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Abstract For any finitely generated group G, let n �→ �G(n) be the function that describes
the rough asymptotic behavior of the probability of return to the identity element at time 2n of
a symmetric simple random walk on G (this is an invariant of quasi-isometry). We determine
this function when G is the free solvable group Sd,r of derived length d on r generators and
some related groups.

Mathematics Subject Classification 20F69 · 60J10

1 Introduction

1.1 The random walk group invariant �G

Let G be a finitely generated group. Given a probability measure μ on G, the random
walk driven by μ (started at the identity element e of G) is the G-valued random process
Xn = ξ1 . . . ξn where (ξi )

∞
1 is a sequence of independent identically distributed G-valued

random variables with law μ. If u ∗v(g) =∑h u(h)v(h−1g) denotes the convolution of two
functions u and v on G then the probability that Xn = g is given by Pμe (Xn = g) = μ(n)(g)
where μ(n) is the n-fold convolution of μ.

Given a symmetric set of generators S, the word-length |g| of g ∈ G is the minimal
length of a word representing g in the elements of S. The associated volume growth function,
r �→ VG,S(r), counts the number of elements of G with |g| ≤ r . The word-length induces
a left invariant metric on G which is also the graph metric on the Cayley graph (G, S). A
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812 L. Saloff-Coste, T. Zheng

quasi-isometry between two Cayley graphs (Gi , Si ), i = 1, 2, say, from G1 to G2, is a map
q : G1 → G2 such that

C−1d2(q(x), q(y)) ≤ d1(x, y) ≤ C(1+ d2(q(x), q(y)))

and supg,∈G2
{d2(g, q(G1)) ≤ C for some finite positive constant C . This induces an equiv-

alence relation on Cayley graphs. In particular, (G, S1), (G, S2) are quasi-isometric for any
choice of generating sets S1, S2. See, e.g., [5] for more details.

Given two monotone functions φ,ψ , write φ � ψ if there are constants ci ∈ (0,∞),
1 ≤ i ≤ 4, such that c1ψ(c2t) ≤ φ(t) ≤ c3ψ(c4t) (using integer values ifφ,ψ are defined on
N). We denote by � and � the associated inequalities. If S1, S2 are two symmetric generating
sets for G, then VG,S1 � VG,S2 . We use the notation VG to denote either the �-equivalence
class of VG,S or any one of its representatives. The volume growth function VG is one of the
simplest quasi-isometry invariant of a group G.

By [16, Theorem 1.4], if μi , i = 1, 2, are symmetric (i.e., μi (g) = μi (g−1) for all
g ∈ G) finitely supported probability measures with generating support, then the functions
n �→ φi (n) = μ

(2n)
i (e) satisfy φ1 � φ2. By definition, we denote by �G any function that

belongs to the�-equivalence class of φ1 � φ2. In fact,�G is an invariant of quasi-isometry.
Further, if μ is a symmetric probability measure with generating support and finite second
moment

∑
G |g|2μ(g) <∞ then μ(2n)(e) � �G(n). See [16].

1.2 Free solvable groups

This work is concerned with finitely generated solvable groups. Recall that G(i), the derived
series of G, is defined inductively by G(0) = G, G(i) = [G(i−1),G(i−1)]. A group is solvable
if G(i) = {e} for some i and the smallest such i is the derived length of G. A group G is
polycyclic if it admits a normal descending series G = N0 ⊃ N1 ⊃ · · · ⊃ Nk = {e} such
that each of the quotient Ni/Ni+1 is cyclic. The lower central series γ j (G), j ≥ 1, of a group
G is obtained by setting γ1(G) = G and γ j+1 = [G, γ j (G)]. A group G is nilpotent of
nilpotent class c if γc(G) �= {e} and γc+1(G) = {e}. Finitely generated nilpotent groups are
polycyclic and polycyclic groups are solvable.

Recall the following well-known facts. If G is a finitely generated solvable group then
either G has polynomial volume growth VG(n) � nD for some D = 0, 1, 2, . . . , or G has
exponential volume growth VG(n) � exp(n). See, e.g., [5] and the references therein. If
VG(n) � nD then G is virtually nilpotent and �G(n) � n−D/2. If G is polycyclic with
exponential volume growth then�G(n) � exp(−n1/3). See [1,12,22–24] and the references
given there. However, among solvable groups of exponential volume growth, many other
behaviors than those described above are known to occur. See, e.g., [8,15,20]. Our main
result is the following theorem. Set

log[1] n = log(1+ n) and log[i](n) = log(1+ log[i−1] n).

Theorem 1.1 Let Sd,r be the free solvable group of derived length d on r generators, that

is, Sd,r = Fr/F
(d)
r where Fr is the free group on r generators, r ≥ 2.

• If d = 2 (the free metabelian case) then

�S2,r (n) � exp
(
−nr/(r+2)(log n)2/(r+2)

)
.
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Random walks on free solvable groups 813

• If d > 2 then

�Sd,r (n) � exp

⎛

⎝−n

(
log[d−1] n
log[d−2] n

)2/r
⎞

⎠ .

In the case d = 2, this result is known and due to Anna Erschler who computed the Følner
function of S2,r in an unpublished work based on the ideas developed in [8]. We give a
different proof.

Note that if G is r -generated and solvable of length at most d then there exists c, k ∈ (0,∞)
such that �G(n) ≥ c�Sd,r (kn).

1.3 On the groups of the form Fr/[N , N ]

The first statement in Theorem 1.1 can be generalized as follows. Let N be a normal subgroup
of Fr and consider the tower of r generated groups �d(N ) defined by �d(N ) = Fr/N (d−1).
Given information about �1(N ) = Fr/N , more precisely, about the pair (Fr , N ), one may
hope to determine ��d (N ) (in Theorem 1.1, N = [Fr ,Fr ] and �1(N ) = Z

r ). Here, it is
important to note that the groups �d(N ), d ≥ 2, depend not only of the group �1(N ) but also
of the particular presentation Fr/N = �1(N ) of that group that is chosen. See Example 2.3.
The following theorem captures some of the results we obtain in this direction when d = 2.
Further examples are given in Sect. 5.3.

Theorem 1.2 Let N � Fr , �1(N ) = Fr/N and �2(N ) = Fr/[N , N ] as above.

• Assume that r ≥ 2 and that �1(N ) be infinite nilpotent of volume growth of degree D.
Then we have

��2(N )(n) � exp
(
−nD/(D+2)(log n)2/(D+2)

)
.

• Assume that

– either �1(N ) = Zq � Z with presentation 〈a, t |aq , [a, t−natn], n ∈ Z〉,
– or �1(N ) = BS(1, q) with presentation 〈a, b|a−1ba = bq〉.

Then we have

��2(N )(n) � exp

(

− n

(log n)2

)

.

In Sect. 5, Theorem 5.4, we treat polycyclic groups of exponential volume growth equipped
with their standard polycyclic presentation.

Obtaining results for d ≥ 3 is not easy. We treat a few examples beyond the case N =
[Fr ,Fr ] of Theorem 1.1. These examples include the case when N = γc(Fr ). See Theorem
6.13.

Remark 1.3 Fix the presentation Fr/N = �1(N ). Let μ be the probability measure driving
the lazy simple random walk (ξn)

∞
0 on Fr so that

Pμ
e (ξn = g) = μ(n)(g).

Let X = (Xn)
∞
0 and Y = (Yn)

∞
0 be the projections on �2(N ) and �1(N ), respectively so

that

��2(N )(n) � Pμ
e (Xn = e) and ��1(N )(n) � Pμ

e (Yn = ē)
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814 L. Saloff-Coste, T. Zheng

where e (resp. ē) is the identity element in �2(N ) (resp. �1(N ).) By the flow interpretation
of the group �2(N ) developed in [6,14] and reviewed in Sect. 2.2 below,

Pμ
e (Xn = e) = Pμ

e (Y ∈ Bn)

where Bn is the event that, at time n, every oriented edge of the marked Cayley graph �1(N )
has been traversed an equal number of times in both directions. For instance, if �1(N ) = Z

r ,
the estimate��2(N )(n) � exp(−nr/(2+r)(log n)2/(2+r)) also gives the order of magnitude of
the probability that a simple random walk on Z

r returns to its starting point at time n having
crossed each edge an equal number of time in both direction.

1.4 Other random walk invariants

Let |g| be the word-length of G with respect to some fixed finite symmetric generating set
and ρα(g) = (1 + |g|)α . In [3], for any finitely generated group G and real α ∈ (0, 2), the
non-increasing function

�̃G,ρα : N � n → �̃G,ρα (n) ∈ (0,∞)
is defined in such a way that it provides the best possible lower bound

∃ c, k ∈ (0,∞), ∀ n, μ(2n)(e) ≥ c�̃G,ρα (kn),

valid for every symmetric probability measure μ on G satisfying the weak-ρα-moment con-
dition

W (ρα, μ) = sup
s>0
{sμ({g : ρα(g) > s})} <∞.

It is well known and easy to see (using Fourier transform techniques) that

�̃Zr ,ρα (n) � n−r/α.

It is proved in [3] that �̃G,ρα (n) � n−D/α if G has polynomial volume growth of degree D
and that �̃G,ρα (n) � exp

(−n−1/(1+α)) if G is polycyclic of exponential volume growth. We
prove the following result.

Theorem 1.4 For any α ∈ (0, 2),

�̃S2,r ,ρα (n) � exp
(
−nr/(r+α)(log n)α/(r+α)

)
.

The lower bound in this theorem follows from Theorem 1.1 and [3]. Indeed, for d > 2,
Theorem 1.1 and [3, Theorem 3.3] also give

�̃Sd,r ,ρα (n) ≥ c exp

⎛

⎝−Cn

(
log[d−1] n
log[d−2] n

)α/r
⎞

⎠ .

The upper bound in Theorem 1.4 is obtained by studying random walks driven by measures
that are not finitely supported. The fact that the techniques we develop below can be applied
successfully in certain cases of this type is worth noting. Proving an upper bound matching
the lower bound given above for �̃Sd,r ,ρα with d > 2 is an open problem.
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Random walks on free solvable groups 815

1.5 Wreath products and Magnus embedding

Let H, K be countable groups. Recall that the wreath product K � H (with base H ) is the
semidirect product of the algebraic direct sum K H =∑h∈H Kh of H -indexed copies of K
by H where H acts on K H by translation of the indices. More precisely, elements of K � H
are pair ( f, h) ∈ K H × H and

( f, h)( f ′, h′) = ( f τh f ′, hh′)

where τh fx = fh−1x if f = ( fx )x∈H ∈ K H (recall that, by definition, only finitely many fx

are not the identity element eK in K ). In the context of random walk theory, the group H is
called the base-group and the group K the lamp-group of K � H (an element ( f, h) ∈ K � H
can understood as a finite lamp configuration f over H together with the position h of the
“lamplighter” on the base H ). Given probability measures η on K and μ on H , the switch-
walk-switch random walk on K � H is driven by the measure η ∗μ ∗ η and has the following
interpretation. At each step, the lamplighter switches the lamp at its current position using
an η-move in K , then the lamplighter makes a μ-move in H according to μ and, finally, the
lamplighter switches the lamp at its final position using an η-move in K . Each of these steps
are performed independently of each others. See, e.g., [15,19] for more details. When we
write η ∗ μ ∗ η in K � H , we identify η with the probability measure on K � H with is equal
to η on the copy of K above the identity of H and vanishes everywhere else, and we identify
μ with the a probability measure on K � H supported on the obvious copy of H in K � H .

Thanks to [4,8,15,19], quite a lot is known about the random walk invariant�K �H . Further,
the results stated in Theorems 1.1–1.2 can in fact be rephrased as stating that

��2(N ) � �Za ��1(N )

for some/any integer a ≥ 1. It is relevant to note here that for � of polynomial volume
growth of degree D > 0 or � infinite polycyclic (and in many other cases as well), we
have �Za �� � �Zb �� for any integers a, b ≥ 1. Indeed, the proofs of Theorems 1.1–1.2–1.4
make use of the Magnus embedding which provides us with an injective homomorphism
ψ̄ : �2(N ) ↪→ Z

r � �1(N ). This embedding is use to prove a lower bound of the type

��2(N )(n) ≥ c�Zr ��1(N )(kn)

and an upper bound that can be stated as

��2(N )(Cn) ≤ C�
Z��(n)

where � < �1(N ) is a subgroup which has a similar structure as �1(N ). For instance, in
the easiest cases including when �1(N ) is nilpotent, � is a finite index subgroup of �1(N ).
The fact that the wreath product is taken with Z

r in the lower bound and with Z in the upper
bound is not a typo. It reflects the nature of the arguments used for the proof. Hence, the fact
that the lower and upper bounds that are produced by our arguments match up depends on
the property that, under proper hypotheses on � < �1(N ) and �1(N ),

�Za ��1(N ) � �Zb ��
for any pair of positive integers a, b.

1.6 A short guide

Section 2 of the paper is devoted to the algebraic structure of the group �2(N ) = Fr/[N , N ].
It describes the Magnus embedding as well as the interpretation of �2(N ) in terms of flows
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816 L. Saloff-Coste, T. Zheng

on �1(N ). See [6,14,25]. The Magnus embedding and the flow representation play key parts
in the proofs of our main results.

Section 3 describes two methods to obtain lower bounds on the probability of return of
certain random walks on �2(N ). The first method is based on a simple comparison argument
and the notion of Følner couples introduced in [4] and already used in [8]. This method
works for symmetric random walks driven by a finitely supported measure. The second
method allows us to treat some measures that are not finitely supported, something that is of
interest in the spirit of Theorem 1.4.

Section 4 focuses on upper bounds for the probability of return. This section also makes
use of the Magnus embedding, but in a somewhat more subtle way. We introduce the notion
of exclusive pair. These pairs are made of a subgroup � of �2(N ) and an element ρ in the
free group Fr that projects to a cycle on �1(N ) with the property that the traces of � and ρ

on �1(N ) have, in a sense, minimal interaction. See Definition 4.3. Every upper bound we
obtain is proved using this notion.

Section 5 presents a variety of applications of the results obtained in Sects. 3 and 4. In
particular, the statement regarding �S2,r as well as Theorems 1.2–1.4 and assorted results
are proved in Sect. 5.

Section 6 is devoted to the result concerning Sd,r , d ≥ 3. Both the lower bound and the
upper bound methods are re-examined to allow iteration of the procedure.

Section 7 presents assorted results regarding the L2-isoperimetric profile (or Faber-Krahn
function) and the isoperimetric profile (equivalently, Følner function). In particular, the
isoperimetric profile of the free solvable group Sd,r is computed (up to �-equivalence).

Throughout this work, we will have to distinguish between convolutions in differ-
ent groups. We will use ∗ to denote either convolution on a generic group G (when
no confusion can possibly arise) or, more specifically, convolution on �2(N ). When
∗ is used to denote convolution on �2(N ), we use e∗ to denote the identity element
in �2(N ). We will use 
 to denote convolution on various wreath products such as
Z

r � �1(N ). When this notation is used, e
 will denote the identity element in the cor-
responding group. When necessary, we will decorate 
 with a subscript to distinguish
between different wreath products. So, if μ is a probability measure on �2(N ) and φ a
probability measure on Z

r � �1(N ), we will write μ∗n(e∗) = φ
n(e
) to indicate that
the n-fold convolution of μ on �2(N ) evaluated at the identity element of �2(N ) is
equal to the n-fold convolution of φ on Z � �1(N ) evaluated at the identity element of
Z � �1(N ).

2 �2(N) and the Magnus embedding

This work is concerned with random walks on the groups ��(N ) = Fr/N (�−1) where Fr is
the free group on r generators and N is a normal subgroup of Fr . In fact, it is best to think
of ��(N ) as a marked group, that is, a group equipped with a generating tuple. In the case
of ��(N ), the generating r -tuple is always provided by the images of the free generators of
Fr . Ideally, one would like to obtain results based on hypotheses on the nature of �1(N )
viewed as an unmarked group. However, as pointed out in Remark 2.8 below, the unmarked
group �1(N ) is not enough to determine either �2(N ) or the random walk invariant��2(N ).
That is, in general, one needs information about the pair (Fr , N ) itself to obtain precise
information about ��2(N ). Note however that when �1(N ) is nilpotent with volume growth
of degree at least 2, Theorem 1.2 provides a result that does not require further information on
N .
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Random walks on free solvable groups 817

2.1 The Magnus embedding

In 1939, Magnus [13] introduced an embedding of �2(N ) = Fr/[N , N ] into a matrix group
with coefficients in a module over Z(�1(N )) = Z(Fr/N ). In particular, the Magnus embed-
ding is used to embed free solvable groups into certain wreath products.

Let Fr be the free group on the generators si , 1 ≤ i ≤ r . Let N be a normal subgroup of
Fr and let π = πN and π2 = π2,N be the canonical projections

π : Fr → Fr/N = �1(N ), π2 : Fr → Fr/[N , N ] = �2(N ).

We also let

π̄ : �2(N )→ �1(N )

the projection from �2(N ) onto �1(N ), whose kernel can be identified with N/[N , N ], has
the property that π = π̄ ◦ π2. Set

si = π2(si ), s̄i = π(si ) = π̄(si ).

When it is necessary to distinguish between the identity element in e ∈ �2(N ) and the
identity element in �1(N ), we write ē for the latter.

Let Z(Fr ) be the integral group ring of the free group Fr . By extension and with some
abuse of notation, let π denote also the ring homomorphism

π : Z(Fr)→ Z(Fr/N )

determined by π(si ) = s̄i , 1 ≤ i ≤ r .
Let � be the free left Z(Fr/N )-module of rank r with basis (λsi )

r
1 and set

M =
[

Fr/N �

0 1

]

which is a subgroup of the group of the 2× 2 upper-triangular matrices over �. The map

ψ(si ) =
[
π(si ) λsi

0 1

]

(2.1)

extends to a homomorphism ψ of Fr into M . We denote by a(u), u ∈ Fr , the (1, 2)-entry of
the matrix ψ(u), that is

ψ(u) =
[
π(u) a(u)

0 1

]

. (2.2)

Theorem 2.1 (Magnus [13]) The kernel of the homomorphism ψ : Fr → M defined as
above is

ker(ψ) = [N , N ].
Therefore ψ induces a monomorphism

ψ̄ : Fr/[N , N ] ↪→ M.

It follows that Fr/[N , N ] is isomorphic to the subgroup of M generated by

[
π(si ) λsi

0 1

]

, i = 1, . . . , r.
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Remark 2.2 For g ∈ Fr/[N , N ], we write

ψ̄(g) =
[
π̄(g) ā(g)

0 1

]

(2.3)

where ā(π2(u)) = a(u), u ∈ Fr .

Remark 2.3 The free left Z(Fr/N )-module � with basis {λsi }1≤i≤d is isomorphic to the
direct sum

∑
x∈Fr /N (Z

r )x . More precisely, if we regard the elements in
∑

x∈Fr /N (Z
r )x as

functions f = ( f1, . . . , fr ) : Fr/N → Z
r with finite support, the map

∑

x∈Fr /N

(Zr )x → � :

f �→
⎛

⎝
∑

x∈Fr /N

f1(x)x

⎞

⎠ λs1 + · · · +
⎛

⎝
∑

x∈F/N

fr (x)x

⎞

⎠ λsr

is a left Z(Fr/N )-module isomorphism. We will identity � with
∑

x∈Fr /N (Z
r )x . Using the

above interpretation, one can restate the Magnus embedding theorem as an injection from
Fr/[N , N ] into the wreath product Z

r � (Fr/N ).

The entry a(g) ∈ � under the Magnus embedding is given by Fox derivatives which we
briefly review. Let G be a group and Z(G) be its integral group ring. Let M be a left Z(G)-
module. An additive map d : Z(G)→ M is called a left derivation if for all x, y ∈ G,

d(xy) = xd(y)+ d(x).

As a consequence of the definition, we have d(e) = 0 and d(g−1) = −g−1d(g).
For the following two theorems of Fox, we refer the reader to the discussion in [14, Sect.

2.3] and the references given there.

Theorem 2.4 (Fox) Let Fr be the free group on r generators si , 1 ≤ i ≤ r . For each i , there
is a unique left derivation

∂si : Z(Fr )→ Z(Fr )

satisfying

∂si (s j ) =
{

1 if i = j
0 if i �= j.

Further, if N is a normal subgroup of Fr , then π(∂si u) = 0 in Z(Fr/N ) for all 1 ≤ i ≤ r if
and only if u ∈ [N , N ].

Example 2.1 For g = sε1
i1
. . . sεn

in
, ε j ∈ {±1},

∂si (g) =
n∑

j=1

sε1
i1
. . . s

ε j−1
i j−1

∂si (s
ε j
i j
)

=
∑

j :i j=i,ε j=1

sε1
i1
. . . s

ε j−1
i j−1

−
∑

j :i j=i,ε j=−1

sε1
i1
. . . s

ε j−1
i j−1

s
ε j
i j
.
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Theorem 2.5 (Fox) The Magnus embedding

ψ̄ : Fr/[N , N ] ↪→ M

is given by

ψ̄(g) =
[
π̄(g)

∑r
i=1 π(∂si g)λsi

0 1

]

(2.4)

where g ∈ Fr is any element such that π2(g) = g.

Example 2.2 In the special case that N = [Fr ,Fr ], we have Fr/N � Z
r and Z(Fr/N ) is

the integral group ring over the free abelian group Z
r . The integral group ring Z(Zr ) is quite

similar to the multivariate polynomial ring with integer coefficients, except that we allow
negative powers like Z−3

1 Z2 . . . Z−5
r . The monomials {Z x1

1 Z x2
2 . . . Z xr

r : x ∈ Z
r } are Z-linear

independent in Z(Zr ).

2.2 Interpretation in terms of flows

Following [6,14,25], one can also think of elements of �2(N ) = Fr/[N , N ] in terms of
flows on the (labeled) Cayley graph of �1(N ) = Fr/N . To be precise, Let s1, . . . , sk be the
generators of Fr and s̄1, . . . , s̄k their images in �1(N ). The Cayley graph of �1(N ) is the
marked graph with vertex set V = �1(N ) and marked edge set E ⊂ V × V × {s1, . . . , sk}
where (x, y, si ) ∈ E if and only if y = xs̄i in �1(N ). Note that each edge e = (x, y, si ) as
an origin o(e) = x , an end (or terminus) t (e) = y and a label or mark si .

Given a function f on the edge set E and a vertex v ∈ V , define the net flow f∗(v) of f at
v by

f∗(v) =
∑

o(e)=v
f (e)−

∑

t (e)=v
f (e).

A flow (or Z-flow) with source s and sink t is a function f : E → Z such that

∀ v ∈ V \{s, t}, f∗(v) = 0,

f∗(s) = 1, f∗(t) = −1.

If f∗(v) = 0 holds for all v ∈ V , we say that f is a circulation.
For each edge e = (x, y, si ), introduce its formal inverse (y, x, s−1

i ) and let E∗ be the
set of all edges and their formal inverses. A finite path on the Cayley graph of �1(N ) is a
finite sequence p = (e1, . . . , e�) of edges in E∗ so that the origin of ei+1 is the terminus of
ei . We call o(e1) (resp. t (e�)) the origin (resp. terminus) of the path p and denote it by o(p)
(resp. t (p)). Note that reading the labels along the edge of a path determines a word in the
generators of Fr and that, conversely, any finite word ω in the generators of Fr determines a
path pω starting at the identity element in �1(N ).

A (finite) path p determines a flow fp with source o(p) and sink t (p) by setting fp(e) to
be the algebraic number of time the edge e ∈ E is crossed positively or negatively along p.
Here, the edge e = (x, y, sα) ∈ E is crossed positively at the i-step along p if ei = (x, y, sα).
It is crossed negatively if ei = (y, x, s−1

α ). We note that fp has finite support and that either
o(p) = t (p) and fp is a circulation or o(p) �= t (p) and f∗p(o(p)) = 1, f∗p(t (p)) = −1.

Given a word ω = sε1
i1
. . . sεn

in
in the generators of Fr , let fω denote the flow function on the

Cayley graph of �1(N ) defined by the corresponding path starting at the identity element in
�1(N ). We note that it is obvious from the definition that fω = fω′ if ω′ is the reduced word
in Fr associated with ω.
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Theorem 2.6 ([14, Theorem 2.7]) Two elements u, v ∈ Fr project to the same element in
�2(N ) = Fr/[N , N ] if and only if they induce the same flow on �1(N ) = Fr/N . In other
words,

u ≡ v mod [N , N ] ⇐⇒ fu = fv.

This theorem shows that an element g ∈ �2(N ) corresponds to a unique flow fω on Fr/N ,
defined by the path pω associated with any word ω ∈ Fr such that ω projects to g in �2(N ).
For g ∈ �2(N ), fg := fω is well defined (i.e., is independent of the word ω projecting to g,
and we call fg the flow of g. Hence, in a certain sense, we can regard elements of �2(N ) as
flows on �1(N ). In fact, the flow fω is directly related to the description of the image of the
element g = ω mod [N , N ] under the Magnus embedding through the following geometric
interpretation of Fox derivatives.

Lemma 2.7 ([14, Lemma 2.6]) Let ω ∈ Fr , then for any g ∈ Fr/N and si , the value
of fω on the edge (g, gsi , si ), is equal to coefficient in front of g in the Fox derivative
π(∂siω) ∈ Z(F/N ), i.e.

π(∂siω) =
∑

g∈F/N

fω((g, gsi , si ))g. (2.5)

There is also a characterization of geodesics on �2(N ) in terms of flows (see [14, Theorem
2.11]) which is closely related to the description of geodesics on wreath products. See [18,
Theorem 2.6] where it is proved that the Magnus embedding is bi-Lipschitz with small
explicit universal distortion.

Remark 2.8 In [7], it is asserted that the group �2(N ) depends only of �1(N ) (in [7], �1(N )
is denoted by A and �2(N ) by CA). This assertion is correct only if one interprets �1(N ) as a
marked group, i.e., if information about π : Fr → �1(N ) is retained. Indeed,�2(N ) depends
in some essential ways of the choice of the presentation �1(N ) = Fr/N . We illustrate this
fact by two examples that are very good to keep in mind.

Example 2.3 Consider two presentations of Z, namely, Z = F1 and Z =〈a, b|b〉. In the first
presentation, the kernel N1 is trivial, therefore F1/[N1, N1] � Z. In the second presentation,
the kernel N2 is the normal closure of 〈b〉 in the free group F2 on generators a, b. Hence, N2

is generated by {ai ba−i , i ∈ Z}. We can then write down a presentation of F2/[N2, N2] in
the form

F2/[N2, N2] =
〈
a, b|[ai ba−i , a j ba− j ], i, j ∈ Z

〉
.

This is, actually, a presentation of the wreath product Z � Z. Therefore F2/N ′2 � Z � Z. We
encourage the reader to recognize the structure of both F1/[N1, N1] � Z and F2/[N2, N2] �
Z � Z using flows on the labeled Cayley graphs associated with F1/N1 and F2/N2. The Cayley
graph of F2/N2 is the usual line graph of Z decorated with an oriented loop at each vertex. In
the flow representation of an element of F2/[N2, N2], the algebraic number of times the flow
goes around each of these loops is recorded thereby creating the wreath product structure of
Z � Z.

Example 2.4 Consider the following two presentations of Z
2,

Z
2 = 〈a, b|[a, b]〉

Z
2 = 〈a, b, c|[a, b], c = ab〉 .
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Call N1 ⊂ F2 and N2 ⊂ F3 be the associated normal subgroups. We claim that F2/[N1, N1]
is a proper quotient of F3/[N2, N2]. Let θ : F3 → F2 be the homomorphism determined by
θ(a) = a, θ(b) = b, θ(c) = ab. Obviously, N2 = θ−1(N1), [N2, N2] ⊂ θ−1([N1, N1]),
and θ induces a surjective homomorphism θ ′ : F3/[N2, N2] → F2/[N1, N1]. The element
abc−1 is nontrivial in F3/[N2, N2], but θ ′(abc−1) = e. A Hopfian group is a group that
cannot be isomorphic to a proper quotient of itself. Finitely generated metabelian groups are
Hopfian. Hence F2/[N1, N1] is not isomorphic to F3/[N2, N2].

3 Return probability lower bounds

3.1 Measures supported by the powers of the generators

The group �2(N ) = Fr/[N , N ] comes equipped with the generators (si )
r
1 which are the

images of the generators (si )
r
1 of Fr . Accordingly, we consider a special class of symmetric

random walks defined as follows. Given probability measures pi , 1 ≤ i ≤ r on Z, we define
a probability measure μ on Fr by

∀ g ∈ Fr , μ(g) =
r∑

i=1

1

r

∑

m∈Z

pi (m)1{sm
i }(g). (3.1)

This probability measure induces push-forward measures μ̄ and μ on �1(N ) = Fr/N and
�2(N ) = Fr/[N , N ], namely,

{∀ ḡ ∈ �1(N ), μ̄(ḡ) = μ(π−1(ḡ))
∀ g ∈ �2(N ), μ(g) = μ(π−1

2 (g)).
(3.2)

In fact, we will mainly consider two cases. In the first case, each pi is the measure of the
lazy random walk on Z, that is pi (0) = 1/2, pi (±1) = 1/4. In this case, μ is the measure
of the lazy simple random walk on Fr , that is,

μ(e) = 1/2, μ(s±1
i ) = 1/4r. (3.3)

The second case can be viewed as a generalization of the first. Let a = (α1)
r
1 ∈ (0,∞]r be

a r -tuple of extended positive reals. For each i , consider the symmetric probability measure
pαi on Z with pαi (m) = ci (1+ |m|)−1−αi (if αi = ∞, set p∞(0) = 1/2, p∞(±1) = 1/4).
Let μa be the measure on Fr obtained by setting pi = pαi in (3.1). When a is such that
αi = ∞ for all i we recover (3.3). In particular, starting with (3.3), μ is given by

∀ g ∈ �2(N ), μ(g) = 1

2
1g(e)+ 1

4r

r∑

1

1si (g).

The formula for μ̄ is exactly similar. For any fixed a ∈ (0,∞]r , we let μa and μ̄a be the
push-forward of μa on �2(N ) and �1(N ), respectively.

3.2 Lower bound for simple random walk

In this section, we explain how, in the case of the lazy simple random walk measure μ on
�2(N ) associated with μ at (3.3), one can obtained lower bounds for the probability of return
μ(2n)(e) by using well-known arguments and the notion of Følner couples introduced in
[4].
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Definition 3.1 (See [4, Definition 4.7] and [8, Proposition 2]) Let G be a finitely generated
group equipped with a finite symmetric generating set T and the associated word distance d .
Let V be a positive increasing function on [1,∞)whose inverse is defined on [V(1),∞). We
say that a sequence of pairs of nonempty sets ((�k,�

′
k))
∞
1 is a a sequence of Følner couples

adapted to V if

1. �′k ⊂ �k , #�′k ≥ c0#�k , d(�′k,�
c
k) ≥ c0k.

2. vk = #�k ↗∞ and vk ≤ V(k).

Let ν be a symmetric finitely supported measure on G and λν(�) be the lowest Dirichlet
eigenvalue in � for the convolution by δe − ν, namely,

λν(�) = inf

{
1

2

∑

x,y

| f (xy)− f (x)|2ν(y) : supp( f ) ∈ �,
∑
| f |2 = 1

}

.

If (�k,�
′
k) is a pair satisfying the first condition in Definition 3.1 then plugging f = d(·,�c

k)

in the definition of of λν(�k) immediately gives λν(�k) ≤ C
k2 .

Given a function V as in Definition 3.1, let γ be defined implicitly by
∫ γ (t)

V(1)
([V−1(s)]2 ds

s
= t. (3.4)

This is the same as stating that γ is a solution of the differential equation

γ ′

γ
= 1

[V−1 ◦ γ ]2 , γ (0) = V(1). (3.5)

Following [8], we say that γ is δ-regular if γ ′(s)/γ (s) ≥ δγ ′(t)/γ (t) for all s, t with
0 < t < s < 2t .

With this notation, Erschler [8, Proposition 2] gives a modified version of [4, Theorem
4.7] which contains the following statement.

Proposition 3.2 If the group G admits a sequence of Følner couples adapted to the function
V as in Definition 3.1 and the function γ associated to V by (3.4) is δ-regular for some δ > 0
then there exist c,C ∈ (0,∞) such that

�G(n) ≥ c

γ (Cn)
.

A key aspect of this statement is that it allows for very fast growing V as long as one can
check that γ is δ-regular. Erschler [8] gives a variety of examples showing how this works
in practice but it seems worth explaining why the δ-regularity of γ is a relatively mild
assumption. Suppose first that V is regularly varying of positive finite index. Then the same
is true for V−1 and

∫ T
V(1) V−1(s)2 ds

s ∼ cV−1(T )2. In this case, it follows from (3.5) that
γ ′(s)/γ (s) � 1/s. If instead we assume that log V is of regular variation of positive index
(resp. rapid variation) then V−1 ◦ exp is of regular variation of positive index (resp. slow
variation) and we can show that

∫ T

V(1)
V−1(s)2

ds

s
� V−1(T )2 log T .

In this case, it follows again that γ is δ-regular. All the examples treated in [8] and in the
present paper fall in these categories.

The following proposition regarding wreath products is key.

123
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Proposition 3.3 (Proof of [8, Theorem 2]) Assume that the group G is infinite, finitely
generated, and admits a sequence of Følner couples adapted to the function V as in Definition
3.1. Set

�k = {( f, x) ∈ Z
r � G : x ∈ �k, supp( f ) ⊂ �k, | f |∞ ≤ k#�k},

�′k = {( f, x) ∈ Z
r � G : x ∈ �′k, supp( f ) ⊂ �k, | f |∞ ≤ k#�k − k}.

Set

W(v) := exp (CV(v) log V(v)) .
Then (�k,�

′
k) is a sequence of Følner couples on Z

r � G adapted to W (for an appropriate
choice of the constant C).

Proof By construction (and with an obvious choice of generators in Z
r �G based on a given

set of generators for G), the distance between �′k and �c
k in Z

r � G is greater or equal to the
minimum of k and the distance between �′k and �c

k in G. Also, we have

#�k = #�k(k#�k)
r#�k , #�′k = #�′k(k#�k − k)r#�k

so that

#�′k
#�k

≥ (1− (#�k)
−1)r#�k #�′k

#�k
≥ 1

er

#�′k
#�k

and

#�k = exp (log #�k + r#�k(log #�k + log k)) ≤ exp (CV(k) log V(k)) .
��

Proposition 3.4 (Computations) Let V be given. Define W and γ = γW by

W = exp(CV log V) and γ−1(t) =
∫ t

W(1)
[W−1(s)]2 ds

s
.

1. Assume that V(t) � t D. Then we have

γ (t) � exp
(

t D/(2+D)[log t]2/(2+D)
)
.

2. Assume that V(t) � exp(tα�(t)), α > 0, where �(t) is slowly varying with �(ta) � �(t)
for any fixed a > 0. Then γ satisfies

γ (t) �
(

t

(
�(log t)

log t

)2/α
)

.

3. Assume that V(t) � exp(�−1(t)) where �(t) is slowly varying with �(ta) � �(t) for any
fixed a > 0. Then γ satisfies

γ (t) � (t/[�(log t)]2) .
Note that if �−1(t) = exp ◦ · · · ◦ exp(t log t) with m exponentials then

�(t) � logm t

logm+1(t)
.
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Theorem 3.5 Let N be a normal subgroup of Fr . Assume that the group �1(N ) = Fr/N
admits a sequence of Følner couples adapted to the function V as in Definition 3.1. Let W
and γ = γW be related to V as in Proposition 3.4. Then we have

��2(N )(n) ≥
c

γ (Cn)
.

Proof By the Magnus embedding,�2(N ) is a subgroup of Z
r ��1(N ). By [16, Theorem 1.3],

it follows that��2(N ) ≥ �Zr ��1(N ). The conclusion then follows from Propositions 3.2–3.3.
��

Example 3.1 Assume�1(N ) has polynomial volume growth of degree D. Then��2(N )(n) ≥
exp

(−cnD/(2+D)[log n]2/(2+D)
)
.

Example 3.2 Assume �1(N ) is either polycyclic or equal to the Baumslag–Solitar group
BS(1, q) = 〈a, b|a−1ba = bq〉, or equal to the lamplighter group F � Z with F finite. Then
��2(N )(n) ≥ exp

(−cn/[log n]2) .
Example 3.3 Assume �1(N ) = F � ZD with F finite. Then

��2(N )(n) ≥ exp
(
−cn/[log n]2/D

)
.

If instead �1(N ) = Z
b � ZD for some integer b ≥ 1 then

��2(N )(n) ≥ exp

(

−cn

(
log log n

log n

)2/D
)

.

3.3 Another lower bound

The aim of this subsection is to provide lower bounds for the probability of return μ∗n(e∗)
on �2(N )when μ at (3.2) is the push-forward of a measure μ on Fr of the form (3.1), that is,
supported on the powers of the generators si , 1 ≤ i ≤ r , possibly with unbounded support.
Our approach is to construct symmetric probability measure φ on Z

r � �1(N ) such that the
return probability φ
n(e
) of the random walk driven by φ coincides with μ∗n(e∗). Please
note that we will use the notation 
 for convolution on the wreath product Z

r � �1(N ) and
∗ for convolution on �2(N ). We also decorate the identity element e∗ of �2(N ) with a ∗ to
distinguish it from the identity element e
 of Z

r � �1(N ). Recall that the identity element of
�1(N ) is denoted by ē. We will use (εi )

r
1 for the canonical basis of Z

r .
Fix r symmetric probability measures pi , 1 ≤ i ≤ r on Z. Recall that, by definition, μ is

the push-forward of μ, the probability measure on Fr which gives probability r−1 pi (n) to
sn

i , 1 ≤ i ≤ r , n ∈ Z. See (3.1)–(3.2).
On Z

r � �1(N ), consider the measures φi supported on elements of the form

g = (δi , 0)(0, sm
i )(−δi , 0),

where δi : Fr/N = �1(N )→ Z
r is the function that’s identically zero except that at identity

e of �1(N ), δi (e) = εi ∈ Z
r . For such g, set (compare to (3.1))

φi (g) = pi (m).

Note that

g−1 = (δi , 0)(0, s−m
i )(−δi , 0)

123



Random walks on free solvable groups 825

is an element of the same form, and φi (g−1) = φi (g) = pi (m). Set

φ = 1

r

r∑

i=1

φi .

More formally, φ can be written as

∀ g ∈ Z
r � �1(N ), φ(g) =

∑

1≤i≤r

1

r

∑

m∈Z

pi (m)1{(δi ,0)(0,sm
i )(−δi ,0)}(g). (3.6)

Let (Un)
∞
1 be a sequence of Fr -valued i.i.d. random variables with distribution μ and

Zn = U1 · · ·Un . Note that the projection of Un to Fr/[N , N ] = �2(N ) (resp. Fr/N =
�1(N )) is an i.i.d. sequence of �2(N )-valued (resp. �1(N )-valued) random variables with
distribution μ (resp. μ). Let Xi denote the projection of Ui on �1(N )and Tj = X1 · · · X j .

Consider the Z
r � �1(N )-valued random variable defined by

Vn = (δi , 0)(0, sm
i )(−δi , 0) if Un = sm

i .

Then (Vn)
∞
1 is a sequence of i.i.d. random variables on Z

r ��1(N )with distribution φ. Write

Wn = V1 . . . Vn .

Then Wn is the random walk on Z
r � �1(N ) driven by φ.

The following proposition is based on Theorem 2.6, that is, [14, Theorem 2.7], which
states that two words in Fr projects to the same element in �2(N ) if and only if they induce
the same flow on �1(N ). In particular, the random walk on �2(N ) returns to identity if and
only if the path on �1(N ) induces the zero flow function.

Proposition 3.6 Fix a measure μ on Fr of the form (3.1). Suppose none of the si are torsion
elements in �1(N ) = Fr/N . Let μ be the probability measure on �2(N ) defined at (3.2). Let
φ be the probability measure on Z

r � �1(N ) defined at (3.6). It holds that

μ∗n(e∗) = φ
n(e
).
Remark 3.7 It’s important here that the probability measure μ is supported on powers of
generators, so that each step is taken along one dimensional subgraphs g 〈si 〉 . The statement
is not true for arbitrary measure on F/N ′.

Proof The random walk Wn on Z
r � (F/N ) driven by φ can be written as

Wn = ( fn, Tn) = (( f 1
n , . . . , f r

n ), Tn).

By definition of Wn , for any x ∈ �1(N ), f i
n (x) counts the algebraic sums of the i-arrivals

and i-departures of the random walk Tn at x where by i-arrival (resp. i-departure) at x , we
mean a time � at which T� = x and U� ∈ 〈si 〉 (resp. U�+1 ∈ 〈si 〉). The condition Tn = x �= ē
implies that the vector fn(x) must have at least one non-zero component because the total
number of arrivals and departures at x must be odd. Hence, we have

φ
n(e
) = P(( fn, Tn) = e
) = P( f i
n (x) = 0, 1 ≤ i ≤ r, x ∈ �1(N )).

We also have

μ∗n(e∗) = P(fZn (x, xsi , si ) = 0, 1 ≤ i ≤ r, x ∈ �1(N )).
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Given a flow f on �1(N ) (i.e., a function the edge set E = {(x, xs̄i , si ), x ∈ �1(N ), 1 ≤ i ≤
r} ⊂ �1(N )× �1(N )× S, for each i, 1 ≤ i ≤ r , introduce the i-partial total flow ∂i f(x) at
x ∈ �1(N ) by setting

∂i f(x) = f((x, xs̄i , si ))− f(xs̄−1
i , x, si ).

It is easy to check (e.g., by induction on n) that

∀ x ∈ �1(N ), f i
n (x) = ∂i fZn (x). (3.7)

Obviously, fZn ≡ 0 implies f i
n ≡ 0 for all 1 ≤ i ≤ r so

φ
n(e
) ≥ μ∗n(e∗).
But, in fact, under the assumption that none of the si are torsion elements in �1(N ), each
edge (x, xsi , si ) in the Cayley graph of �1(N ) is contained in the one dimensional infinite
linear subgraph {xsk

i : k ∈ Z} and, since fn and fZn are finitely supported, the Eq. (3.7)
shows that f i

n ≡ 0 implies that fZn (x, xs̄i , si ) = 0 for all x ∈ �1(N ). In particular, if f i
n ≡ 0

for all 1 ≤ i ≤ r then we must have fZn ≡ 0. Hence, if none of the s̄i is a torsion element in
�1(N ), we have f i

n ≡ 0, 1 ≤ i ≤ r ⇐⇒ fZn ≡ 0 and thus μ∗n(e∗) = φ
n(e
). ��
In general, the probability measure φ on Z

r ��1(N ) does not have generating support because
of the very specific and limited nature of the lamp moves and how they correlate to the base
moves. To fix this problem, let ηr be the probability measure of the lazy random walk on Z

r

so that ηr (0) = 1/2 and ηr (±εi ) = 1/(4r), 1 ≤ i ≤ r . With this notation, let

q = ηr 
 μ̄ 
 ηr (3.8)

be the probability measure of the switch-walk-switch random walk on the wreath product
Z

r � �1(N ) associated with the walk-measure μ̄ on the base-group �1(N ) and the switch-
measure ηr on the lamp-group Z

r . See [15,19] and Sect. 1.5 for further details.

Proposition 3.8 Fix a measure μ on Fr of the form (3.1). Suppose that none of the si

are torsion elements in �1(N ) = Fr/N . Referring to the notation introduced above, there
are c, N ∈ (0,∞) such that the probability measure μ on �2(N ) defined by (3.2) and the
measure q on Z

r � �1(N ) defined at (3.8) satisfy

μ∗2n(e∗) ≥ cq
2Nn(e
).

Proof On a group G, the Dirichlet form associated with a symmetric measure p is defined
by

Ep( f, f ) = 1

2

∑

x,y∈G

| f (xy)− f (x)|2 p(y).

From the definition, it easily follows that Z
r � �1(N ), we have the comparison of Dirichlet

forms

Eφ ≤ (2r)2Eηr 
μ
ηr = (2r)2Eq .

Therefore, by [16, Theorem 2.3],

φ
2n(e
) ≥ cq
2Nn(e
).

From Proposition 3.6 we conclude that

μ∗2n(e∗) = φ
2n(e
) ≥ cq
2Nn(e
).

��
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Corollary 3.9 Fix a = (α1, . . . , αr ) ∈ (0, 2)r and let μa be defined by (3.1) with pi (m) =
ci (1 + |m|)−1−αi . Let N = [Fr ,Fr ] so that �1(N ) = Z

r and �2(N ) = S2,r . Let μa be the
probability measure on S2,r associated to μa by (3.2). Then we have

μ∗na (e∗) ≥ exp
(
−Cnr/(r+α)[log n]α/(r+α)

)

where

1

α
= 1

r

(
1

α1
+ · · · + 1

αr

)

.

Remark 3.10 Later we will prove a matching upper bound.

Proof Proposition 3.8 yields

μ∗na (e∗) ≥ c[ηr 
 μ̄a 
 ηr ]
n(e
)
where the probability μ̄a on �1(N ) = Z

r is defined at (3.2) and is given explicitly by

μ̄a(g) = 1

r

r∑

1

pi (m)1s̄i
n (g)

where s̄i canonical generators of Z
r and we have retained the multiplicative notation so that

s̄n
1 = (n, 0, . . . , 0), . . . , s̄n

r = (0, . . . , 0, n).
The behavior of the random walk on the wreath product Z

r � Z
r associated with the

switch-walk-switch measure q = ηr 
 μ̄a 
 ηr is studied in [19] where it is proved that

q
2n(e
) � exp
(
−nr/(r+α)[log n]α/(r+α)

)
.

Corollary 3.9 follows. ��

4 Return probability upper bounds

This section explains how to use the Magnus embedding (defined at (2.1))

ψ̄ : Fr/[N , N ] = �2(N ) ↪→ Z
r � �1(N ), �1(N ) = Fr/N ,

to produce, in certain cases, an upper bound on the probability of return μ∗2n(e∗) on �2(N ).
Recall from (2.3) that the Magnus embedding ψ is described more concretely by

�2(N ) ↪→ Z
r � �1(N )

g �→ ψ̄(g) = (ā(g), g), g = π̄(g).
Here ā(g) is an element of

∑
x∈�1(N ) Z

r
x , equivalently, a Z

r -valued function with finite
support defined on �1(N ), equivalently, an element of the Z(�1(N ))-module Z

r (�1(N )). In
any group G, we let τgx = gx be the translation by g ∈ G on the left as well as its extension
to any Z(G) module. We will need the following lemma.

Lemma 4.1 For any g, h ∈ �2(N ) with ḡ = π̄(g) ∈ �1(N ), we have

ā(gh) = ā(g)+ τḡ ā(h).

In particular, if g ∈ �2(N ) and ρ ∈ N with ρ = π2(ρ) ∈ �2(N ), we have

ā(gρg−1) = τḡ ā(ρ).

123



828 L. Saloff-Coste, T. Zheng

Proof The first formula follows from the Magnus embedding by inspection. The second
formula is an easy consequence of the first and the fact that π(ρ) is the identity element in
�1(N ). ��
Remark 4.2 The identities stated in Lemma 4.1 can be equivalently written in terms of flows
on �1(N ). Namely, for u, v ∈ Fr , we have

fuv = fu + τπ(u)fv and fuvu−1 = τπ(u)fv.

4.1 Exclusive pairs

Definition 4.3 Let � be a subgroup of �2(N ) and ρ be a reduced word in N\[N , N ] ⊂ Fr .
Let � = π̄(�). Set ρ = π2(ρ) ∈ �2(N ). We say the pair (�, ρ) is exclusive if the following
two conditions are satisfied:

(i) The collection {τg(ā(ρ))}g∈� is Z-independent in the Z-module
∑
�1(N )(Z

r )x .
(ii) In the Z-module

∑
�1(N )(Z

r )x , the Z-submodule generated by {τg(ā(ρ))}g∈� , call it
A = A(�, ρ), has trivial intersection with the subset B = {ā(g) : g ∈ �}, that is

A ∩ B = {0}.
Remark 4.4 Condition (i) implies that the Z-submodule A(�, ρ) of

∑
�1(N )(Z

r )x is isomor-
phic to

∑
ḡ∈�(Z)ḡ .

Example 4.1 In the free metabelian group S2,r = Fr/[N , N ], N = [Fr ,Fr ], set � =〈
s2

1 , . . . , s2
r

〉
, and ρ = [s1, s2]. Then (�, ρ) is an exclusive pair. The conditions (i)–(ii) are

easy to check because the monomials {Z x1
1 Z x2

2 . . . Z xr
r : x ∈ Z

d} are Z-linear independent in
Z(Zr ). A similar idea was used in the proof of [7, Theorem 3.2].

We now formulate a sufficient condition for a pair (�, ρ) to be exclusive. This sufficient
condition is phrased in terms of the representation of the elements of �2(N ) as flows on
�1(N ). Recall that �1(N ) come equipped with a marked Cayley graph structure as described
in Sect. 2.2.

Lemma 4.5 Fix � < �2(N ) and ρ as in Definition 4.3. Set

U =
⋃

g∈�
supp(fg),

that is the union of the support of the flows on �1(N ) induced by elements of �. Assume that
ρ = usv with s ∈ {s1, . . . , sr } and that:

1. fρ((u, us, s)) �= 0;
2. For all x ∈ �\{e}, fρ((xu, xus, s)) = 0;
3. The edge (u, us, s) is not in U.

Then the pair (�, ρ) is exclusive.

Remark 4.6 The first assumption insures that the given edge is really active in the loop
associated with ρ on the Cayley graph �1(N ). The proof given below shows that conditions
1-2 above imply condition (i) of Definition 4.3. All three assumptions above are used to
obtain condition (ii) of Definition 4.3.
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Proof Condition (i). Suppose there is a nontrivial linear relation such that

c1τg1
(ā(ρ))+ · · · + cnτgn

(ā(ρ)) = 0, ci ∈ Z,

where some c j , say c1, is not zero and the element g j ∈ � are pairwise distinct. Let g j be
representative of ḡ j in Fr . Let b denote the coefficient of

∑n
i=1 ciτgi

(ā(ρ)) in front of the
term g1uλs. By formula (2.5),

b =
n∑

i=1

ci fgi ρg−1
i
((g1u, g1us, s)).

Note that

fgi ρg−1
i
((g1u, g1us, s)) = fρ((g

−1
i g1u, g−1

i g1us, s)).

Therefore, since g−1
i g1 �= e for all i �= 1, the hypothesis stated in Lemma 4.5(2) gives

∀ i �= 1, fgi ρg−1
i
((g1u, g1us, s)) = 0.

By hypothesis (1) of Lemma 4.5, this implies

b = c1fρ((u, us, s)) �= 0

which provides a contradiction.
We now verify that Condition (ii) of Definition 4.3 holds. Fix x ∈ A∩ B and assume that

x is nontrivial. From Condition (i), x can be written uniquely as

x = c1τg1
a(ρ)+ · · · + cnτgn

a(ρ),

where c j ∈ Z\{0} and the elements g j are pairwise distinct. On the other hand, since x ∈ B,
there exists some h ∈ � such that x = ā(h). By formula (2.5), ā(h) = ∑n

i=1 ciτgi
a(ρ) is

equivalent to

fh =
n∑

i=1

ci fgiρg−1
i
.

Therefore fg−1
1 hg1

=∑n
i=1 ci fg−1

1 giρg−1
i g1

. By hypothesis (2), it follows that

fg−1
1 hg1

((u, us, s)) = c1fρ((u, us, s)) �= 0.

However, since g−1
1 hg1 ∈ �, this implies that (u, us, si )) ∈ U , a conclusion which contra-

dicts assumption (3). Hence A ∩ B = {0} as desired. ��
4.2 Existence of exclusive pairs

This section discuss algebraic conditions that allow us to produce appropriate exclusive pairs.

Lemma 4.7 Assume �1(N ) = Fr/N is residually finite and r ≥ 2. Fix an element ρ in
N\[N , N ]. There exists a finite index normal subgroup K = Kρ � �1(N ) such that, for
any edge (u,us) in ρ = usv with s ∈ {s1, . . . , sr } and any subgroup H < �2(N ) with
π(H) < K ,

∀ x ∈ π̄(H)\{e}, fρ((xu, xus, s)) = 0.
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Remark 4.8 Since ρ /∈ [N , N ], the flow induced by ρ is not identically zero. Therefore, after
changing ρ to ρ−1 if necessary, there exists a reduced word u and i ∈ {1, . . . , r} such that
ρ = usi u′ and fρ((u, usi , si )) �= 0. Hence Lemma 4.7 provides a way to verify conditions 1
and 2 of Lemma 4.5.

Proof For any element ρ in N\[N , N ], view ρ as a reduced word in Fr . Let Bρ be the
collection of all proper subword u of ρ such that π̄(u) is not trivial in �1(N ). Since �1(N )
is residually finite, there exists a normal subgroup K � �1(N ) such that �1(N )/K is finite
and π̄(Bρ)∩ K = ∅.

Suppose there exists x ∈ π̄(H) such that x is not trivial and fρ((xu, xus, s)) �= 0.
Therefore, there is a proper subword v of ρ such that ρ = vw and v = xu. Since both u and
v are prefixes of ρ and x is not trivial, vu−1 is the conjugate of a proper subword of ρ with
non-trivial image in �1(N ). By construction this implies that π̄(vu−1) /∈ K , a contradiction
since π̄(vu−1) = x ∈ π̄(H) < K . ��
Remark 4.9 Subgroups of finitely residually finite groups are residually finite. By a classical
result of Hirsch, polycyclic groups are residually finite, [17, 5.4.17]. By a result of P. Hall,
a finitely generated group which is an extension of an abelian group by a nilpotent group is
residually finite. In particular, all finitely generated metabelian groups are residually finite,
[17, 15.4.1]. Gruenberg [10], proves that A � G is residually finite if either A is abelian or G
is residually finite. The free solvable groups Sd,r are residually finite as subgroups of wreath
products. Note that all finitely generated residually finite groups are Hopfian, [17, 6.1.11].

Our next task is to find ways to verify condition 3 of Lemma 4.5. To this end, let A be
the abelian group �1(N )/[�1(N ), �1(N )]. Fix m = (m1, . . . ,mr ) ∈ N

r and let Am be the
subgroup of A generated by the images of the elements s̄mi

i , 1 ≤ i ≤ r , in A. Let Tm be the
finite abelian group Tm = A/Am . Let πTm : Fr → Tm be the projection from Fr onto Tm .
Set

Hm =
〈
smi

i , 1 ≤ i ≤ r
〉
< �2(N ).

Lemma 4.10 Fix a reduced word ρ ∈ N\[N , N ]. Assume that ρ = usv, where s ∈
{s1, . . . , sr } and fρ((u, us, s)) �= 0. Fix m ∈ N

r and assume that, in the finite abelian
group Tm, πTm (u) /∈

〈
πTm (s)

〉
. Then the edge (u, us, s)) is not in

U (Hm) =
⋃

g∈Hm

supp(fg).

Proof Assume that (u, us, s) ∈ U (Hm). Then there must exist x ∈ π(Hm) and q ∈ Z such
that xs̄q = u. But, projecting on Tm , this contradicts the assumption πTm (u) /∈

〈
πTm (s)

〉
. ��

We now put together these two lemmas and state a proposition that will allow us to produce
exclusive pairs.

Proposition 4.11 Fix N � Fr and ρ ∈ N\[N , N ], in reduced form. Let u be a prefix of ρ

such that ρ = usv, s ∈ {s1, . . . , sr } and fρ((ū, ūs̄, s)) �= 0. Assume that the group �1(N )
is residually finite and there exists an integer vector m = (m1, . . . ,mr ) ∈ N

r such that, in
the finite group Tm, πTm (u) /∈ 〈πTm (s)〉. Then there is m′ = (m′1, . . . ,m′r ) such that the pair
(Hm′ , ρ) is an exclusive pair in �2(N ).

Proof Let Kρ the the finite index normal subgroup of �1(N ) given by Lemma 4.7. Since

Kρ is of finite index in �1(N ), we can pick m′i to be a multiple of mi such that s̄
m′i
i ∈ Kρ .
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Observe that the assumption πTm (u) /∈ 〈πTm (s)〉 implies the same property with m replaced
by m′. Applying Lemmas 4.7, 4.10 and Lemma 4.5 yields that (Hm′ , ρ) is an exclusive pair
in �2(N ). ��
We conclude this section with a concrete application of Proposition 4.11.

Proposition 4.12 Assume that �1(N ) = Fr/N is an infinite nilpotent group and r ≥ 2.
Then there exists an exclusive pair (�, ρ) in �2(N ) with � finitely generated such that π(�)
is a subgroup of finite index in �1(N ).

Proof First we construct an exclusive pair using Proposition 4.11. Suppose that �1(N ) is not
virtually Z. Then the torsion-free rank of �1(N )/[�1(N ), �1(N )] is at least 2. Choose two
generators si1 , si2 such that their projections in the abelianization are Z-independent. Choose
ρ to be an element of minimal length in N ∩ 〈si1 , si2

〉
. Note that since �1(N ) is nilpotent,

this intersection contains commutators of si1 , si2 with length greater than the nilpotency
class, therefore it is non-empty. Proposition 4.11 applies and yields an integer m such that
(� = 〈sm

1 , . . . , sm
r

〉
, ρ) is an exclusive pair.

In the special case when�1(N ) is virtually Z, choose ρ to be an element of minimal length

in N , and a generator si1 such that s̄i1 is not a torsion element in �1(N ). Set � =
〈
sm

i1

〉
with

m = [�1(N ) : Kρ]. Then by Lemmas 4.5, Lemma 4.7 and inspection, (�, ρ) is an exclusive
pair.

Next we use induction on nilpotency class c to show that, for any m ∈ N, π(�) =〈
sm

1 , . . . , sm
r

〉
is a subgroup of finite index in �1(N ). When c = 1, observe that the statement

is obviously true for finitely generated abelian groups. Suppose �1(N ) is of nilpotency class
c. Let H = γc(�1(N )). Using the induction hypothesis, it suffices to prove that H ∩π(�) is a
finite index subgroup of H . Note that H is contained in the center of �1(N ) and is generated
by commutators of length c. Further,

[sic [. . . [si2 , si1 ]]]m
c = [sm

ic
[. . . [sm

i2
, sm

i1
]]].

Therefore H/H ∩π(�) is a finitely generated torsion abelian group, hence finite, as desired.
��

4.3 Random walks associated with exclusive pairs

The following result captures the main idea and construction of this section.

Theorem 4.13 Let μ be a symmetric probability measure on �2(N ). Let � < �2(N ) and ρ

be an exclusive pair as in Definition 4.3. Set ρ = π2(ρ) ∈ �2(N ). Let ν be the probability
measure on �2(N ) such that

ν(ρ±1) = 1/2.

Let ϕ be a symmetric probability measure on � such that

Eν∗ϕ∗ν ≤ C0Eμ. (4.1)

Let ϕ̄ be the symmetric probability on � = π̄(�) < �1(N ) defined by

∀ ḡ ∈ �1(N ), ϕ̄(ḡ) = ϕ(π̄−1(ḡ)).

On the wreath product Z � � (whose group law will be denoted here by 
), consider the
switch-walk-switch measure q = η 
 ϕ̄ 
 η with η(±1) = 1/2 on Z. Then there are constants
C, k ∈ (0,∞) such that

μ∗2kn(e∗) ≤ Cq
2n(e
).
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Proof By [16, Theorem 2.3], the comparison assumption between the Dirichlet forms of μ
and ν ∗ ϕ ∗ ν implies that there is a constant C and an integer k such that

∀ n, μ∗kn(e∗) ≤ C[ν ∗ ϕ ∗ ν]∗2n(e∗).

Hence, the desired conclusion easily follows from the next proposition. ��
Proposition 4.14 Let � < �2(N ) and ρ be an exclusive pair as in Definition 4.3. Let ρ =
π(ρ) and let ν be the probability measure on�2(N ) such that ν(ρ) = ν(ρ−1) = 1

2 . Let ϕ be a
probability measure supported on �. Let ϕ̄ be the push-forward of ϕ on π̄(�) = � < �1(N ).
Let η be the probability measure on Z such that η(±1) = 1/2. Let q = η 
 ϕ̄ 
 η be the
switch-walk-switch measure on Z � �. Then

(ν ∗ ϕ ∗ ν)∗n (e∗) ≤ (η 
 ϕ′ 
 η)
n(e
) = q
n(e
).

To prove this proposition, we will use the following lemma.

Lemma 4.15 Let ϕ be a probability measure on �2(N ). Let ν be the uniform measure on
{r±1

0 } where r0 ∈ �2 and r0 �= r−1
0 . Let (Yi )

∞
1 and (εi )

∞
1 be i.i.d. sequence with law ϕ and

ν respectively. Let Sn = Y1 · · · Yn and Sn = π̄(Sn). Then we have

(ν ∗ ϕ ∗ ν)∗n (e∗)

= P

⎛

⎝Sn = ē,
n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0)+ ā(Sn) = 0

⎞

⎠ .

Proof The product rε1
0 Y1rε2+ε3

0 Y2rε4
0 · · · rε2n−1

0 Ynrε2n
0 has distribution

(ν ∗ ϕ ∗ ν)∗n .
Therefore, we have

(ν ∗ μ ∗ ν)∗n(e∗) = P(rε1
0 Y1rε2+ε3

0 Y2 · · · Ynrεn
0 = e∗)

= P(Y1rε2+ε3
0 Y2 · · · Ynrε2n+ε1

0 = e∗).

Using the Magnus embedding

ψ : F/[N , N ] ↪→ Z
r � �1(N )

(and re-indexing of the εi ) this yields

(ν ∗ μ ∗ ν)∗n(e∗) = P(Sn = ē, ā(Y1rε1+ε2
0 Y2 · · · Ynrε2n−1+ε2n

0 ) = 0).

However, we have

ā(Y1rε1+ε2
0 Y2 · · · Ynrε2n−1+ε2n

0 )

= ā(S1rε1+ε2
0 S−1

1 · · · Snrε2n−1+ε2n
0 S−1

n Sn)

=
n∑

j=1

(ε2 j−1 + ε2 j )ā(S jr0S−1
j )+ ā(Sn)

=
n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0)+ ā(Sn).

The last equality above from Lemma 4.1. ��
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Proof Proof of Proposition 4.14 By Lemma 4.15,

(ν ∗ μ ∗ ν)∗n (e∗)

= P

⎛

⎝Sn = ē,
n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0))+ ā(Sn) = 0

⎞

⎠ .

Under the assumption that (�, ρ) is an exclusive pair, (ii) of Definition 4.3 gives
⎧
⎨

⎩

n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0)+ ā(Sn) = 0

⎫
⎬

⎭

=
⎧
⎨

⎩

n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0) = 0

⎫
⎬

⎭
∩ {ā(Sn) = 0} (4.2)

Further, (i) of Definition 4.3 gives
⎧
⎨

⎩

n∑

j=1

(ε2 j−1 + ε2 j )τS j
ā(r0) = 0

⎫
⎬

⎭
=
⋂

x∈�

⎧
⎨

⎩

n∑

j=1

(ε2 j−1 + ε2 j )1{x}(S j ) = 0

⎫
⎬

⎭
.

Therefore, dropping {ā(Sn) = 0} in (4.2) yields

(ν ∗ ϕ ∗ ν)∗n (e∗)

≤ P

⎛

⎝Sn = ē,
n∑

j=1

(ε2 j−1 + ε2 j )1{x}(S j ) = 0 for all x ∈ �
⎞

⎠ .

On the other hand, the return probability of the random walk on

Z � � < Z � �1(N )

driven by η 
 ϕ′ 
 η is exactly

(η 
 ϕ 
 η)
n(e
)

= P

⎛

⎝Sn = ē,
n∑

j=1

(ε2 j−1 + ε2 j )1{x}(S j ) = 0 for all x ∈ �
⎞

⎠ .

��

5 Examples of two sided bounds on ��2(N)

5.1 The case of nilpotent groups

Our first application of the techniques developed above yields the following Theorem.

Theorem 5.1 Assume that �1(N ) = Fr/N is an infinite nilpotent group and r ≥ 2. Let D
be the degree of polynomial volume growth of �1(N ). Then

��2(N )(n) � exp
(
−nD/(2+D)[log n]2/(2+D)

)
.
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Proof Example 3.1 provides the desired lower bound. By Proposition 4.12, we have an
exclusive pair (�, ρ) in �2(N ) such that � = π̄(�) is of finite index in �1(N ). Applying
Theorem 4.13 gives

��2(N )(kn) ≤ C�
Z��(n).

Since � has finite index in �1(N ), it has the same volume growth degree D and, by [8,
Theorem 2],

�
Z��(n) ≤ exp

(
−cnD/(2+D)[log n]2/(2+D)

)
.

��
5.2 Application to the free metabelian groups

This section is devoted to the free metabelian group S2,r = F/[N , N ], N = [Fr ,Fr ].
Theorem 5.2 The free metabelian group S2,r satisfies

�S2,r (n) � exp
(
−nr/(2+r)[log n]2/(2+r)

)
(5.1)

and, for any α ∈ (0, 2),

�̃S2,r ,ρα (n) � exp
(
−nr/(α+r)[log n]α/(α+r)

)
. (5.2)

Further, for a = (α1, . . . , αr ) ∈ (0, 2)r , let μa be defined by (3.1) with pi (m) = ci (1 +
|m|)−1−αi . Let μa be the probability measure on S2,r associated to μa by (3.2). Then we
have

μ(n)a (e) � exp
(
−nr/(r+α)[log n]α/(r+α)

)
(5.3)

where

1

α
= 1

r

(
1

α1
+ · · · + 1

αr

)

.

Proof The lower bound in (5.1) follows from Theorem 3.5 (in particular, Example 3.1).
The lower bound in (5.2) then follows from [3, Theorem 3.3]. The lower bound in (5.3) is
Corollary 3.9. If we consider the measure μa with a = (α, α, . . . , α), α ∈ (0, 2), it is easy
to check that this measure satisfies

sup
s>0

{
sμa(g : (1+ |g|)α > s)

}
<∞,

that is, has finite weak ρα-moment with ρα(g) = (1 + |g|)α . This implies that μ(2n)
a (e)

provides an upper bound for �̃S2,r ,ρα (n). See the definition of �̃G,ρ in Sect. 1.4 and [3]. The
upper bound in (5.2) is thus a consequence of the upper bound in (5.3).

We are left with proving the upper bounds contained in (5.1)–(5.3). The proofs follow the
same line of reasoning and we focus on the upper bound (5.3).

Lemma 5.3 Set � = 〈
s2

1 , . . . , s2
r

〉
< S2,r and ρ = [s1, s2] ∈ Fr . The pair (�, ρ) is an

exclusive pair in the sense of Definition 4.3

Proof This was already observed in Example 4.1. ��
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In order to apply Proposition 4.14 to the pair (�, ρ), we now define an appropriate measure
ϕ on the subgroup � = 〈s2

1 , . . . , s2
r 〉 of S2,r = Fr/[N , N ] = �2(N ), N = [Fr ,Fr ]. In this

context, � = (2Z)r ⊂ Z
r = �1(N ). The measure ϕ is simply given by

ϕ(g) =
r∑

i=1

1

r

∑

m∈Z

ci (1+ |m|)−1−αi 1{s2m
i }(g).

With this definition, it is clear that, on S2,r , we have the Dirichlet form comparison

Eμa ≥ cEν∗ϕ∗ν .
Then by Proposition 4.14,

μ∗na (e∗) � (η 
 ϕ 
 η)
n(e
).
Here as in the previous section, ∗ denotes convolution in �2(N ) and 
 denotes convolution
on Z � � (or Z � �1(N )). Here, � = (2Z)r which is a subgroup of (but also isomorphic to)
�1(N ) = Z

r . The switch-walk-switch measure q = η 
 ϕ 
 η on Z � (2Z)r has been studied
by the authors in [19] where it is proved that

q
n(e
) ≤ exp
(
−cn

r
r+α (log n)

α
r+α
)
.

The proof of this result given in [19] is based on an extension of the Donsker-Varadhan
Theorem regarding the Laplace transform of the number of visited points. This extension
treats random walks on Z

r driven by measures that are in the domain of normal attraction of
an operator stable law. See [19, Theorem 1.3]. ��
5.3 Miscellaneous applications

This section describes further applications of the results of Sects. 4.1–4.3. Namely, we con-
sider a number of examples consisting of a group G = �1(N ) = Fr/N given by an explicit
presentation. We identify an exclusive pair (�, ρ) with the property that the subgroup � of
�1(N ) is either isomorphic to �1(N ) or has a similar structure so that �

Zd ��1(N ) � �
Z�� .

In each of these examples, the results of Sects. 3.2–3.3 and those of Sect. 4.1–4.3 provide
matching lower and upper bounds for ��2(N ) where �2(N ) = F2/[N , N ].
Example 5.1 (The lamplighter Z2 � Z = 〈a, t | a2, [a, t−natn], n ∈ Z〉) In the lamplighter
description of Z2 � Z, multiplying by t on the right produces a translation of the lamplighter
by one unit. Multiplying by a on the right switch the light at the current position of the
lamplighter. Let � be the subgroup of �2 generated by the images of a and t2 and note that �
is, in fact, isomorphic to �1(N ). Let ρ = [a, t−1at] = a−1t−1a−1tat−1at . In order to apply
Lemma 4.5, set u = a−1t−1a−1tat−1, s = a and v = t so that ρ = usv. By inspection,
fρ((ū, us, s)) �= 0 (condition (1) of Lemma 4.5). Also, because the elements of � can only
have lamps on and the lamplighter at even positions, one checks that fρ((xū, xus, s)) = 0 if
x ∈ � (condition (2) of Lemma 4.5). For the same reason, it is clear that fx ((ū, us, s)) = 0
if x ∈ �, that is, (ū, us, s) �∈ U (condition (3) of Lemma 4.5). By the Magnus embedding
and [16, Theorem 1.3], we have

��2(N )(n) ≥ c�Zr ��1(N )(kn).

Applying Lemma 4.5, Proposition 4.14, and the fact that � � �1(N ), yields

��2(N )(kn) ≤ C�Z��1(N )(n).
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The results of [8] gives

�Zr ��1(N )(n) � �Z��1(N )(n) � exp
(−n/[log n]2) .

Hence we conclude that, in the present case where

�1(N ) = Z2 � Z = 〈a, t | a2, [a, t−natn], n ∈ Z〉,
we have

��2(N )(n) � exp
(−n/[log n]2) .

This extend immediately to Zq � Z = 〈a, t | aq , [a, t−natn], n ∈ Z〉. It also extend to similar
presentations of F � Z with F finite. See the next class of examples.

Example 5.2 (Examples of the type K � Zd ) Let K = 〈k1, . . . ,km | NK 〉 be a m generated
group. The wreath product K � Zd admits the presentation Fr/N with r = m + d generators
denoted by

k1, . . . ,km, t1, . . . , td

and relations [ti , t j ], 1 ≤ i, j ≤ d , NK and

[k′, t−1kt],k,k′ ∈ F(k1, . . . ,km), t = tx1
1 · · · txd

d , (x1, . . . , xd) �= 0.

Without loss of generality, we can assume that the image of k1 in K is not trivial. Let � be
the subgroup of �2(N ) generated by the images of t2

i , 1 ≤ i ≤ d . Let

ρ = [k1, t−1
1 k1t1]

and write

ρ = usv with u = ρt−1
1 k−1

1 , s = k1, v = t1.

As in the previous example, (�, ρ) is an exclusive pair and � is in fact isomorphic to �1(N ).
By the same token, it follows that

��2(N )(n) ≥ c�Zr ��1(N )(kn) and ��2(N )(kn) ≤ C�Z��1(N )(n).

Now, thanks to the results of [8] concerning wreath products, we obtain

• If K is a non-trivial finite group then

��2(N )(n) � exp
(
−n/[log n]2/d

)
.

• If K is not finite but has polynomial volume growth then

��2(N )(n) � exp

(

−n

(
log log n

log n

)2/d
)

.

• If K is polycyclic with exponential volume growth then

��2(N )(n) � exp
(
−n/[log log n]2/(d+1)

)

In particular, when �1(N ) = Z � Z with presentation 〈a, t | [a, t−natn], n ∈ Z〉 we obtain
that

��2(N )(n) � exp

(

−n

(
log log n

log n

)2
)

.
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Example 5.3 (The Baumslag–Solitar group BS(1, q)) Consider the presentation

BS(1, q) = �1(N ) = F2/N = <a, b | a−1ba = bq>

with q > 1. In order to apply Proposition 4.14, let � be the group generated by the image of
a2 and b in �2(N ). Let ρ = b−qa−1ba, u = b−qa−1, s = b, v = a. One checks that (�, ρ)
is an exclusive pair and that � � BS(1, q2). After some computation, we obtain

��2(N )(n) � exp
(−n/[log n]2) .

Example 5.4 (Polycyclic groups) Let G be a polycyclic group with polycyclic series G =
G1 � G2 � · · · � Gr+1 = {e}, r ≥ 2. For each i , 1 ≤ i ≤ r , let ai be an element in Gi

whose projection in Gi/Gi+1 generates that group. Write G = Fr/N where si is sent to ai .
This corresponds to the standard polycyclic presentation of G relative to a1, . . . , an and N
contains a word of the form

ρ = s−1
1 s2s1sαr

r · · · sα2
2

where α�, 2 ≤ � ≤ r are integers. See [21, page 395].

Theorem 5.4 Let G = �1(N ) be an infinite polycyclic group equipped with a polycyclic
presentation as above with at least two generators.

• If G has polynomial volume growth of degree D, then

��2(N )(n) � exp
(
−nD/(2+D)[log n]2/(2+D)

)
.

• If G has exponential volume growth then

��2(N )(n) � exp
(−n/[log n]2) .

Proof Our first step is to construct an exclusive pair (�, ρ) with � = π̄(�) of finite index in
�1(N ).

Assume first that G1/G2 is finite. In this case, let � = 〈s2, . . . , sr 〉. Assume that x ∈ � is
such that fρ((x̄ s̄−1

1 , x̄ s̄−1
1 s̄2, s2)) �= 0. Then there must be a prefix u of ρ such that π(u) =

x̄ s̄−1
1 . Computing modulo π(�) = G2, the only prefixes of ρ that can have this property are

s−1
1 and s−1

1 s2. If u = s−1
1 then x̄ is the identity. If u = s−1

1 s2 then s−1
1 s2

2 is not a prefix of ρ

and fρ((x̄ s̄−1
1 , x̄ s̄−1

1 s̄2, s2)) = 0, a contradiction. It follows that condition 2 of Lemma 4.5 is
satisfied. In this case, it is obvious that condition 3 holds as well. Further, π(�) = G2 is a
subgroup of finite index in G = �1(N ).

In the case when G1/G2 � Z, set

� = 〈s2
1 , s2, . . . , sr 〉 < �2(N ).

The same argument as used in the case when G1/G2 is finite apply to see that condition 2 of
Lemma 4.5 is satisfied. To check that condition 3 of Lemma 4.5 is satisfied, observe that, if
fg((ȳ, ȳs̄i , si )) �= 0 with 2 ≤ i ≤ r and g ∈ � then ȳ must belong to �. But, by construction
s̄−1

1 �∈ �. Therefore fg(s̄
−1
1 , s̄−1

1 s̄2, s2) = 0 for every g ∈ �. Finally, � is obviously of index
2 in �1(N ).

By the Magnus embedding we have c�Zr ��1(N )(kn) ≤ ��2(N )(n). By Theorem 4.14 and
the existence of the exclusive pair (�, ρ) exhibited above, we also have c��2(N )(kn) ≤
�

Z��(n) with � of finite index in �1(N ). Because �1(N ) is infinite polycyclic, the desired
result follows from the known results about wreath products. See [8]. ��
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838 L. Saloff-Coste, T. Zheng

6 Iterated comparison and Sd,r with d > 2

Let Fr/N = �1(N ) be a given presentation. Write N (1) = [N , N ] and N (�) =
[N (�−1), N (�−1)], � ≥ 2. The goal of this section is to obtain bounds on the probability
of return for random walks on ��(N ) = Fr/N (�−1). Our approach is to iterate the method
developed in the previous sections in the study of random walks on �2(N ).

We need to fix some notation. We will use ∗ = ∗� to denote convolution in ��(N ). In
general, � will be fixed so that there will be no need to distinguish between different ∗�. We
will consider several wreath products A � G as well as iterated wreath products

A � (A � (· · · (A � G) · · · ))
where A and G are given with A abelian (in fact, A will be either Z or Z

r ). Set W (A,G) =
W1(A,G) = A � G and Wk(A,G) = W (A,Wk−1(A,G)). Depending on the context, we
will denote convolution in Wk(A,G) by


k or 
Wk or 
Wk (A,G) .

Let μ be a probability measure on G and η be a probability measure on A. Note that the
measures μ and η can also be viewed, in a natural way, as measures on W (A,G) with η
being supported by the copy of A that sits above the identity element of G in A � G. The
associated switch-walk-switch measure on W = W1(A,G) is the measure

q = q1(η, μ) = η 
1 μ 
1 η.

Iterating this construction, we define the probability measure qk on Wk(A,G) by the iterative
formula

qk = qk(η, μ) = η 
k qk−1 
k η.

We refer to qk as the iterated switch-walk-switch measure on Wk associated with the initial
pair η,μ. We will make repeated use of the following simple lemma (see also [10, Lemma
3.2]).

Lemma 6.1 Let A,G, H be finitely generated groups with A abelian. Let θ : G → H be a
group homomorphism. Define θ1 : W1(A,G)→ W1(A, H) by

θ1 : ( f, x) �→ ( f , θ(x)), where f (h) =
∑

g:θ(g)=h

f (g)

with the convention that sum over empty set is 0. Then θ1 is group homomorphism.
Define θk : Wk(A,G)→ Wk(A, H) by iterating the previous construction so

θk = (θk−1)1 : W1(A,Wk−1(A,G))→ W1(A,Wk−1(A, H)).

Then θk is group homomorphism. Moreover, if θ is injective (resp., surjective), then θk is also
injective (resp., surjective).

Proof The stated conclusions follow by inspection. ��
Lemma 6.2 Let A,G, H be finitely generated groups with A abelian. Let μ and η be a
probability measures on G and A, respectively. Let θ : G → H be a homomorphism and
θk : Wk(A,G)→ Wk(A, H) be as in Lemma 6.1. Let θk(qk(η, μ)) be the push-forward of
the iterated switch-walk-switch measure qk(η, μ) on Wk(A,G) under θk . Then we have

θk(qk(η, μ)) = qk(η, θ(μ)).
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Proof It suffices to check the case k = 1 where the desired conclusion reads

θ1(η 
A�G μ 
A�G η) = η 
A�H θ(μ) 
A�H η.

This equality follows from the three identities

θ1(η 
A�G μ 
A�G η) = θ1(η) 
A�H θ1(μ) 
A�G θ1(η),

θ1(μ) = θ(μ) and θ1(η) = η.
The first identity holds because θ1 is an homomorphism. The other two identities hold by
inspection (with some slight abuse of notation). ��
6.1 Iterated lower bounds

This section proves lower bounds for the probability of return of symmetric finitely supported
random walks on ��(N ) = Fr/N (�−1) for appropriate presentations Fr/N .

Observe that Propositions 3.2–3.3–3.4 (which are based on the results in [4,8]) provide us
with good lower bounds for the probability of return on a variety of iterated wreath product.
Namely,

• Assume that A = Z
b with b ≥ 1 and G has polynomial volume growth of degree D.

Then, for � ≥ 2,

�W�(A,G)(n) � exp

⎛

⎝−n

(
log[�] n

log[�−1] n

)2/D
⎞

⎠ .

• Assume that A = Z
b with b ≥ 1 and G is polycyclic with exponential volume growth.

Then, for � ≥ 1,

�W�(A,G)(n) � exp
(−n/[log[�] n]2

)
.

This applies, for instance, when G is the Baumslag–Solitar group BS(1, q), q > 1.
Further, the same result holds for the wreath product G = Zq � Z, q > 1, (even so it is
not polycyclic).

The main other ingredients we use to bound ���(N ) from below are the following.

• The Dirichlet form comparison techniques of [16], in particular, [16, Theorem 1.3] which
states that if H is a finitely generated subgroup of a finitely generated group G then
�G � �H .

• The Magnus embedding at level �− j + 1,

ψ̄�− j+1 : ��− j+1(N ) ↪→ Z
r � ��− j (N ), 0 ≤ j ≤ �− 1.

• The natural extension ψ̃�− j+1 of ψ̄�− j+1,

ψ̃�− j+1 : W j−1(Z
r , ��− j+1(N )) ↪→ W j−1(Z

r ,Zr � ��− j (N )) = W j (Z
r , ��− j (N )

which is provided by Lemma 6.1.

By composing the injective homomorphisms

ψ̄� : ��(N ) ↪→ Z
r � ��−1(N ) = W1(Z

r , ��− j )

and

ψ̃�− j+1 : W j−1(Z
r , ��− j+1(N )) ↪→ W j (Z

r , ��− j (N ), 0 ≤ 2 ≤ �− 1,
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840 L. Saloff-Coste, T. Zheng

we realize ��(N ) as a subgroup of W�−1(Z
r , �1(N )). This gives the following general

result.

Theorem 6.3 For any presentation of G = Fr/N and integer � ≥ 2 we have

���(N ) � �W�−1(Z
r ,G).

Corollary 6.4 Let ��(N ) = Fr/N (�).

• Assume that �1(N ) has polynomial volume growth of degree D. Then, for � ≥ 3,

���(N )(n) ≥ exp

⎛

⎝−Cn

(
log[�−1] n
log[�−2] n

)2/D
⎞

⎠ .

• Assume that�1(N ) is BS(1, q)with q > 1, or Z2 �Z, or polycyclic of exponential volume
growth volume growth. Then, for � ≥ 2,

���(N )(n) ≥ exp
(−Cn/[log[�−1] n]2

)
.

• Assume that �1(N ) = K � ZD, D ≥ 1 and K finite. Then, for � ≥ 2,

���(N )(n) ≥ exp
(
−Cn/[log[�−1] n]2/D

)
.

• Assume that �1(N ) = Z
a � ZD, a, D ≥ 1. Then, for � ≥ 2,

���(N )(n) ≥ exp

⎛

⎝−Cn

(
log[�] n

log[�−1] n

)2/D
⎞

⎠ .

6.2 Iterated upper bounds

We now present an iterative approach to obtain upper bounds on ���(N ). Although similar
in spirit to the iterated lower bound technique developed in the previous section, the iterative
upper bound method is both more difficult and much less flexible. The key idea is to obtain
an upper bound for ���(N ) in term of an appropriate iterated wreath product W�−1(Z, �

′
1)

where �′1 is a finitely generated subgroup of �1(N ) (which, ideally, should be “similar” to
�1(N )). Once this is done, [8] provides upper bounds on �W�−1(Z,G) in terms of the Følner
function of base G.

Our first task is to formalize algebraically the content of Proposition 4.14. Recall once
more that the Magnus embedding provides an injective homomorphism ψ̄ : Fr/[N , N ] ↪→(∑

x∈Fr /N Z
r
x

)
� Fr/N with ψ̄(g) = (ā(g), π̄(g)). Let � be a subgroup of Fr/[N , N ] and

ρ ∈ N\[N , N ] ⊂ Fr . Set ρ = π2(ρ) and � = π(�) ⊂ Fr/N .
Assume that (�, ρ) is an exclusive pair as in Definition 4.3. We are going to construct a

surjective homomorphism

ϑ : 〈�, ρ〉 → Z � �.
Let g ∈ 〈�, ρ〉. Consider two decompositions of g as products

g = γ1ρ
x1γ2ρ

x2 · · · γpρ
x pγp+1 = γ ′1ρx ′1γ ′2ρx ′2 · · · γ ′qρx ′qγ ′q+1

with γi ∈ �, 1 ≤ i ≤ p + 1, γ ′i ∈ �, 1 ≤ i ≤ q + 1. Set σi = γ1 . . . γi , 1 ≤ i ≤ p + 1, and
σ ′i = γ1 . . . γi , 1 ≤ i ≤ q + 1. Observe that

g = σ1ρ
x1σ−1

1 σ2ρ
x2σ−1

2 · · · σpρ
x pσ−1

p σp+1 = ασp+1
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where

α = σ1ρ
x1σ−1

1 σ2ρ
x2σ−1

2 · · · σpρ
x pσ−1

p .

Similarly g = α′σ ′q+1 and we have

(α′)−1α = σ ′q+1(σp+1)
−1.

By Lemma 4.1, we have

ā(g) =
p∑

1

xiτσ̄i ā(ρ)+ ā(σp+1)

=
q∑

1

x ′iτσ̄ ′i ā(ρ)+ ā(σ ′q+1).

and
p∑

1

xiτσ̄i ā(ρ)−
q∑

1

x ′iτσ̄ ′i ā(ρ) = ā(σ ′q+1σ
−1
p+1).

As (�, ρ) is an exclusive pair, condition (ii) of Definition 4.3 implies that

p∑

1

xiτσ̄i ā(ρ)−
q∑

1

x ′iτσ̄ ′i ā(ρ) = ā(σ ′q+1σ
−1
p+1) = 0.

Hence
p∑

1

xiτσ̄i ā(ρ) =
q∑

1

x ′iτσ̄ ′i ā(ρ)

in
∑

x∈�1(N ) Z
r
x . This also implies that a(σp+1) = a(σ ′q+1). By construction, we also have

π̄(σp+1) = π̄(σ ′q+1). Hence, σp+1 = σ ′q+1 in �.
By condition (i) of Definition 4.3 (see Remark 4.4), we can identify

p∑

1

xiτσ̄i ā(ρ) =
q∑

1

x ′iτσ̄ ′i ā(ρ)

with the element
( p∑

1

xi 1h(σi )

)

h∈�
of

∑

h∈�
Zh .

This preparatory work allows us to define a map

ϑ : 〈�, ρ〉 → Z � �

g = γ1ρ
x1γ2ρ

x2 · · · γpρ
x pγp+1 �→

(( p∑

1

xi 1h(σi )

)

h∈�
, π̄(g)

)

.

Lemma 6.5 The map ϑ : 〈�, ρ〉 → Z � � is a surjective homomorphism.
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842 L. Saloff-Coste, T. Zheng

Proof Note that ϑ(e) is the identity element in Z � �. To show that ϑ is an homomorphism,
it suffices to check that, for any g ∈ 〈�, ρ〉 and γ ∈ �

ϑ(gγ ) = ϑ(g)ϑ(γ ), ϑ(gρ±1) = ϑ(g)ϑ(ρ±1).

These identities follow by inspection. One easily check that ϑ is surjective. ��
Lemma 6.6 Letμ be a probability measure supported on� and ν be the probability measure
defined by ν(ρ±1) = 1/2. Let η be the probability measure on Z defined by η(±1) = 1/2.
Let ∗ be convolution on 〈�, ρ〉 < �2(N ) and 
 be convolution on Z � � Then we have

ϑ(ν ∗ μ ∗ ν) = η 
 π̄(μ) 
 η.
Proof This follows from the fact that ϑ is an homomorphism, ϑ |� = π̄ and ϑ(ν) = η. ��

In addition to the canonical projections π j : Fr → Fr/N ( j−1) = � j (N ), for 1 ≤ j ≤ i ,
we also consider the projection π i

j : �i (N )→ � j (N ).

Definition 6.7 Fix a presentation �1(N ) = Fr/N and an integer �. Let �i be a finitely
generated subgroup of �i (N ), 2 ≤ i ≤ �. Set

�′i−1 = π i
i−1(�i ), 2 ≤ i ≤ �.

Let ρi ∈ Fr , 2 ≤ i ≤ �. Set ρ� = π�(ρ�). We say that (�i , ρi )
�
2 is an exclusive sequence

(adapted to (�i (N ))�1) if the following properties hold:

1. �� < ��(N ) and π��−1(ρ�) is trivial.

2. For 2 ≤ j ≤ �− 1, � j < �′j , ρ j ∈ �′j and π j
j−1(ρ j ) is trivial.

3. For each 2 ≤ i ≤ �, (�i , ρi ) is an exclusive pair in �2(N (i−1)) = �i (N ).

Theorem 6.8 Fix a presentation �1(N ) = Fr/N and an integer � ≥ 2. Assume that there
exists an exclusive sequence ((�i , ρi ))

�
2 adapted to (� j (N ))�1 such that each �i is finitely

generated. Then we have

���(N ) � �W�−1(Z,�
′
1)
.

where �′1 = π2
1 (�2) < �1(N ).

Remark 6.9 The technique and results of [8] provides good upper bounds on �G when G
is an iterated wreath product such as W�−1(Z, �

′
1) and we have some information on �′1.

The real difficulty in applying the theorem above lies in finding an exclusive sequence that
terminates with an appropriate �′1.

Proof For convenience, set �′� = ��(N ) and W0(A,G) = G. For each j , 0 ≤ j ≤ � − 2,
〈��− j , ρ�− j 〉 is a finitely generated subgroup of �′�− j . By Lemma 6.1, we can realize the
group W j (Z, 〈��− j , ρ�− j 〉) as a (finitely generated) subgroup of W j (Z, �

′
�− j ). Hence ([16,

Theorem 1.3])

�W j (Z,�
′
�− j )

� �W j (Z,〈��− j ,ρ�− j 〉).

Consider the surjective homomorphism

ϑ�− j : 〈��− j , ρ�− j 〉 → Z � �′�− j−1
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which is provided by Lemma 6.5 and the definition of exclusive sequence adapted to (�i (N ))�1.
By Lemma 6.1, it can be extended to a surjective homomorphism

ϑ�− j, j : W j (Z, 〈��− j , ρ�− j 〉)→ W j (Z,Z � �′�− j−1) = W j+1(Z, �
′
�− j−1).

Recall the simple fact that �H � �G if H is a quotient of the finitely generated group G. It
follows that

�W j (Z,�
′
�− j )

� �W j+1(Z,�
′
�− j−1))

, 0 ≤ j ≤ �− 2.

It follows that ���(N ) � �W�−1(Z,�
′
1)

which is the desired upper bound. ��
6.3 Existence of exclusive sequences

This section describes a sufficient condition for the existence of appropriate exclusive
sequences. For this purpose, we will use a result concerning the subgroup of ��(N ) gen-
erated by the images of a fix power sm

i of the generators si , 1 ≤ i ≤ r . Let δm : Fr → Fr be
the homomorphism from the free group to itself determined by δm(si ) = sm

i , 1 ≤ i ≤ r .

Lemma 6.10 Suppose δm induces an injective homomorphism Fr/N → Fr/N, andπ(sq
i ) /∈

δm(Fr/N ), 1 ≤ q ≤ m − 1, 1 ≤ i ≤ r . Then δm induces an injective homomorphism
Fr/[N , N ] → Fr/[N , N ].
Proof The proof is based on the representation of the elements of�2(N ) = Fr/[N , N ] using
flows on the labeled Cayley graph of �1(N ) = Fr/N .

Let δm denote the induced injective homomorphism on �1(N ). Let f be a flow function
defined on edge set E of Cayley graph of �1(N ). Let Em be a subset of E given by

Em = {(δm(x)s
j

i , δm(x)s
j+1

i , si ) : x ∈ �1(N ), 0 ≤ j ≤ m − 1, 1 ≤ i ≤ r}.
Let tm : f �→ tm f be the map on flows defined by

tm f((δm(x)s
j

i , δm(x)s
j+1

i , si )) = f((x, xsi , si )), 0 ≤ j ≤ m − 1,

and tm f is 0 on edges not in Em . This map is well-defined. Indeed, if two pairs (x, j) and
(y, j ′) in �1(N )× {0, · · · ,m − 1} correspond to a common edge, that is,

(δm(x)s
j

i , δm(x)s
j+1

i , si ) = (δm(y)s
j ′

i , δm(y)s
j ′+1

i , si ),

then δm(x)s
j

i = δm(y)s
j ′

i , δm(y−1x) = s j ′− j
i . Since

∣
∣ j ′ − j

∣
∣ ≤ m − 1, from the assumption

π(sq
i ) /∈ δm(Fr/N ), 1 ≤ q ≤ m − 1 it follows that j ′ = j . Then δm(y−1x) = e and, since

δm is injective, we must have x = y.
By definition, tm is additive in the sense that

tm(f1 + f2) =tm f1 + tm f2.

Also, regarding translations in �1(N ), we have

tmτyf = τδm (y)tm f.

Therefore the identity fuv = fu + τπ(u)fv, of Remark 4.2 yields

tm fuv = tm fu + τδm (π(u))tm fv.

By assumption π(δm(u)) = δm(π(u)), therefore

tm fuv = tm fu + τπ(δm (u))tm fv.
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This identity allows us to check that the definition of tm acting on flows is consistent with
δm : Fr → Fr . More precisely, for any g ∈ Fr , we have

fδm (g) = tm fg.

To see this, first note that this formula holds true on the generators and their inverses and
proceed by induction on the word length of g ∈ Fr .

Given g ∈ �2(N ), pick a representative g ∈ Fr so that g corresponds to the flow fg on
�1(N ). Define δ̃m(g) to be the element of �2(N ) that corresponds to the flow tm fg = fδm (g).

This map is well defined and satisfies

δ̃m ◦ π2 = π2 ◦ δm .

This implies that δ̃m : �2(N )→ �2(N ) is an injective homomorphism. Abusing notation, we
will drop the˜and use the same name, δm , for the injective homomorphisms�1(N )→ �1(N )
and �2(N )→ �2(N ) induced by δm : Fr → Fr . ��
Proposition 6.11 Let r ≥ 2 and N be a normal subgroup of Fr = 〈s1, . . . , sr 〉. Let A =
�1(N )/[�1(N ), �1(N )] and Tq = A/Aq with projection map πTq . Assume that:

1. The quotient �1(N ) = Fr/N is residually finite and amenable.
2. There exist two generators, say s1, s2 such that for any integer p there is a natural integer

q = q(p) for which (with a slight abuse of notation)

πTq (s
p
1 ) �∈ 〈πTq (s2)〉.

3. The homomorphism δm induces an injective homomorphism Fr/N → Fr/N, and
π(sq

i ) /∈ δm(Fr/N ), 1 ≤ q ≤ m − 1, 1 ≤ i ≤ r .

Then, for each d, there exists an integer Md and an exclusive sequence (�i , ρi )
d
2 adapted

to (�i (N ))d1 and such that �′1 = π2
1 (�2) equals to 〈s̄ Md

1 , . . . , s̄ Md
r 〉 where s̄i denotes the

projection of si in �1(N ).

Remark 6.12 Note that, by assumption 3, the group �′1 is isomorphic to �1(N ).

Proof Since �1(N ) is assumed to be residually finite, by the Magnus embedding and [10,
Theorem 3.2], it follows that��(N ) is residually finite as well. Hence the technique developed
in Sect. 4.2 apply easily to this situation. We are going to use repeatedly Proposition 4.11.

To start, for each �, we construct an exclusive pair (H�, σ �) in ��(N ). Namely, let σ �
be an element in (N (�−2)\N (�−1)) ∩ 〈s1, s2〉 in reduced form in Fr and such that it projects
to a non-self-intersecting loop in ��−1(N ). Without loss of generality, we can assume that
be beginning of σ � is of the form sk

1s2. Let si , s̄i be the projections of si onto ��(N ) and
��−1(N ), respectively. Let (s̄k

1 , s̄k
1 s̄2, s2) be the corresponding edge in ��−1(N ). Since σ �

projects to a simple loop in ��−1(N ), we must have

fσ � ((s̄
k
1 , s̄k

1 s̄2, s2)) �= 0.

Since ��−1(N ) is residually finite, there exists a finite index normal subgroup Kσ � �
��−1(N ) as in Lemma 4.7. Let q = q(k) be the natural integer provided by assumption
2 and such that πTq (s

k
1) �∈ 〈πTq (s2)〉. Pick an integer m� such that

[��−1(N ) : Kσ� ] | m� and q | m�,

and set

H� =
〈
sm�

i , 1 ≤ i ≤ r
〉
< ��(N ).
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Thinking of ��(N ) and ��−1(N ) as �2(N (�−2)) and �1(N (�−2)), respectively, Proposition
4.11 implies that (H�, σ�) is an exclusive pair in ��(N ).

Next, assumption 3 and Lemma 6.10 show that, for each integer m and each �, the injective
homomorphism δm : Fr → Fr induces on ��(N ) an injective homomorphism still denoted
by δm : ��(N )→ ��(N ). For each 1 ≤ � ≤ d − 1, set

M1 = 1, Md−�+1 = m�+1 · · ·md ,

and, for 2 ≤ � ≤ d ,

�� = δMd−�+1(H�) < ��(N ), ρ� = δMd−�+1(σ �).

By construction, ((��, ρ�))d2 is an exclusive sequence in (��(N ))d1 and

�′1 = π2
1 (�2) = 〈s̄1

Md , . . . , s̄ Md
r 〉 < �1(N ).

��
6.4 Free solvable groups and other �d(N ), d ≥ 3

In this section, we conclude the proof of Theorem 1.1 by proving that, for d ≥ 3,

�Sd,r (n) � exp

⎛

⎝−n

(
log[d−1] n
log[d−2] n

)2/r
⎞

⎠ .

The lower bound follows from Corollary 6.4. To prove the upper bound, we simply need
to check that the given presentation of �1(N ) satisfies the three assumptions of Proposition
6.11. In the case of Sd,r , �1(N ) = Z

r and the three assumptions of Proposition 6.11 are
satisfied. Theorem 6.8 gives the desired upper bound.

In fact, we are able to deal with a larger class of groups than just Sd,r .

Theorem 6.13 Fix r ≥ 2 and d ≥ 3. Let N be a normal subgroup of Fr such�1(N ) = Fr/N
is nilpotent with volume growth of degree D. Assume also that, for each m, δm induces an
injective homomorphism Fr/N → Fr/N (see Sect. 6.3). Then we have

��d (N )(n) � exp

⎛

⎝−n

(
log[d−1] n
log[d−2] n)

)2/D
⎞

⎠ .

Example 6.1 Recall that Sd,r = �d(γ2(Fr )). More generally, define

Sc
d,r = �d(γc+1(Fr )) = Fr/(γc+1(Fr ))

(d).

Note that �1(γc+1(Fr )) = Fr/γc+1(Fr ) is the free nilpotent group of nilpotent class c on r
generators. Let

D(r, c) =
c∑

1

∑

k|m
μ(k)rm/k

where μ is the Möbius function. The integer D(r, c) is the degree of polynomial volume
growth of the free nilpotent group Fr/γc+1(Fr ). See [11, Theorem 11.2.2] and [5]. The
hypotheses of Theorem 6.13 are clearly satisfied.
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Example 6.2 Let U (r + 1) be the group of (r + 1) by (r + 1) upper-triangular matrices with
integer entries and ones on the diagonal. Let si , 1 ≤ i ≤ rbe the matrix in U (r + 1) with a 1
in position (i, i +1) and zeroes in all other non-diagonal positions. Let U (r +1) = Fr/N be
the corresponding presentation. In this case the degree D is given by D =∑r

1(r + 1− i)i .
Again, the hypotheses of Theorem 6.13 are clearly satisfied.

As a final example of a different type, we consider Z
a � Z

D where Z
a,ZD are equipped

with their natural presentations and Z
a � ZD is equipped with the presentation described in

Example 5.2.

Theorem 6.14 Let Z
a � ZD = Fr/N with r = a + D as described above. For d ≥ 3, we

have

��d (N )(n) � exp

⎛

⎝−n

(
log[d] n

log[d−1] n

)2/D
⎞

⎠ .

Proof The lower bound is from Corollary 6.4. To obtain the upper bound, we apply Theorem
6.8 and Proposition 6.11. By [10, Theorem 3.2], �1(N ) is residually finite. To check assump-
tion 2 in Proposition 6.11, we pick s1 to correspond to a generator of the base Z

D and s2 to
correspond to a generator of the lamp group Z

a . In the abelianization Z
D , the projection of

s2 is trivial. Assumption 2 follows. To verify assumption 3 of Proposition 6.11, we note that
the stretch map δm acts on an element ( f, x) ∈ Z

a � ZD via the formula ( f, a) �→ ( fm,mx)
with

fm(y) = m f (y/m)1mZd (y).

One can check that this is a homomorphism. It is obviously injective. ��

7 Isoperimetric profiles

The L2-isoperimetric profile of a group G is defined as the �-equivalence class �G of the
functions �φ(v) associated to any symmetric probability measure φ with finite generating
support as follows. For v > 0, set

�φ(v) = inf{λφ(�) : � ⊂ G, #� ≤ v}
where

λφ(�) = inf{Eφ( f, f ) : support( f ) ⊂ �, ‖ f ‖2 = 1}.
It is well known that, under mild assumptions, the group invariants �G and �G encode

essentially the same information. See, e.g., [2,4] and the references cited therein. In particular,
the following statement is equivalent to Theorem 1.1 and Theorem 6.13.

Theorem 7.1 Fix r ≥ 2 and d ≥ 2. Let N be a normal subgroup of Fr such �1(N ) = Fr/N
is nilpotent with volume growth of degree D and

�1(N )/[�1(N ), �1(N )] = Z
r .

Assume also that, for each m, δm induces an injective homomorphism Fr/N → Fr/N (see
Sect. 6.3). Then

��d (N )(v) �
(

log[d] v
log[d−1] v

)2/D

.
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The L1-isoperimetric profile is the�-equivalence class JG of the functions JG,S(v) asso-
ciated to any symmetric finite generating set S and defined by

JG,S(v) = sup

{
#�

#∂S�
: � ⊂ G, #� ≤ v

}

.

Here ∂S� = {x ∈ � : ∃s ∈ S, xs /∈ �}. For completeness, let FølG,S be the Følner function
defined by

FølG,S(t) = min{s : ∃�, #� = s, #∂S� < s/t}.
The functions JG,S and FølG,S are related by

FølG,S(t) > k ⇐⇒ JG,S(k) ≤ t.

The functions G �→ JG and G �→ FølG (i.e., the�-equivalence class of the function FølG,S)
have monotonicity properties with regards to finitely generated subgroups and quotients that
are similar to those of the function �G . See, e.g., [9, Lemma 2.3]. It follows that the proofs
of Theorems 7.2–6.8 gives the following.

Theorem 7.2 For any presentation of G = Fr/N and integer � ≥ 2 we have

J��(N ) � JW�−1(Z
r ,G).

Theorem 7.3 Fix a presentation �1(N ) = Fr/N and an integer � ≥ 2. Assume that there
exists an exclusive sequence ((�i , ρi ))

�
2 adapted to (� j (N ))�1 such that each �i is finitely

generated. Then we have

J��(N ) � JW�−1(Z,�
′
1)
.

where �′1 = π2
1 (�2) < �1(N ).

Erschler [8] computes the isoperimetric profiles of any wreath product for which the
isoperimetric profiles of the base and lamp groups are known. As a corollary, we obtain the
following statement.

Theorem 7.4 Referring to the setting of Theorem 7.1,

J�d (N )(v) �
(

log[d−1] v
log[d] v

)1/D

.

We note that Theorems 7.1 and 7.4 apply in particular to �d(N ) = Sd,r (N = Z
r ). In this

case, D = r .
Similarly, for all the examples treated in Sect. 5.3, the L2-isoperimetric profile � can

be computed easily from � and the isoperimetric profile J can be computed using similar
arguments. In all these examples, the final result for J can be expressed in terms of � by
saying that J � 1/

√
�. For instance, if r ≥ 2 and G = Fr/N is infinite nilpotent with

volume growth of degree D (see Theorem 5.1) then

��2(N )(v) �
(

log[2] v
log[1] v

)2/D

and J�2(N )(v) �
(

log[1] v
log[2] v

)1/D

.
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