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Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré in-
equalities give a basic Lp-norm control of such smoothing procedures in terms
of the gradient of the function involved. When available, pseudo-Poincaré in-
equalities are an efficient way to prove Sobolev type inequalities. We review
this technique and its applications in various geometric setups.

1 Introduction

This paper is concerned with the question of proving the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖q 6 S(M, p, q)‖∇f‖p (1.1)

when M = (M, g) is a Riemannian manifold, perhaps with boundary ∂M ,
and C∞c (M) is the space of smooth compactly supported functions on M (if
M is a manifold with boundary ∂M , then points on ∂M are interior points
in M and functions in Cc(M) do not have to vanish at such points). We say
that (M, g) is complete when M equipped with the Riemannian distance is
a complete metric space.

In (1.1), p, q ∈ [1,∞) and q > p. The norms ‖ · ‖p and ‖ · ‖q are computed
with respect to some fixed reference measure, perhaps the Riemannian mea-
sure dv on M or, more generally, a measure dµ on M of the form dµ = σdv,
where σ is a smooth positive function on M . We set V (x, r) = µ(B(x, r)),
where B(x, r) is the geodesic ball of center x ∈ M and radius r > 0. The
gradient ∇f of f ∈ C∞(M) at x is the tangent vector at x defined by
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gx(∇f(x), u) = df |x (u)

for any tangent vector u ∈ Tx. Its length |∇f | is given by |∇f |2 = g(∇f,∇f).
We will not be concerned here with the (interesting) problem of finding the

best constant S(M, p, q) but only with the validity of the Sobolev inequality
(1.1), for some constant S(M, p, q).

In Rn, equipped with the Lebesgue measure dx, (1.1) holds for any p ∈
[1, n) with q = np/(n − p). The two simplest contexts where the question
of the validity of (1.1) is meaningful is when M = Ω is a subset of Rn, or
when Rn is equipped with a measure µ(dx) = σ(x)dx. In the former case, it
is natural to relax our basic assumption and allow domains with nonsmooth
boundary. It then becomes important to pay more attention to the exact
domain of validity of (1.1) as approximation by functions that are smooth up
to the boundary may not be available (cf., for example, [13, 14]).

The fundamental importance of the inequality (1.1) in analysis and geom-
etry is well established. It is beautifully illustrated in the work of V. Maz’ya.
One of the fundamental references on Sobolev inequalities is Maz’ya’s treaty
“Sobolev Spaces” [13] which discuss (1.1) and its many variants in Rn and in
domains in Rn (cf. also [1, 3, 14] and the references therein). Maz’ya’s treaty
anticipates on many later works including [2]. More specialized works that
discuss (1.1) in the context of Riemannian manifolds and Lie groups include
[11, 19, 23] among many other possible references.

The aim of this article is to discuss a particular approach to (1.1) that is
based on the notion of pseudo-Poincaré inequality. This technique is elemen-
tary in nature and quite versatile. It seems it has its origin in [4, 7, 17, 18]
and was really emphasized first in [7, 18], and in [2]. To put things in some
perspective, recall that the most obvious approach to (1.1) is via some “rep-
resentation formula” that allows us to “recover” f from its gradient through
an integral transform. One is them led to study the mapping properties of
the integral transform in question.

However, this natural approach is not well suited to many interesting ge-
ometric setups because the needed properties of the relevant integral trans-
forms might be difficult to establish or might even not hold true. For instance,
its seems hard to use this approach to prove the following three (well-known)
fundamental results.

Theorem 1.1. Assume that (M, g) is a Riemannian manifold of dimension
n equipped with its Riemannian measure and which is of one of the following
three types:

1. A connected simply connected noncompact unimodular Lie group equipped
with a left-invariant Riemannian structure.

2. A complete simply connected Riemannian manifold without boundary with
nonpositive sectional curvature (i.e., a Cartan–Hadamard manifold).

3. A complete Riemannian manifold without boundary with nonnegative Ricci
curvature and maximal volume growth.
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Then for any p ∈ [1, n) the Sobolev inequality (1.1) holds on M with q =
np/(n− p) for some constant S(M, p, q) < ∞.

One remarkable thing about this theorem is the conflicting nature of the
curvature assumptions made in the different cases. Connected Lie groups
almost always have curvature that varies in sign, whereas the second and
third cases we make opposite curvature assumptions. Not surprisingly, the
original proofs of these different results have rather distinct flavors.

The result concerning unimodular Lie groups is due to Varopoulos and
more is true in this case (cf. [22, 23]).

The result concerning Cartan–Hadamard manifolds is a consequence of a
more general result due to Michael and Simon [15] and Hoffmann and Spruck
[12]. A more direct prove was given by Croke [9] (cf. also [11, Section 8.1 and
8.2] for a discussion and further references).

The result concerning manifolds with nonnegative Ricci curvature and
maximal volume growth (i.e., V (x, r) > crn for some c > 0 and all x ∈
M, r > 0) was first obtained as a consequence of the Li-Yau heat kernel
estimate using the line of reasoning in [22].

One of the aims of this paper is to describe proofs of these three results
that are based on a common unifying idea, namely, the use of what we call
pseudo-Poincaré inequalities. Our focus will be on how to prove the desired
pseudo-Poincaré inequalities in the different contexts covered by this theorem.
For relevant background on geodesic coordinates and Riemannian geometry
see [5, 6, 10].

2 Sobolev Inequality and Volume Growth

There are many necessary conditions for (1.1) to hold and some are discussed
in Maz’ya’s treaty [13] in the context of Euclidean domains. For instance, if
(1.1) holds for some fixed p = p0 ∈ [1,∞) and q = q0 > p0 and we define m
by 1/q0 = 1/p0 − 1/m, then (1.1) also holds for all p ∈ [p0,m) with q given
by 1/q = 1/p − 1/m (this easily follows by applying the p0, q0 inequality to
|f |α with a properly chosen α > 1 and using the Hölder inequality). More
importantly to us here is the following result (cf., for example, [2] or [19,
Corollary 3.2.8]).

Theorem 2.1. Let (M, g) be a complete Riemannian manifold equipped with
a measure dµ = σdv, 0 < σ ∈ C∞(M). Assume that (1.1) holds for some
1 6 p < q < ∞ and set 1/q = 1/p− 1/m. Then for any r ∈ (m,∞) and any
bounded open set U ⊂ M

∀ f ∈ C∞c (U), ‖f‖∞ 6 Crµ(U)1/m−1/r‖∇f‖r. (2.1)
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Corollary 2.1. If the complete Riemannian manifold (M, g) equipped with
a measure dµ = σdv satisfies (1.1) for some 1 6 p < q < ∞, then

inf{s−mV (x, s) : x ∈ M, s > 0} > 0

with 1/q = 1/p− 1/m.

Proof. Fix r > m and apply (2.1) to the function

φx,s(y) = y 7→ (s− ρ(x, y))+ = max{(s− ρ(x, y), 0},

where ρ is the Riemannian distance on (M, g). Because (M,ρ) is complete,
this function is compactly supported and can be approximated by smooth
compactly supported functions in the norm ‖f‖∞ + ‖∇f‖r, justifying the
use of (2.1). Moreover, |∇φx,s| 6 1 a.e. so that ‖∇φx,s‖r 6 V (x, r)1/r. This
yields s 6 CrV (x, s)1/m−1/rV (x, s)1/r = CrV (x, s)1/m as desired. ut

Remark 2.1. Let Ω be an unbounded Euclidean domain.

(a) If we assume that (1.1) holds but only for all traces f |Ω of functions f ∈
C∞c (Rn), then we can conclude that (2.1) holds for such functions. Applying
(2.1) to ψx,s(y) = (s− ‖x− y‖)+, x ∈ Ω, s > 0, yields

|{z ∈ Ω : ‖x− z‖ < s}| > csm.

(b) If, instead, we consider the intrinsic geodesic distance ρ = ρΩ in Ω and
assume that (1.1) holds for all ρ-Lipschitz functions vanishing outside some ρ-
ball, then the same argument, properly adapted, yields V (x, s) > csm, where
V (x, s) is the Lebesgue measure of the ρ-ball of radius s around x in Ω.

For domains with rough boundary, the hypotheses made respectively in
(a) and (b) may be very different.

3 The Pseudo-Poincaré Approach to Sobolev
Inequalities

Our aim is to illustrate the following result which provide one of the most
elementary and versatile ways to prove a Sobolev inequality in a variety of
contexts (cf., for example, [2, Theorem 9.1]). The two main hypotheses in
the following statement concern a family of linear operators Ar acting, say,
on smooth compactly supported functions. The first hypothesis captures the
idea that Ar is smoothing. The sup-norm of Arf is controlled in terms of the
Lp-norm of f only and tends to 0 as r tends to infinity. The second hypothesis
implies, in particular, that Arf is close to f if |∇f | is in Lp and r is small.
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Theorem 3.1. Fix m, p > 1. Assume that for each r > 0 there is a linear
map Ar : C∞c (M) → L∞(M) such that

• ∀ f ∈ C∞c (M), r > 0, ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞c (M), r > 0, ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1, m) and q = mp/(m − p), there exists a finite constant
S(M, p, q) = C(p, q)C2C

1/m
1 such that the Sobolev inequality (1.1) holds

on M .

Outline of the proof. The proof is entirely elementary and is given in [2]. For
illustrative purpose and completeness, we explain the first step. Consider the
distribution function of |f |, F (s) = µ({x : |f(x)| > s}). Then

F (s) 6 µ({|f −Arf | > s/2}) + µ({|Arf | > s/2}).

By hypothesis, if s = 2C1r
−m/p‖f‖p, then µ({|Arf | > s/2}) = 0 and

F (s) 6 µ({|f −Arf | > s/2}) 6 2pCp
2rps−p‖∇f‖p

p.

This gives

sp(1+1/m)F (s) 6 2p(1+1/m)C
p/m
1 Cp

2‖∇f‖p
p‖f‖p/m

p .

This is a weak form of the desired Sobolev inequality (1.1). But, as is already
apparent in [13], such a weak form of (1.1) actually imply (1.1) (cf. also
[2, 19]). ut

Remark 3.1. When p = 1 and µ = v is the Riemannian volume, we get

s1+1/mv({|f | > s}) 6 21+1/mC
1/m
1 C2‖∇f‖1‖f‖1/m

1 .

For any bounded open set Ω with smooth boundary ∂Ω we can find a
sequence of functions fn ∈ C∞c (M) such that fn → 1Ωn and ‖∇fn‖1 →
vn−1(∂Ω). This yields the isoperimetric inequality

v(Ω)1−1/m 6 21+1/mC
1/m
1 C2vn−1(∂Ω).

Of course, as was observed long ago by Maz’ya and others, the classical co-
area formula and the above inequality imply

∀ f ∈ C∞c (M), ‖f‖m/(m−1) 6 21+1/mC
1/m
1 C2‖∇f‖1.

There are many situations where one does not expect (1.1) to hold, but
where one of the local versions

∀ f ∈ C∞c (M), ‖f‖q 6 S(M, p, q)(‖∇f‖p + ‖f‖p), (3.1)
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or (b indicates an open relatively compact inclusion)

∀Ω b M, ∀ f ∈ C∞c (Ω), ‖f‖q 6 S(Ω, p, q)(‖∇f‖p + ‖f‖p) (3.2)

may hold. This is handled by the following local version of Theorem 3.1 (cf.
[2] and [19, Section 3.3.2]).

Theorem 3.2. Fix an open subset Ω ⊂ M . Assume that for each r ∈ (0, R)
there is a linear map Ar : C∞c (Ω) → L∞(M) such that

• ∀ f ∈ C∞c (Ω), r ∈ (0, R), ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞c (Ω), r ∈ (0, R), ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1,m) and q = mp/(m − p), there exists a finite constant S =
S(p, q) such that

∀ f ∈ C∞c (Ω), ‖f‖q 6 SC
1/m
1 (C2‖∇f‖p + R−1‖f‖p). (3.3)

Another useful version is as follows. For any open set Ω we let W 1,p(Ω) be
the space of those functions in Lp(Ω) whose first order partial derivatives in
the sense of distributions (in any local chart) can be represented by a locally
integrable function and such that

∫

Ω

|∇f |pdv < ∞.

We write ‖f‖Ω,p for the Lp-norm of f over Ω. Note that C∞(Ω) ∩W 1,p(Ω)
is dense in W 1,p(Ω) for 1 6 p < ∞ (cf., for example, [1, 3, 13]).

Theorem 3.3. Fix an open subset Ω ⊂ M . Assume that for each r ∈ (0, R)
there is a linear map Ar : C∞(Ω) ∩W 1,p(Ω) → L∞(M) such that

• ∀ f ∈ C∞(Ω) ∩W 1,p(Ω), r ∈ (0, R), ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞(Ω) ∩W 1,p(Ω), r ∈ (0, R), ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1,m) and q = mp/(m − p), there exists a finite constant S =
S(p, q) such that

∀ f ∈ W 1,p(Ω), ‖f‖q 6 SC
1/m
1 (C2‖∇f‖p + R−1‖f‖p). (3.4)

4 Pseudo-Poincaré Inequalities

The term Poincaré inequality (say, with respect to a bounded domain Ω ⊂
M) is used with at least two distinct meanings:

• The Neumann type Lp-Poincaré inequality for a bounded domain Ω ⊂ M
is the inequality
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∀ f ∈ W 1,p(Ω), inf
ξ∈R

∫

Ω

|f − ξ|pdv 6 PN (Ω)
∫

Ω

|∇f |pdv.

• The Dirichlet type Lp-Poincaré inequality for a bounded domain Ω ⊂ M
is the inequality

∀ f ∈ C∞c (Ω),
∫

Ω

|f |pdv 6 PD(Ω)
∫

Ω

|∇f |pdv.

When p = 2 and the boundary is smooth, the first (respectively, the second)
inequality is equivalent to the statement that the lowest nonzero eigenvalue
λN (Ω) (respectively, λD(Ω)) of the Laplacian with the Neumann boundary
condition (respectively, the Dirichlet boundary condition) is bounded below
by 1/PN (Ω) (respectively, 1/PD(Ω)). Note that if M = Sn is the unit sphere
in Rn+1 and Ω = B(o, r), r < 2π, is a geodesic ball, then PN (Ω) → 1/(n+1)
and PD(Ω) →∞ as r tends to 2π.

Here, we will use the term Poincaré inequality for the collection of the
Neumann type Poincaré inequalities on metric balls. More precisely, we say
that the Lp-Poincaré inequality holds on the manifold M if there exists P ∈
(0,∞) such that

∀B = B(x, r), ∀ f ∈ W 1,p(B), inf
ξ∈R

∫

B

|f − ξ|pdv 6 Prp

∫

B

|∇f |pdv. (4.1)

The notion of pseudo-Poincaré inequality was introduced in [7, 18] to de-
scribe the inequality

∀ f ∈ C∞c (M), ‖f − fr‖p 6 Cr‖∇f‖p, (4.2)

where
fr(x) = V (x, r)−1

∫

B(x,r)

fdv.

Although this looks like a version of the previous Poincaré inequality, it is
quite different in several respects. The most important difference is the global
nature of each of the members of the pseudo-Poincaré inequality family: in
(4.2) all integrals are over the whole space.

We say the doubling volume condition holds on M if there exists D ∈
(0,∞) such that

∀x ∈ M, r > 0, V (x, 2r) 6 DV (x, r). (4.3)

The only known strong relation between (4.1) and (4.2) is the following
result from [8, 18].

Theorem 4.1. If a complete manifold M equipped with a measure dµ =
σdv satisfies the conjunction of (4.3) and (4.1), then the pseudo-Poincaré
inequality (4.2) holds on M .



356 L. Saloff-Coste

The most compelling reason for introducing the notion of pseudo-Poincaré
inequality is that unimodular Lie groups always satisfy (4.2) with C = 1 (cf.
[22] and the development in [7]). The proof is extremely simple and the result
slightly stronger.

Theorem 4.2. Let G be a connected unimodular Lie group equipped with a
left-invariant Riemannian distance and Haar measure. For any group element
y at distance r(y) from the identity element e

∀ f ∈ Cc(G), ‖f − fy‖p 6 r(y)‖∇f‖p,

where fy(x) = f(xy).

Proof. Indeed, let γy : [0, r(y)] → G be a (unit speed) geodesic joining e to
y. Thus,

|f(x)− f(xy)|p 6 r(y)p−1

∫ r(y)

0

|∇f(xγy(s))|pds.

Integrating over x ∈ G yields the desired result. ut
With this simple observation and Theorem 3.1, we immediately find that

any simply connected noncompact unimodular Lie group M of dimension n
satisfies the Sobolev inequality

‖f‖np/(n−p) 6 S(M, p)‖∇f‖p.

This is because the volume growth function V (x, r) = V (r) is always faster
than crn (cf. [23] and the references therein). In fact, for r ∈ (0, 1), we
obviously have V (r) ' rn and, for r > 1, either V (r) ' rN for some integer
N > n or V (r) grows exponentially fast. This line of reasoning yields the
following improved result (due to Varopoulos [22], with a different proof).

Theorem 4.3. Let G be a connected unimodular Lie group equipped with a
left-invariant Riemannian structure and Haar measure. If the volume V (r)
of the balls of radius r in G satisfies V (r) > crm for some m > 0 and all
r > 0, then (1.1) holds on G for all p ∈ [1,m] and q = mp/(m− p).

In this article, we think of a pseudo-Poincaré inequality as an inequality
of the more general form

∀ f ∈ C∞c (M), ‖f −Arf‖p 6 Cr‖∇f‖p, (4.4)

where Ar : C∞c (M) → L∞(M) is a linear operator. It is indeed very useful to
replace the ball averages

fr = V (x, r)−1

∫

B(x,r)

fdµ

by other types of averaging procedures. One interesting case is the following
instance.
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Theorem 4.4. Let (M, g) be a Riemannian manifold, and let ∆ be the
Friedrichs extension of the Laplacian defined on smooth compactly supported
functions on M . Let Ht = et∆ be the associated semigroup of selfadjoint
operator on L2(M,dv) (the minimal heat semigroup on M). Then

∀ f ∈ C∞c (M), ‖f −Htf‖2 6
√

t‖∇f‖2. (4.5)

Consequently, if there are constants C ∈ (0,∞), T ∈ (0,∞] and m > 2 such
that

∀ t ∈ (0, T ), ‖Htf‖∞ 6 Ct−m/4‖f‖2, (4.6)

then there exists a constant S = S(C, m) ∈ (0,∞) such that the Sobolev
inequality

∀ f ∈ C∞c (M), ‖f‖2m/(m−2) 6 S(‖∇f‖2 + T−1‖f‖2) (4.7)

holds on M .

Proof. In order to apply Theorem 3.2 with Ar = Hr2 , it suffices to prove
(4.5). But

Htf − f =
∫ t

0

∂sHsfds

and

〈∂sHsf, Hτf〉 = 〈∆Hsf, Hτf〉 = −‖H(s+τ)/2(−∆)1/2f‖22 > −‖∇f‖22.

Hence ‖Htf − f‖22 6 t‖∇f‖22 as desired. ut
Remark 4.1. One can show that (4.7) and (4.6) are, in fact, equivalent prop-
erties. This very important result was first proved by Varopoulos [21]. This
equivalence holds in a much greater generality (cf. also [23]). When m ∈ (0, 2),
one can replace (4.7) by the Nash inequality

∀ f ∈ C∞c (M), ‖f‖2(1+2/m)
2 6 N(‖∇f‖2 + T−1‖f‖2)‖f‖4/m

1

which is equivalent to (4.6) (for any fixed m > 2). See, for example, [2, 4, 19,
23] and the references therein.

5 Pseudo-Poincaré Inequalities and the Liouville
Measure

Given a complete Riemannian manifold M = (M, g) of dimension n (without
boundary), we let TxM be the tangent space at x, Sx ⊂ TxM the unit
sphere, and SM the unit tangent bundle equipped with the Liouville measure
defined by
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∫

SM

fdµ =
∫

M

∫

Sx

f(x, u)dSx
udv(x)

where we write ξ = (x, u) ∈ SM and dSxu is the normalized measure on
the unit sphere. We denote by Φt the geodesic flow on M (with phase space
SM). For any t, Φt : SM → SM is a diffeomorphism and the Liouville
measure is invariant under Φt. By definition, for any x ∈ M , u ∈ Sx ⊂ TxM ,
we have Φt(x, u) = (γx,u(t), γ̇x,u(t)), where γx,u : [0,∞) → M is the (unit
speed) geodesic starting at x with tangent unit vector u and γ̇x,u(t) is the
unit tangent vector to γx,u at γx,u(t) in the forward t direction.

If f : SM 7→ R is a function on SM that depends on ξ = (x, u) ∈ SM
only through x ∈ M , we have (for any fixed t > 0, and with a slight abuse of
notation, namely f(ξ) = f(x))

∫

M

fdv =
∫

SM

fdµ =
∫

SM

f ◦ Φtdµ =
∫

SM

f(γx,u(t))dSx
udv(x). (5.1)

For any (x, u) ∈ SM , let r(x, u) be the distance from x to the cutlocus in
the direction of u. Namely,

r(x, u) = inf{t > 0 : d(x, Φt(x, u)) < t}.

The function r defined on SM is always upper semicontinuous and continuous
when M is complete without boundary. Now, let ψ : (x, u, s) 7→ ψ(x, u, s) =
ψx,u(s) ∈ L1,+

loc (SM × [0,∞)) with ψx,u(t) = 0 if t > r(x, u). Call such a
function admissible. For f ∈ C∞c (M) we set

Arf(x) = w(x, r)−1

∫ r

0

∫

Sx

f(γx,u(t))ψx,u(t)dtdSxu,

where
w(x, r) =

∫ r

0

∫

Sx

ψx,u(t)dtdSxu.

In words, Arf is a weighted geodesic average of f over scales at most r. Note
that, according to our definition, these averages never look past the cutlocus.
Example 5.1. Let ψx,u(t) = J(x, u, t) be the density of the volume element
dv in geodesic polar coordinate around x so that

dv(y) = J(x, u, t)dtdSxu, y = γx,u(t) = Φt(x, u), t < r(x, u).

By definition, we set J(x, u, t) = 0 for t > r(x, u). Then w(x, r) = V (x, r)
and Arf(x) = fr(x) is the mean of f in B(x, r).

Theorem 5.1. On any complete manifold without boundary and for any
choice of admissible ψ ∈ L1,+

loc (SM × [0,∞)), we have
∫

M

|f −Arf |pdv 6 D(r)
∫

M

|∇f |pdv
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with

Dp(r) = sup
(x,u)∈SM

{
r

∫ r

0

ψx,u(t)tp−1

w(x, r)
dt

}
.

Proof. Write
∫

M

|f −Arf |pdv

6
∫

M

1
w(x, r)

∫ r

0

∫

Sx

|f(x)− f(γx,u(t))|pψx,u(t)dtdSx
udv(x)

6
∫

M

1
w(x, r)

∫ r

0

∫

Sx

(∫ t

0

|∇f |(γx,u(s))ds

)p

ψx,u(t)dtdSxudv(x)

6
∫

M

1
w(x, r)

∫ r

0

∫

Sx

∫ t

0

|∇f |p(γx,u(s))dsψx,u(t)tp−1dtdSx
udv(x)

= ∈ tr0

∫

M

∫

Sx

|∇f |p(γx,u(s))
(∫ r

s

ψx,u(t)tp−1

w(x, r)
dt

)
dSxudv(x)ds

6
(

sup
(x,u)∈SM

{∫ r

0

ψx,u(t)tp−1

w(x, r)
dt

})∫ r

0

∫

M

∫

Sx

|∇f |p(γx,u(s))dSxudv(x)ds

6 D(r)
∫

M

|∇f |pdv,

where Dp(r) is as defined in the theorem. Note the crucial use of (5.1) at the
last step. ut

Corollary 5.1. Let (M, g) be an isotropic Riemannian manifold. Then, for
any p ∈ [1,∞], the pseudo-Poincaré inequality

∀ f ∈ C∞c (M), ‖f − fr‖p 6 r‖∇f‖p

is satisfied.

Proof. Use the previous theorem with ψx,u(t) = J(x, u, t), in which case
Arf = fr, w(x, r) = V (x, r). Observe that J(x, u, t) is independent of (x, u)
because M is isotropic. It follows that

∫ r

0

J(x, u, t)dt =
∫

Sx

∫ r

0

J(x, u, t)dtdu = V (x, r).

Hence D(r) 6 rp. ut
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Note that isotropic Riemannian manifolds are the same as two-point ho-
mogeneous Riemannian manifolds. They must be either Rn or a rank one
symmetric space.

Corollary 5.2. Assume that M is a simply connected complete n-dimensional
manifold without boundary and with nonpositive sectional curvature (i.e., a
Cartan–Hadamard manifold). Set

Arf(x) = nr−n

∫ r

0

∫

Sx

f(γx,u(t))tn−1dtdSxu.

Then, for any p ∈ [1,∞], the inequalities

∀ f ∈ C∞c (M), ‖f −Ar‖p 6 r‖∇f‖p, ‖Arf‖∞ 6 (Ωnrn)−1/p‖f‖p.

are satisfied (Ωn is the volume of the n-dimensional Euclidean unit ball).

Proof. Apply the theorem with ψx,u(t) = tn−11[0,r(x,u))(t). This gives D(r) 6
rp on any manifold (i.e., we have not use nonpositive curvature yet). Now,
since M has nonpositive sectional curvature and is simply connected, we
have r(x, u) = ∞, and the classical comparison theorem gives ωn−1t

n−1 6
J(x, u, t) (ωn−1 the volume of the unit sphere in Rn). Hence

|Arf(x)| 6 1
(ωn−1/n)rn

∫ r

0

∫

Sx

|f(γx,u(t)|J(x, u, t)dtdSxu

6 1
(ωn−1/n)rn

∫

M

|f |dv.

The proof is complete. ut

This and Theorem 3.1 yield the following classical result (case (2) of The-
orem 1.1).

Corollary 5.3. Assume that M is a simply connected complete n-dimensional
manifold without boundary and with nonpositive sectional curvature (i.e., a
Cartan–Hadamard manifold). Then the Sobolev inequality (1.1) holds on M
with q = np/(n− p) for any p ∈ [1, n).

This argument allow us to obtain a generalized version of this important
result. Namely, for any x ∈ M , let

Rx = {u ∈ Sx : r(x, u) = ∞}.

In words, Rx is the set of unit tangent vectors u ∈ TxM associated with rays
starting at x (a ray is a semiinfinite distance minimizing geodesic starting at
x). Let

|Rx| =
∫

Rx

dSxu
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be the normalized volume of Rx as a subset of Sx. Now, set

A∗rf(x) =
n

|Rx|rn

∫

Rx

∫ r

0

f(γx,u(t))tn−1dtdSxu.

Obviously, Theorem 5.1 yields

‖f −A∗rf‖p 6 rp‖∇f‖p.

Further, if M has nonpositive sectional curvature along all rays,

|A∗rf(x)| 6 n

ωn−1|Rx|rn

∫

M

|f |dv.

Hence we obtain the following statement.

Theorem 5.2. Assume that M is a complete Riemannian n-manifold with-
out boundary and with nonpositive curvature and such that ρ = minx{|Rx|} >
0. Then M satisfies (1.1) with q = np/(n− p).

The simplest example of application of this result is to the surface of rev-
olution known as the catenoid (it looks essentially like two planes connected
through a compact cylinder) which is a celebrated example of minimal sur-
face in R3. The theorem applies for p ∈ [1, 2) and yields, for instance, the
Sobolev inequality ‖f‖2 6 S‖∇f‖1.

6 Homogeneous Spaces

In this section, we revisit the pseudo-Poincaré inequality on unimodular Lie
groups to extend it to a class of homogeneous spaces. The argument we will
use contains similarities as well as serious differences with the argument based
on the invariance of the Liouville measure that was described in Section 5. We
present it in the context of sub-Riemannian geometry. For an introduction
to sub-Riemannian geometry (cf. [16]).

Let G be a unimodular Lie group, and let K be a compact subgroup.
Let M = G/K be the associated homogeneous space equipped with its G
invariant measure dµ. Let τg : M → M be the action of G on M , and let
τgf(x) = f(τgx), f ∈ Cc(M).

Assume that M is equipped with a (constant rank) sub-Riemannian struc-
ture, i.e., a vector subbundle H ⊂ TM equipped with a fiber inner product
〈·, ·〉H such that any local frame (X1, . . . , Xk) for H is bracket generating
(i.e., satisfies the Hörmander condition). For any function f ∈ C∞c (M), let
∇Hf(x) be the vector in Hx such that df |x (u) = 〈∇Hf, u〉Hx for any u ∈ Hx.

Assume further that (H, 〈·, ·〉H) is G invariant, i.e., for all g ∈ G, x ∈ M ,
X, Y ∈ Hx we have dτg(X) ∈ Hτgx and
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〈dτg(X), dτg(Y )〉Hτgx = 〈X,Y 〉Hx .

The space H is called the horizontal space. Under the Hörmander condi-
tion, any two points can be joined by absolutely continuous curves in M that
stay tangent to H almost surely. For any such c : [0, T ] → M with ċ(t) ∈ Hc(t)

we set

`H(c) =
∫ T

0

〈ċ, ċ〉1/2
Hc(t)

dt.

This is the horizontal length of c. By definition, for any two points x, y ∈ M ,
dH(x, y) is the infimum of the horizontal length of horizontal curves joining
x to y. It is not hard to check that dH(x, y) is also equal to the infimum
of all T such that there exists an absolutely continuous horizontal curve
c : [0, T ] → M with 〈ċ, ċ〉H 6 1 joining x to y. Since the action of G preserves
horizontal length, it also preserves the distance dH . We let BH(x, r) = {y ∈
M : dH(x, y) < r} and VH(r) = µ(BH(x, r)) which is, indeed, independent
of x. Our aim is to prove the following result.

Theorem 6.1. Let M = G/K with G unimodular and K compact be an
homogeneous manifold. Assume that M is equipped with a sub-Riemannian
structure (H, 〈·, ·〉H) satisfying the Hörmander condition and preserved by the
action of G. Then, for any 1 6 p 6 ∞,

∀ f ∈ Cc(M), ‖f − fr‖p 6 r‖∇Hf‖p.

Proof. We can choose the Haar measure on G and the G invariant measure
µ on M so that for any F ∈ Cc(G)

∫

G

F (g)dg =
∫

M

∫

K

F (gxk)dkdµ(x),

where dk is the normalized Haar measure on K. Here, gx stands for any
element of G such that x = gK. Note that

x →
∫

K

F (gxk)dk ∈ Cc(M)

is indeed independent of the choice gx, x ∈ M . We need to observe that there
is such an integration formula for any choice of an origin in M . Namely, for
any z ∈ M there is a compact subgroup Kz in G that fixes z and we can
write ∫

G

F (g)dg =
∫

M

∫

Kz

F (gxk)dKzkdµ(x) (6.1)

for some choice of Haar measure on Kz. Because µ is invariant under the
action of G and G is unimodular, the Haar measure on Kz must be taken to
be the normalized Haar measure (cf., for example, [20]).

Now, for any y ∈ gyK ∈ M we pick an horizontal path c : [0, T ] → M of
horizontal length l with 〈ċ, ċ〉H 6 1 and joining o = eK to y. For any g ∈ G
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and f ∈ Cc(M)

|f(τgo)− f(τgy)|p 6 T p−1

∫ T

0

|∇Hf(τgc(t))|pdt.

Hence
∫

G

|f(τgo)− f(τgy)|pdg 6 T p−1

∫ T

0

∫

G

|∇Hf(τgc(t)|pdgdt.

We now use (6.1) with z = c(t) and F (g) = |∇f(τgc(t))|p to compute
∫

G

|∇Hf(gc(t))|pdg =
∫

M

∫

Kc(t)

|∇Hf(τgxkc(t))|pdKc(t)kdµ(x)

=
∫

M

|∇Hf(x)|pdµ(x).

Hence ∫

G

|f(τgo)− f(τgy)|pdg 6 T p‖∇Hf‖p
p.

Optimizing over the value of T yields
∫

G

|f(τgo)− f(τgy)|pdg 6 d(o, y)‖∇Hf‖p
p.

Next, for any g ∈ G

VH(r)−1

∫

BH(o,r)

f(τgy)dµ(y) = VH(r)−1

∫

BH(τgo,r)

f(y)dµ(y).

Hence, if we set

fr(x) = VH(r)−1

∫

BH(x,r)

fdµ,

we have

‖f − fr‖p
p =

∫

M

∣∣∣∣∣f(x)− VH(r)−1

∫

BH(x,r)

fdµ

∣∣∣∣∣

p

dµ(x)

=
∫

G

∣∣∣∣∣f(τgo)− VH(r)−1

∫

BH(τgo,r)

fdµ

∣∣∣∣∣

p

dg

=
∫

G

∣∣∣∣∣f(τgo)− VH(r)−1

∫

BH(o,r)

f(τgy)dµ(y)

∣∣∣∣∣

p

dg
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6 VH(r)−1

∫

BH(o,r)

∫

G

|f(τgo)− f(τgy)|pdgdµ(y)

6 rp‖∇Hf‖p
p.

This finishes the proof of Theorem 6.1. ut

Corollary 6.1. In the context of Theorem 6.1, if VH(r) > crm for all r > 0,
then the Sobolev inequality

∀f ∈ Cc(M), ‖f‖q 6 S(M,H, p, q)‖∇Hf‖p

holds on M for all p ∈ [1, m) with q = mp/(m − p) and a finite constant
S(M, H, c, p, q).

This covers the case of unimodular Lie groups (M = G, K = {e}) equipped
with a family of left-invariant vector fields {X1, . . . , Xk} that generates the
Lie algebra (in this case, |∇Hf |2 =

∑k
1 |Xif |2). It also covers the case of

noncompact symmetric spaces M = G/K, G = NAK semisimple, equipped
with their canonical Riemannian structure. Note that when M is a noncom-
pact symmetric space, the inequality ‖f‖p 6 C(M, p)‖∇f‖p holds as well for
different reasons.

7 Ricci Curvature Bounded Below

This section offers variations on results from [19]. Let (M, g) be a Riemannian
manifold of dimension n (without boundary) with Ricci curvature tensor Ric.
Fix K, R > 0, an open set Ω ⊂ M . We assume throughout that ΩR =
{y ∈ M : d(x, y) 6 R} is compact and that the Ricci tensor is bounded by
Ric > −Kg over ΩR. It follows that for any x ∈ Ω and r ∈ (0, R) almost
every point y in B(x, r) can be joined to x by a unique minimizing geodesic
γx,y : [0, d(x, y)] → ΩR. Note that we use somewhat conflicting notation
by letting γx,u denote the unit speed geodesic starting at x in the direction
u ∈ Sx and letting γx,y denote the minimizing unit speed geodesic from x to
y (when it exists). Note also that for any x ∈ Ω and u ∈ Sx and r ∈ (0, R),
the unit speed geodesic γx,u (not necessarily minimizing) is defined at least
on the interval [0, r] because ΩR is compact in M .

In this context, the Bishop–Gromov comparison theorem yields the fol-
lowing properties:

• For all x ∈ Ω and 0 < s < r < R

V (x, r) 6 V (x, s)(r/s)ne
√

(n−1)K r.
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• For any x ∈ Ω, u ∈ Sx, and 0 < s < r < R such that γx,u is minimizing
on [0, r]

J(x, u, r) 6 J(x, u, s)(r/s)n−1e
√

(n−1)K r.

We will use these properties to prove the following result.

Theorem 7.1. Referring to the above setup concerning (M, g) and Ω,K, R,
we have

∀ r ∈ (0, R), ∀ f ∈ C∞c (Ω), ‖f − fr‖p
p 6 8ne3

√
(n−1)K rrp‖∇f‖p

p.

Proof. For simplicity, we write dx for the Riemannian measure v(dx). It suf-
fices to show that, for any f ∈ C∞c (Ω) and r ∈ (0, R)

∫

Ω

∫

Ω

|f(x)− f(y)|p 1B(x,r)(y)
V (x, r)

dxdy 6 8ne3
√

(n−1)K rrp‖∇f‖p
p.

By the Bishop–Gromov volume inequality, for x, y ∈ Ω

1B(x,r)(y)
V (x, r)

6 2ne
√

(n−1)K r 1B(x,r)(y)√
V (x, r)V (y, r)

(7.1)

and it suffices to bound

I =
∫

Ω

∫

Ω

|f(x)− f(y)|p 1B(x,r)(y)√
V (x, r)V (y, r)

dxdy.

Let W be the (symmetric) subset of Ω×Ω of all (x, y) with d(x, y) < r such
that there exists a unique minimizing geodesic γx,y : [0, d(x, y)] → M joining
x to y. As was noted above, for any x ∈ Ω, almost all y ∈ B(x, r) have this
property and the image of γx,y is contained in ΩR. Hence

I =
∫

W

|f(x)− f(y)|p 1B(x,r)(y)√
V (x, r)V (y, r)

dxdy

6
∫

W

∫ d(x,y)

0

d(x, y)p−1|∇f(γx,y(s))|p1B(x,r)(y)√
V (x, r)V (y, r)

dsdxdy.

The following step is essential to the proof. By symmetry between x and y
and since γx,y(s) = γy,x(d(x, y)− s), we have

∫

W

∫ d(x,y)/2

0

d(x, y)p−1|∇f(γx,y(s))|p1B(x,r)(y)√
V (x, r)V (y, r)

dsdxdy =

∫

W

∫ d(x,y)

d(x,y)/2

d(x, y)p−1|∇f(γx,y(s))|p1B(x,r)(y)√
V (x, r)V (y, r)

dsdxdy.
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Hence

I 6 2rp−1

∫

W

∫ d(x,y)

d(x,y)/2

|∇f(γx,y(s))|p1B(x,r)(y)√
V (x, r)V (y, r)

dsdxdy.

By the Bishop–Gromov comparison theorem, we have

∀x, y ∈ M, 0 < s < r,
1B(x,r)(y)√

V (x, r)V (y, r)
6 2ne

√
(n−1)K r 1B(x,r)(γx,y(s))

V (γx,y(s), r)
.

Moreover, again by the Bishop–Gromov comparison theorem, for all (x, y) ∈
W and d(x, y)/2 < s < d(x, y) 6 r, the Jacobian J(γx,y(s)) of the map

y 7→ z = φ(y) = γx,y(s) is bounded below by 2−n+1e−
√

(n−1)K r. Note that
we use here the fact that the image of the whole γx,y lies in ΩR, where the
Ricci lower bound is satisfied.

For each s ∈ [0, r] we set

Ws = {(x, y) ∈ W : s 6 d(x, y)}.

Using the two observations above in the previous upper bound for I and
setting C(r) = 4nrp−1e2

√
(n−1)K r, we obtain

I 6 C(r)
∫

W

∫ d(x,y)

d(x,y)/2

|∇f(γx,y(s))|pJ(γx,y(s))1B(x,r)(γx,y(s))
V (γx,y(s), r)

dsdxdy

6 C(r)
∫ r

0

∫

Ws

|∇f(γx,y(s))|pJ(γx,y(s))1B(γx,y(s),r)(x)
V (γx,y(s), r)

dxdyds

6 C(r)
∫ r

0

∫

M×M

|∇f(z)|p1B(z,r)(x)
V (z, r)

dxdzds

= C(r)r
∫

M

|∇f(z)|pdz.

Taking (7.1) into account, we obtain the desired result. ut
As corollaries of Theorems 3.1 and 7.1, we obtain the following three well-

known results.

Theorem 7.2. For any relatively compact set Ω in a Riemannian manifold
M (without boundary) of dimension n, the Sobolev inequality

∀ f ∈ C∞c (Ω), ‖f‖q 6 S(Ω, p, q) (‖∇f‖p + ‖f‖p)

holds for any p ∈ [1, n) and q = pn/(n− p).

For the proof of the next result, in addition to Theorems 3.1 and 7.1, one
uses the Bishop–Gromov comparison theorem in the form of the volume lower
bound
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∀x ∈ M, ∀ s ∈ (0, r), V (x, s) > c(x, r)sn

with c(x, r) = e
√

(n−1)K rV (x, r) which is valid as long as the closed ball
B(x, 2r) is compact and K > 0 is such that the Ricci curvature tensor is
bounded below by Ric > −Kg on B(x, 2r).

Theorem 7.3. On any Riemannian manifold M of dimension n (without
boundary), the Sobolev inequality

∀ f ∈ C∞c (B(x, r)), ‖f‖q 6 C(p, n, Kr2)r
V (x, r)1/n

(‖∇f‖p + r−1‖f‖p

)

holds for any p ∈ [1, n) and q = pn/(n−p) as long as the closed ball B(x, 2r)
is compact and K > 0 is such that the Ricci curvature tensor is bounded
below by Ric > −Kg on B(x, 2r).

If one follows the constants in the proof of Theorem 7.3, one finds that

C(p, n,Kr2) 6 C1(n, p)eC2(n,p)
√

Kr2

for some finite constants C1(n, p) and C2(n, p).
The next result can be obtained from the previous theorem by letting r

tend to infinity (which is possible when K = 0 since Kr2 = 0 for all r > 0).

Theorem 7.4. For any complete Riemannian manifold M of dimension n
with nonnegative Ricci curvature and maximum volume growth (i.e., there
exists c > 0 such that V (x, r) > crn for all x ∈ M , r > 0) the Sobolev
inequality

∀ f ∈ C∞c (M), ‖f‖q 6 S(c, n, p)‖∇f‖p

holds for any p ∈ [1, n) and q = pn/(n− p).

8 Domains with the Interior Cone Property

In this final section, we illustrate yet a slightly different use of the pseudo-
Poincaré inequality. Let (M, g) be a complete Riemannian manifold without
boundary.

Fix δ ∈ (0, 1] and r > 0. A (δ, r)-cone at x is a set of the form

C(x, ωx, r) = {y = γx,u(s) : u ∈ ωx, 0 6 s < r},

where ωx is an open subset of Sx with the property that r(x, u) > r for all
u ∈ ωx and |ωx| > δ. Here, |ωx| denotes the measure of ωx with respect to
the normalized measure on the sphere Sx. We always assume further that for
any continuous function f the function
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x 7→
∫

C(x,ωx,r)

f(y)dv(y)

is measurable. In particular, x 7→ v(C(x, ωx, r)) is measurable.
Note that the existence of a (δ, r) cone at x is a non trivial assumption. A

domain Ω which contains an (δ, r) cone at x for any x ∈ Ω is said to satisfy
the (δ, r) interior cone condition.

In the Euclidean space context, the interior cone condition is perhaps the
most classical condition for the validity of various Sobolev embedding theo-
rems (cf. [1, 13]). In the geometric context of complete Riemannian manifolds,
we offer two results based on the interior cone conditions. The Sobolev in-
equalities stated in the following two theorems are of a different nature than
those discussed earlier in this paper because the functions involved need not
vanish at the boundary of Ω. To obtain these inequalities, we use Theo-
rem 3.3.

Theorem 8.1. Let Ω be a domain in an n-dimensional complete Riemannian
manifold (M, g) (without boundary). Fix K, R > 0 and assume that

• The Ricci curvature is bounded by Ric > −Kg on Ω.

• There exists δ ∈ (0, 1) such that for any x ∈ Ω, there is a (δ,R)-
cone C(x, ωx, R) at x contained in Ω with the additional property that
v(C(x, ωx, r)) > crn for any r ∈ (0, R).

For any f ∈ C∞(Ω) ∩W 1,p(Ω) we set

Arf(x) =
1

v(C(x, ωx, r))

∫

C(x,ωx,r)

fdv.

Then for all f ∈ C∞(Ω) ∩W 1,p(Ω) the inequality

∀ r ∈ (0, R), ‖f − Arf‖Ω,p 6 (ωn−1/cn)e2
√

(n−1)K r r‖∇f‖Ω,p

holds. Further, for p ∈ [1, n) and q = np/(n− p) the Sobolev inequality

∀ f ∈ C∞(Ω) ∩W 1,p(Ω), ‖f‖Ω,q 6 S(c, p, n,Kr2)
(‖∇f‖Ω,p + R−1‖f‖Ω,p

)

is satisfied.

Proof. Let f ∈ C∞(Ω) ∩W 1,p(Ω). For any x ∈ Ω we write

v(C(x, r))|f(x)− Arf(x)| 6
∫

ωx

∫ r

0

∫ s

0

|∇f(γx,u(τ))dτ |J(x, u, s)dsdSxu.

By the Bishop–Gromov comparison theorem, for all 0 < τ < s < r < r(x, u)

J(x, u, τ)(s/τ)n−1e
√

(n−1)K s > J(x, u, s).



Pseudo-Poincaré Inequalities 369

Hence

v(C(x, r))|f(x)− Arf(x)|

6 e
√

(n−1)K r

∫

ωx

∫ r

0

∫ s

0

τ1−n|∇f(γx,u(τ))|J(x, u, τ)dτsn−1dsdSxu

6 e
√

(n−1)K rrn

n

∫

Ω∩B(x,r)

|∇f(z)|
d(x, z)n−1

dz.

Using the hypothesis v(C(x, r)) > crn, we obtain

|f(x)− Arf(x)|p

6 ep
√

(n−1)K r

(cn)p

(∫

Ω∩B(x,r)

dz

d(x, z)n−1

)p−1 ∫

Ω∩B(x,r)

|∇f(z)|p
d(x, z)n−1

dz.

The Bishop comparison theorem yields
∫

Ω∩B(z,r)

dx

d(z, x)n−1
6 ωn−1e

√
(n−1)K rr.

The inequality

‖f − Arf‖Ω,p 6 (ωn−1/cn)e2
√

(n−1)K rr‖∇f‖Ω,p

follows, and Theorem 3.3 gives the desired Sobolev inequality. ut

Theorem 8.2. Fix R > 0 and δ ∈ (0, 1). Let Ω be a domain in an n-
dimensional complete simply connected Riemannian manifold (M, g) without
boundary and with nonpositive sectional curvature (i.e., a Cartan–Hadamard
manifold). Assume that Ω as the (δ,R) interior cone property. Namely, for
any x ∈ Ω there is a (δ,R)-cone {y = γx,u(s) : u ∈ ωx, 0 6 s < R, } at x
contained in Ω. For any f ∈ C∞(Ω) we set

Arf(x) =
n

|ωx|rn

∫

ωx

∫ r

0

f(γx,u(s)sn−1dsdSxu.

Then for all f ∈ C∞(Ω) ∩W 1,p(Ω) the inequality

∀ r ∈ (0, R), ‖f −Arf‖Ω,p 6 δ−1/p r‖∇f‖Ω,p

holds. Further, for p ∈ [1, n) and q = np/(n− p), the Sobolev inequality

∀ f ∈ C∞(Ω) ∩W 1,p(Ω), ‖f‖Ω,q 6 S(δ, p, n)
(‖∇f‖Ω,p + R−1‖f‖Ω,p

)
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is satisfied.

Proof. Let f ∈ C∞(Ω) ∩W 1,p(Ω). For any x ∈ Ω we write

|f(x)−Arf(x)| 6 n

δrn

∫

ωx

∫ r

0

∫ s

0

|∇f(γx,u(τ))|dτsn−1dsdSxu.

Hence, using (5.1) for the last step,

‖f −Arf‖p
Ω,p 6 n

δrn

∫ r

0

∫

Ω

∫

ωx

∫ r

τ

|∇f(γx,u(τ))|pdSx
usn+p−2dsdτdx

6 nrp−1

(n + p− 1)δ

∫ r

0

∫

Ω

∫

ωx

|∇f(γx,u(τ))|pdSxudxdτ

=
rp−1

δ

∫ r

0

∫

Ω

∫

ωx

|∇f(γx,u(τ))|p1Ω(γx,u(τ))dSx
udxdτ

6 rp−1

δ

∫ r

0

∫

M

∫

Sx

|∇f(γx,u(τ))|p1Ω(γx,u(τ))dSxudxdτ

=
rp

δ
‖∇f‖p

Ω,p.

This yields the desired pseudo-Poincaré inequality. To obtain the stated
Sobolev inequality, we simply observe that

|Arf(x)| 6 n

δrn

∫

ωx

∫ r

0

|f(γx,u(s)|sn−1dsdSxu 6 n

δrn

∫

Ω

|f |dv

because, on any Cartan–Hadamard manifold, J(x, u, s) > sn−1 for all u. It
then suffices to apply Theorem 3.3. ut

Example 8.1. Let M be an n-dimensional Cartan–Hadamard manifold. Let
C be a closed geodesically convex set, and let Ω = M \ C. We claim that Ω
has the (1/2,∞) interior cone property. Indeed, for any x ∈ Ω, let ωx be the
subset of those unit tangent vectors v at x such that C ∩ {y = γx,v(s) : s >
0} = ∅. Because C is geodesically convex and x ∈ Ω, for any u ∈ Sx, either
u or −u belongs to ωx. This implies that |ωx| > 1/2. Applying Theorem 8.2
with R = ∞, we obtain the Sobolev inequality

∀ f ∈ C∞(Ω) ∩W 1,p(Ω), ‖f‖Ω,q 6 S(p, n)‖∇f‖Ω,p, q = np/(n− p).

Note that the functions f ∈ C∞(Ω)∩W 1,p(Ω) do not necessarily vanish along
the boundary of Ω. Balls and sublevel sets of Busemann functions provide
examples of geodesically convex sets in Cartan–Hadamard manifolds.
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Example 8.2. Consider a geodesic ball of radius ρ > 1 in the hyperbolic plane.
It is not hard to see that it has the (δ, 1) interior cone property. One may ask
if, uniformly in ρ > 1, these balls have the (δ, aρ) interior cone property for
some δ, a ∈ (0, 1). The answer is no. If one wants to fit cones of length aρ in
a ball of radius ρ, then the aperture α(a, ρ) has to tend to 0 with ρ.
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