’[I—-(1 —&) " K*—el)(K—¢el)]

yields Eq.(2.11) (see also Ref 21). Then, the minimax characterization

implies
u¥</1-2e(l—pr)<l—e(l—pt) |

Lemma 2.6. With the same notation as in Lemma 2.5,

1XI—=1

YK/ -15alx)< Y B7
x 1

Proof. Let §;(n) be the eigenvalues of K*”K", and observe that these
are the same as the eigenvalues of K"K*". Let (¢,), i=0,.., | X] — 1, be the
corresponding basis of orthonormal eigenfunctions for K"K*" (these eigen-
functions also depend on n). Elementary linear algebra shows that

X -1
WK /m) —1i3= % Bin) Wi(x)|®
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Thus,
1X]—1

2 IKy/m = Hin(x)= Y Bin)
X I

Now, a classical inequality (see e.g., Horn and Johnson,*® p. 190) gives

[X—1 |X|—1

Z Bin) < Z Bi O

Remark 2.1. Lemma 2.6 gives bound on the average /,-norm (and so
the average /,-norm) in terms of the eigenvalues of K*K. For random walk
on groups, the /,-norms involved here do not depend on the starting
points so that Lemma 2.6 gives bounds on [(K%/z)—1], and on
|K% —z|l+v. As an example, consider the probability O on the symmetric
group S, defined at Eq. (2.5). Here, 7 = U is the uniform distribution. As
shown earlier, u =\/ﬁTl €1 —c¢/n? for an explicit constant ¢> 0. The final
bound o Lemma 1.1 shows

219" = Ullv < (n) (1 —¢/n?)”

Thus, m of order n*logn suffices to make variation distance small. This
can be improved to order n®log n (which is presumably the right answer)
using Lemma 2.6. For a proof, bound the /, rate of convergence of 0*Q
using the comparison technique of Ref. 10. The same argument applies to
the slightly different measure considered at the end of Example 2a.

3. NASH INEQUALITIES AND DECAY BOUNDS

The main result of this section shows that a Nash inequality implies
a bound on the decay of K". Following this a converse: for reversible
chains, decay bounds are equivalent to Nash inequalities. Similar results
are given for continuous time. At the end of the section we give some
history of these techniques in partial differential equations and probability
theory. We also sketch their connection to Sobolev inequalites. Methods
for proving Nash inequalities are given in Sections 4 and 5.

Theorem 3.1. Let K(x, y) be a Markov kernel of a finite set X. With
the notation as in Egs. (1.2)—(1.6), (2.1)-(24), assume that the Nash
inequality

11372 < C (80 1) 43 WAIZ) 1112 (31)
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holds for some constants C, D >0, N> 1 and all functions f. Then,
1Kl o = D(n) < (4CBJ(n+ 1))? for 0<n<N (3.2)

with B=B(D, N)=(1 + 1/N)(1 +[4D7). Moreover, if K is irreducible and
aperiodic, then for any xeX and any >0,

I(K"/m)—1],<e™®  for n3> N+ﬁ [D log(4C(1 +[4D7)/N) + 6]
(3.3)

This yields exactly the same bound for 2 || K. — z|| rv. When X is reversible
(ie., K=K*) the factor 4C can be replaced by C in Egs. (3.2) and (3.3).
To set up the proof of Theorem 3.1, fix a function f with | f]|, =1. Set
t(n) = ||K"f||3 and notice that ¢(n) < t(n—1) for n> 1. The following argu-
ment, the heart of the proof, works for any nonincreasing sequence #(n).

Lemma 3.1. Suppose #(n), 0 <n <N, is a nonincreasing sequence of
nonnegative real numbers that satisfies

H(n)! VO C(n) — n+ 1)+ t(n)/N)  for 0<n<N-—1 (34)
with C, D>0. Then
Hn)<(CB/(n+1))** for 0<n<N

where B=B(D, N) = (1 + 1/N)(1 +[4D7).
Proof. Note that #(0)"*”) < C(1 + 1/N). Thus, for any integer b and

any integer n <b,
1 b 2D
t(n)<H0)< <C<1+ ) +1>

Regard b as fixed and let n, > b be the first integer less than or equal to N

(if any) such that
1 b 2D
t(n0)><C<l+N> n0+l> (3.5)

1 b \?? 1\ b\22
<C<1+1—v>n0+1> <t(”0)<t(no—1)<<c<l+ﬁ>n—o>

Then
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Using this in Eq. (3.4) gives

("0 — l)l +1/(2D)

t(no)<<l+%>t(no—l)—t C

<(c(e w1005 -75l]

We now argue that, if b is chosen so that =1 +[4D", the factor in square
brackets is at most 1 for all 0 <n,<N. This contradicts Eq. (3.5) and

shows that
1\ 14+74D7\?*?
S Y
t(n) <C<1+N> iy )

for all 0 <n < N which is the desired conclusion.
We set a=2D, b=1+[2a7] and proceed to prove the inequality

[<1+%>{<1+%>a_nf-l}]<l for b<ngN (3.6)

in stages. Once this is done, we will have proved Lemma 3.1.

Claim 1. For positive integers k, n and any real positive « such that
k—1l<a<k,

« 1D (a—k+1
<1+1) <14%4 .. 42D (‘,’f +1)
n n k'n

Proof. The remainder is nonpositive.

Claim 2. Let k—1<a. Set b=1+[2a"7. Then, for n>=b,

E+ +a(ot—1)-~(oc—k+l)_ b <_ 1
n ki'n* n+1 . n+l

Proof. Consider that « and n> b are fixed and set

oc(oc—l)---(ot—k+1)_b—1
k!n* n+1

Ak =2+ .. +
n

We wish to show that 4(k) <0 for all k£ such that k — 1 <a. Observe that

a b—1 a 2« a(n—1)
A()y=—— <—— = —
(1) n n+l n n+1 n(n+1)
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This proves the claim for k=1 and also shows that,

E_b—l< _afe—1)
n n+l > nn+l)

since n>a>0. Proceeding by induction on k, assume that 1<k—1<a
and that we have shown 4(k—1)<0 and

oafa—1)---(a—k+1)

Ak -1)< (k= " Yn+1)
Then
alo—1)---(a—k+1)
Ak)y=dA(k—1)+ P

<oc(oc—1)---(oc—k+1) oafloe—1)-- (a—k+1)
= kln* T k=D Yn+1)
o a—=1)---(a—k+1)/ kn 1
- kln* <n+l— >

This shows that 4(k)<0if ] <k—1<a and that

oafe—1)--- (e —k)

k) < (k)n*(n+1)

To obtain this last inequality, we have used the fact that k(n+1)=
2n+ 12 a+n+ 1. This completes the induction and proves Claim 2.

Claim 3. Fix «>0. For b=1+[2a7 and 6<n<N,
1 1\* b
— - - <
(+ah(n) -
Proof. From Claims 1 and 2,
N b 1 1
o <l— <l-—
<1+n> P D
and (1+ /N1 -1/(N+1))=1.

Claim 3 with a=2D proves Eq. (3.6) and thus finishes the proof of
Lemma 3.1.
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Proof of Theorem 3.1. As said before, take t(n)=||K'f||? with
/1, =1. The assumption of Eq. (3.1), i.e,, the Nash inequality, applied to
K'f shows that Eq. (3.4) holds. Thus, Lemma 3.1 yields

1Ky =2 < (C(1+1/N)1 +T4D ) /(n+1))” for 0<n<gN
By duality, this gives
”K*"“’_’—ooo:”K"”]ﬂZ
<(C(1 + 1/N)(1 +[74D)/(n+1))? for 0<n<N (3.7)

if K= K*, this ends the proof of the bound in Eq. (3.2). If K # K*, we need
a further argument which is adapted from Ref 4. Fix f with || f]l, =1 and
set

M(f)= max {(n+1)* |K*f]..}

€n <

We want to get a bound on M(f). For any integer 0 <n< N, write
n=n, +n, where n, = n/2_| and observe that

IK*f | o < (CB/(n, + 1))? IK*"f |,
<(CBf(ny+1)? | K*"f |
<(4CB/(n+1)*)? M()'?

Here, B=B(D, N)=(1+ 1/N)(1 +[4D"). The first inequality follows from
Eq. (3.7), the second from

LK *2f L, < NK*2f 2 K> 12 < I K*2f )57

o [oo]

and the third follows from the definition of M(f) and the fact that
(ny+1)(ny+1) = (n+1)*/4. This yields M(f) <(4CB)? M(f)'* or M(f) <
(4CB)?”. 1t follows that

IK*"l; . o <(4CB/(n+1))*P for 0<n<gN
By duality,
1K™, = o < (ACB/(n +1))*P for 0<n<N

Now, by the Riesz-Thorin interpolation theorem (see Ref. 34, p. 179), this
gives

1K 2 = o < (4CB/(n 4+ 1))? for 0<ngN

which is the first inequality stated in Theorem 3.1. The bound for the 7,
norm in Egs. (3.3) follows from (3.2) and Lemma 1.1.
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Remark 3.1.

1.

For Q a symmetric probability distribution on a finite group G,
the decay rate satisfies D(n)’=|G| Q*(id)>1. For example
random walk on Z,, p odd, D(n)®=p(¥)/2*" ~ pl\/7n for
1 <n< p/2, as n becomes large.

When there is a natural dimension 4 (e.g., random walk on a
square box in Z“ has dimension d), the decay rate has exponent
D =d/4.

We have chosen to symmetrize K to K*K. The Dirichlet form
associated with the other symmetrization on KK* is

LN =112 — IK¥ 12

This proof works for this symmetrization also. It shows that the
Nash inequality

1 2 1/D
1z <c{a s+ I Iy

implies

D(n)<(CB/(n+1))® for 0<n<N

where B is as in Theorem 3.1. This is better than Eq. (3.2) by a factor
of 4P, There is often no practical difference between bounding &,
and &,, so this may offer a useful improvement.

4. There is a universal inequality between & defined at Eq. (2.7) and

é,, namely, &,(f, f)<2&(f, f) for any real function f. To see this,

observe that 0< || f—KfI3=If13—<Kf /> =</, Kf > + | Kf 3.
For any real function f, this gives |[f|3—<(Kf,f>=>

CKf, f> = IKf1l3. Thus,
SN =IFI3—<KS >+ LKA [ — IKfI3<26

The same inequality holds with &, instead of &,. There is no converse
inequality, even for reversible chains. Any reversible chain with —1 as an
eigenvalue provides a counter example. Thus, direct use of Theorem 3.1 for
reversible Markov chains requires working with &, which may be more
complex than &. The following result allows direct use of &.
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Corollary 3.1. Let K, n be a reversible Markov chain on a finite set
X. With notation as in Egs. (1.2)-(1.6), (2.1)—(2.4), assume that the Nash
inequality

1F12F P < C {é"(f N5 I } BIG

holds for some constants C, D>0, N> 1, and all functions f. Then
IK™)5 - o =D(n) < /2[2CB/(n+1)]°  for 0<n<2N
with B=(1+ (2N)~")(1+74D7).

Proof. let K,=3I+K) have &+ and &;] as corresponding
Dirichlet forms. These satisfy

Ei=E6%=1¢
The hypothesis and Theorem 3.1 yield
IK” |3~ o < (2CB/(n+ 1))” for 0<n<2N

Fix a function />0 and note that ||K"f], is nonincreasing in . Write

i (45 47 =5 ) o

1 n

52 (o) KU

A\

12 1
= Kf12=Z IK13
53 (o) IK13> 5 1K

This completes the proof, for it shows that

LK 5o = 1Ky 2 S/2 1K 2 2= /2 1K N2

Here, we have used the fact that

IK"l,~ o= sup [K'fll,= sup [Kfl, O
<] 1y

Remark 3.2. Example 2c shows that the hypothesis that X is revers-
ible cannot be comitted in this corollary. Indeed, the form & corresponding
to this example is the same as the form of the usual symmetric random
walk on the circle. Thus, & satisfies a Nash inequality with C and N of
order p? and D = 1/4. However, D(n) = \/1_; for all n.
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The next result gives a converse to Theorem 3.1. It shows that, for
reversible Markov chains, polynomial decay of the kernel implies a Nash
inequality. This is a direct adaptation of arguments from Carlen et al® It
is quite useful for comparison of different chains. See Section4 for an
example.

Theorem 3.2. Let K, n be a reversible Markov chain on a finite space
X. If there are C, D >0, N> 1 such that

1K"2 o =D(n) < C(n+1)~? for 0<n<N

then &, satisfies the Nash inequality

1
1P < c e N+ Iz e

with C' = (1+1/2D)[((1 +2D)'*C]">.
Proof. Since K is self-adjoint, the hypothesis and duality imply that

1K'y o< Cn+1)~" for 0<n<N

Hence we have, for 0<n< N and any f #0,

KL+ 1K f13) + 1K1

i=0

I£13=

n-—
1
n-—1

=Y IU=K*'"2Kf 13+ 1KSf13
i=0

H

<né(f, )+ Cn+1) 722 | £
Here, (I—K?)' is the symmetric square root given by spectral theory.
This gives

2 1 2 2 - :
Ifl5<n {é”*(ﬁf)+ﬁ||flli}+c'(n+l) |17 forany integer n

Now choose n as the integer with
2 2 1/(1+2D)
(22"
LN +HNTIS

<( ZDCz ”f”% )l/(1+2D)
S\ N+NTISIR
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It follows that

IfI12 < ((2D) ~2P/1+2D) 4 (2 p)i/it+2D)y

2D/(1 4 2D)
} (C 1) +22

<{af 1)+ 31113

Raising this to the power (1 +2D)/2D gives the stated conclusion. |

Remark 3.3. A little calculus shows that the constant C' =(1+ 1/2D)
[(142D)"2C]"? in Theorem 3.2 can be bounded by 2! *+'22C/P,

2. Theorem 3.2 really needs reversibility. Example 2d gives a chain K
that has nontrivial decay D(n)<C(n+1)~? for 0<n< N, with some
constants C, D, N. However, the multiplicative symmetrization K*K=Q
does not decay at all. This and Corollary 3.1 show that &, does not satisfy
a useful Nash inequality.

3. Theorem 3.2, Theorem 3.1 and the inequality &, <26 show that, if
0 =K*K satisfies |Q"]|5— o, <C(n+1)"2 for 0<n<N, then |K"|,_, . <
C'(n+ 1)~ for 0 <n< N with C' = B(D) C where B(D) depends only on D.

We now briefly discuss the use of Nash inequalities in continuous time.
The links between decay rates and Nash inequalities for continuous time
semigroups have been actively studied. Nash®® introduced the inequalities
named after him to study divergence form, uniformly elliptic, second order
differential operators with measurable coefficients in R“. He showed how a
Nash inequality implies a polynomial decay in time of the corresponding
heat kernel. We refer the reader to Nash®’ and to the more recent works
of Varopoulos and his students'****-3¢) and of Carlen et al.® Fabes''®)
gives a nice survey of the use of Nash inequality in PDE. Chapter 2 of
Ref. 37 contains information about this and related techniques. The proofs
of the following results are similar to, although easier than, those earlier.

Theorem 3.3. Let K be an irreducible Markov kernel on a finite set
X with invariant probability measure n. Let H,=¢~"/~% be the corre-
sponding semigroup. With the notation as in Eqgs. (1.2)-(1.6), (2.1)~(2.7),
assume that the Nash inequality

1
132 <8+ U1 LAY

holds for some constants C, D, T> 0 and all functions f. Then,

IH |2 o <e(DC/1)? for 0<t<T (3.8)
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Moreover,
2|Hfx, ) =a( v < I(H/(x, )/n(-)) =1, <e' ¢ (39)

for

1 D
t>T+z<Dlog<TC)+c> with ¢>0

Conversly, for self-adjoint K, if there exist positive constants
C, D, T> 0 such that

lH o <Ct™2  for 0<t<T

then, for all functions f,

1712+ < {é”(ff)+ 112 }nfu'”’

with C'=2(1+ 1/(2D))((1 4 2D)'2 C)/P 22 +1/2DY VD,

We close this section with some comments about Nash inequalities
and how they compare to Sobolev inequalities. In terms of Dirichlet forms,
a Sobolev inequality is an inequality of the type

1f12<Cs {é"(ff)+ ufnz} (3.10)

where ¢ > 2, and Cg, T> 0. These functional inequalities were introduced
by Sobolev in the thirties and have played an important role in analysis,
PDE and geometry ever since. For instance, they provide the basic
compactness properties for the study of solutions of elliptic PDE.
Varopoulos'*® (see also Ref. 37, Chs.6 and 7) introduced these Nash-
Sobolev techniques in the study of random walk on finitely generated
groups where they proved to be very effective.
If we set g=4D/(2D — 1) with D > 1/2, and use Holder’s inequality

LAY < Vappap -y A1V
we see that the Sobolev inequality in Eq. (3.10) implies the Nash inequality

2+1/D 1 2 1/D
11372 < Cu { U 1) + U1} A1 G.11)

with C, = Cg. Lest out notation anger a classical analyst, we hasten to add
that, classically, 4D = d, the natural dimension. The value of the parameter

860/9/2-15
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q in terms of d > 2 is then g =2d/(d —2). We stick to D to match notation
with the rest of this paper.

Less obvious is the converse, that Eq. (3.11) implies Eq. (3.10) with
Cs< ADC), for a universal constant 4. One way to see this is to use the
equivalence of each of these two inequalities with the polynomial decay of
the corresponding semigroup. See e.g., Ref 37, Ch. 2. A more direct proof
in a very general setting is given in Ref 1. We have chosen to work with
Nash inequalities because they appear to be more convenient in the present
setting.

4. RANDOM WALK IN A BOX

This section analyzes an example of the Metropolis algorithm on the
lattice points inside a box of side n in d-dimensions. This should be an easy
problem but it is not (at present). In outline, the argument proceeds by
comparison with an auxiliary product chain. A detailed eigenanalysis leads
to sharp decay rates for the product chain. This implies a Nash inequality
for this auxiliary chain and, by comparison, a Nash inequality for the
original chain. This finally gives decay rates for the original chain.

4.1. The Metropolis Algorithm in a Box

Let C(n,d) be a discrete box of side length n in d-dimensions. The
extreme points of C(n, d) are the 29 vectors with coordinates 0 or n.

The usual nearest neighbor walk in C(n, d) has stationary distribution
proportional to the degree d(x) of the vertex xe C(n, d). This varies
between d and 24 and so is not uniform. The Metropolis algorithm is a
method for changing the transition probabilities to have a given stationary
distribution. In this section, we analyse the Metropolis algorithm for the
uniform stationary distribution. This is a Markov chain on the points in
C(n, d) with transitions P(x, y) =0 unless x=y or x and y differ by +1 in
a single coordinate, in which case P(x, y) is given by:

1/6(x) if do(x)=d(y) and x+#y

P(x, y) = 1/6(y) if o(x)<d(y) | (4.1
(1/6(x})) Y (=(3(x)/d(2))) if x=y

2 (x) < ()
T~Xx

Here z~x stands for z, x neighbors on the grid. As an example, in
2-dimensions, the walk becomes the weighted nearest neighbor walk on
C(n, 2) with loops added and weighted as in Fig. 2).
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4 1 1 4
) 7] 1
4 3 3 4
1 1
3 3 3
4 3 3 q
1 3 3 3 1
4 3 3 4
4 4 4
4 1 1 4

Fig. 2. In two-dimensions, the walk becomes the weighted nearest neighbor walk on C(n, 2)
with loops added and weighted.

For general n and d, P is a reversible, aperiodic, irreducible Markov chain
on C(n, d) with uniform stationary distribution

7(x) 4.2)

Tty

The analysis to follow gives

Theorem 4.1. Let d>2. For P and n defined at Eqgs. (4.1) and (4.2),
|PX—r||vy <aje™  for k=n’d(dlogd+c), ¢>0
where a,, a, >0 are universal constants. For k = cnd log d,

2 sup ||P§—7f||1-v>a3€_““ for ¢>0
X

with as, a, >0 universal constants.

4.2. Analysis for the Comparison Chain

We build a product chain with known eigenvalues and eigenvectors.
Consider the Markov kernel W on {0, 1,.., n} defined by

Wix,x+1)=1/2 for xe{0,..,n—1}
W(x,x—1)=1/2 for xe{l,.,n} (4.3)
W(0,0)=Win,n)=1/2
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This is a symmetric kernel with uniform stationary distribution. Feller,*®
(p. 436) gives its eigenvalues and eigenfunctions as

Bo=1, Yo(x)=1

Y Vi(x) =2 cos(milx — 1/2)/(n+1))  for j=1,..n

.= COS
by=c n+1

We need an analysis of this process in continuous time. Let V,=¢ ="/~ ¥}

and write

Vien =, (1 + Z ¥;(x) \//,-(y)e-'“-cos<nf/m+1m>
Jj=1

+

1 n 23 b
< 1<1+2 Z e—’ly-/(n+l)-)

n+ J=1
1 5
<3 (1+2e=2/0+ V(1 4 J(n+1)/21))

To obtain the last inequality, use

n oo
2 2 f n+1
e— 203+ 1) <J' o= US/nHIP go

2 ! \/2_1‘[\/2_//"4-1

2
e " du

and

2 Al 5 23_'
— e " du=
Jr | Jr

Next, consider the kernel P on C(n, d) which proceed by choosing one
of the d coordinates at random and changing that coordinate using W from
Eq. (4.3). Thus,

J T2z du<e™ -

d
F= Z I®R.QIQWRI..QI (4.4)

i—1

In fact, the transition kernel Eq. (4.4) is exactly given by Eq. (1.1) for this
case. As an example, when d=2, the walk becomes the weighted nearest
neighbor walk on C(n, 2) with loops and weighted as in Fig. 3.

For general n, d, P is a reversible Markov chain with uniform distribu-
tion # == on C(n, d) as stationary distribution. The eigenvalues of such a
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2 1 1
1 1
1 1 1
1
1 1
1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
2 1 1 2

Fig. 3. When d=2, the walk becomes the weighted nearest neighbor on C(n, 2) with loops.

product chain are easy to derive in terms of the eigenvalues of W (see
Ref. 10, Sec. 6). Here

. 1 n 2
A d<1 COSn+ 1) ! d(n+1)*

The semigroup H,=e~ "/~ has the property that the coordinates
evolve independently of each other, each according to V, defined earlier. It
follows that

||ﬁ,||‘§’_, o= n\lix{ (n+1)¢ Vo X1, Y1) - Vaya(Xys ya)}

(14 2e=¥Mm (1 4 Jd(n + 1)%/41))*

< (4d(n+ 1)Yn)? for t1<d(n+1)¥16

For this last inequality, let f(u)=u+2ue *"+2¢~* and check that
fu)<dfor0<u<l1/2.
From this, the converse in Theorem 3.3 yields the Nash inequality

LFI2* < 64d(n + 1)? (5”(}2 Nt ufu,> 1% (45)

d(n +1

From Eq.(4.5), we have a Nash inequality for the Dirichlet form
associated to P. Corollary 3.1 gives decay rates for the discrete time chain
P*. Using these and the second eigenvalue of P? in Lemma 1.1 implies that
the upper bound of Theorem 4.1 holds with P replaced by P. However, for
P, it can shown that order n’dlogd steps suffice to reach approximate
equilibrium by a direct elementary comparison with the continuous time
chain. It is not hard to prove the lower bound of Theorem 4.1 for P or P.
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Remark 4.1. 1. The walk P defined at Eq. (4.4) is exactly of the form
defined at Eq. (1.1). The Euclidean diameter of the convex hull of C(n, d)
is y,4=n+/d The argument outlined before shows that order y2 ,logd
steps are necessary and suffice for P to reach equilibrium. For the walk P,
Theorem 4.1 only says that order y2 ,logd steps are necessary and that
order dy;, ,log d suffice. This last result can be improved to order “y2 ,log d
steps suffice” by using the present technique and logarithmic Sobolev
inequalities; see Ref. 13 for details. Direct use of geomtric techniques lead
to far cruder bounds when d is large. See Example Sb.

2. Bounding rates of convergence of P required an excursion in con-
tinuous time. This is also true for the product walks in Section 6 of Ref. 5.

4.3. Proof of Theorem 4.1

We argue by comparing P and P. Observe that nm=# For
x,yeC(n,d), and x#y,

p(x,y)SP(x,Y)

Thus, & < &. This implies 8, < f,. For the lowest eigenvalue, Bix -1, use of
Corollary 2, p. 41 of Ref. 16, gives

1
> - 2
B ! +dn'

To see this, use the loops at the boundary of C(n, d) and paths along the
first coordinate direction. All of this shows

1

ﬂ(l)Sl—m

(4.6)

Further, the Nash inequality Eq. (4.5) implies

A3 < 6ad(n+ 17 (8044 g A1) WA (4)

Now, Corollary 3.1 gives
1PHIlo o <</2 [2CBJk+1)]%,  for O0<k<d(n+1)%/4
with C=64d(n+1)? and B=(1 +4/d(n+1)?)(1 +d). Thus,

1P )5 o <A /2[256(1+d)]%,  for k=d(n+1)%4  (48)
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O»

Fig. 4. An example when d=2, n=3, and M =3.

Finally, using Eqgs. (4.6) and (4.8) in Lemma 1.1 gives the upper bound in
Theorem 4.1. The proof of the lower bound is straightforward and omitted.

The techniques used to prove Theorm 4.1 give results for a variety of
graph structures on C(n, d) obtained by adding and subtracting edges. For
example, diagonally adjacent points could be connected. To be specific, fix
M>1 and consider adding and erasing edges according to the following
rules:

» When erasing edges, for each basic unit cube at most one edge is
erased, and for each edge left in, there are at most M cubes con-
taining this edge and an erased edge.

o When adding edges, the degree of any vertex xe C(n, d) stays
bounded by Md.

An example with d=2, n=3, and M =3 is shown in Fig. 4.

This defines a new Markov chain P on C(n, d), with stationary distribution
# proportional to the degree of each vertex. To avoid parity problems, we
work in continuous time with A, =e /=",

Corollary 4.1. For each fixed M > 1, any Markov chain H, as pre-
viously satisfies

IIH,—ﬁIITVSaIe_”Z" for t>=dn*(dlogd+c), ¢c>0

where a,, a, do not depend on d or n.

5. GEOMETRIC THEORY

5.1. Introduction

The section introduces volume growth conditions and path arguments
as a way of proving Nash inequalities and bounding rates of convergence
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to stationarity. Let K{(x, y) be a Markov chain on a finite set X. Assume
that K is irreducible with stationary distribution 7.

The geometric arguments developed in this section use an underlying
graph structure on the finite set X which is given by a set &/ of oriented
edges. This graph structure must be compatible with the chain K. A precise
general definition will be given in Section 5.2.

In this introduction, we describe only the simplest and most useful
way to associate a graph structure with K. Namely, let <7 be the set of
pairs (x, y) such that either K(x, y) >0 or K(y, x)>0. This defines a sym-
metric graph structure on X. Let d(x,y) be the shortest path distance
corresponding to the edge-set &/ and let B(x, r)={z: d(x, z)<r} be the
closed ball around x with radius r. We define the volume of B(x, r} by
setting V{(x, r)=3_c ganm T(2).

Definition 5.1. For A4,d>1, the finite Markov chain (KX, n) has
(A, d)-moderate growth if

. d
Vix, r) 2% <’ + 1> for allx € X and integers r € {0, 1,., ¥} (5.1)
4

where y is the diameter of the graph (X, %)

Moderate growth is a variation of polynomial growth which has
proved effective in studying random walk on groups. A thorough exposi-
tion and many examples appear in Ref. 11. Several other example are given
in Section 5.2.

The second geometric notion needed is that of local Poincaré
inequalities. For any real function f and integer r, set

1

Ix)= Vix, r)

Y. f(y)na(y)

yeB(x,r)

Definition 5.2. Let K, = be a Markov chain on the finite set X. Let &
be the Dirichlet form of Eq. (2.7) associated with K. We say that (K, =)
satisfies a local Poincaré inequality if there exists a >0 such that, for any
real function f and integer r,

If = fh3<ar’6(f, f) (52)

As motivation, when r =y and K, = is reversible, the bound becomes

If = f13=Var(f)<ay*6(f, f)
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and the minimax characterization of the second largest eigenvalue gives
/}lsl——l/(ayz). Even when K,z is not reversible, Eq.(5.2) yields the
inequality 1> 1/(ay*) for the quantity 1 defined at Eq.(2.8). Thus, spe-
cializing a local Poincaré inequality to the case r=y (=the diameter)
yields a Poincaré inequality as considered in Ref 16. Such Poincaré
inequalities have proved classically useful. In Ref 16, geometric path
techniques were shown to yield Poincaré inequalities. Section 5.2 shows
how paths yield useful local Poincaré inequalities. For instance, it will be
shown that random walk on any finite group satisfies Eq. (5.2).

The following result will be proved in greater generality in Section 5.3.
It shows that, for chains with moderate growth satisfying a local Poincaré
inequality, order y* steps are necessary and sufficient to guarantee con-
verge. For simplicity, we state the result in continuous time. Several dis-
crete analogs are given in Section 5.3.

Theorem 5.1. Let K, 7 be a Markov chain of a finite set X. Assume
that (K, n) has moderate growth (5.1) and satisfies a local Poincaré
inequality of Eq. (5.2). Then, the continuous time semigroup H,=e ="/~
defined at Eq. (2.6) satisfies, for all >0,

2 |HY —nllry <ae=

with a, = (e’(1 + d)4)'?(d/4)"*.
Conversely, if K, 7 is reversible, there are constants a,, a; > 0 depend-
ing only on A4, a, d from Egs. (5.1) and (5.2) such that

sup (| HY — 7zl ry = a,e " for t>0
X

Remark 5.1. Of course, any irreducible chain on a finite set satisfies
Egs. (5.1) and (5.2) for some A, a,d. Unfortunately, the constants a,,
i=1,2,3, depend exponentialy on these parameters, especially on d. The
bounds work well for chains with small values of 4, a, d. As shown later,
there are many natural families of graphs with bounded parameters.

Section 5.2 introduces path techniques and uses these to treat simple
examples. It also treats random walk on groups, showing how Theorem 5.1
implies the main result of Ref. 11.

Section 5.3 shows that moderate growth and local Poincaré
inequalities imply a Nash inequality. It contains the proof of Theorem 5.1
and develops its discrete time analogs.

5.2. Path Techniques and Examples

As stated in Section 5.1 introduction, the geometric techniques to be
develop later use an underlying graph structure. Of course, this graph
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structure must be related to the chain K we want to analyze. However,
there is some freedom in the way the graph and the chain have to be
related. We think that it is useful and instructive to present the argument
in some generality.

The first notion we need to introduce is the notion of compatibility
between a graph (X, &), symmetric or not, and a Dirichlet form &,
associated with a nonnegative kernel Q by

/s V=52 1f(X)=F(2)* O, »)

Definition 5.3. Let &, be the Dirichlet form on X associated with a
nonnegative kernel Q. Let &/ < X x X be a set of oriented edges. We say that
Q (or &) and &/ are compatible if Q(x, y) >0 for all (x, y)e.«/.

In most applications, we are given a chain K| # on X and we construct
the edge-set ./ from K. There are several interesting possible choices for
doing that.

e The most obvious choice is to define a graph with vertex set X and
an edge from x to y is K(x, y) > 0. This graph may well not be sym-
metric if K,z is not reversible. This graph is compatible with
Q(x, y)=K(x, y) n(x) which corresponds to the Dirichlet from
EL)=KU=K) [, [>.

« Another possible choice is to put an edge from x to y if either
K(x,y)>0 or K(y,x)>0. This corresponds to the edge-set
introduced in Section 5.1. This graph is symmetric by construction.
It is compatible with

O(x, y) = 1(K(x, y) n(x) + K(y, x) n(y))

which corresponds to the same Dirichlet form &(f, f)=
{(I—K)f, > as before. This is the construction that we will use in
most applications.

» We can also build the edge set .« as the set of pairs (x, y) such that
O(x, y)=) K(z, x) K(z,y) a(z) >0

This always gives a symmetric graph that corresponds to the
Dirichlet form &, .

= Finally, in some cases, we may want to use only a part of the
obvious edges previously considered. For instance, we may want
to fix ¢>0 and define .o/ as the set of pairs (x, y) such that
K(x, y) n{x) =z e. Indeed, using pairs (x, y) with very small weight
K(x, y) n(x) produces bad factors in the bounds developed later.
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Any fixed oriented graph structure (X, /) defines a shortest path dis-
tance d(x, y) between x and y. This distance need not be symmetric if &
is not symmetric. Let B(x, r)={y: d(x, y)<r} be the closed ball around x
with radius r. By definition, this ball has volume

Vier= ), ay) - (53)
ve B(xr)

where 7 is a given fixed probability measure on X. We also set

1
T V(x,r)

fo(x) > f)ny) (54)

veB(x,r)

Let y be the diameter of the graph, so B(x, y) =X for any xe X. We now
extend to the present general setting the notion of moderate growth and
local Poincaré inequality introduced in Section 5.1.

Definition 5.4. Fix an edge set o/ and a probability measure = on X.
For 4, d=1, (X, &, n) has (A, d)-moderate growth if

1 1 d
Vix,r) ZZ (r-; ) for all xeX and integers re {0, 1,.., ¥} (5.5)

Definition 5.5. Fix an edge set «/ and a probability measure = on X.
Let &, be a Dirichlet form compatible with «/. We say that (<&, 7, &)
satisfies a local Poincaré inequality if there exists a >0 such that, for any
real function f and integer r,

If = fl3<ar’y(f, f) (5.6)

To relate these definitions to the ones given in Section 5.1, observe
that we say that a Markov chain (KX, n) has moderate growth as in Eq. (5.1)
or that (K, =) satisfies a local Poincaré inequality as in Eq. (5.2) if, respec-
tively, Egs. (5.5) or (5.6) are satisfied by (s, n, &) where Q(x,y)=
HK(x, y) m(x)+ K(y, x) 2(y), 6o f, /) =&(f, f)={(I—K)f, f) and =
{(x. ) Q(x, y)>0}.

We can now give a first result concerning local Poincaré inequalities.
Throughout, if e =(z, w) is an edge of the graph, we set e, =wand e_=z
and Q(e) = Q(z, w). We assume that (X, &/} is a connected graph and let y
be its diameter.

For each pair of points x, yeX, choose a path y, , joining x to y in
(X, &7). Usually, these paths are geodesics but this is not necessary. The
following result is a local version of results in Ref. 16. The quality of the
bounds given next depends on the choice of paths.
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Lemma 5.1. Let X, &/, = be a finite graph equipped with a probability
measure 7. Let &, be a Dirichlet form and assume that .« and Q are com-
patible. Let y, , be a path from x to y in the underlying graph (X, &).
Then, with notation as in Egs. (5.3) and (5.4), for each integer 0 <r <y,

If = F3<n(r) 8o 1)

with
n(r) = max {Q( )ZH 1731 &VY()%(’})—})} (5.7)
Progf. Foramyxel,
If(x)—fi(x)*< s ’_).‘]EBZ('\.J) () = ()27
B V(,L 5! %) L‘g‘.yf(en—f(e_) ")
< V(i., I ;) 195 2(¥) g If(e)—fle_)|?

Multiply both sides by n(x) and sum in x. Bring the sum over directed
edges e outside to get

2 Qe) Ty |7I(X) y)
o) =, " W)
dix.y)<r
We proceed to some examples. In each case, we use path techniques
to show that local Poincaré inequalities are satisfied. We also determine
moderate growth so that Theorem 5.1 is in force and shows that order y*
steps are necessary and suffice to achieve randomness.

If=£13<XE 1 fle )= fle )I? <(r) 8o, f)

Example 5a. The n-point path. Take X={1,..,n}, K(x,x+1)=1/2
for 1<x<n—1, K(x,x—1)=1/2 for 2<x<n, K(1,1)=K(n,n)=1/2.
This is nearest neighbor random walk on a path with holding probabilities
on the ends. We use the obvious underlying graph. The chain has station-
ary distribution n(x)=1/n and is reversible, aperiodic, and irreducible.
Take y, , as the unique geodesic path from x to y. Then y=n— 1. Further,
moderate growth with 4 =n/(n—1), d=1, follows from

1 2r+1
r+ <Vix.r)< r+
n n

for any x and r<y.
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Finally, for any edge e, O(e)=1/(2n). Using these ingredients, the
quantity #(r) of Lemma 5.1 satisfies

1(r) <dn =5 —

= . ! S
i Nk Ni=max[{y, 3ely.,l<r)

Clearly, N(r) <r(r+ 1)/2. Combining bounds, 7(r) <2r? so

If=fA3<2r%6(f, 1)

Thus, Theorem 5.1 yields 2 | H* — nt|ry <a,e~2"" for >0 with explicit
constants a,, a,.

Example Sb. Random walk on a box. It is instructive to see how
these bounds work out for the example of the discrete box studied in
Section 4. In summary, they work well in bounded dimension but are
exponentially off in high dimensions. Again, we use the obvious underlying
graph.

With notation as in Section 4, consider the chain in Eq. (4.1) on the
box C(n, d). Paths between x, ye C(n, d) are chosen inductively (in d) as
follows. For d =2, there is a unique shortest path making at most one 90
degrees counterclockwise turn. For d =3, given, x, ye C(n, d), project y to
the plane {(z,, z,, z3): z3 =x;}. Connect x to this projected point using the
two-dimensional paths and then connect the third coodinates. Continuing
inductively defines paths from x to y in any dimension. The resulting paths
have at most d— 1 “turns.” Note that the diameter is y =nd.

Let e be a directed edge in C(n, d). We will bound the number of paths
of length at most r that use that edge. For any path y, , using this edge,
suppose the edge appears after turn i—1 and before turn i, ie {1,.. d}.
There at most r’ starting points x and at most (2r)?*! ' ending points y.
Hence, bounding |y, ,| by [y, | <r yields

X Ireld<@i?

Pup3¢
Iy, y| sr

The quantity ¥{(x, r) can be bounded between

d 1 d
a2 o (B e verey o

The upper bound is needed for x in the center of the box and the lower
bound for x in a corner.
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Using these ingredients, #{r) of Eq. {5.7) can be bounded by

dn+ 1) (0¥l
(n+1)2”dd'<r+l

o
nr) < ) Tl <@d) 1
Yrx y3¢€

Ire yl 7

This gives a local Poincaré inequality. Moderate growth follows from
Eq. (5.8). These ingredients and Theorem 5.1 show that, at fixed d, order y*
steps are necessary and suffice to achieve randomness. Evidently, the result
becomes useless for large d. Section 4 gives much sharper results for this
case.

For some Markov chains, there are many geodesic paths and it is
natural and effective to average over paths. See Refs. 9, 16, 21, and 33 for
examples. The bounds above fit well with such averages. We proceed to
details.

Let L(x, y) be the set of all geodesic paths connecting x to y. Set

L(x)= U Ly, L=UL(x), L= ) Lixy)

veB(xr) x.vekX

For feL, let |/| denote its length. A function w: L —[0,1] is a flow if
Y w(f)y=na{x)n(y)
felixy)
Lemma 5.1 used a trivial flow w(y, ,) =n(x) n(y), o(¢)=0 for other

paths in L(x, y). The argument for Lemma 5.1 gives

Lemma 5.2. Let the edge-set &/ and the Dirichlet form &, with
kernel Q be compatible. Fix a flow «. Then, for all integers r and all real
functions f,

”f_frllggﬂw(r) éﬂQ(.f’ f)

where
") max{ 2 v 1 5 |f|w(/)}
Nr)= VIR
7 ce./ Q(e) xeX V(x’ r) leL,(x)
{3e

The following corollary makes use of a nontrivial flow to derive local
Poincaré inequalities for graphs with symmetry. It is used in Example 5d.
Say that a one to one map @: X - X preserves Q and n if Q(x,y)=
O(PD(x), D(y)) for all (x, y) e o, and n(x) = n(P(x)) for all x e X. Note that
we consider only the pairs (x, y) in &.
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Corollary 5.1. Let the edge o and the Dirichlet form &, with kernel
Q be compatible. Let I" be a group of permutations of X which preserves
Q and 7. Suppose that the set of oriented edges ./ partitions as

o =) o
1
with I” operating transitively on each /. Then, for each integer r >0,
-1 max {2 L)

Here, ¢, is any element in ..

Proof. Define a flow  supported on geodesic paths with

_a(x) a(y)
o(£) =4Iy for /eL(x,y) (5.9)
By hypothesis,
I P
xeX V(x’ r) feLi(x)
£3ae

does not depend on the edge e e .of. Averaging over all e € .o, gives

max{z

S W w(/)}

ces xeX V(x’ l‘) £eL;(x)
fae

1 Y 7 L5 ) a0 aly) <o

X, X) 7 =7 7

I'Ml xeX Y r) yeB(xr) y y I'-Q{II

To see the first inequality, consider the inner sum on the left also averaged
over ee <. Only paths £ e L(x, y) for ye B(x, r) can appear. Such a path
can appear for at most |/| =d(x, y) edges. Summing first over £ e L(x, y)
and using Eq. (5.9) yields the second inequality and completes the proof.
O

Example 5c. Random walks on groups. Let G be a finite group and
S a set of generators. Define a random walk on G as

1/|S|  if yx"'eS

0 if yx'¢S (5.10)

K(x,y)={
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The stationary distribution is the uniform probability n(x}=1/|G|. The
next lemma shows that the random walk in Eq. (5.10) satisfies the local
Poincaré inequality.

Lemma 53. Let G be a finite group with generating set S. Consider
the graph with edge set &7 = {(x, sx): x€ G, se S U S™'}. Then the random
walk Eq. (5.10) with Dirichlet form &(f, f)=<{(I—K) f, f satisfies

\f—=£13<2S|r?é(f, f)  forallintegerr, if S=S""'
and
If=Fl53<4 S| r?6(f, f)  forall integers r

if § is not symmetric.

Proof. Set Q(x,y)=(1/21G|)(K(x, y)+K(y,x)). Then &(f,f)=
32 I(X)=f(»))? Q(x, y) and Q is compatible with /. Any element g
of the group G acts as an automorphism of the chain by right multiplica-
tion since Q(xg, yg)=Q(x, y). Each G-edge-orbit has size at least |G].
If § is symmetric, we have Q(e)=1/(|S]|G|). If S is not symmetric,
1/(2 |81 |G) < @(e) <1/(|S] |G|). In both cases, Corollary 5.1 yields
Lemma 5.3. O

Remark 5.2. Assume for simplicity that S=S~"'. For y e G, write y =
2,25z, with z;€ S and k= |y| =d(id, y). Let W(z, y)=[{i: z;,=z}| < |yl
Arguing as in Ref. 10, the bound above can be refined to

If = £13<21SIm(r) &(f. /)

with

Y w| Wz, w)}<r2

mry=mag {lB(")l we Bir)

eS8

2. In Ref 11, random walks on groups with moderate growth were
studied. Lemma 5.3 shows that such groups also satisfy local Poincaré
inequalities. Thus, Theorem 5.1 gives a different proof of the main results
of Ref. 11. That paper contains many examples which may serve as motiva-
tion for the present paper. In fact, Theorem 5.1 and its discrete time varia-
tions extend the results of Ref 11 to the nonsymmetric case. Some further
examples appear later.
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3. The factor |S| that appears in Lemma 5.3 can sometimes be
eliminated by symmetry. As an example, take G=Z¢ with generating set

S={ter, teg)

with €;,=(0,...,0, 1,0,..,0) the 1 being in ith position. For this example,
using obvious paths and Remark 5.2, condition 1 gives |f—f,|3<
2r26(f, f). This improves upon Lemma 5.3 by a factor of 2 |S|. Here, an
edge (x, x +e;) can be moved to (y, y +e;) by first transposing the ith and
jth coordinates and then translating. This shows that the automorphism
group of the chain acts transitively on oriented edges. Thus, Corollary 5.1
also yields | f—f,13<2r?6(f, f). The next example contains further
illustration.

Example 5d. Random walk generated by conjugacy classes. Let G be
a finite group and consider the random walk defined at Eq. (5.10). We
show that if the set S is invariant under conjugation, i.e., t~'St=$ for all
t € G, then the bounds of Lemma 5.3 can be improved. The random trans-
positions walk of Refs. 8 and 15, or the Hildebrand’s random transvections
walk,®® are examples of natural walks which are constant on conjugacy
classes. If S is invariant under conjugation, write

S=Ciu---uC, (5.11)
with C; disjoint conjugacy classes. We set /= {ie {1,..,0}: C;# {id}}.

Lemma 54. Let G a finite group with generating set S. Consider the
graph with edge set & = {(x, sx): xe G, se SUS™'}. For the random walk
in Eq. (5.10), with S satisfying Eq. (5.11),

48| r?

*

If=£l3< e f)

with C, =min,., [C;u C;'|. If we further assume that S is symmetric, then

28|~
C*

If=fh3i< e 1)

Proof. An oriented edge is a pair (x,sx) with xe G, se S*'. The
group G acts on edges both on the right ((x, sx) g =(xg, sxg)}) and on the
left (g(x, sx)=(g 'x,g 'sgg~'x)). These actions preserve Q(x,y)=
(1/2 |G| X K(x, y) + K(y, x)). Moreover, the map x — x ! also preserves Q
because

(x Lx s Y)=(x"Yulx") where u=x"lsx

860/9/2-16
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These actions generate a group I'. It is easy to see that a I'-edge-orbit is
precisely given by

&={(x,5x):xeG, seC,uC'}, 2<i<o

Thus |&| = |G| |C;u C;!|. Now the result follows from Corollary 5.1.
It is interesting to specialize Lemma 5.4 to the case where S is sym-
metric and r =y =the diameter. In this case, the argument yields easily

2
I/~ £ 3= Var( 1) <22

(1)

*
which improves by a factor of 2 the bound of Lemma 5.4. In particular, this
implies the eigenvalue bound
C*
|S]

Bi<1

for the random walk on G associated with the generating set S.

Remark 5.3. Usually, walks that are constant on conjugacy classes
are analysed by using the fact that the eigenvalues can be expressed in
terms of the characters y of the group. Lemma 5.4 offers the opportunity of
turning this around, giving bounds on the ratio Re(y(s)/x(id)) in terms of
the diameter of the group generated by the conjugates of s. This is
developed in Ref. 14.

5.3. Moderate Growth and Local Poincaré Imply Nash Inequalities

This section proves Theorem 5.1. The first result leans on an idea of
Robinson®"’ which is also used in Ref. 6.

Theorem 5.2. Let X be a finite set equipped with a probability
measure 7 and an edge set o/. Let &, be a Dirichlet form with kernel Q
compatible with /. Suppose that, for some integer R, there are reals M,
d=21 and a> 0 such that

ld
V<x,r>>(”,{4) and  |f —fI2<aryf, f)

for all xeX, re [0, R], and all functions f. Then

2 1 2
If13*<c [ S Ntz I/ 5] (74

with C=(1+ 1/d)*(1 +d)** Mg,
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Proof. Write
LAIZ=KLT> == D+ S0 D

Then, for any integer re [0, R],
S W =Ll W f1<a'Prég( £ )21

and

Lo <o I S M(r+ D fI

This gives, for all integers re [0, oo[,

A1 <ar[éo(f, )+ (@R) = I L1312 1l + Mr+ DA

Thus, for all reals se [0, oo,

If13<a' L8 £, )+ (aR) IS I f 2+ Ms = I f11F
Minimizing the right-hand side in s gives
A3 < (@41 4 d N a(E( f; f)
+ (@R HIS13) 111+ DM | 177

The result now follows from routine simplifications. O

Remark 54. 1. The factor (1 + 1/d)*(14+d)** is bounded by 16 for
alld= 1.

2. This argument works as well if we replace the local Poincaré
inequality with an inequality of the form

If = fl3<ar€ylf, f)

for some o>0. This and the volume growth hypothesis V{x,r)=
(r + 1)/M yields the Nash inequality

2 + 2a, 1 2 2a/u
132 < €| 8l 1)+ 7 13 | M

with C=(1+a/(2d))*(1 + 2d/a)** M*“a. Moreover, the volume V(x,r)
and the mean value f,(x) do not need to be defined in terms of balls: any
family of sets depending on the parameter r could be used instead.
However, it is not clear that this extra generality is of any real use.
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Proof of Theorem 5.1. We can now give the proof of the upper
bound in Theorem5.1. Here, we work with &y(f, f)=¢&(f. f)=
{{I-K>f f> and the symmetric edge-set associated with QO(x, y)=
UK(x, p) n(x) + K(y, x) n( ).

Under the assumption of Egs. (5.1) and (5.2), the quantity M in
Theorem 5.2 can be taken as 4y¢ with R=7y. Now, the Nash inequality in
Theorem 5.2 together with Theorem 3.3 give the decay bound

1H > o < e(dC/la)™

for te[0, ay®] with C=(1+ 1/d)*(1 + d)** A¥**a.
For t=ay’+s=%"1,+1,, use of Lemma 2.3 along with A>1/(ay?)
gives

I(HY/m) =1, < e3(1 +d)A)?(d/4)" exp <_ a;g)

which yields the desired result. More precisely, we proved

Theorem 5.3. Let K, = be a Markov chain on a finite set X. Assume
that (X, n) has moderate growth in Eq. (5.2) and satisfies a local Poincaré
inequality in Eq. (5.3). Then, the continuous time semigroup at Eq. (2.6)
satisfies, for all >0,

I(HS /) — 1|, < aye =)

for all t>ay*+ s with s> 0. Here, a, = (e*(1 +d)A)"?(d/4)".

For the proof of the lower bound of Theorem 5.1 for reversible chains,
we refer the reader to the arguments developed in Refs. 11 and 12. These
arguments are elementary and can easily be adapted to the present setting.

We now describe discrete time results that are the analogs of
Theorem 5.1.

Theorem 5.4. Let K, # be a Markov chain on a finite set X. Assume
that (K, n) has moderate growth in Eq. (5.1) and satisfies a local Poincaré
inequality Eq. (5.2). Assume further that inf, K(x, x) =¢>0. Then,

(K /m) — 1|, <a,e™/")  for n=(2) 'ay’+m+1
with m >0 and a, = (e(1 +d)A)"*(2 + d)*".

Proof. Use Theorem 5.2, the comparison in Eq. (2.11) between & and
&, , Theorem 3.1 and Lemma 1.1. In fact, we used the form &, instead of
&, as in Remark 3.1 following Theorem 3.1. O
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Theorem 5.5. Let K, 7 be a reversible Markov chain on a finite set X.
Assume that (K, =) has moderate groth (5.1) and satisfies a local Poincaré
inequality in Eq.(5.2). Assume further that the least eigenvalue £, _,
satisfies By, _, > —1+ 1/ay. Then

||(Kf\’_/7z)—1||2<a,e_'"/‘"’l’ for n=2ay’+m+1

with m>0 and a,=(2e(1+d)A4)"*(2+d)¥*. Moreover, there exists
a,, a; >0 such that, for

02 — 2
aye= ) S sup | KL — vy < aye
X

Proof. For the upper bound, use Theorem 5.2, Corollary 3.1, and
Lemma 1.1. For the lower bound, adapt the arguments given in Refs. 11
and 12.

Theorem 5.6. Let K, n be a Markov chain on a finite set X. Let <7,
be the set of edge (x, y) such that Q.(x,y)=>_K(z, x) K(z, y) n(z) > 0.
Assume that (X, &/, n) has moderate growth as in Eq.(5.5) and that
(s, , , &,) satisfies a local Poincaré inequality as in Eq. (5.6). Then

KL~ 1y <are™™ o for nmap+m+1

with m>0 and a, = (e(1 +d)A('*(4(2 + d))".
Proof. Use Theorem 5.2, Theorem 3.1, and Lemma 1.1.

We close this section by showing how these results apply to the non-
reversible chain in Eq. (2.10) of Example 2f. Recall that K is the nearest
neighbor random walk on a » point path with an extra directed edge from
I to n. By Lemma 2.4, this chain has stationary distribution = given by

n(i) = (2i)/n? for 1<igsn—1, n(n)=1/n (5.12)

Lemma 5.5. The n point path with the probability measure z at
(5.12) has 4-2-moderate growth.

Proof. Consider first V{1, r). We have

rEl2i r+1)(r+2) r+1\?
v, r)—Z— n? /4<n—1>

Now, the diameter of the » point path is n—1, so this is just what is
needed. Further, V(i,r)= V(1,r) for all i=1,.., n and all r.
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Lemma 5.6. The kernel Q(x, y)=K(x, y)n(x) associated with the
chain in Eq.(2.10) is compatible with the graph structure of the n point
path and the corresponding Dirichlet form &(f; f)=<{(I—K}f, ) satisfies
the local Poincaré inequality

If = fill.<24r%8(f, )

Proof. First consider the edge (i,i+1). Then Q(i, i+ 1)=i/n* for
1<ig<n—1. We must bound, for all i, r,

2 . 7)) m(k)
- k— | B
(i, i+1) |k—j|§r.j$i =l V(1)

kzi+l

nli,r)=

We may bound |k — j| by r. Consider two cases: i <2r, i = 2r.

Case 1. i<?2r. Then, for j<i,

')

I+1) -
2n? /an

1

Using this, we get

. 16 L 16ili+ 1)y f+r+ D)i+r) i(i+1)
<— —_ _
}?(z’r)\ir .g‘i Je= ir 2 < 2 2 >
i+]£;$i+r
i+ 1
=4——It (2ir+r+r?)<24r?

Case 2. i>=2r. Then, for j<i,
ior 3((1’—1‘)2 (i—2r)2> _4ir+5r7

2
V(ja")>V(i—r,r)>—, Z [2 5 5
B i } n

Using this, we obtain

8r

<
M) S )

Y kK
'+l£§j< ir
r . )
=m([(2z+r)(r+ DIL@r+D)i+r(r+17])

r 1 o -
=37 1o A nner < 1ar?

The edges (i, i — 1) can be treated similarly. Lemma 5.6 follows.
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The two last lemmas show that Theorem S.1 applies to the present
chain and shows that the continuous time chain is close to equilibrium
after a time of order n?

It is interesting to see what has to be done to reach the same conclu-
sion for the discrete time chain. In Example 2f, we computed the kernel
P=K*K. The natural graph corresponding to this kernel is a different n
point path: starting from 2 it goes to 4,6,..,n—~1, 1, and then 3, .., n. The
stationary distribution is given (of course) by Eq.(5.12). Working as
before, one can argue moderate groth and a local Poincaré inequality.
Thus, Theorem 5.11 applies. It shows that order n* steps are sufficient to
reach stationary in discrete time as well.

6. CONVEX SETS IN TWO-DIMENSIONS

Let C be a connected set of lattice points inside a compact convex set
S < R2 Let U be the uniform distribution, and let K be the Markov kernel
defined at Eq. (1.1). Theorem 1.1, stated in the introduction, asserts that
order y. steps are necessary and suffice for K" to reach approximate
equilibrium 1n total variation. Here, y, stands for the maximum of the
Euclidean distance between two points of C. We shall see shortly that this
Euclidean diameter is comparable with the diameter y of C for the graph
distance induced by Z>. This section proves Theorem 1.1 as a corollary of
Theorem 5.5 by showing that the Markov chain in Eq. (1.1) has moderate
growth with d=2 for a constant 4 independent of the convex set Sc R>
and satisfies a local Poincaré inequality with a constant a independent of
S. From now on, we fix an orthonormal basis (e,, e,) of R? and identify
Z* with {n,e, +n,e,: n,,n,eZ}.

Lemma 6.1. Let C=.S5nZ> be a set of lattice points inside a convex
set SR> Assume that the graph induced by Z2 on C is connected. For
x# yeC, let D(x, y) be the straight line passing through x and y. Then, for
any x, y e C, there exists a graph geodesic path y, € Z? such that

1. The path y_, stays in C.

2. Each edge of y, , belongs to a unit square that intersects D(x, y).

It follows that

Yeg)’g\/i}’e

where y is the graph diameter of C and y, is the euclidean diameter of the
convex hull of C in R% Moreover, the graph distance between two points
in C is the same as the graph distance between these points in Z7



502 Diaconis and Saloff-Coste

Proof. Start at x=x, and construct x,,..,x,=y inductively as
follows. Let v denote a unit vector for D(x, y), pointing from x to y.
Without loss of generality, we can assume that v-¢,>0 and v.e,>0.
Suppose that x, has been constructed such that x,=wx, x,,.., x; is the
beginning of a geodesic path from x to y staying in C, and that each of the
edges (x;, x;41), j=0,.., i —1, belongs to some unit square that intersects
D(x, y). Look at w,=x;+e,, w,=x;+e,. Consider two cases:

1. If w,,w, are on the same side of D(x, y), one of the halflines
[x;, e,[, [x; e[ intersects D(x, y) between x and y, say [x;, e,[.
Then, by convexity, w, is in C and we set x,, =w,. It is easy to
check that (x;, x;,,) belongs to a squate intersecting D(x, y).

2. If w,,w, are separated by D(x, y), let W be the straight line
defined by w,,w,. This line cuts D(x, y) between w, and w,.
Moreover, we know that there is a lattice path ¢ in C that goes
from x to y. This path must intersect W somwhere, and it can
not be in the segment Jw,, w,[. Thus, we have two points
tnWé¢Iw,w,[ and D(x,y)n We[w,,w,] that are in S. By
convexity, it follows that one of the points w, or w, belongs to C.
If only one of them belongs to C pick that one to be x; . If both
belong to C, pick the one closest to y in Euclidean distance.

In any case, we have succeeded in constructing x,,, with the required
properties. Observe that each step decreases the Euclidean distance from y
by at least a fixed amount. It is thus clear that this process ends and
produces a geodesic path from x to y.

Remark 6.1. The result given by Lemma 6.1 (in dimension 2) is
simply wrong in higher dimensions. Consider, in Z>={n e, + n,e, +nse;:
ny, ny, nyeZ}, the set

C={(n0,0:0<n<N}U{(0,1,0)} U{(n1,1):0<n<N}

and let S be the convex hull of C. The Euclidean distance between (N, 0, 0)
and (N, 1,1) is ﬁ whereas the graph distance in C between these two
points is 2(N + 1). Using this type of construction, it is possible to produce
aset C=7>nS with S a convex set in R? such that C is connected with
graph-diameter y and for which equilibrium is not reached after order y>
steps (e.g., two 2-dimensional squares of side a attached by a path of length
b with a and b arbitrary).

We now want to describe some properties of the number of lattice
points in C that are at (lattice) distance less than or equal to » from a fixed
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point x € C. Let N(r) denote the number of lattice points that are at dis-
tance less than or equal to r from the origin in Z* (here we are using the
graph distance d in Z*). We have

N(r)=1+2r+2r?

Now, in C, equipped with the lattice graph structure, consider the ball
B{(x, r) of radius r around x. By Lemma 6.1, we have

B(x,r)={zeZ*d(x,z)<r} nC

Let N(x, r) =|B(x, r)| be the number of points in B(x, r).

Proposition 6.1. Let C=S5n Z? be a set of lattice points inside a con-
vex set S < R? and assume that the graph induced by Z2 on C is connected.
Then we have

N(x,r) <31 N(r)

v ) VO<s<r, <
xeC 0<s<r N(x.s) NG

Specializing to r=y, it follows that the Markov chain K defined at
Eq. (1.1) has (4, 2)-moderate groth for some universal constant 4.

Proof. Forr=0, let N'(x, r) be the number of points in C at distance
exactly r from x and let N'(r) be the number of points in Z> at distance
r from (0, 0) (ie, N'(0)=1, N'(r)=4r if r 2 1). The points of C at distance
r from x lie on the boundary of a Euclidean square (see Fig. 5). Call the
boundary of this square &(x, r).

Let £(x, r) be the length of the part of (x, r) that is inside the convex
set S and let £(r)=4./2r be the total length of d(x, r). An elementary
argument involving dilation and convexity—as in Fig. 6—shows that

(6.1)

Since N'(r)=£(r)/\/2 and
N'(x, ") <4+L(x, /2, Ux 1)\ /2<4+ N'(x, 1)
we deduce from Eq. (6.1) that

N'(x,r) <N’(x, s)+8
N'(r) = N'(s)

VO<s<r,
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6 (£.1)

th

Fig. 5. The points of C at distance r from x lie on the boundary of a Euclidean square.

It follows that

N'(x,r) < N'(x, s)

VO<s<r, <
SSETN) N'(s)

(6.2)

since N'(x,r)=1 implies N'(x,s)=1 forall 0<s<r.
Now, given 0 < s <r, write

N(xsr)=ng,(x’t)_ ;+1N'(X,[)
N&s) ZeNn D SsN(x 1)
—14 T N'(D[N'(x, t)/N'(1)]

2o N'(OIN'(x, )/N'(1)]

<1 [N G YN[ N(0)]
ST IN(x, )N ()L N'(1)]
N SN
\1 81 s+ 1 < 0
SIS <SS vo

N(r)

<8l
8 N(s)

Here, we have used Eq. (6.2) to obtain the first inequality. This ends the
proof of Proposition 6.1. O

Proposition 6.2. Let C=Sn Z? be a set of lattice points inside a con-
vex set S < R? and assume that the graph induced by Z2 on C is connected.
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th

I T1

Fig. 6. An example of an elementary argument involving dilation and convexity.

Then the Markov chain defined at Eq. (1.1) satisfies the local Poincaré
inequality

Vr=0, Y, |f=fl3<ar?8(f, f)

for some universal constant a.

Proof. We use Lemma 5.1 with the paths y, , constructed in
Lemma 6.1. Here, n = U=1/|C|, Q(e)=1/4 |C| for any edge e, and

Iy\' \'l }
ry=max {8 —= 6.3
) =m; { 2., TBGc ] 63
dix, yy<r

Fix an edge e, and let x, y be such that eey, , and d(x, y) <r. Without loss
of generality, we can further assume that d(x,e_)=>=d(y,e_) (if not,
exchange the roles of x and y). Fix x and count how many y can qualify.
Since e€y, ,, the construction of y, , implies that the straight line D(x, y)

is at Euclidean distance at most \/E from e_. This forces y to be in a
Euclidean rectangle of length at most r/2 and width at most 4\/5. Thus
the number of y that qualify for a given x is bounded by 8 ﬁ r. See Fig. 7.
It follows that the number of pairs (x, y) such that d(x, y)<r and ey, ,
1s bounded by

16 /2 rmax{N(e_,r), N(e,,r} (6.4)
Now, for any x, ze C with d(x, z) <r, Proposition 6.1 implies

N(z, r)<SN(x,2r)<a,N(x,r)
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Y A
Y
- .‘ N‘""\
e \ 2 TP
/7

NN e

e ’/ ) M /,

- /,//‘ \ /' J’ /,
A° >

Fig. 7. The number of pairs (x, y) such that d(x, y)<r and eey, , is bounded by 16 \/5_ r
max{N(e_,r), Nle,,r)}.

for some universal constant «,. Using this and Eq. (6.4) in Eq. (6.3) yields
a universal constant a such that #n(r)<ar?, and this is the desired
inequality.

In order to use the results of Section 5, we will have to check the
condition fjq_,;=—1+ 1/(ay?) for the least eigenvalue of the chain (cf.
Theorem 5.5).

For the chain in Eq. (1.1) we are dealing with, Proposition 2, p. 40, of
Ref. 16 yields

1
ay®

Bz -1+

The details are left to the reader (hint: use the loops at the boundary).
Putting all these ingredients together, we get

Theorem 6.1. Let C= .S Z* be a set of lattice points inside a convex
set S<R? and assume that the graph induced by Z2 on C is connected.
Then the Markov chain defined at Eq. (1.1) satisfies

(K2 U)— 1], <a,e " forall nz(l+m)y>, m>0
and

ase " <sup [|K%— Ul ¢y <a,e” 4" forall n=[my*], m>0
X
Here, the a/s are positive universal constants.

7. INHOMOGENEOUS CHAINS

Consider a sequence of Markov chains K; on the same give finite state
space X having a common stationary distribution #. Form the product

P11=K1K2"'Kn (71)
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There is very little theory to help understand the convergence of P, to =
given rates of convergence for the K’s. The following result shows that, if
the K, have comparable second eigenvalues and satisfy comparable Nash
inequalities, then, the product with variable factors P, converges at least as
rapidly as the power of a single factor.

Theorem 7.1. Let K;, be a family of irreducible aperiodié Markov
kernels on a finite state space X with common stationary distribution 7.
With notation as an Theorem 3.1, if the Nash inequalities

132 < (&l f) 4y LB 111

hold for some constants C, D>0, N>1 and all i=1, 2,.., then, P, defined
at Eq. (7.1) satisfies

IPull>~ .. <[4CB/(n+1)]?  for 0<n<N

with B=B(D, N)=(1+1/N)(1+[4D7). If, moreover, u,(l)<u for all
i=1,2,.., then,

2P =7y <SPy /m)—1],<e™?

for
n=N+ ﬁ [ D log(4C(1 +T4D7T)/N) + 8]

Proof. Observe first that ||P,— x|, ,<]17_, &;(1). This follows, as
in Lemma 2.1, from the identity P,—n=[];_,(K;—=). The Nash

inequalities imply the decay bound by using Lemma 3.1 and slight modifi-
cations of the argument for Theorem 3.1. We omit further details. O

Example 7a. Let p be an odd number. Let a;, i=1,2,., be a
sequence of integers, all relatively prime to p. Define random walks on
Z, by

P

1/2 if y=xta
Ki(x,y)= .
(% ) {0 otherwise
These are symmetric Markov kernels with uniform stationary distributions.
For each i, (1) =cos(2n/p) by simple Fourier analysis. Recall that &, , =
{(I—-K?)f, [ and observe that K7 is supported by {id, +2a,}. Since 2a, is
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also relatively prime to p, {id, 2a;, —2a;} generates Z,. Using Lemma 5.1,
it can be checked that

If = fN2<4r°6, (f, /)

Since Z, has moderate growth (with d=1) for any +2a, as generators,
Theorem 5.3 implies that each K satisfies the same Nash inequality. Now,
Theorem 7.1 shows that, for any choice of the a;,, P,=K,K, ... K, is close
to uniform if n/p? is large.

In this example, special choices of a; can drastically change the rate of
convergence. If @;=2"""', 1<i< 400, we will show that K, ... K,, is close
to uniform if n/log p is large. To see this, consider the random integer
go+€,2+...+¢2/ with ¢, independent random variables taking values
0 or 1 with probability 1/2. This has a uniform distribution on
{0, 1,.., 27*! —1}. It is thus close to uniform, taken mod p, provided 2//p
is large. The convolution K K, ... K; has this same distribution up to affine
change of variables. It follows that | P, — x|y is small for n/log p large.

Remark 7.1. 1. Many variations on this example are possible. The
group Z, can be replaced by any other finite p-group having moderate
growth. Examples of such groups are given in Ref 11. The reversible
Markov chains K; can be replaced by the similar but nonreversible chains
supported on {id, a;} instead of {a,, —a,}.

2. In the other direction, there are two random walks K, K, on the
symmetric group S, where K7 is exactly uniform but (K, K,)" is slow to
converge. See Ref. 7, Section 6.

3. We do not know how to get similar bounds for such combinations
if the rate for each individual has been established by other means (e.g.,
coupling).
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