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1 Introduction

Let M be a complete non-compact Riemannian manifold. For p ∈ (1,+∞),
let ∆p be the p-Laplace operator on M . One says that M is p-hyperbolic
if there exists a Green function for ∆p (see [Ho1,2]); otherwise, M is said
to be p-parabolic. It is well known that one can give sufficient conditions
for p-parabolicity in terms of the volume growth of M and sufficient condi-
tions for p-hyperbolicity in terms of its isoperimetric profile. These results
are due to Ahlfors, Cheng–Yau, Varopoulos, Grigor’yan and Fernandez for
p = 2, and to Zorich–Keselman and Troyanov for general p (precise ref-
erences are given below). The two main new points we want to make in
this connection are the following: we deduce the parabolicity criterion from
the p-version of an inequality by Cheng–Yau on supersolutions of ∆p, and
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in the hyperbolicity criterion we replace the 1-isoperimetric profile by a
p-isoperimetric profile, which is more accurate.

We shall also give sufficient conditions for an elliptic p-Harnack in-
equality, therefore for the (strong) p-Liouville property, to hold on M ,
first in terms of doubling property and Poincaré inequalities, second, using
the Cheng–Yau type inequality, under an assumption of quadratic volume
growth. Similar results already appeared in the literature, see section 4
below.

Let us point out that these methods are not limited to the Riemannian
setting. For the most part, we present them in a natural sub-Riemannian
framework.

Criteria for p-parabolicity and p-Harnack inequality have applications
to Picard type theorems, i.e. theorems saying that, if M and N are two
n-dimensional Riemannian manifolds, and if in a certain sense M is small
enough and N big enough, then there does not exist non-trivial quasi-
regular mappings between M and N , or between M and N \ {x0}. Indeed,
the n-parabolicity as well as the n-Liouville property, if understood in a
strong enough sense, are preserved by non-constant qr maps. This re-
casts several results by Gromov, Varopoulos, Holopainen and Holopainen–
Rickman (for precise references, see section 5 below) into a more general
and more precise picture.

Some readers might notice that in some papers of the second author, the
present paper is quoted (with a somewhat different title) as a paper of the
two other authors; this has a simple explanation: this work started long ago
in collaboration between Coulhon and Saloff-Coste, a preprint circulated,
and more recently Holopainen contributed to the work and joined the team
of an improved and enlarged paper.

2 Preliminaries

Let M be a connected C∞ manifold. Let ∆ be a second order differential
operator with real C∞ coefficients such that ∆1 = 0 (i.e. ∆ has no zero
order term). We assume that there exists a positive C∞ measure v on M
such that

〈∆ϕ,ψ〉 = 〈ϕ,∆ψ〉 , 〈∆ϕ,ϕ〉 ≥ 0 ,

for all ϕ,ψ ∈ C∞0 (M), where 〈ϕ,ψ〉 = ∫
M ϕψ̄ dv.

In what follows we consider the pair (M,∆) as our main object of study.
Implicitly, the measure v is also part of our data. One reason it is somewhat
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natural not to mention v is that, unless ∆ is very degenerate, v is essentially
determined by ∆, up to a multiplicative constant. Still the measure v plays
a crucial rôle in our analysis. As explained below, ∆ induces a certain
“geometric structure” on M and by (M,∆) we mean in fact the manifold
M equipped with the measure v and the geometric structure induced by ∆.
In different words, our basic structure isM equipped with the form 〈∆ϕ,ψ〉,
ϕ,ψ ∈ C∞0 (M), on L2(M,dv).

2.1 The gradient. There is a notion of “length of the gradient” canon-
ically associated with any second order differential operator ∆ as above.
Consider the expression

Γ(ϕ,ψ) = Γ∆(ϕ,ψ) = −12
[
∆(ϕψ)− ϕ∆ψ − ψ∆ϕ

]
.

A computation in local coordinates shows that, for every x ∈M , Γ(ϕ,ψ)(x)
is a non-negative quadratic form. Define the “length of the gradient” of a
smooth function ϕ by setting

|∇ϕ| = Γ(ϕ,ϕ)1/2.

(Γ(ϕ,ϕ) is also called the “carré du champ”). Note that one has the
Cauchy-Schwarz inequality∣∣Γ(ϕ,ψ)∣∣ ≤ |∇ϕ||∇ψ|
as well as the rules

Γ(ϕ1ϕ2, ψ) = ϕ1Γ(ϕ2, ψ) + ϕ2Γ(ϕ1, ψ)

and
Γ(θ ◦ ϕ,ψ) = (θ′ ◦ ϕ)Γ(ϕ,ψ) .

There is a less canonical but more explicit way to define |∇ϕ| which
also allows ∇ϕ itself to make sense. Equip M with an arbitrary Rieman-
nian metric g; denote by dµ the associated Riemannian volume, by grad
the gradient induced by the Riemannian metric and by div the Riemannian
divergence. Write dv = mdµ where m is a positive smooth function on M .
The operator ∆ determines a smooth section A of the bundle of symmetric
endomorphisms (i.e. for each x ∈ M , Ax is an endomorphism of the tan-
gent space TxM at x which is symmetric and positive with respect to the
Euclidean structure gx) such that

∆ϕ = −m−1div(mA gradϕ) . (2.1)

Note that Ax is nothing but the principal symbol of ∆ in an orthonormal
frame at x. Of course, if ∆ is the Laplace-Beltrami operator of (M,g), then
m ≡ 1 and A ≡ Id where Id denotes the identity. In general, A may be
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highly degenerate since we have not yet ruled out the case ∆ ≡ 0. In any
case, with this notation, we have

Γ(ϕ,ψ) = g(A gradϕ, gradψ) .

In particular,
|∇ϕ|2 = g(A gradϕ, gradϕ) .

The natural definition of ∇ϕ is then

∇ϕ = ∇∆ϕ = A gradϕ .

To check that this is indeed the correct definition, consider the special
case where A is everywhere invertible. Define a new Riemannian metric g0
by setting

g0(X,Y ) = g(A−1X,Y ) .

This metric is canonically attached to ∆ (i.e. does not depend of the arbi-
trary choice of g) and we have

∆ϕ = −m−1
0 div0(m0 grad0ϕ)

where m0 is such that dv = m0dµ0. We claim that

∇ϕ = grad0ϕ ; |∇ϕ|2 = g0(grad0ϕ, grad0ϕ) .

Indeed, on the one hand, grad0ϕ is the unique smooth vector field such
that for any smooth vector field X, g0(grad0ϕ,X) = dϕ(X). On the other
hand we have

g0(∇ϕ,X) = g(A−1A gradϕ,X) = dϕ(X) .

This proves the claim.

2.2 The distance. There is a “distance” ρ = ρ∆ canonically associated
with ∆ and defined by

ρ(x, y) = sup
{
ϕ(x) − ϕ(y) : ϕ ∈ C∞0 (M) , |∇ϕ| ≤ 1

}
.

This ρ has all the properties of a distance except that it might well take
the value +∞. We make the following basic hypotheses which will be in
force throughout the paper:

1. ∀x, y ∈M , ρ(x, y) < +∞.
2. The distance ρ is continuous and the topology induced by it is the

same as the topology of M as a manifold.
3. (M,ρ) is a complete metric space.

These are natural hypotheses and the two first conditions are the crucial
ones. Of course, these conditions are satisfied when M is equipped with a
Riemannian metric g such that (M,g) is a complete Riemannian manifold,
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v = mdµ where µ is the Riemannian volume and m is a smooth positive
function on M , and

∆ϕ = −m−1div(m gradϕ) .

In this case, ρ is simply the Riemannian distance associated with g.
Subelliptic operators in a domain of R

n satisfy the two first conditions
above. See section 2.7 below for a precise statement and references.

Under these hypotheses, one shows that ρ can also be defined in the
following alternative way. Let us say that a tangent vector X at x is a
subunit vector if it satisfies

|dϕ(X)| ≤ |∇ϕ|(x)
for any smooth function ϕ. An absolutely continuous path γ : [0, t] → M
is a subunit path if γ̇(s) is a subunit vector for all s ∈ [0, t]. Then, ρ(x, y)
is equal to the infimum of all t > 0 such that there exists a subunit path
γ : [0, t]→M satisfying γ(0) = x, γ(t) = y.

We will use two important properties of the distance ρ which follow from
the above basic hypotheses. The first property is that, for each x ∈M , the
function ρx(y) = ρ(x, y) satisfies

|∇ρx| ≤ 1 (2.2)

almost everywhere. The second property is that ρ is a geodesic distance in
the sense that, given x, y ∈ M , there exists a subunit path γ : [0, t] → M
joining x to y and such that ρ(x, y) = t.

2.3 The doubling property. Denote byBx(r) = {y ∈M : ρ(x, y) < r}
the ball of radius r > 0 centered at x ∈M and set Vx(r) = v(Bx(r)).

For each fixed R > 0, consider the classical doubling property [D(R)]
which may or may not be satisfied by (M,∆):

∃D > 0 s.t. ∀ r ∈ (0, R) , ∀x ∈M , Vx(2r) ≤ DVx(r) . [D(R)]

Observe that [D(R)] implies

∀ r, s , 0 < r < s < 2R , Vx(s) ≤ D(s/r)ν0Vx(r) ,

with ν0 = logD/ log 2. The property [D(R)] plays a crucial role in the
sequel.

We shall say that (M,∆) satisfies [D] if it satisfies [D(R)] uniformly
in R:

∃D > 0 s.t. ∀ r > 0 , ∀x ∈M , Vx(2r) ≤ DVx(r) . [D]
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2.4 The Poincaré inequalities. For B = Bx(r) and any α > 0, set
αB = Bx(αr). For any function f , denote by fB the mean of f over B
given by

fB =
1

Vx(r)

∫
B
f dv .

Fix κ ≥ 1 and R > 0. Consider the family [P(p,R)] of Poincaré inequal-
ities which may or may not be satisfied by (M,∆):

∃Pp > 0 s.t. ∀ r ∈ (0, R] , x ∈M ,

∫
B
|f − fB |pdv ≤ Ppr

p

∫
κB
|∇f |p dv ,
[P(p,R)]

for all f ∈ C∞(Bx(κr)). Here, |∇f | is the length of the gradient associated
with ∆ as in section 2.1.

We shall say that (M,∆) satisfies [P(p)] if it satisfies [P(p,R)] uniformly
in R:

∃Pp > 0 s.t. ∀ r > 0 , x ∈M ,

∫
B
|f−fB|pdv ≤ Ppr

p

∫
κB
|∇f |p dv , [P(p)]

for all f ∈ C∞(Bx(κr)).

Remark. In [J] (see also [HK2], [MS]), it is shown that [D(R)] and
[P(p,R)] imply the stronger Poincaré inequality∫

B
|f − fB|pdv ≤ P ′

pr
p

∫
B
|∇f |p dv

for all f ∈ C∞(Bx(r)), x ∈ M , 0 < r ≤ R. This however is not a trivial
fact. What is relatively easy to see is that, assuming that [D(R)] holds
true, [P(p,R)] for some fixed κ > 1 implies [P(p,R)] for any κ > 1. Only
this easier fact will be used in the sequel.

2.5 The p-Laplacian. In Riemannian geometry, the p-Laplacian,
1 < p < +∞, is the operator defined by

∆pϕ = −div(|gradϕ|p−2gradϕ)
.

Clearly ∆pϕ can be characterized by

〈∆pϕ,ψ〉 =
∫
M

g(gradψ, gradϕ)|gradϕ|p−2 dµ

for all ψ ∈ C∞0 (M) where g is the Riemannian metric and µ the Riemannian
measure. This operator plays the rôle of the Laplace-Beltrami operator
when one replaces the energy functional

∫ |gradϕ|2 dµ by its Lp version∫ |gradϕ|p dµ.
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In the more general setting introduced above, we define ∆pϕ,
ϕ ∈ C∞0 (M), by setting

〈∆pϕ,ψ〉 =
∫
M
Γ(ψ,ϕ)|∇ϕ|p−2 dv

for all ψ ∈ C∞0 (M). If we introduce on M an arbitrary Riemannian metric
as in (2.1) then

∆pϕ = −m−1div
(
m|∇ϕ|p−2A gradϕ

)
.

2.6 The non-smooth case. Since in section 5 we shall have to deal
with pull-backs of n-Laplacians by quasi-regular maps, we have to extend
slightly the class of equations under consideration. Start with a smooth
manifoldM equipped with an arbitrary (and irrelevant) Riemannian metric
g with Riemannian volume dµ.

Let B be a measurable section of the bundle of symmetric endomor-
phisms and let m be a positive measurable function on M . Equip M with
the measure

dv = mdµ

and the bilinear form

∀ϕ,ψ ∈ C∞(M) , Γ(ϕ,ψ) = g(B gradϕ, gradψ)
which is well defined. This formally relates to the construction given in
the smooth coefficients case by considering the second order differential
operator

∆ϕ = −m−1div (mB gradϕ)
which should however now be interpreted in the appropriate weak sense.
We will refer to this situation as before by using the notation (M,∆).
Indeed, the data above yield the notion of “length of the gradient”

|∇ϕ|2 = g(B gradϕ, gradϕ) ,
as well as a distance ρ on M defined as in section 2.2. The doubling prop-
erty [D(R)] and the Poincaré inequality [P(p,R)] also generalizes without
changes. We will always assume that conditions 1–3 of section 2.2 are
satisfied.

Formally, the corresponding p-Laplacian is given by

∆pϕ = −m−1div
(
m|∇ϕ|p−2 B gradϕ)

(2.3)

which must be interpreted in a weak sense as we now explain in some detail.
For 1 < p < +∞, define W 1,p

0 (M,∆) as the completion of C∞0 (M) with
respect to the norm

( ∫
M |ϕ|p dv +

∫
M |∇ϕ|p dv

)1/p. If u ∈ W 1,p
0 (M,∆)

and ψ ∈ C∞0 (M), the expression Γ(ψ, u) is well defined by polarization,
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and Γ(ψ, u)|∇u|p−2 is in L1(M,dv) by Hölder. By density of C∞0 (M) in
W 1,p
0 (M,∆), the linear form

ψ →
∫
M
Γ(ψ, u)|∇u|p−2 dv

is then defined for ψ ∈ W 1,p
0 (M,∆). For Ω a measurable subset of M , let

W 1,p
loc (Ω) be the set of functions u on Ω such that ψu belongs to W 1,p

0 (M,∆)
for all ψ ∈ C∞0 (Ω). We say that a function u on Ω ⊂M is ∆p-harmonic, in
short p-harmonic, if u ∈W 1,p

loc (Ω) and∫
Ω
Γ(ψ, u)|∇u|p−2 dv = 0

for all ψ ∈W 1,p
0 (M,∆) compactly supported in Ω. We say that a function

u defined on Ω ⊂ M is a ∆p-supersolution (or p-supersolution, or even
supersolution when there is no ambiguity) if u ∈W 1,p

loc (Ω) and∫
Ω
Γ(ψ, u)|∇u|p−2 dv ≥ 0

for all non-negative ψ ∈ W 1,p
0 (M,∆) compactly supported in Ω. We say

that u is a subsolution if −u is a supersolution.
Remark. As explained above, there is no real difficulty in dealing with
non-smooth structures, as long as one is ready to assume that the ba-
sic hypotheses 1–3 concerning the distance ρ are satisfied. It should be
emphasized however that verifying the basic hypotheses 1–3 of ρ is a non-
trivial problem. For instance, in domains of R

n, there exists no satisfac-
tory subelliptic theory of operator with measurable coefficients whereas
there exists a reasonably good theory for subelliptic operator with C∞ co-
efficients, see [FP]. Similarly, deciding whether or not conditions [D(R)]
and/or [P(p,R)] hold is a difficult question. A natural context where one
can work with operators having measurable coefficients as above is when
there exist a smooth positive function m and a smooth section A of the
bundle of symmetric endomorphisms such that

C−1
0 m ≤ m ≤ C0m

and

∀x ∈M , ∀h ∈ TxM , C−2
0 gx(Axh, h) ≤ gx(Bxh, h) ≤ C20gx(Axh, h) .

(2.4)
Then it is easy to check that conditions 1–3 of section 2.2 are satisfied by
(M,∆) if and only if they are by (M,∆) where

∆ϕ = −m−1div(mA gradϕ) .
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Similarly, conditions [D(R)] and [P(p,R)] are satisfied by (M,∆) if and
only if they are by (M,∆).

2.7 Examples.

Riemannian manifolds. Let (M,g) be a complete Riemannian man-
ifold of dimension n. Let ∆ be the Laplace-Beltrami operator on (M,g)
and v be the Riemannian volume. Let Ω be an open precompact subset of
M and let K = K(Ω) be a non-negative real number such that

∀x ∈ Ω , ∀h ∈ Tx(M) , Ricx(h, h) ≥ −Kgx(h, h) .

Here, Ric is the Ricci curvature of (M,g) which is a symmetric two-tensor.
Let B = Bx(r) be a metric ball contained in Ω. Then the well-known

Bishop–Gromov comparison theorem asserts that

∀ 0 < s < r , Vx(r) ≤ (r/s)ne
√
(n−1)KrVx(s) .

Moreover, P. Buser proved in [Bu] that there exists a constant C = C(n)
such that ∫

B
|f − fB|dv ≤ CreC

√
K r

∫
B
|∇f |dv .

In particular, if (M,g) has nonnegative Ricci curvature, it satisfies the
doubling property [D] of section 2.3 and the Poincaré inequality [P(p)] of
section 2.4 for any 1 ≤ p < +∞.

Riemannian coverings. Let (N, g) be a compact Riemannian mani-
fold. Let N be its universal cover, and let π1(N) be the fundamental group
of N . The fundamental group acts on N with quotient N . If H is a nor-
mal subgroup, we can consider the Riemannian manifold M = N/H. The
deck transformation group G of the covering of N by M is G = π1(N)/H.
Finally, let K be a subgroup of G, not necessarily normal, and consider
the Riemannian manifold M = M/K. The group G = π1(N)/H is finitely
generated. Using a finite symmetric set of generators, we can define the
usual word metric on G and consider the cardinality γ(r) of the ball of
radius r in G. We say that G has polynomial growth if there exist C and
A such that γ(r) ≤ CrA for all r > 0.

Proposition 2.1. Referring to the above notation, assume that the group
G has polynomial growth. Then the Laplace operator on M satisfies [D]
and [P(p)] for all 1 ≤ p < +∞.

We refer the reader to [S2], [CoS2] for the proof and further results.
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Invariant operators on Lie groups. Let G be a connected, uni-
modular Lie group equipped with its Haar measure dµ. Let {X1, . . . ,Xk}
be a family of smooth left invariant vector fields on G and set

∆ = −
k∑
1

X2
i .

Here |∇∆ϕ|2 =
∑k
1 |Xiϕ|2. In this case, one can define ∇∆ϕ as the vector

(X1ϕ, . . . ,Xkϕ) and the p-Laplacian takes the form

∆pϕ = −
k∑
i=1

Xi

(|∇ϕ|p−2Xiϕ
)
.

The conditions 1–3 of section 2.2 are satisfied if and only if {X1, . . . ,Xk}
generates the Lie algebra of G, that is, if these vectors and their brackets
of all orders span the tangent space at the identity. See [Hör], [VaSC].
If this condition (often called Hörmander condition) is satisfied, then for
each R > 0, the doubling condition [D(R)] and the Poincaré inequality
[P(p,R)], 1 ≤ p < +∞, are satisfied. If G is nilpotent, more generally if
G has polynomial growth, then the global doubling condition [D] and the
global Poincaré inequality [P(p)] are satisfied. See [Va3], [VaSC].

Subelliptic operators. Let us consider now the case whereM = R
n.

Then, we can write

∆ψ(x) = −m(x)−1
n∑
1

∂i
(
m(x)ai,j(x)∂jψ(x)

)

where 0 < m(x) < +∞ and the matrix (ai,j(x)) is symmetric positive
semidefinite. We assume that m and (ai,j) are C∞. The operator ∆ is
self-adjoint on L2(Rn, v) where dv(x) = m(x)dx. In this case, the length of
the gradient associated with ∆ is

|∇∆ψ| =
n∑
1

ai,j∂iψ∂jψ

and the definition of a subunit vector ζ = (ζi)n1 at x reads

∀ ξ ∈ R
n ,

∣∣∣∣
n∑
1

ζiξi

∣∣∣∣
2

≤
n∑
1

ai,j(x)ξiξj .

Following standard notation, we say that ∆ is uniformly subelliptic if∥∥(I +∆0)2εψ
∥∥
2
≤ C

(‖∆ψ‖2 + ‖ψ‖2
)
, ψ ∈ C∞0 (Rn) , (2.5)

and m,m−1 ≤ C, for some C, ε > 0. Here, ∆0 = −
∑n
1 ∂

2
i is the standard

Laplacian on R
n.
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Basic references on subelliptic operators are [OlR], [FP], [FS] and the
survey [JS]. There is also a large literature, starting with Hörmander’s
paper [Hör], on the special case where ∆ can be written as a sum of squares
of smooth vector fields. See e.g. [NSW].
Theorem 2.2. Assume that m,m−1, ai,j and their derivatives of any
order are bounded in R

n. Assume further that ∆ satisfies (2.5). Then
the distance ρ associated with ∆ satisfies the conditions 1–3 of section 2.2.
Moreover ∆ satisfies [D] and [P(p)] for all 1 ≤ p < +∞.

The references [FP], [FS], [JS] treat the local aspect of this theorem,
which is the heart of the matter. The fact that [P(p)] holds globally is
proved in [CoS2].

3 p-parabolicity and p-hyperbolicity

3.1 An inequality for supersolutions. This section is organized
around the following result which is adapted from an inequality of Cheng
and Yau ([ChenY, Theorem 1, p. 335]). For similar and related results in
the discrete setting, see [S4,5]. Henceforth, we shall consider a pair (M,∆)
as in section 2.6. We assume throughout that conditions 1–3 of section 2.2
are satisfied.
Theorem 3.1. Fix 1 < p < +∞. Let u be a positive p-supersolution in
a fixed ball B = Bo(R). For any sequence r = r0 < r1 < · · · < r� = R, we
have

(p− 1)
∫
Bo(r)

|∇ log u|pdv ≤
( �−1∑

0

(ri+1 − ri)
p/(p−1)

(Vo(ri+1)− Vo(ri))
1/(p−1)

)1−p
. (3.1)

Proof. For any function f ∈W 1,p
loc (B), f ≥ ε, we have

∆p log f − ∆pf

fp−1
= (p− 1)|∇ log f |p

in the weak sense. That is, for any non-negative function ψ ∈ W 1,p
0 (M)

with compact support in B,∫
Γ(ψ, log f)|∇ log f |p−2dv −

∫
Γ

(
f,

ψ

fp−1

)
|∇f |p−2dv

= (p− 1)
∫

ψ|∇ log f |pdv .
Thus, if f = u is a positive supersolution,

(p − 1)
∫

ψ|∇ log u|pdv ≤
∫

Γ(ψ, log u)|∇ log u|p−2dv .
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Taking

ψ(y) = ψt,δ(y) =




1 if x ∈ Bo(t)
1− δ−1[ρ(o, y)− t] if x ∈ Bo(t+ δ) \Bo(t)

0 otherwise
yields

(p − 1)
∫
Bo(t)

|∇ log f |pdv ≤ 1
δ

∫
Bo(t+δ)\Bo(t)

|∇ log f |p−1dv .
The right-hand side can be bounded by[

Vo(t+ δ) − Vo(t)
δ

]1/p [
1
δ

∫
Bo(t+δ)\Bo(t)

|∇ log f |pdv
]1/q

where 1/p + 1/q = 1.
Assume now that s → Vo(s) is locally absolutely continuous (i.e. it is

almost everywhere differentiable and it is the integral of its derivative).
Then, letting δ tend to zero yields

H(t)q ≤ 1
p− 1

V ′(t)q/pH ′(t) (3.2)

where we have set V (t) = Vo(t) and H(t) = (p − 1)
∫
Bo(t)

|∇ log f |p dv.
Write (3.2) as

qH ′(t)
pH(t)q

≥ 1
V ′(t)q/p

.

For any 0 < s < t ≤ R, this yields
1

H(s)q/p
− 1

H(t)q/p
≥

∫ t

s

dσ

V ′(σ)q/p
(3.3)

where the identity (q/p) + 1 = q has been used. The right-hand side can
be bounded from below by[

(t− s)p

V (t)− V (s)

]1/(p−1)

because

(t− s)p =
(∫ t

s
dσ

)p

≤
(∫ t

s
V ′(σ)dσ

)(∫ t

s

1
V ′(σ)q/p

dσ

)p/q

=
(
V (t)− V (s)

)(∫ t

s

1
V ′(σ)q/p

dσ

)p/q

.

Hence (3.3) implies

1
H(r)q/p

− 1
H(R)q/p

≥
�−1∑
0

[
(ri+1 − ri)p

V (ri+1)− V (ri)

]1/(p−1)
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for any sequence r = r0 < · · · < r� = R. This clearly gives the desired
result.

The additional hypothesis that s → V (s) is locally absolutely continu-
ous appears to be quite natural and harmless. There are many cases (e.g.
the Riemannian setting, see [Ch, p. 116]) where it is satisfied. However,
there is no reason why it should hold in full generality under the conditions
introduced in section 2.2. This is not a problem because the differential
inequality (3.2) can be replaced by the difference inequality obtained by
letting δ be a fixed parameter. Instead of (3.3) one then obtains

1
H(s)q/p

− 1
H(t)q/p

≥
m−1∑
i=n

1
[V (σi+1)− V (σi)]q/p

where s = r + δn, t = R+ δm with m ≥ n and σi = r + δi. The argument
used above also shows that

(t− s)p ≤ (
V (t)− V (s)

)(m−1∑
i=n

1
[V (σi+1)− V (σi)]q/p

)1/q
.

The desired conclusion follows.
Remark. Define the (p,∆)-capacity (in short p-capacity) of a pair (U,C),
with U ⊂M open and C ⊂ U compact by

Capp(U,C) = inf
u

∫
U
|∇u|pdv ,

where the infimum is taken over all functions u ∈ C∞0 (U), with u ≥ 1 in C.
Then an alternative way to prove Theorem 3.1 (though maybe not with the
optimal constant (p − 1)) is to combine a so-called logarithmic Cacciopoli
inequality ∫

Bo(r)
|∇ log u|pdv ≤ CCapp

(
Bo(R), B̄o(r)

)
(3.4)

(see [HeKM, Theorem 3.53]) with the capacity estimate

Capp
(
Bo(R), B̄o(r)

) ≤
( �−1∑

0

(ri+1 − ri)p/(p−1)

(Vo(ri+1)− Vo(ri))1/(p−1)

)1−p
.

The latter follows from a standard estimate

Capp
(
Bo(ri+1), B̄o(ri)

) ≤ Vo(ri+1)− Vo(ri)
(ri+1 − ri)p

(3.5)

by using the property

Capp
(
Bo(R), B̄o(r)

) ≤
( �−1∑

0

Capp
(
Bo(ri+1), B̄o(ri)

)1/(1−p))1−p
, (3.6)
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see [HeKM, Theorem 2.6].

3.2 Volume growth and p-parabolicity DefineDp(f) =
∫
M |∇f |p dv

and
dp = inf

{
Dp(f) : f ∈ C∞0 (M);

1
|U |

∫
U
|f | dv = 1

}

where U is some fixed relatively compact open subset of M and |U | = v(U)
its volume. Denote by D0

p the closure of C∞0 (M) for the norm(
1
|U |

∫
U |f |pdv + Dp(f)

)1/p. Denote by Dp the Banach space of all func-
tions f such that 1

|U |
∫
U |f |p dv +Dp(f) < +∞.

From now on we shall make a mild additional assumption on the local
geometry of M , namely that for every open relatively compact set Ω, the
following local Poincaré inequality holds:∫

Ω
|f − fΩ|pdv ≤ CΩ

∫
M
|∇f |pdv . (3.7)

This property is satisfied by all the examples considered in section 2.7.
One says that (M,∆) is p-parabolic if every positive p-supersolution

on M is constant, and that (M,∆) is p-hyperbolic if it is not p-parabolic.
Equivalent properties to p-parabolicity are

1. The constant function x→ 1 belongs to D0
p.

2. The two spaces D0
p and Dp are equal.

3. dp = 0.
4. Capp(M, Ū) = 0.

In particular properties 1, 2, 3 and 4 do not depend on the choice of U . For
the equivalence between 1, 3 and 4, see [Tr2, Proposition 1 and Theorem 3],
and also [GoT2, Theorem 3.1]. For the equivalence between 1 and 2, see
[Y, Theorem 3.2]. The equivalence between p-parabolicity and 4 is proved
in [Ho1, Theorem 5.2], as well as in [K] in the Riemannian setting. In
our general case, we may use the logarithmic Cacciopoli inequality (3.4)
to show that 4 implies p-parabolicity. For the converse, assume that U
is a relatively compact open subset of M , with Capp(M, Ū ) > 0. Then
it is possible to find, by usual methods of variational calculus, a positive
p-supersolution u ∈ D0

p, with u ≡ 1 in Ū and Capp(M, Ū ) = Dp(u) (so that
u is not constant).

Note that if (M,∆) is p-parabolic and satisfies some mild local assump-
tions (called (P )loc and (DV )loc in [CoS2]; for example for Riemannian
manifolds, Ricci curvature bounded from below is enough, no assumption
on the injectivity radius is required) then it is q-parabolic for q > p. This
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is clear by discretization (apply Hölder to the obvious p-version of Proposi-
tion 6.9 in [CoS2]); as a consequence one can consider a notion of parabolic
dimension (see [Co2]). This fact is proved in [Tr1], Theorem 5.2 for Rie-
mannian manifolds with Ricci curvature bounded from below and positive
injectivity radius. Note that it can be false if M is not complete ([Tr1,
Cor. 3.1]).

It is well known, especially for p = 2, that p-hyperbolicity is only possi-
ble if the volume growth is large enough. There are at least two traditional
points of view to prove this. The first one uses characterization 4 of p-
parabolicity. Then a sufficient condition of p-parabolicity is available as
soon as one has a bound on the p-capacity of, say, a ball of radius one in
terms of the volume growth of the larger concentric balls. This is the route
followed, for p = 2, in [Gri1], [BiM1], [Ca1], [Os], [O], [St]. The relevant
p-capacity estimates are available in [Maz] (in a Euclidean setting, but the
methods have a much wider range, see [Gri3]). The second point of view is
very similar, but uses characterization 3 of p-parabolicity and the estimate
of the volume to build test functions that yield dp = 0. This is the approach
of [Va1] for p = 2. We shall explain how this second approach can be dealt
with for p �= 2 at the end of this section.

Here we would like to propose a third point of view, that works di-
rectly with the definition of p-parabolicity and uses the Cheng–Yau type
estimate on p-supersolutions. The following statement is a straightforward
consequence of Theorem 3.1 and of inequality (3.3).
Corollary 3.2. Fix 1 < p < +∞. The pair (M,∆) is p-parabolic as
soon as there exists an increasing sequence (ri)+∞0 going to infinity and a
point o such that

+∞∑
0

[
(ri+1 − ri)p

Vo(ri+1)− Vo(ri)

]1/(p−1)
= +∞ .

If this condition holds we shall say that (M,∆) satisfies condition [V(p)].
If Vo is locally absolutely continuous, [V(p)] can be weakened to∫ +∞

1

dr

V ′
o(r)1/(p−1)

= +∞ . (3.8)

Both of these conditions are implied by the stronger one∫ +∞

1

(
r

Vo(r)

)1/(p−1)
dr = +∞ . (3.9)

For instance, p-parabolicity is implied by lim inf+∞ r−pVo(r) < +∞, or by
Vo(r) ≤ crp[log r]p−1, r ≥ 1.
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Remarks. (1) Condition [V(p)] can be formulated as∫ +∞

1

(dr)p

Vo(dr)
= +∞

where for a non-negative, left continuous, non-decreasing function V ,∫ +∞

1

(dr)p

V (dr)
is the so-called Hellinger integral defined by

sup
{ +∞∑

0

[
(ri+1 − ri)p

V (ri+1)− V (ri)

]1/(p−1)
; k ∈ N , 1 ≤ r0 < r1 < · · · < rk

}
.

It is shown in [St] (for p = 2 but the proof easily extends to p �= 2) that
one has

cp

∫ +∞

1

(
r

V (r)

)1/(p−1)
dr ≤

∫ +∞

1

(dr)p

V (dr)
≤

∫ +∞

1
f

dr

V ′(r)1/(p−1)
,

where V ′ is the Radon–Nikodym derivative of the absolutely continuous
part of V . For the inequality∫ +∞

1

dr

V ′(r)1/(p−1)
≥ cp

∫ +∞

1

(
r

V (r)

)1/(p−1)
dr,

see also [Va1], [ZK]. The converse is false in general, but true if V is convex
([Gri2, §7]).

(2) An example due to Greene (see [Va1]) in the case p = 2 shows that
condition (3.8) is not necessary forM to be p-parabolic. IfM is rotationally
invariant around o, (3.8) is equivalent to the p-parabolicity ([Gri2, Cor. 5.6]
for p = 2, and [GoT1, §5.2] for the general case), whereas (3.9) remains
strictly stronger (see [FeR], or [Gri2, §7]). We shall meet in Proposition 3.4
below a situation where (3.9) is necessary and sufficient.

(3) Let us outline another more direct proof of Corollary 3.2 inspired
by [Va1]. For simplicity we shall work in the Riemannian setting and prove
that condition (3.8) is incompatible with(∫

U
|f |dv

)p

≤ CDp(f) ,

where U is the geodesic ball of radius one and center o.
The same proof can be adapted to treat the discrete condition in Corol-

lary 3.2 and our general setting.
Take

Λ(R) =
∫ R

1

dr

V ′
o(r)1/(p−1)

, R ≥ 1
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g(r) = 1− Λ(r)
Λ(R)

if 1 ≤ r ≤ R , 1 if 0 ≤ r ≤ 1 , 0 if r ≥ R .

Then

|g′(r)| = 1
Λ(R)(V ′

o(r))1/p−1
, if 1 ≤ r ≤ R , 0 otherwise ,

and, for f(x) = g(d(x, o)),

Dp(f) =
∫ +∞

1
|g′(r)|pV ′

o(r) dr =
1

Λp(R)

∫ R

1

dr

V ′
o(r)1/(p−1)

=
1

Λp−1(R)
.

Since
∫
U |f |dv = |U | > 0, the claim follows.

Except maybe for the first sufficient condition in the case p �= 2, Corol-
lary 3.2 is essentially well known, at least in the Riemannian case. The
fact that (3.8) implies p-parabolicity has been proved in [A] for M a Rie-
mann surface and p = 2 and extended in [Va1] to Riemannian manifolds
and p = 2 (see also [Gri1] and [Ca2]). Of course, the particular case of
quadratic growth was already in [ChenY]. For a complete account and
further references in the case p = 2, see [Gri2, §7], and [Li]. The case
where p is the topological dimension of the Riemannian manifold has been
treated in [ZK]; a similar result in a sub-Riemannian setting has been ob-
tained in [Z]. The general case of arbitrary p appears in [Tr1]; in [Ho4] it
was shown that (3.9) implies p-parabolicity. As far as condition [V(p)] is
concerned, it is shown in [St], in a general Dirichlet forms setting, that for
p = 2 it implies 2-parabolicity. The sufficiency of [V(p)] can also be seen
by using the classical upper estimate for the capacity of a ball of radius r
(estimate (3.5) above) and property (3.6) (see [Ho3, Thm. 4.8]). The ana-
logue of the above results for graphs has been obtained in [S4,5] (a partial
result in this direction appears in [So]). Finally, the sufficiency of condition
(3.9) for p-parabolicity was recently shown in a general setting of metric
measure spaces in [HoK].

3.3 p-isoperimetric profile and p-hyperbolicity. Assume in this
section that M has infinite volume (v(M) = +∞), otherwise it is certainly
p-parabolic (let us mention here the following interesting statement in [ZK],
that a Riemannian n-manifold is n-parabolic if and only if there is a confor-
mal change of metric that transforms it into a complete manifold of finite
volume; see [Z] for the corresponding result in sub-Riemannian setting).

To start, consider the case whereM is a Riemannian manifold of dimen-
sion n. In [Gri1] and in [Fe], a sufficient condition for the 2-hyperbolicity of
a non-compact Riemannian manifold is given in terms of its isoperimetric
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profile. Namely it is shown that if one defines

ψ(t) = inf
{|∂Ω| ; Ω ∈ K(M) , |Ω| ≥ t

}
,

where K(M) is the set of smooth relatively compact domains in M , |Ω| is
the Riemannian n-volume of Ω and |∂Ω| the Riemannian (n− 1)-volume of
the smooth hypersurface ∂Ω, then∫ +∞ dt

(ψ(t))2
< +∞ (3.10)

implies 2-hyperbolicity. See also [Gri2, §8], and [Ca2] for a nice proof using
rearrangements of functions and co-area formula. In [Tr1], it is shown for
all p ∈ (1,+∞) that ∫ +∞ dt

(ψ(t))
p

p−1

< +∞

implies p-hyperbolicity.
Again, this is traditionally connected to the notion of p-capacity: prov-

ing dp > 0 amounts to having a lower bound on capacity of sets, which can
be obtained in terms of the isoperimetric profile (see [Maz] and [Gri3]).

Here we are going to work with a slightly different isoperimetric profile,
namely

ϕ1(t) = sup
{ |Ω|
|∂Ω| ; Ω ∈ K(M) , |Ω| ≤ t

}
,

and show that ∫ +∞ (
ϕ1(t)
t

)p/(p−1)
dt < +∞

implies p-hyperbolicity.
This result does not really compare with the previous one. Roughly

speaking, ψ is the greatest non-decreasing function such that

ψ(|Ω|) ≤ |∂Ω| , ∀Ω ∈ K(M) ,

whereas ϕ1 is the smallest non-decreasing function such that
|Ω|

ϕ1(|Ω|) ≤ |∂Ω| , ∀Ω ∈ K(M) .

However, if one assumes that, for some c > 0,

ϕ1(t) ≤ c sup
{ |Ω|
|∂Ω| ; Ω ∈ K(M) , ct ≤ |Ω| ≤ t

}
,

then ϕ1(t)/t is dominated by c/ψ(ct) and our result is stronger.
Our formulation has the advantage that one can replace the 1-isoperi-

metric profile ϕ1 by a p-isoperimetric profile, which leads to a more accurate
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and natural condition, even in the case p = 2. Indeed, note that, by the
co-area formula,

ϕ1(t) = sup
{ ‖f‖1
‖|∇f |‖1 ; f ∈ Lip0(Ω) \ {0} , Ω ∈ K(M) , |Ω| = t

}
,

where Lip0(Ω) denotes the space of Lipschitz functions with support in Ω
(this space can be replaced by C∞0 (Ω) without affecting the function ϕ1).

Returning to our general setting of a pair (M,∆) as in section 2.6, for
1 ≤ p < +∞, define ϕp by

ϕp(t) = sup
{ ‖f‖p
‖|∇f |‖p ; f ∈ C∞0 (Ω) \ {0} , Ω ∈ K(M) , |Ω| = t

}
(3.11)

where |Ω| = v(Ω). We shall prove the following result.

Theorem 3.3. Let (M,∆) be as in section 2.6. Assume that (M,∆)
satisfies (3.7). Then, if∫ +∞ (

ϕp(t)
t

)p/(p−1)
dt < +∞ , (3.12)

(M,∆) is p-hyperbolic.

Remarks. (1) The case p = 2 of this theorem, in the Riemannian setting,
is nothing but [Gri1, Theorem 2.3], the proof of the latter result uses the
heat kernel, which is not available for p �= 2.

(2) Let 1 ≤ q < p and f ∈ Lip0(Ω) \ {0}. Set g = |f |p/q; then
‖g‖qq = ‖f‖pp and

‖|∇g|‖qq ≤ p
q

∥∥|f | pq −1|∇f |∥∥q
q
≤ p

q‖f‖p−qp ‖|∇f |‖qp ,
thus ‖g‖qq

‖|∇g|‖qq ≥
q

p

‖f‖qp
‖|∇f |‖qp .

One therefore concludes that ϕq(t) ≥ (q/p)1/qϕp(t) for 1 ≤ q < p. It follows
that the sufficient condition 3.12 for p-hyperbolicity is weaker than∫ +∞ (

ϕq(t)
t

)p/(p−1)
dt < +∞ , (3.13)

for 1 ≤ q < p. Now [CoL] provides an example where the rate of growth of
ϕ2(t) is strictly slower than the one of ϕ1(t). This example is improved in
[Ca1], where it is shown that one can have ϕ2(t) ≤ Ct1/D and, for large t,
ϕ1(t) ≤ C ′t2/D, but for any ε > 0 there is a sequence tn going to +∞ such

that t
− 2

D
+ε

n ϕ1(tn) is not bounded. For D/2 ≤ p < D, one could not tell
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that such a manifold is p-hyperbolic by using criterion (3.10) or (3.13) for
q = 1 instead of (3.12) or [Gri1, Theorem 2.3].

(3) Say that M satisfies the Faber–Krahn type inequality (F p
ϕ), where

ϕ : R∗
+ → R

∗
+ is non-decreasing (see [Co2], [BaCLS]) if, for every Ω compact

domain of M with smooth boundary,

‖f‖p ≤ ϕ(|Ω|)‖|∇f |‖p , ∀ f ∈ Lip0(Ω) .
For example, if ϕ(t) = Ct1/D, D > p, (F p

ϕ) is equivalent to the Sobolev
inequality

‖f‖pD/(D−p) ≤ C ′‖|∇f |‖p , ∀f ∈ C∞0 (M) . (SpD)

For more information, see [Co1,2], [BaCLS]. It is easy to see that (SpD),
p > D, implies the p-hyperbolicity of M (in fact a localization at infinity
of this inequality, (SpD)(∞), in the terminology of [CoS2], see also [Co2],
is enough). More generally, (F p

ϕ) implies the p-hyperbolicity as soon as
ϕ(t) ≤ Ct1/D, for some D > p and every t ≥ 1. The above theorem shows
that it is enough for ϕ(t) to be just below t1/p for large t. Indeed, M always
satisfies (F p

ϕ) with ϕ = ϕp, and conversely, if M satisfies (F p
ϕ), then ϕp ≤ ϕ.

Proof of Theorem 3.3. Take f ∈ C∞0 (M), non-negative. Let U be a
relatively compact open set in M , where f is non-identically zero. Set

a0 = v
({

x; f(x) ≥ fU
2

})
> 0 ,

where fU = 1
U

∫
U f dv.

Either
v
({x; f(x) > 0}) ≤ a0 ,

or there exists λ1, 0 < λ1 < λ0 = fU/2 such that
a0 ≤ v

({x; f(x) ≥ λ1}
) ≤ 2a0 .

Here we use the fact that λ → v({x; f(x) ≥ λ}) is non-increasing and left
continuous. In the first case, we have

‖f‖p ≤ ϕp(a0)‖|∇f |‖p ,
therefore

λ0a
1/p
0 ≤ ϕp(a0)‖|∇f |‖p ,

and we stop the construction there.
In the second case, set a1 = 2a0 and f1 = (f − λ1)+ ∧ (λ0 − λ1). We

have then
(λ0 − λ1)a

1/p
0 ≤ ‖f1‖p ≤ ϕp(a1)‖|∇f1|‖p .

Now set ak = 2ka0, k ∈ N
∗. Suppose that λ� and f� = (f−λ�)+∧(λ�−1−λ�)

have been constructed for B = 1, . . . , k such that

a�−1 ≤ v
({x; f(x) ≥ λ�}

) ≤ a� .
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Either
v
({x; f(x) ≥ 0}) ≤ ak ,

or there exists λk+1, 0 < λk+1 < λk such that

ak ≤ v
({x; f(x) ≥ λk+1}

) ≤ ak+1 .

In the first case, set λk+1 = 0 and fk+1 = f ∧λk, and stop the construction
there (i.e. set λ� = 0, f� = 0, for B ≥ k + 2). In the second case, set
fk+1 = (f − λk+1)+ ∧ (λk − λk+1). Now apply (F p

ϕp) to fk+1. In the first
case, one obtains

λka
1/p
k−1 ≤ ϕp(ak)‖|∇fk+1|‖p ,

and in the second one

(λk − λk+1)a
1/p
k−1 ≤ ϕp(ak+1)‖|∇fk+1|‖p .

Finally in all cases and for all k ∈ N, we obtain

2−1/p(λk − λk+1)a
1/p
k ≤ ϕp(ak+1)‖|∇fk+1|‖p .

Note that the construction eventually falls into the first case since f has
compact support.

We can therefore write

λ0 =
+∞∑
k=0

(λk − λk+1) ≤ 21/p
+∞∑
k=0

ϕp(ak+1)a
−1/p
k ‖|∇fk+1|‖p .

Since ak = 2ka0, one has a
−1/p
k = 2−1/p(ak+2 − ak+1)(p−1)/pa−1k+1. Thus

λ0 ≤
+∞∑
k=0

ϕp(ak+1)
ak+1

(ak+2 − ak+1)(p−1)/p‖|∇fk+1|‖p

≤
( +∞∑
k=0

(
ϕp(ak+1)
ak+1

)p/(p−1)
(ak+2 − ak+1)

)(p−1)/p( +∞∑
k=0

‖|∇fk+1|‖pp
)1/p

.

Then apply the hypothesis on ϕp and the fact that( +∞∑
k=0

‖|∇fk+1|‖pp
)1/p

≤ ‖|∇f |‖p

(see [BaCLS] for remarks on this property) to conclude that

fU ≤ C

(∫ +∞

a0

(
ϕp(t)
t

)p/(p−1)
dt

)
‖|∇f |‖p .

We have almost reached the conclusion, except that we must get rid of the
dependence on a0 in the right hand side by invoking the assumption on the
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local geometry on M . Since∫
U
|f − fU |pdv ≤ CU

∫
M
|∇f |pdv ,

one has

fpU
(|U | − a0

) ≤ fpUv
({

x ∈ U ; f(x) ≤ fU
2

}) ≤ C ′
U‖|∇f |‖pp .

Finally either a0 ≥ |U |/2, and we have proved that

fU ≤ C

(∫ +∞

|U |/2

(
ϕp(t)
t

)p/(p−1)
dt

)
‖|∇f |‖p ,

or a0 ≤ |U |/2, and
fU ≤

(
2
|U |

)p(C ′
U )
1/p‖|∇f |‖p .

We have till now supposed f non-negative, but since |∇f | = |∇|f || a.e., we
have proved that for any relatively compact open subset U of M ,

1
|U |

∫
U
|f |dv ≤ CU‖|∇f |‖p , ∀ f ∈ C∞0 (M) .

Therefore M is p-hyperbolic.
Remarks. (1) If a local Poincaré inequality of the form∫

Bx(1)
|f − fBx(1)|p ≤ C

∫
Bx(1)

|∇f |p

holds uniformly on M , our proof yields the following uniform statement:
1

Vx(1)

∫
Bx(1)

|f | ≤ C‖|∇f |‖p , ∀x ∈M , ∀ f ∈ C∞0 (M) .

(2) If we assume that∫ +∞

0

(
ϕp(t)
t

)p/(p−1)
dt < +∞ ,

we obtain
‖f‖∞ ≤ C‖|∇f |‖p , ∀ f ∈ C∞0 (M) .

The additional hypothesis∫ 1

0

(
ϕp(t)
t

)p/(p−1)
dt < +∞

is an assumption on the local isoperimetric profile of M . It is satisfied if
M has bounded local geometry and topological dimension greater than p.

Let us compare the necessary condition for p-hyperbolicity given by
Corollary 3.2 with the sufficient condition given by Theorem 3.3. Suppose
that the volume growth is uniform on M , in the sense that Vx(r) � V (r),
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∀x ∈ M . Suppose further that an Lp pseudo-Poincaré inequality holds
on M , i.e.

‖f − fr‖p ≤ Cr‖|∇f |‖p , ∀f ∈ C∞0 (M) , r > 0 , (PPp)

where fr(x) = 1
Vx(r)

∫
Bx(r)

f(y) dy. This is the case for instance if M is a
Lie group or has non-negative Ricci curvature. Then M satisfies (F p

ϕ) with
ϕ = V −1, up to multiplicative constants (see [CoS1], and [Co2]). In this
situation we have the following statement.
Proposition 3.4. Assume that there exists a C1 function V on R+,
strictly increasing to +∞, such that

cV (cr) ≤ Vx(r) ≤ CV (Cr) , ∀x ∈M , r ≥ 1 ,

and that M satisfies the pseudo-Poincaré inequality (PPp). Then (M,∆)
is p-hyperbolic if and only if∫ +∞

1

(
r

V (r)

)1/(p−1)
dr < +∞ .

Proof. The necessity follows from Corollary 3.2. Suppose now that∫ +∞

1

(
r

V (r)

)1/(p−1)
dr < +∞ .

Integration by parts shows that∫ +∞

1

(
r

V (r)

)p/(p−1)
V ′(r)dr < +∞ ,

and the change of variable t = V (r) that∫ +∞

V (1)

(
ϕ(t)
t

)p/(p−1)
dt < +∞ ,

where ϕ = V −1. Now, as we explained above, it follows from the assump-
tions that ϕp ≤ ϕ up to multiplicative constants. Therefore, according to
Theorem 3.3, M is p-hyperbolic.
Remark. If M is a regular cover of a compact manifold, a discrete
version of (PPp) holds on the deck transformation group Γ of M , and the
conclusion of Proposition 3.4 follows with V the volume growth function
of Γ; see [CoS1] and [Co2].

The following related result has been proved in [Ho4] (in a Riemannian
setting): if M satisfies [D] and [P(p)], then it is p-hyperbolic if and only if∫ +∞

1

(
r

Vx(r)

)1/(p−1)
dr < +∞
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for some (all) x ∈M . This result generalizes [Va1, Thm. 2] that treats the
case where p = 2 and M has non-negative Ricci curvature. It is stronger
than ours in the sense that it requires no assumption on the uniformity
of the volume growth, but on the other hand (PPp) may hold in situa-
tions where [D] and [P(p)] do not hold, for instance on Lie groups with
exponential volume growth.

Another version of the proof of Theorem 3.3 yields the following capacity
lower bound, which is of interest in itself. This essentially solves Problem 22
in [Gri2].
Theorem 3.5. Let 1 < p < +∞. Suppose that G ⊂ M is a relatively
compact domain and that C ⊂ G is compact. Then

Capp(G,C) ≥ 2−1−2p
(∫ 4|G|

2|C|

(
ϕp(t)
t

)p/(p−1)
dt

)1−p
. (3.14)

In particular, (M,∆) is p-hyperbolic if∫ +∞ (
ϕp(t)
t

)p/(p−1)
dt < +∞ ,

in which case

Capp(M,C) ≥ 2−1−2p
(∫ +∞

2|C|

(
ϕp(t)
t

)p/(p−1)
dt

)1−p
.

Proof. Fix ε > 0 and choose a function u ∈ C∞
0 (G) such that u ≡ 1 in C

and

Capp(G,C) ≥
∫
M
|∇u|p dv − ε . (3.15)

We may assume that 0≤u≤1. For each 0≤t≤1, write U(t)={x;u(x)>t},
and C(t) = {x;u(x) ≥ t}. Let λ0 = 1/2, a0 = |U(1/2)| , and, for each
integer i ≥ 1, let

λi = inf
{
t > 0 ; |C(t)| ≤ 2ia0

}
.

We claim that
(i) λi is non-increasing in i, λi ≤ 1/2, and
(ii) |U(λi)| ≤ 2ia0 ≤ |C(λi)|.

Claim (i) is obvious. Suppose for a while (ii) holds as well. Fix an integer
k such that 2ka0 < |G| ≤ 2k+1a0. For i = 1, 2, . . . , k + 1, we set

ui = (u− λi)+ ∧ λi−1 .
Observe that λk+1 = 0. Next we show that, for i = 1, . . . , k + 1,

‖|∇ui|‖p ϕp(2ia0) ≥ (λi−1 − λi)
(
2i−1a0

)1/p
. (3.16)
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Since {x;ui(x) > 0} ⊂ U(λi), we have∣∣{x;ui(x) > 0}∣∣ ≤ 2ia0
by the left-hand side of (ii). Hence

‖|∇ui|‖p ϕp(2ia0) ≥ ‖ui‖p .

Since ui(x) ≥ λi−1 − λi if x ∈ C(λi−1), we obtain

‖ui‖p ≥
(
λi−1 − λi

) |C(λi−1)|1/p ≥ (
λi−1 − λi

)(
2i−1a0

)1/p
,

where the last inequality follows from the right-hand side of (ii). Thus
(3.16) follows. By using (3.16) and Hölder’s inequality, we obtain

1/2 = λ0 =
k+1∑
i=1

(λi−1 − λi) ≤
k+1∑
i=0

ϕp(2ia0)
(
2i−1a0

)−1/p ‖|∇ui|‖p

≤ 21+1/p
k+1∑
i=1

ϕp(2ia0)
2i+1a0

≤ 21+1/p
( k+1∑
i=1

(
ϕp(2ia0)
2i+1a0

) p
p−1 (

2i+1a0 − 2ia0
)) p−1

p
( k+1∑
i=1

‖|∇ui|‖pp
) 1

p

≤ 21+1/p
( k+1∑
i=1

∫ 2i+1a0

2ia0

(
ϕp(t)
t

)p/(p−1)
dt

)(p−1)/p
‖|∇u|‖p

= 21+1/p
(∫ 2k+2a0

2a0

(
ϕp(t)
t

)p/(p−1)
dt

)(p−1)/p(∫
M
|∇u|p dv

)1/p
.

Hence ∫
M
|∇u|p dv ≥ 2−1−2p

(∫ 2k+2a0

2a0

(
ϕp(t)
t

)p/(p−1)
dt

)1−p
. (3.17)

The estimate (3.14) then follows from (3.15) and (3.17) by observing that

2a0 = 2 |U(1/2)| ≥ 2 |C|
and

2k+2a0 ≤ 4 |G|
and letting ε→ 0.

It remains to prove (ii). Take a sequence ti,j ↗ λi. Clearly C(λi) =
∩jC(ti,j). Now, if ti,j < λi, one has by definition

|C(ti,j)| ≥ 2ia0 .

The right-hand side of (ii) follows since

|C(λi)| = lim
j→+∞

|C(ti,j)| .
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The left-hand side of (ii) follows similarly, by taking a sequence ti,j ↘ λi.
The theorem is proven.

Remarks. (1) Condition (3.12) in Theorem 3.3 is not necessary for M
to be p-hyperbolic. To see this, we first observe that, for the standard
cylinder R × Sn−1, ϕp(t) ≥ c t if t is large enough. A similar estimate
remains true if we glue R × Sn−1 with the hyperbolic space Hn to obtain
M = Hn#(R× Sn−1). Now the hyperbolic end, Hn minus a compact set,
makes M p-hyperbolic for every 1 < p < +∞ while condition (3.12) fails
to be true.

(2) The results of section 3.3 also hold in the setting of infinite graphs.
Our methods enable one to replace the above p-isoperimetric profile by a
pointed (or anchored) p-isoperimetric profile where one restricts the supre-
mum in (3.11) to functions whose support is connected and contains a fixed
point o. We can therefore improve and generalize the result in [T] (see also
[MarMT]), where a transience (2-hyperbolicity) criterion for graphs is for-
mulated in terms of a 1-isoperimetric profile. In a continuous setting, the
pointed isoperimetric profile makes no difference since one can always join
the connected components of a given set to a fixed point by thin tubes
whose measure and surface measure is negligible if the dimension is greater
than three (we owe this remark to A. Grigor’yan). But one could still
make sense of this by discretization, using, in our general setting, the tech-
niques of [CoS2]. The most general version of the p-hyperbolicity criterion
would then be formulated in terms of a modified (in the sense of [ChF])
and pointed p-isoperimetric profile.

4 Harnack Inequalities, Liouville Property

We shall say that (M,∆) has the (strong) p-Liouville property if every
non-negative p-harmonic function on M is constant. This property fol-
lows from a uniform elliptic Harnack inequality for the p-Laplace operator.
Such inequalities have already been proved in many settings: for a class of
elliptic operators generalizing the ordinary p-Laplace operator in the Eu-
clidean space (see the forerunner papers [Mo], for p = 2, then [Se] and
[Tru] for general p, and the book [HeKM] for an up-to-date exposition), in
[CDG] for a class of subelliptic operators in R

n, in [RigSV] for the p-Laplace
operator and in [HoR2] for a class of elliptic operators on Riemannian man-
ifolds satisfying [D] and [P(p)] (partial results already appeared in [Ho2]),
in [HoSo] on graphs, and more recently in [KiS] for p-quasiminimizers on
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metric spaces.

4.1 Harnack inequalities under quadratic growth. This subsec-
tion contains two results that give Harnack inequalities for p-harmonic
functions under the assumption that supt>1 t−2Vx(t) < +∞, i.e. M has
at most quadratic growth at infinity. The first theorem is restricted to
dimension 2 and to the Riemannian setting. The second theorem has no
dimensional restriction and works in our general subelliptic framework but
requires some kind of bounded geometry.
Theorem 4.1. Assume that (M,g) is a two-dimensional Riemannian
manifold with Riemannian measure µ and let o be a fixed point in M .
Assume that dv = mdµ where m is a smooth function bounded below by
a positive constant c0 and that ∆ has the form ∆ = −m−1div(mB grad)
for some measurable section B of the bundle of symmetric endomorphisms
such that

C−2
0 g ≤ g(B · , · ) ≤ C20g .

Assume finally that the boundary of any geodesic ball Bo(t) in (M,g) is
connected and that

sup
t>0

t−2Vo(t) = Q < +∞
where Vo(t) = v(Bo(t)). Then, for every R > 0, any positive p-harmonic
function u on Bo(R) satisfies

sup
Bo(R/2)

u ≤ C inf
Bo(R/2)

u

with C = exp(16c−10 C0Q(p− 1)−1/p). In particular, (M,∆) is p-Liouville.

Remark. For p = 2, B ≡ Id, m ≡ 1, this statement is in [ChenY,
Prop. 6]. If p > 2, the conclusion that M is p-Liouville already follows from
Corollary 3.2 since a p-parabolic manifold, admitting no non-trivial positive
supersolution, is certainly p-Liouville. For p ∈ (1, 2), Corollary 3.2 requires
a much stronger volume upper bound than the one needed in Theorem 4.1.

Proof. For ease, set B(s) = Bo(s), V (s) = Vo(s). Theorem 3.1 with B = 1,
r0 = 3R/4, r1 = R implies

(p − 1)
∫
B(3R/4)

|∇ log u|pdv ≤ 4pCp
0V (R)
Rp

where the constant C0 appears because we are using the gradient relative
to ∆ but the geodesic balls of (M,g). Hence∫
B(3R/4)

|∇ log u| dv ≤ V (R)1−
1
p

(∫
B(3R/4)

|∇ log u|pdv
) 1

p

≤ 4C0V (R)
(p− 1)1/pR

.
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It follows that there exists t ∈ [R/2, 3R/4] such that∫
∂B(t)

|∇ log u|mdσ ≤ 16C0V (R)
(p − 1)1/pR2

where dσ denote the Riemannian length measure on curves. Thus∫
∂B(t)

|∇ log u|dσ ≤ 16c−10 C0Q(p− 1)−1/p. (4.1)

Let z+, z− be two points such that

u(z+) = sup
∂B(t)

u , u(z−) = inf
∂B(t)

u .

By the maximum principle (see [HeKM]),
supB(R/2) u
infB(R/2) u

≤ u(z+)
u(z−)

.

Now, using the fact that ∂B(t) is connected and one dimensional, (4.1)
yields

log
u(z+)
u(z−)

≤
∫
∂B(t)

|∇ log u|dσ ≤ 16c−10 C0Q(p− 1)−1/p.

It follows that
supB(R/2) u
infB(R/2) u

≤ exp
(
16c−10 C0Q(p− 1)−1/p

)
.

In the next theorem, we drop the assumption that M is 2-dimensional,
and that ∆ is (essentially) Riemannian. We also relax somewhat the as-
sumption that the boundary of balls are connected. Assumptions 2–4 in
the following statement may be seen as bounded geometry hypotheses.

Theorem 4.2. Let (M,∆) be defined as in section 2.6. Assume that there
exists s > 0 such that:

1. For any r > s and any two points x, y such that ρ(o, x) = ρ(o, y) = r,
there is a continuous path γ : [0, 1]→M with γ(0) = x, γ(1) = y and

∀ t ∈ [0, 1] , γ(t) ⊂ Bo(r + s) \Bo(r − s) ;

2. There exists c1, C1 > 0 such that c1 ≤ Vx(s) and Vx(2t) ≤ C1Vx(t)
for all x ∈M and all t ∈ [10−2s, 102s];

3. There exists C2 > 0 such that, for all x ∈ M , t ∈ [10−2s, 102s] and
B = Bx(t),

∀ f ∈ C∞(2B) ,
∫
B
|f − fB|dv ≤ C2

∫
2B
|∇f |dv .
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4. There exists C3 such that any positive p-harmonic function in Bx(2s)
satisfies

sup
Bx(s)

u ≤ C3 inf
Bx(s)

u .

Assume finally that supt>1 t−2Vo(t) = Q < +∞. Then there exists a con-
stant C such that any positive p-harmonic function u on Bo(R), R ≥ 128 s,
satisfies

sup
Bo(R/2)

u ≤ C inf
Bo(R/2)

u .

Proof. Set B(s) = Bo(s), V (s) = Vo(s). Just as in the previous proof, we
have ∫

B(3R/4)
|∇ log u| dv ≤ 4V (R)

(p− 1)1/pR
.

Set Ai = B(ti+1) \B(ti) where ti = (R/2) + 16 i s, 0 ≤ i < B = "R/(64s)#.
Then,

�−1∑
i=0

∫
Ai

|∇ log u| dv ≤ 4V (R)
(p− 1)1/pR

.

It follows that there exists a j ∈ {t0, . . . , t�−1} such that∫
Aj

|∇ log u|dv ≤ 4V (R)
(p− 1)1/pRB

≤ 103Qs

(p− 1)1/p
. (4.2)

Set t = tj + 8s, S = {z : ρ(o, z) = t} and A = {z : ρ(z, S) ≤ s} ⊂ Aj . Fix
a maximal s/2-separated set X = {x0, . . . , xm} in A (crucial to the proof
is the fact that all estimates made below are independent of the number
m of points in X). By construction, the balls Bxi(s) cover A and the balls
Bxi(6s) are contained in Aj. Moreover, for any given i, all the balls Bxj(6s)
that intersect Bxi(6s) are contained in Bxi(12s). As the balls Bxj(s/2) are
disjoint, it follows from the volume hypothesis that there are at most C61
balls Bxj(6s) that intersect Bxi(6s), that is,

#
{
j ∈ {1, . . . ,m} : Bxj(6s) ∩Bxi(6s) �= ∅

} ≤ C61 . (4.3)

Say that x, y ∈ X are neighbors if ρ(x, y) ≤ 2s. We claim that the graph
with vertex-set X and an edge from x to y if x, y are neighbors is connected.
To prove this claim, let x, y be two elements of X. By construction there
exists x′, y′ such that x′ ∈ S ∪ Bx(s), y′ ∈ S ∪ By(s). By our hypotheses,
there is a continuous path joining x′ to y′ and contained in A. Considering
the centers of the balls Bxi(s) that one successively enters when moving
along the path from x to y proves the claim.
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Now, let z+, z− be two points such that

u(z+) = sup
S

u , u(z−) = inf
S

u .

By the maximum principle,
supBo(R/2) u

infBo(R/2) u
≤ u(z+)

u(z−)
.

Further, there exist i+, i− such that z± ∈ Bxi± (s). Set v = log u. Lemma
5.3 of [CoS2] gives, for xi, xj neighbors,

|vi − vj| ≤ 2c−11 C21C2

∫
Bxi(6s)

|∇v|dv

where vi is the mean of v over Bxi(s). Here, to apply Lemma 5.3 of [CoS2],
we have used hypotheses 2 and 3 of Theorem 4.2. Next, since the graph X
is connected and thanks to (4.3),

|vi+ − vi− | ≤ 2c−11 C21C2

m∑
0

∫
Bxi (6s)

|∇v|dv ≤ 2c−11 C81C2

∫
Aj

|∇v|dv .

By (4.2), this yields

|vi+ − vi− | ≤ 104c−11 C81C2(p − 1)−1/pQs = C .

Let ξ be the maximum of u in Bxi+ and ζ the minimum of u in Bxi− . Then

| log ξ − log ζ| ≤ |vi+ − vi− | ≤ C ,

that is, ξ ≤ eCζ. By assumption 4 of Theorem 4.2 (local Harnack inequal-
ity), it follows that

u(z+) ≤ C23e
Cu(z−) .

This gives the desired result.
Remark. The main ingredient in the above proofs is Cheng–Yau’s in-
equality (3.1). As we pointed out at the end of section 3.1 (3.1) may be
seen as a consequence of the logarithmic Cacciopoli inequality (3.4). As
a matter of fact, (3.4) has earlier been used by Granlund ([Gr]) to obtain
Harnack’s inequality in R

n for the n-Laplacian, see also [Ri4, Thm.VI.7.4],
and [Ho1, Thm. 5.14].

4.2 A Sobolev inequality. In the next sections, we shall run Moser
iteration as in [S1] in order to obtain a Harnack inequality for p-harmonic
functions, under the assumption that doubling volume and suitable Poincaré
inequalities hold.

The plan of the proof is as follows: doubling and Poincaré imply a
family of Sobolev inequalities on balls (see Lemma 4.3 below). From such
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an inequality, choosing suitable test-functions and using an iterative ar-
gument, one estimates the supremum of a supersolution by its Lp norm,
and, through an additional iteration inspired from Li-Schoen ([LiS]), by
its Lq norm, 0 < q < +∞. The companion lower estimate of the infimum
of a subsolution by an Lq norm is more involved; it goes through prelim-
inary estimates obtained, first by another choice of test functions, second
by another kind of iterative argument, and relies on an abstract lemma of
Bombieri–Giusti ([BoG]) that enables one to by-pass the John–Nirenberg
lemma. Let us emphasize that we do not assume a priori that our solutions
are continuous nor locally bounded, but this is part of the conclusion.

Let us finally point out that instead of Moser’s ideas, one could adapt
De Giorgi’s method as exposed in [Gi] (see [AuC], [KiS] for recent instances
of such adaptation).

For Ω ⊂ M , let W 1,p
0 (Ω) be the completion of C∞0 (Ω) with respect to

the norm
( ∫

M |ϕ|pdv +
∫
M |∇ϕ|pdv

)1/p.
Lemma 4.3. Fix R > 0. Assume that the Poincaré inequalities on
balls [P(p,R)] and the doubling condition [D(R)] are satisfied. Then there
exists k > 1 and S > 0 such that, for all x ∈ M , all r ∈ (0, R), all
f ∈W 1,p

0 (Bx(r)),(∫
Bx(r)

|f |pkdv
)1/k

≤ Srp

Vx(r)p/ν

∫
Bx(r)

[
|∇f |p + 1

rp
|f |p

]
dv .

One can take k = ν/(ν − p) with ν = max{p + 1, log2D} where D is the
doubling constant; S only depends on D and Pp.

See for instance [BaCLS], [BiM2], [CoG], [HK1], [MS]. The term∫
B |f |p dv can be disposed with by applying Poincaré once again if the
space is not compact (if Bx(2r) is not all the space). The condition that
f has compact support in Bx(r) can also be disposed with (but we do not
need this fact).

4.3 Subsolutions. Let (M,∆) be as in section 2.6.
Theorem 4.4. Fix B = Bx(r) and set V = Vx(r) = v(B). Assume there
exists k > 1 and S > 0 such that, for all f ∈W 1,p

0 (B),(∫
B
|f |pkdv

)1/k
≤ Srp

V p/ν

∫
B

[
|∇f |p + 1

rp
|f |p

]
dv (4.4)

where ν = kp/(k− 1). Then any positive p-subsolution u in B satisfies, for
all q ≥ p and 0 < δ < 1,

sup
δB
{uq} ≤ A(p, q, k)Sν/p(1− δ)−ν

1
V

∫
B
uqdv .
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Proof. For any non-negative test-function ϕ ∈ W 1,p
0 (M,∆) with compact

support in B, ∫
B
Γ(ϕ, u)|∇u|p−2dv = 〈∆pu, ϕ〉 ≤ 0 .

We shall apply this to a test-function of the form ϕ = ψpG(u), with ψ non-
negative, and G a differentiable non-negative function to be chosen later.
Since

Γ
(
ψpG(u), u

)
= ψpG′(u)|∇u|2 + pψp−1G(u)Γ(ψ, u) ,

we obtain ∫
B
ψpG′(u)|∇u|p dv ≤ p

∫
B
ψp−1G(u)|∇ψ||∇u|p−1dv .

Assume now that

G(t) ≤ tG′(t) , t ≥ 0 . (4.5)

It follows that∫
B
ψpG′(u)|∇u|pdv ≤ p

∫
B
ψp−1uG′(u)|∇ψ||∇u|p−1dv

≤ p

(∫
B
ψpG′(u)|∇u|pdv

)(p−1)/p(∫
B
|∇ψ|pupG′(u)dv

)1/p
.

Hence ∫
B
ψpG′(u)|∇u|pdv ≤ pp

∫
B
|∇ψ|pupG′(u)dv .

Now, define H(t) =
∫ t
0 G

′(s)1/pds so that G′(u) = H ′(u)p and, by Jensen
and (4.5), H(u) ≤ uH ′(u). One has

∇(ψH(u)) = ψH ′(u)∇u+H(u)∇ψ
therefore

|∇(ψH(u))|p ≤ 2p−1
(
ψpH ′(u)p|∇up|+H(u)p|∇ψ|p)

≤ 2p−1
(
ψpG′(u)|∇up|+ upG′(u)|∇ψ|p) .

Thus, if one sets Ap = 2p−1(1 + pp),∫
B

∣∣∇(ψH(u))
∣∣p ≤ Ap

∫
B
|∇ψ|pupG′(u)dv .

Setting ν = kp/(k − 1), i.e. k = ν/(ν − p), and θ = 1 + p/ν = 2 − (1/k),
(4.4) gives(∫

B
(ψH(u))pkdv

)1/k
≤ SV −p/ν

(
Apr

p

∫
B
upG′(u)|∇ψ|p + (ψH(u))pdv

)
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Fix 0 < δ < δ′ ≤ 1 and pick ψ so that 0 ≤ ψ ≤ 1, ψ = 1 on δB, ψ = 0 on
(δ′B)c and |∇ψ| ≤ [(δ′ − δ)r]−1. This gives(∫

δB
|H(u)|pkdv

)1/k
≤ A′

pSV
−p/ν(δ′ − δ)−p

∫
δ′B

upG′(u)dv .

Hölder yields∫
δB
|H(u)|pθdv ≤

(∫
δB
|H(u)|pkdv

)1/k(∫
δB
|H(u)|pdv

)(k−1)/k
,

therefore, using the above inequality and H(u)p ≤ upG′(u) once again,∫
δB
|H(u)|pθdv ≤ A′

pSV
−p/ν(δ′ − δ)−p

(∫
δ′B

upG′(u)dv
)θ

. (4.6)

Now, for α ≥ p and N > 0, set

HN (s) = s
α
p if s ≤ N , N

α
p
−1s if s ≥ N .

An easy computation shows that

GN (s) =
∫ s

0
H ′
N (t)

p dt

equals (
α
p

)p 1
α− p+ 1

sα−p+1

if s ≤ N , (
α
p

)p 1
α− p+ 1

Nα−p+1 +Nα−p(s −N)

if s ≥ N . One checks easily that, for all N > 0, the functions GN and HN

satisfy the properties required for G and H above, and that, if ψ ∈ C∞0 (B),
then ϕ = ψpG(u) ∈ W 1,p

0 (M,∆). One can now let N go to +∞ in (4.6)
and obtain, for all α ≥ p,∫

δB
|u|αθ dv ≤ A′

pSV
−p/ν(δ′ − δ)−p

((
α

p

)p ∫
δ′B

uαdv

)θ

.

Let q ≥ p. Set αi = qθi and σi = (1 − δ)2−i, δ0 = 1, δi = 1−∑i
1 σj so

that lim+∞ δi = δ. The last inequality yields∫
δi+1B

|u|qθi+1
dv ≤ A′

pSV
−p/ν(δi − δi+1)−p

((
αi
p

)p ∫
δiB

uqθ
i
dv

)θ

.

This gives
(∫

δi+1B
|u|qθi+1

dv

)θ−1−i
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≤ (A′
pSV

−p/ν)θ
−1−i

(1−δ)−pθ−1−i
2p(i+1)θ

−1−i

(
qθ

p

)ipθ−i (∫
δiB

upθ
i
dv

)θ−i

.

Hence(∫
δi+1B

|u|qθi+1
dv

)θ−1−i

≤ (A′
pSV

−p/ν)
P
θ−j

(1− δ)−p
P
θ−j

2p
P
jθ−j

(
qθ

p

)p
P
jθ−j (∫

B
uqdv

)

(4.7)
where all the summations run from 1 to i+ 1. Finally

sup
δB
{uq} ≤ A(p, q, k)Sν/p(1− δ)−ν

1
V

∫
B
uqdv .

This ends the proof.
Theorem 4.5. Fix B = Bx(r) and let q ∈ (0, p). Assume the Sobolev
inequality (4.4). Then any positive p-subsolution u in B satisfies

sup
δB
{uq} ≤ C(p, q, k)Sν/p(1− δ)−ν

V

∫
B
uqdv .

Proof. Fix 1/2 < σ < 1 and set σ′ = σ + (1 − σ)/4, τ = (1 − σ)/4. Then,
Theorem 4.4 yields

sup
σB
{u} ≤ τ−ν/pC(p, k)Sν/p

2
V −1/p‖u‖p,σ′B .

where ‖u‖α,B =
( ∫

B |u|αdv
)1/α. Using ‖u‖p ≤ ‖u‖1−q/p∞ ‖u‖q/pq and setting

J = C(p, k)Sν/p
2
V −1/p‖u‖q/pq,B ,

we obtain
sup
σB
{u} ≤ τ−ν/pJ

(
sup
σ′B
{u}

)1−q/p
.

We fix δ > 1/2 and set σ0 = δ, σi+1 = σi + (1− σi)/4. This gives 1− σi =
(3/4)i(1− δ). The above inequality yields

sup
σi−1B

{u} ≤ 4ν/p
(
4
3

)νi/p (1− δ)−ν/pJ
(
sup
σiB
{u}

)1−q/p
.

Hence

sup
δB
{u} ≤ 4

ν
p

P
(j+1)(1−ν/p)j ((1− δ)−ν/pJ

)P(1−q/p)j( sup
σiB
{u}

)(1−q/p)i

where all the summations run from 0 to i− 1. When i tends to infinity, we
obtain
sup
δB
{u} ≤ A(p, q, k)

(
(1− δ)−

ν
pJ

) p
q = C(p, q, k)Sν/(pα)(1− δ)−

ν
q V − 1

q ‖u‖q,B .
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4.4 Supersolutions. Let (M,∆) be as in section 2.6.

Theorem 4.6. Fix B = Bx(r), and assume the Sobolev inequality (4.4) in
B with constants S, k and ν = kp/(k − 1). For all 0 < δ < 1, 0 < q < +∞,
any positive p-supersolution u in B satisfies

sup
δB
{u−q} ≤ C(p, k)Sν/p(1− δ)−ν

1
V

∫
B
u−qdv .

Remark. One could directly deduce a version of Theorem 4.6 from Theo-
rem 4.4 by noticing that a negative power of a subsolution is a supersolution
but this would not yield a constant C independent of q, which we will need
below.

Proof. By replacing u with u+ ε, one can assume that u is bounded away
from 0. For any nonnegative test-function ϕ ∈ W 1,p

0 (M,∆) with compact
support in B, ∫

Γ(ϕ, u)|∇u|p−2dv ≥ 0 . (4.8)

Let β < 0, and ψ ∈ C∞0 (B); one checks easily that ϕ = −βuβ−p+1ψp ∈
W 1,p
0 (M,∆). Setting w = uβ/p, we obtain

−β(β−p+1)
∣∣∣ pβ

∣∣∣p
∫

ψp|∇w|pdv−p2
∣∣∣ pβ

∣∣∣p−2
∫

ψp−1wΓ(ψ,w)|∇w|p−2dv ≥ 0 .

Hence ∫
ψp|∇w|pdv ≤

∫
ψp−1w|∇ψ||∇w|p−1dv

Here we used the fact that |β|/|β − p+ 1| ≤ 1 when β < 0, p > 1. Now,
the Hölder inequality gives∫

ψp|∇w|pdv ≤
∫
|∇ψ|pwpdv .

From here, the arguments used for Theorem 4.4 apply, with w instead of u
and G(s) = s, and give the desired result.

Theorem 4.7. Fix B = Bx(r), and assume the Sobolev inequality
(4.4) with constants S, k. Fix q0 ∈ (0, θ(p − 1)) where ν = kp/(k − 1)
and θ = 1 + p/ν. For all 0 < δ < 1 and all q ∈ (0, q0/θ], any positive
p-supersolution u in Bx(r) = B satisfies(∫

δB
uq0dv

)1/q0
≤ [

C(p, k, q0)S2+ν/p(1−δ)−2ν+pV −1]1
q
− 1

q0

(∫
B
uqdv

)1/q
.

Proof. Again, one can assume that u is bounded away from 0. Let 0 <
β ≤ q0θ

−1 < (p − 1) and 0 < η = 1 − q0θ
−1(p − 1)−1. For ψ ∈ C∞0 (B),
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ϕ = βuβ−p+1ψp ∈W 1,p
0 (M,∆). Set now w = uβ/p; (4.8) yields

η

∫
ψp|∇w|pdv ≤

∫
ψp−1w|∇ψ||∇w|p−1dv

and thus ∫
ψp|∇w|pdv ≤ η−p

∫
|∇ψ|pwpdv .

Using the Sobolev inequality (4.4) as in the proof of Theorem 4.4, we obtain∫
σB

uβθdv ≤ A(p, η)SV −p/ν(σ′ − σ)−p
(∫

σ′B
uβdv

)θ

(4.9)

for all 0 < σ < σ′ ≤ 1 and all β ∈ (0, q0θ−1]. Now, define qi = q0θ
−i;

we shall first prove (a slightly stronger version of) the claimed inequality
with q = qi, i = 1, 2, . . . and then the full result will follow from Jensen’s
inequality. Thus, fix i ≥ 1 and apply (4.9) with β = qiθ

j−1, j = 1, . . . , i,
and σ′ = σj−1, σ = σj where σ0 = 1, σj−1 − σj = 2−j(1 − δ). This yields
(observe that qiθj−1 ≤ q0/θ for j = 1, . . . , i as required by (4.9))∫

σjB
uqiθ

j
dv ≤ A(p, η)SV −p/ν2jp(1− δ)−p

(∫
σj−1B

uqiθ
j−1

dv

)θ

for j = 1, . . . , i. Hence∫
σiB

uq0dv ≤ (
A(p, η)SV −p/ν)P θj

2
P
(i−j)θj

(1− δ)−p
P
θj

( ∫
B
uqidv

)θi

where all the summations run from 0 to i− 1. Observe now that
i−1∑
0

θj =
θi − 1
θ − 1

=
ν

p

(
q0
qi
− 1

)
,

∑i−1
0 (i− j)θj ≤ Cθ(θi−1) = Cθ((q0/qi)−1), and σi = 1− ( ∑i

1 2
−i)(1− δ)

> δ. This gives∫
δB

uq0dv ≤ (
A(p, k, η)Sν/p(1− δ)−νV −1)(q0/qi)−1(∫

B
uqidv

)q0/qi

.

This ends the proof.

4.5 Harnack inequalities. We start with the following abstract
lemma, whose proof is given in [S3] and [S6] up to slight changes in notation;
see also [BoG, Thm. 4]. Consider a collection of measurable subsets Uσ,
0 < σ ≤ 1, of some fixed measure space endowed with a measure v, such
that Uσ′ ⊂ Uσ if σ′ ≤ σ. In our application, the space will be M with mea-
sure v and Uσ will be σB for some fixed B. For U ⊂M and 0 < α ≤ +∞,
and f a function defined on U , recall that ‖f‖α,U denotes

( ∫
U |f |αdv

)1/α,
with the obvious modification if α = +∞.
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Lemma 4.8. Fix 0 < σ0 ≤ 1. Let γ,K be positive constants and
0 < α0 ≤ +∞. Let f be a positive integrable function on U1 = U which
satisfies

‖f‖α0,Uσ′ ≤
[
K(σ − σ′)−γv(U)−1

]1/α−1/α0 ‖f‖α,Uσ ,

for all σ, σ′, α such that 0 < σ0 ≤ σ′ < σ ≤ 1 and 0 < α ≤ min{1, α0/2}.
Assume further that f satisfies

λv(log f > λ) ≤ K v(U)

for all λ > 0. Then
‖f‖α0,Uσ0

≤ Av(U)1/α0

where A depends on σ0, γ,K, and a lower bound on α0.

Let then (M,∆) be as in section 2.6. First we derive a weak Harnack
inequality for supersolutions.
Theorem 4.9. Fix R > 0. Assume (M,∆) satisfies the doubling prop-
erty [D(R)] and the Poincaré inequality [P(p,R)] with constants D and
Pp respectively. By Lemma 4.3, the Sobolev inequality (4.4) is satisfied
for all x ∈ M , r ∈ (0, R) with k = ν/(ν − p), ν = max{p + 1, log2D},
and S depending only on D and Pp. Let 0 < q < (1 + p/ν)(p − 1) and
0 < δ < 1. Then, for all x ∈ M , r ∈ (0, R), any positive p-supersolution u
in B = Bx(r) satisfies

1
v(δB)

∫
δB

uq dv ≤ C inf
δB
{uq} .

Here C depends on p,D,Pp, q, δ.

Proof. We wish to apply Lemma 4.8 to e−cu and ecu−1 where c is a well
chosen constant. In fact, we pick

c =
1
V ′

∫
δ′B

log u dv

where δ′ = (1 + δ)/2 and V ′ = v(δ′B). We set U = δ′B, Uσ = (σδ′)B,
0 < σ ≤ 1, σ0 = δ/δ′. Theorem 4.7 shows that the first hypothesis of
Lemma 4.8 is satisfied by any constant multiple of u with α0 = q, where
0 < q ≤ q0 < (1+p/ν)(p−1), γ = ν+p, K = C(p, k, q0)S(ν/p)+1. To verify
the second hypothesis of Lemma 4.8, we apply [P(p,R)] to log u so that∫

δ′B
| log u− c|pdv ≤ P ′rp

∫
δ′B
|∇ log u|pdv ,

then Theorem 3.1 which easily gives∫
δ′B
|∇ log u|pdv ≤ V

(p− 1)
[
(1− δ′)r

]p .
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These two inequalities and doubling yield∫
U
| log u− c| dv ≤ V 1−1/p

(∫
U
| log u− c|pdv

)1/p
≤ C1V

′

where C1 depends on p, D, Pp, and δ. It follows that

λv
({log(e−cu) ≥ λ} ∩ U

) ≤ C1V
′

for all λ > 0. Lemma 4.8 yields

‖e−cu‖q,δB ≤ C2(V ′)1/q, (4.10)

where C2 depends on p, D, Pp, δ and q. Similarly, Theorem 4.6, Theorem
3.1 and the Poincaré inequality allow us to apply Lemma 4.8 to ecu−1 with
q0 = +∞, γ = ν and K = C(p, k)Sν/p. This gives

‖ecu−1‖∞,δB ≤ C3 , (4.11)

where C3 depends on p, D, Pp and δ. From (4.10) it follows that(
1

v(δB)

∫
δB

uqdv

)1/q
≤ C2e

c,

and from (4.11) that
ec ≤ C3 inf

δB
{u} .

Finally, (
1

v(δB)

∫
δB

uqdv

)1/q
≤ C2C3 inf

δB
u .

This ends the proof.
As a corollary of Theorems 4.9 and 4.5, we obtain the full Harnack

inequality for positive p-harmonic functions under the assumption that the
Poincaré inequality and the doubling property are satisfied.
Theorem 4.10. Assume that, for some R > 0, the doubling volume
property [D(R)] and the Poincaré inequality [P(p,R)] are satisfied. Let
0 < δ < 1. Then any positive p-harmonic function u in B = Bx(r), r ≤ R
satisfies

sup
δB

u ≤ C inf
δB

u .

Here C depends on the doubling constant D, the Poincaré constant Pp, p
and δ.

Just by letting r go to infinity, one deduces from Theorem 4.10 the
following statement.
Theorem 4.11. Let 1 < p < +∞. Suppose that (M,∆) satisfies [P(p)]
and [D]. Then (M,∆) is p-Liouville.
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5 Picard Type Theorems

5.1 Quasi-regular mappings. In this section, M and N are complete
oriented Riemannian n-manifolds. A continuous mapping φ : M → N is
said to be quasi-regular if, around each point of M , once seen in some
charts, its coordinate functions belong to W 1,n

loc and

∃K ≥ 1 , ‖dφ(x)‖n ≤ KJ(φ)(x) , for a.e. x ∈M , (5.1)

where ‖dφ(x)‖ denotes the operator norm of the differential dφ(x) : TxM →
Tφ(x)N and J(φ) is the Jacobian of φ. This definition is not quite satisfac-
tory, since φ is not assumed to be differentiable. For instance, it is enough
to ask first that, seen in charts around every point, φ is quasi-regular in the
Euclidean sense, which ensures that dφ exists almost everywhere. This cor-
rect, but lengthy, definition can be found in [MatR, p. 277]. For more details
and background on this notion, see also [R2] and [Ri4]. Note that quasiregu-
lar homeomorphisms are called quasiconformal. There are other equivalent
definitions of quasiconformality (at least for certain M and N); (5.1) is
usually called the analytic definition. See the discussion in section 5.3.

The completeness assumptions on M and N are superfluous since we
can always change the metrics conformally to obtain complete manifolds
without affecting either the distortion condition (5.1) or the n-parabolicity
(resp. n-hyperbolicity) of M or N . Completeness is assumed only for the
conditions [V(n)] and [I(n)] below.

Fix o ∈M . Denote by [V(n)] the condition∫ +∞

1

dr

V ′
o(r)1/(n−1)

= +∞

where Vo(r) is the volume of the ball of radius r centered at o (see section 3.2
for details).

Denote by [I(n)] the condition∫ +∞ (
ϕn(t)
t

)n/(n−1)
dt < +∞ ,

where ϕn is the n-isoperimetric profile of M (see section 3.3 for details).

The connection between the existence of positive n-harmonic (resp. n-
supersolutions) and the existence of quasi-regular mappings between mani-
folds is the following “harmonic morphism” property:

Suppose that on N , ∆n is given by

∆nϕ = −div(g(B gradϕ, gradϕ)(n−2)/2B gradϕ)
, (5.2)
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where B is uniformly comparable to A ≡ Identity (see section 2.6). Let
u : N → R be ∆n-harmonic (resp. a ∆n-supersolution) and φ : M → N a
quasi-regular map. Then u ◦ φ is ∆̃n-harmonic (resp. a ∆̃n-supersolution),
where ∆̃n, the pull-back of ∆n by φ, is now given on M by

∆̃nψ = −div(g(B̃ gradψ, gradψ)(n−2)/2B̃ gradψ)
, (5.3)

with

B̃x =
[
J(φ)(x)

]2/n
dφ(x)−1Bφ(x)

(
dφ(x)−1

)∗
, (5.4)

if J(φ)(x) exists and is positive, and by B̃x = Identity otherwise. The
distortion condition (5.1) implies that B̃ is also uniformly comparable to
the identity with comparison constants only depending on n,K, and the
comparison constant of B on N . The proof of these facts goes back to
Reshetnyak ([R1,2]); for a proof in the Euclidean space, that extends readily
to our setting, see [HeKM, 14.39 and 14.42].

We shall denote by DM the class of all Laplace operators on the n-
manifold M associated with B’s that are uniformly comparable to the
identity. It is important to notice that the notion of n-parabolicity for
(M,∆) does not depend on the choice of such B, since they all give rise to
uniformly comparable gradients.

From now on, we shall say that an n-manifoldM is n-parabolic if (M,∆)
is n-parabolic for some (every) ∆ ∈ DM .

Slightly abusing the previous terminology, we shall also say that M is
n-Liouville if (M,∆) is (strongly) n-Liouville for every ∆ ∈ DM .

We can now state three basic propositions that link the existence of non-
trivial qr maps with the n-parabolicity, n-hyperbolicity, and n-Liouville
properties of the domain and the target manifolds. Then we shall apply
our criteria to each of these propositions.
Proposition 5.1. If M is n-parabolic and N n-hyperbolic, then every
quasi-regular mapping from M to N is constant.

Proof. Suppose that φ : M → N is a qr map. If φ(M) = N , we obtain
immediately a contradiction by the “harmonic morphism” property above.
If φ is non-constant but φ(M) �= N , choose y ∈ ∂(φ(M)) and let g = g( · , y)
be a positive Green’s function for ∆n on N (which exists since N is n-
hyperbolic, see [Ho1]). Then g ◦ φ is certainly a positive non-constant
n-harmonic function on M , which again leads to a contradiction.

Proposition 5.1 is well known. The earliest references are [R1] and
[MartRV] for maps φ : R

n → N ⊂ R
n. In the above more general form, it

appeared e.g. in [Ri3, remark on p. 166].
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Proposition 5.2. Let x0 ∈ N . If M is n-Liouville and N is n-hyperbolic,
then every quasi-regular mapping from M to N \ {x0} is constant.

The end of the proof of Proposition 5.1 yields exactly Proposition 5.2.
This proposition is well known to specialists; see [HoR1, Thm. 1.12], which
is stated for Heisenberg groups, but whose proof is the one given above.

Proposition 5.3. If M is n-Liouville and N is not, then every quasi-
regular mapping from M to N is constant.

Proof. Suppose that φ : M → N is a non-constant qr map. Again, if
φ(M) = N , the claim follows directly from the “harmonic morphism” prop-
erty. Now, since N is not n-Liouville, it cannot be n-parabolic. Therefore,
if φ(M) �= N , Proposition 5.2 applies.

Applications of Proposition 5.1.

Theorem 5.4. Assume that M satisfies [V(n)] and that N satisfies [I(n)].
Then every quasi-regular mapping from M to N is constant.

Proof. According to Corollary 3.2, M is n-parabolic, and according to
Theorem 3.3, N is n-hyperbolic. Proposition 5.1 applies.

Theorem 5.4 has been proved in [Gro, Cor. 6.11], see also [P1], under the
assumption that N satisfies an isoperimetric inequality at infinity of dimen-
sion D > n; recall that this is strictly stronger than [I(n)], see section 3.3.
Together with the results in [Va2] (see [CoS1] for a simple approach) both
Theorem 5.4 and [Gro, Cor. 6.11], imply that if M satisfies [V(n)], N is a
Lie group and there exists a non-trivial quasi-regular mapping φ : M → N ,
then N has to be of polynomial growth of exponent at most n; the case
M = R

n is already in [VaSC, X.2.2].
One cannot weaken the condition on N in the above statement into

a condition on the volume growth only. Indeed, according to an exam-
ple in [Va4], which is a modification of the example by Greene quoted in
section 3.2, R

2 is conformal to a surface N with uniform exponential vol-
ume growth. More generally, it is proven in [GrimP] that if M satisfies∫ +∞
1 dr/V ′

o(r)
1/(n−1) = +∞ then any volume growth can be realized by a

conformal metric on M .

Corollary 5.5. Assume that M satisfies [V(n)], and that N is compact.
Suppose there exists a non-constant quasi-regular mapping from M to N .
Then Γ = π1(N) is virtually nilpotent and its volume growth function
satisfies

VΓ(k) = O(kn) .
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Proof. Let φ : M → N be quasi-regular and non-constant. Lift it to
φ̃ : M → Ñ , where Ñ is the universal covering of N . Obviously φ̃ is
quasi-regular and non-constant. Now if the claimed estimate on VΓ is false,
one must have VΓ(k) ≥ ckn+1, therefore the isoperimetric profile of Ñ
satisfies ϕ1(t) ≤ Ct1/(n+1) (see [CoS1]), and in particular [I(n)]. This is a
contradiction.

The case M = R
n of Corollary 5.5 is already in [VaSC, X.5.1].

A version of Proposition 5.1 has been given in [TrV] for mappings sat-
isfying

∃K > 0 , ‖dφ(x)‖s ≤ KJ(φ)(x) , for a.e. x ∈M ,

for more general s. Our criteria can be used together with this result to
improve non-existence results for such mappings.

Applications of Proposition 5.2.

Theorem 5.6. Assume that M satisfies [P(n)] and [D], and that N
satisfies [I(n)]. Then every quasi-regular mapping from M to N \ {x0},
x0 ∈ N , is constant.

Proof. One applies Theorem 4.11, Theorem 3.3, and Proposition 5.2.
Examples. In Theorems 5.4 and 5.6, one can take N roughly isometric
to a Lie group or a finitely generated group, a Riemannian manifold with
non-negative Ricci curvature, or a co-compact covering, as soon as their
volume growth is at least polynomial of exponent D > n. In all these
situations N satisfies an isoperimetric inequality at infinity of dimension D
(see [CoS1,2]), therefore [I(n)] holds.

Corollary 5.7. Let G be a simply connected nilpotent non-Abelian Lie
group, and let x0 ∈ G. Then every quasi-regular mapping from G to
G \ {x0} is constant.

Proof. Every Lie group with polynomial growth satisfies [D] and [P(p)] for
all p ∈ [1,+∞). Let n be the topological dimension of G. It follows from the
assumption that the volume growth function V of G satisfies V (r) ≥ crD,
r ≥ 1, with D > n. Now the isoperimetric dimension at infinity of G is D
(this is due to Varopoulos [Va2], see [CoS1] for a simple proof), thus [I(n)]
is also satisfied and one can apply Theorem 5.6.

The case where G is the Heisenberg group has been treated in [HoR1,
Thm. 1.12]. Note that the above proof works for any Lie group with poly-
nomial growth at infinity of exponent strictly larger than the topological
dimension.
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Applications of Proposition 5.3. It follows from [P3, pp. 97, 112],
that if a simply connected n-dimensional manifold has sufficiently pinched
negative sectional curvature, then it admits non-constant Dirichlet finite
n-harmonic functions. Now it follows from [Ho1, Thm. 5.9], that it admits
non-constant bounded n-harmonic functions as well.

We can therefore state the following.

Corollary 5.8. If M satisfies [P(n)] and [D], and if N satisfies −a2 ≤
K ≤ −b2 < 0, with a/b < n/(n− 1), where K is the sectional curvature,
then every quasi-regular mapping from M to N is constant.

Note that we do not need to assume that N is simply connected, because
once again one can lift any non-constant quasi-regular map φ : M → N to
a non-constant quasi-regular φ̃ : M → Ñ , where Ñ is the universal covering
of N .

The case where M is the Heisenberg group and N the hyperbolic space
of the same topological dimension has been considered in [Ho2, Cor. 4.13].

Another way to obtain nice applications of Proposition 5.3, in the case
of surfaces, is to combine it with the result of [BouE] (see [BBE] for a simple
proof) that a regular cover of a compact manifold whose deck transforma-
tion group is linear has the strong 2-Liouville property if and only if M is
not of exponential growth. One may wonder whether the latter statement
holds for the p-Liouville property, which would yield the same applications
for n-manifolds.

Proposition 5.2 is an example of results giving upper bounds for the
number of omitted values. In [Ri1], Rickman proved that a non-constant
qr map φ : R

n → R
n cannot omit more than a finite number q(n,K) of

points, where K is the constant in (5.1). The result is sharp at least in R
3

in the sense that given any positive integer q, there exists a non-constant qr
map φ : R

3 → R
3, with K depending on q, omitting at least q points (see

[Ri2]). Other proofs of Rickman’s Picard theorem are given e.g. in [EL]
and [L]; note that the latter is based on a uniform Harnack inequality. See
also [HoR2], and [HeH] for further generalizations.

In this section we have only dealt with elliptic operators on M and N
since very little is known about quasi-regular maps beyond the Riemannian
setting, for instance in a subelliptic context. The difficulty lies in proving
the harmonic morphism property starting from a (local) definition like (5.1)
without assuming φ to be overly smooth. See [Ri4, p. 12], for a discussion on
the regularity issue. In [HeH], basic properties of qr-maps on Carnot groups
of Heisenberg type were proved under a slightly unsatisfactory regularity
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assumption on the maps. Recently, Dairbekov was able to overcome this
difficulty in [Da]; see also [Vo] for an independent approach.

In the next two sections, we briefly consider two classes of maps for
which we can obtain Picard type theorems also in our general setting.

5.2 p-harmonic morphisms. One way to overcome the difficulty of
proving the harmonic morphism property in a general setting is simply
to consider maps that by definition pull-back p-harmonic functions. Say
that a continuous map φ : M → N is a (∆̃p,∆p)-harmonic morphism if
u ◦ φ is ∆̃p-harmonic in φ−1(Ω) whenever u is ∆p-harmonic in an open
set Ω ⊂ N ; see [HeKM, chapter 13], and also [Lo]. Notice that in this
definition, the topological dimensions of M and N need not be the same.
Of course, quasiregular maps between Riemannian n-manifolds M and N
are (∆̃n,∆n)-harmonic morphisms, where ∆n and ∆̃n are given by (5.2)
and (5.3), respectively.

Assume that (N,∆) satisfies a local doubling condition and a local
Poincaré inequality in the sense that there exists a constant C such that
each point x ∈ N has a neighborhood U so that, for every ball By(2r) ⊂ U ,

v(By(2r)) ≤ Cv(By(r)) (5.5)

and ∫
By(r)

|f − fBy(r)|pdv ≤ Crp
∫
By(2r)

|∇f |pdv (5.6)

holds for all f ∈ C∞(By(2r)).
By Theorem 4.10, we then have a local Harnack inequality for positive

∆p-harmonic functions on open sets Ω ⊂ N . Now it is possible to repeat
the arguments in [Ho1] (see also [Ho2]) with minor changes to obtain a
further characterization of p-hyperbolicity of (N,∆). Namely, (N,∆) is
p-hyperbolic if and only if there exists a positive Green’s function g =
g( · , x0), for all x0 ∈ N , for the operator ∆p on N . In particular, g is then
a positive ∆p-harmonic function on N \ {x0} with infN g = 0 and

lim
x→x0

g(x, x0) = Capp
(
N, {x0}

)1−p
,

where we make the convention that 01−p = +∞. Furthermore,

g(y, x0) < lim
x→x0

g(x, x0)

for all y �= x0. Now the counterpart to Propositions 5.1, 5.2, 5.3 is the
following.
Proposition 5.9. Assume that (N,∆) is p-hyperbolic and satisfies (5.5)
and (5.6).
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(a) If (M, ∆̃) is p-parabolic, then every (∆̃p,∆p)-harmonic morphism φ :
M → N is constant.

(b) If (M, ∆̃) is strongly p-Liouville, then every (∆̃p,∆p)-harmonic mor-
phism φ : M → N \ {x0}, x0 ∈ N , is constant.

(c) If (M, ∆̃) is strongly p-Liouville but (N,∆) is not, then every (∆̃p,∆p)-
harmonic morphism φ : M → N is constant.

Proof. Let φ : M → N be a (∆̃p,∆p)-harmonic morphism. If φ is non-
constant but φ(M) �= N (which is the case in (b)), then all three claims
(a)–(c) follow as in the end of Proposition 5.1. Claim (c) is also clear if
φ(M) = N . It remains to prove (a) in the case φ(M) = N . Let g = g( · , x0)
be a Green’s function for ∆p onN . Now g◦φ is a positive ∆̃p-harmonic func-
tion in the open set φ−1(N \ {x0}). Let a = min

{
1, 12Capp(N, {x0})1−p

}
,

where we make again the convention 01−p = +∞. Then the function

u = (g ◦ φ) ∧ a

is a non-constant positive ∆̃p-supersolution on M . Indeed, u is ∆̃p-harmo-
nic, hence a ∆̃p-supersolution, in the open set φ−1({g �= a}). Furthermore,
each point x ∈ (g◦φ)−1({a}) has a neighborhood where g◦φ is ∆̃p-harmonic,
hence u is a ∆̃p-supersolution in this neighborhood, by [HeKM, Thm. 2.3].
This leads to a contradiction.

5.3 Quasi-conformal mappings. If we require φ : M → N to be
a homeomorphism and consider quasiconformal and quasisymmetric maps,
we can also relax the Riemannian assumptions on M and N and still obtain
a non-existence result like Proposition 5.1.

Let (X, d) and (Y, d) be metric spaces and let η : [0,+∞)→ [0,+∞) be a
homeomorphism. A homeomorphism φ : X → Y is called η-quasisymmetric
if

d(φ(x), φ(y))
d(φ(x), φ(z))

≤ η

(
d(x, y)
d(x, z)

)
, (5.7)

for every x, y, z ∈ X, x �= z. We refer to [TuV] for the basic theory of
quasisymmetric maps. We also say that a homeomorphism φ : X → Y is
quasiconformal if there exists a constant H such that

lim sup
r→0

sup{d(φ(x), φ(y)); d(x, y) ≤ r}
inf{d(φ(x), φ(y)); d(x, y) ≥ r} ≤ H (5.8)

for every x ∈ X. It is well known that for homeomorphisms φ : R
n → R

n,
conditions (5.7), (5.8), and, if φ is sense-preserving, also the the analytic
definition of quasiconformality (5.1) are quantitatively equivalent (see [G]
and [V]); note that (5.1) and (5.8) are also equivalent in the Riemannian
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setting, provided φ is sense-preserving. Recently, the equivalence of (5.7)
and (5.8) for homeomorphisms φ : X → Y has been established in [HeK2]
and [HeKST] for a large class of metric spaces X and Y . For earlier related
results, see [P2], [KoR], [HeK1], [Mos], [MaM]. For historical remarks and
further references, see [HeKST, §9]. Next we shall apply some of the results
obtained in [HeK2] and [HeKST] to our setting. Say that (M,∆) has locally
Q-bounded geometry, with Q > 1, if there exists a constant C ≥ 1 such that
each point x ∈M has a neighborhood U so that, for every ball By(2r) ⊂ U ,

C−1rQ ≤ v(By(r)) ≤ CrQ (5.9)

and the Poincaré inequality (5.6) holds for p = Q.

Proposition 5.10. Let (M, ∆̃) and (N,∆) be of locally Q-bounded ge-
ometry, with Q > 1. Suppose that φ : M → N is quasi-conformal. Then
(N,∆) is Q-parabolic if and only if (M, ∆̃) is Q-parabolic.

Proof. Using [HeKST, Thm. 9.8], and [HeK2, Prop. 2.17 and Thm. 5.7], we
obtain

C−1CapQ
(
Bx(R), B̄x(r)

) ≤ CapQ
(
φ(Bx(R)), φ(B̄x(r))

)
≤ CCapQ

(
Bx(R), B̄x(r)

)
for every x ∈M and R > r > 0, with constant C independent of x, R and
r (see also [Ty, Thm. 1.4]). Letting R go to +∞ yields

C−1CapQ
(
M, B̄x(r)

) ≤ CapQ
(
N,φ(B̄x(r))

) ≤ CCapQ
(
M, B̄x(r)

)
which proves the claim.

Final remarks. (1) Assume that (M, ∆̃) and (N,∆) have locally Q-
bounded geometry and that (N,∆) is Q-hyperbolic. As explained in sec-
tion 5.2, N admits a positive Green’s function g = g( · , x0) for ∆Q. Then
g ◦ φ, where φ is a quasiconformal map φ : M → N \ {x0}, is a positive
quasiminimizer for the Q-Dirichlet integral

∫ |∇u|Q dv, see [HoS]. If we
suppose in addition that the global doubling condition [D] and Poincaré’s
inequality [P(p)] hold for some 1 ≤ p < Q, then M admits a uniform
Harnack inequality for positive quasiminimizers by [KiS, Corollary 7.5].
Consequently, no quasiconformal map φ : M → N \ {x0} exists.

(2) It seems plausible that, in our general setting, quasiconformal maps
φ : M → N , with both (M, ∆̃) and (N,∆) of locally Q-bounded geometry
have the (full) harmonic morphism property as they do in the Riemannian
setting. That is, given ∆p on N , it should be possible to write down
explicitly ∆̃p, the pull-back of ∆p by φ, and then use the change of variables
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formula to obtain the harmonic morphism property; see [HeK2, §7], and
[HeKST, §9], for the justification of the change of variables. The Jacobian
of φ at x ∈M in (5.4) should be changed to the volume derivative of φ at
x but the difficulty is to find the right interpretation of the “differential”
dφ(x) in (5.4). The notion of the Cheeger differential of Lipschitz functions
(in a metric space setting) might turn out to be helpful; see [Che] and
[HeKST, §10].
5.4 Acknowledgements. We thank Pierre Pansu and Marc Troyanov
for useful conversations and references as well as Alexander Grigor’yan for
remarks on the manuscript.
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[V] J. Väisälä, Lectures on n-dimensional Quasiconformal Mappings,
Springer L.N. Math. 229 (1971).

[Va1] N. Varopoulos, Potential theory and diffusion on Riemannian manifolds,
Conference in Harmonic Analysis in honor of A. Zygmund, Wadsworth
(1983), 821–837.

[Va2] N. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76:2 (1988),
346–410.



Vol. 11, 2001 HARNACK INEQUALITY AND HYPERBOLICITY 1191

[Va3] N. Varopoulos, Fonctions harmoniques sur les groupes de Lie, C.R.
Acad. Sci. Paris 309 (1987), 519–521.

[Va4] N. Varopoulos, Small time Gaussian estimates of heat diffusion kernel,
I, The semigroup technique, Bull. Sci. Math. 113:3 (1989), 253–277.

[VaSC] N. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geom-
etry on Groups, Cambridge University Press, 1992.

[Vo] S. Vodop’yanov, Mappings with bounded distortion and with finite dis-
tortion on Carnot groups, Siberian Math. J. 40:4 (1999), 644–678.

[Y] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima
Math. J. 7 (1977), 135–146.

[Z] V. Zorich, Asymptotic geometry and conformal types of Carnot-
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