
The Mathematics 

of Three-dimensional Manifolds 

Topological study of these higher-dimensional analogues of a surface 

suggests the universe may be as convoluted as a tangled loop of string. 

It now appears most of the manifolds can be analyzed geometrically 

by William P. Thurston and Jeffrey R. Weeks 

T
housands of years ago many peo­
ple thought the earth was flat. The 
flatness of the earth's surface must 

have seemed self-evident to anyone who 
looked out across an ocean or a prairie, 
and it was argued, not entirely unrea­
sonably, that the surface of the earth 
must either be infinite or have an edge. It 
is now understood, of course, how such 
a basic misconception could have come 
about: even from a few thousand me­
ters above the ground a small part of 
the roughly spherical earth looks like a 
small part of a plane. What is less often 
appreciated is that an unlimited number 
of terrestrial shapes would give rise to 
the same local observations. For exam­
ple, it would be consistent with such lo­
cal observations for the earth to have 
the shape of an irregular blob or of a 
doughnut. 

Investigations in the branch of math­
ematics called topology make it clear 
that we confront an analogous situation 
when we attempt to describe the overall 
form of the universe based on the limit­
ed view from our point in space. An ob­
server on the earth cannot conclude that 
the universe retains the geometric struc­
ture of ordinary Euclidean space to in­
definite distances, although there is still 
no evidence to the contrary. If the struc­
ture of the universe is not Euclidean, 
what are the alternatives? One familiar 
idea is that space may be "curved" in 
much the same way as a surface can be 
curved. The three-dimensional curva­
ture of space and a closely related con­
cept, the four-dimensional curvature of 
space and time, have become important 
ideas in astronomy and cosmology be­
cause of the key role they play in Ein­
stein's general theory of relativity. 

Nevertheless, the determination of 
curvature alone is not enough to specify 
what can be called, loosely speaking, the 
shape of the universe. Certain kinds of 
possible three-dimensional structure for 
the universe can be specified by analogy 
with the two-dimensional surfaces, but 
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the analogy only begins to suggest the 
richness of form that is introduced by a 
third dimension. Indeed, since space and 
time are treated in the theory of relativi­
ty as a single entity called space-time, 
one might suppose that the appropriate 
mathematical structure of the universe 
must be a four-dimensional one. There 
is good reason to believe, however, that 
the structure of four-dimensional space­
time is governed by the structure of 
three-dimensional space alone. Hence in 
order to investigate the overall structure 
of the universe without prejudice one 
must begin to understand the kinds of 
three-dimensional structure that could 
give rise to the observed universe. The 
structures are called three-dimensional 
manifolds, or three-manifolds for short. 

The study of three-manifolds is, in a 
sense, a generalization of the study 

of two-manifolds, or surfaces. Topolo­
gists have known how to describe and 
classify all possible two-manifolds for 
more than a century, but the systematic 
classification of all three-manifolds re­
mains an unsolved problem due to the 
exceedingly complex forms to which 
some three-manifolds give rise. A math­
ematical procedure called surgery sug­
gests a measure of the complexity. Sur­
gery makes it possible to construct a 
three-manifold from any tangled loop 
of string, no matter how knotted or con­
voluted the tangle. Imagine confronting 
two snarled masses of fishing line and 
trying to determine whether or not they 
are tangled in exactly the same way. Un­
less it is possible to classify such tangles 
of line in a systematic way, there is no 
hope that three-manifolds can be ana­
lyzed either. Until recently, therefore, 
mathematicians saw little reason for 
thinking a systematic theory of three­
manifolds could be devised. 

That pessimistic assessment must now 
be reconsidered. Investigations by one 
of us (Thurston) into the geometry of 
three-manifolds show there is a pattern 

that may lead to an understanding of 
all possible three-manifolds. All known 
three-manifolds fit the pattern, and as 
a result their twisting and winding can 
be described in geometric terms. 

The theory of manifolds arose in the 
1 9th century out of a need to under­
stand quantitative relations geometri­
cally. For example, the set of solutions 
to an equation that has two variables 
can be plotted as a set of points in the 
plane. Each point represents a pair of 
values for the variables that make the 
equation true; typically, the set of points 
is a curve or a set of curves. Similarly, 
the set of solutions to an equation that 
has three variables can often be plotted 
as a two-dimensional surface in three­
dimensional space, such as the surface 
of a sphere. For equations with more 
than three variables one can describe 
the set of solutions geometrically in 
much the same way: it is a higher-di­
mensional manifold in a still higher-di­
mensional space. Although one cannot 
visualize such objects directly, mathe­
maticians have developed conceptual 
tools for the study of equations that 
lead to higher-dimensional manifolds. 

Topology cannot actually solve equa­
tions. What it provides is a math­

ematical vocabulary-adjectives and 
nouns-that allow a set of solutions to 
be discussed in a general way without 
actually being specified. Thus, although 
the manifold of points that makes up 
the set of solutions to an equation has 
a precise and unambiguous shape, the 
topology of the manifold is not con­
strained by the properties of that shape. 
Instead the topology encompasses what­
ever properties are retained when the 
manifold is deformed in an arbitrary 
way, as long as the deformation is done 
without cutting, tearing or puncturing. 

A doughnut can be deformed into a 
coffee cup by making a concave depres­
sion in the surface of the doughnut 
and then enlarging the depression while 
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shrinking the rest of the doughnut. As 
the old joke goes, a topologist is a person 
who cannot tell a (one-hole) doughnut 
from a (one-handle) coffee cup. On the 
other hand, the topologist does distin­
guish the surface of a doughnut from 
the surface of a glass without handles, 
because there is no way one shape can 

be continuously deformed to yield the 
other. It may seem that by allowing ar­
bitrary deformations topology discards 
most of the interesting features of a 
manifold. In many mathematical ques­
tions, however, topological information 
plays a significant role. 

the topological theory of three-mani­
folds were made around the turn of the 
century by Henri Poincare, Max Dehn 
and Poul Heegaard. One difficulty with 
the study of three-manifolds is that di­
rect visualization must partially give 
way to abstract representation. Many 
surfaces can be visualized because they The first substantial contributions to 

<: 

1 

TOPOLOGICAL STRUCTURE of the universe need not conform 
to the structure of infinite, three-dimensional Euclidean space. The 
mathematical theory of three-dimensional manifolds, or three-mani­
folds, demonstrates that space may "curve back on itself " in an infi­
nite variety of ways. One possible model for the topology of space is 
the three-manifold discovered by Herbert Seifert and C. Weber, who 
is now at the University of Geneva, in 1932. The manifold cannot 
be depicted from without because to do so one would have to view it 
from a fourth or higher dimension. Nevertheless, it can be visualized 
in a more limited sense as a dodecahedron whose opposite faces are 
mathematically glued together, or identified. The colored, ruled bars 

moving into and out of the faces of the dodecahedron indicate how 
the gluings are to be carried out: one member of each pair of faces is 
matched to its counterpart after a rotation of three-tenths of a turn 
about the axis perpendicular to the two faces. Although parts of the 
bars are shown as ghosted images outside the dodecahedron, the bars 
do not really exist there because it is assumed that only points inside 
the dodecahedron exist. When one of the bars moves toward one of 
the faces of the dodecahedron, it disappears at that face and reap­
pears at the opposite face as if it were entering the dodecahedron 
from another direction. If the structure of the universe is that of the 
Seifert-Weber manifold, the universe is finite but will expand forever. 
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TWO-DIMENSIONAL MANIFOLD known as the two-torns can be represented as a square 
whose opposite edges are abstractly glued together. In other words, the top edge of the square 
is identified with the bottom edge and the left edge is identified with the right edge. If a ruled 
bar moves off the right edge, it reappears at the left edge; if the bar moves off the top edge, it re­
appears at the bottom. The motion is similar to that of objects in many video games. When the 
edges are abstractly glued together, all four vertexes of the square coincide in the manifold; 
when a ruled bar moves toward a vertex, pieces of it reappear at the other three vertexes. 
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DOUBLE-CRANK LINKAGE SYSTEM is made up of two rigid bars pinned together at one 
point; the end of one bar is held fixed. The bars are free to rotate about the pins as long as the 
movement is confined to the plane of the page (left). Every possible configuration of the two 
bars can be given by a point plotted on two perpendicular coordinate axes: one axis gives the 
angle between the direction of the first bar and a fixed direction, and the second axis gives 
the corresponding angle for the second bar. The set of all the plotted points, which represent 
all possible positions of the linkage, is called the configuration space of the linkage (right). Be­
cause the configuration of the double crank does not change if the angle of either bar is changed 
by 360 degrees, the configuration space is a square bounded by the lines that represent zero­
degree and 360-degree rotations for each bar. Points on opposite sides of the square reptesent 
identical configurations of the linkage; in other words, the configuration space is a two-torus. 
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can be seen externally from the third 
dimension, a dimension that is one high­
er than the dimension of the surface. 
The extra dimension gives the surface 
enough room to bend around and close 
up with itself. One might try to visualize 
a three-manifold externally, as if one 
were viewing it from a space with four 
or more dimensions, but it turns out 
such contortions are not necessary. 

In the 19th century mathematicians 
found that two-manifolds can be repre­
sented as polygons whose edges are to 
be glued together, or in other words 
identified with each other in a specified 
way. In the novel Flatland, published 
in 1 884, Edwin A. Abbott describes a 
two-dimensional creature living entirely 
within the plane. Consider the move­
ments of such a creature on a two-mani­
fold with a more exotic topology, name­
ly a square whose opposite edges are 
identified. When the creature moves off 
the top edge of the square, it reappears 
at the bottom; when it moves off the 
right edge, it reappears at the left. Intrin­
sically, therefore, the top of the sq uare is 
glued to the bottom and the right edge 
is glued to the left. It is worth noting 
that many video games operate on the 
same principle: when a figure moves off 
the top edge of the screen, it reappears 
at the bottom, and so on. 

For a square it is a simple matter to 
carry out the gluings. Attaching the top 
of the square to the bottom gives rise to 
a cylinder open at both ends, and gluing 
the open ends leads to a one-hole dough­
nut. After the edges have been glued the 
seams are erased; the Flatlander cannot 
tell where the gluings were made. The 
doughnut and the square (with edges 
properly identified) count topologically 
as the same abstract manifold, namely 
the two-torus. 

As the video games demonstrate, 
.f\.. however, it is not necessary to do 
the gluing to get an intuitive understand­
ing of the two-torus. With a little prac­
tice it is just as easy to follow the motion 
of an object on the square, where the 
gluings are specified only in an abstract 
sense. Abstract gluing brings within the 
compass of geometric intuition a great 
many manifolds that would otherwise 
be difficult to visualize. What is most 
important for us is that the gluing trick 
can readily be generalized to bring geo­
metric intuition to bear on the under­
standing of three-manifolds. 

Consider the three-manifold generat­
ed from a rectangular block of space, 
such as the space inside a room. Ab­
stractly glue the front wall of the room 
to the back wall, the left wall to the right 
wall and the floor to the ceiling. If the 
gluings were actually done, one would 
have to imagine the room bending 
around and joining itself in a fourth di­
mension. All that is needed for the de­
scription of the manifold, however, is 
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THREE-MANIFOLD analogous to the two-torus arises from the 
set of all possible configurations of a triple crank whose motion is 
confined to a plane (left). If the angles between each bar and a fixed 
direction are plotted on three mutually perpendicular axes, every pos­
sible position of the triple crank can be plotted as a point in a cube 

(right); The configuration of the linkage does not change with any com­
plete rotation of a bar. Thus in the configuration space every face of 
the cube that corresponds to a rotation of 360 degrees is abstractly 
identified with its opposite face, which corresponds to a rotation of 
zero degrees. The resulting three-manifold is called the three-torus. 

given by the procedure for abstract glu­
ing. If an object within the manifold is 
moved toward the front wall, it disap.­
pears at that wall' and reappears on the 
bacK wall; similarly, the object 'disap­
pears at the right wall as it reappears on 
the left wall and disappears at the ceiling 
as it reappears on the floor. Evidently 
the motion is strikingly similar to the 
motion of an object within ·the two­
torus; the manifold is the three-dimen­
sional analogue of the two-torus, and 
so it is called the three-torus. 

If ordinary concepts of space and 
physical reality are momentarily set 
aside, one can readily imagine living in a 
three-torus. Look at the back wall and 
the line of sight passes through that wall 
and retmms from the opposite point on 
the front wall. What you see is a copy of 
yourself from behind. Look to the right 
and you see a copy of yourself from the 
left; look down at the floor and you see 
the top of your head. Indeed, because 
the line of sight continues crossing the 
room in all directions, you see what ap­
pear to be infinitely many copies of 
yourself and the room, all arranged in 
a rectangular lattice. The optical effect 
is similar to the. one created by a room 
whose walls, floor and ceiling are cov­
ered with mirrors. The difference is that 
there are no reflections reversing the im­
ages of the room; instead all the images 
are direct copies of the original. 

Does the fact that astronomers have 
not observed such peculiar visual effects 
imply the universe cannot be a three­
torus? No. The universe is between 10 

and 20 billion years old. If it were a 
three-torus, say, 60 billion light-years 
across, no light would have had enough 
time to complete a round trip. Another' 
possibility is that observational astrono­
my has already recorded light that has 
traveled'all tli.e way around the universe: 
if the universe is a three-torus, one of the 
distant galaxies. we observe may be our 
own. The possibility would be hard to 
verify because the image of our galaxy 
would be formed from light that left its 
source billions of years ago and spent 
the intervening time crossing the uni­
verse. What could be seen, given unlim­
ited resolution of the image, would be 
the Milky Way in its earliest stages of 
evolution, as it looked when the light 
was emitted. Such a universe has a finite 
volume but no boundary of any kind. 

Similar models of the possible spatial 
structure of the universe can be de­

rived from other polyhedrons as well as 
from the cube. In each case the best way 
to understand the manifold is to imag­
ine certain faces of the polyhedrons ab­
stractly glued together. Two such mani­
folds are readily constructed from the 
regular dodecahedron. The 12 faces of 
the dodecahedron are regular pentagons 
arranged in pairs in such a way that the 
members of each pair are parallel and 
on diametrically opposite sides of the 
dodecahedron. 

In the first dodecahedral three-mani­
fold one member of each pair of penta· 
gons is identified with the opposite pen-. 
tagon by. rotating the first'member one-

tenth of a turn counterclockwise about 
the axis perpendicular to its surface. The 
manifold is called the Poincare mani­
fold because it is equivalent to a three­
manifold discovered by Poincare in 
1902. (Poincare was unaware, however, 
that the manifold could be made from 
a dodecahedron.) The second dodeca­
hedral manifold arises when each pen­
tagon is glued to its opposite counter­
part after a counterclockwise rotation 
of three-tenths of a turn. The resulting 
manifold is called the Seifert-Weber do­
decahedral space, after Herbert Seifert 
and C. Weber, now at the University 
of Geneva, who discovered the mani­
fold in 1932 [see illustration on page 109]. 
Like the three-torus, both manifolds 
would give rise to a universe with a fi­
nite volume but no boundary or edge. 

Vast numbers of additional models 
for the large-scale structure of space can 
be constructed in a similar way. Because 
most polyhedrons are irregular, most 
three-manifolds arise from abstract glu­
ing of the faces of irregular polyhe­
drons. The description of the gluing 
can become quite complicated when the 
number of faces is large. 

It may appear there is a certain un­
reality to the exercise. The nonspecialist 
would probably grant that the true to­
pology of space is a worthy object of 
speculation but would likely wonder 
how far such speculation should be car­
ried. In particular, the nonspecialist 
might well question the utility of study­
ing "spaces" in the plural. To the topolo­
gist such objections miss the mark be-
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cause they focus only on the metaphor­
ical content of topology. The study of 
topology can certainly be motivated by 
problems that arise in other contexts, 
but topology itself is a theory of pure 
form, not a theory of the real world. If 
the structure of space were somehow 
settled tomorrow, no topologist would 
give up the study of abstract spaces. 

This assertion need not imply that to­
pology is irrelevant to the real world. 
On the contrary, like other branches of 
mathematics, topology has many strong 
and substantive connections with the 
world, but the connections are indirect. 
If a particular metaphor, such as the 
spatial one, starts to wear thin, it is best 
to abandon the metaphor rather than to 
abandon the study of the form to which 
the metaphor gave rise. Experience has 
shown repeatedly that a mathematical 
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theory with a rich internal structure gen­
erally turns out to have significant impli­
cations for the understanding of the real 
world, often in ways no one could have 
envisioned before the theory was devel­
oped. A theory would never reach the 
mature stage of development in which 
such applications are recognized if it 
were constantly burdened with over­
worked metaphors. 

In order to illustrate the scope of topo­
logical analysis, it is useful to aban­

don the cosmological metaphor for the 
time being in favor of a more terrestrial 
one. Consider a mechanical system of 
bars and linkages, such as the one that 
connects a key in a manual typewriter to 
the type element. We shall discuss only 
planar. linkages, or in other words as­
semblies of rigid bars pinned to one an-

other in such a way that all the bars 
move in only one plane. There must also 
be at least one anchor point, or fixed 
base, to which the bars are pinned. 

The aim of a theory of mechanical 
linkages is to analyze the possible mo­
tions of a linkage. There are many real 
mechanical devices to which the analy­
sis applies, and they need not have much 
physical resemblance to a collection of 
bars joined together. The study of link­
ages was much in vogue in the second 
half of the 19th century, when there was 
interest in the problem of finding a link­
age in which at least one point moves in 
a straight line. It seemed that a solution 
to the problem would lead to many 
practical applications, such as the de­
sign of a power train for a steam loco­
motive. Although a number of elegant 
theoretical solutions to the problem 

OBSERVER'S VIEW inside a three-tor-us is similar to the view in­
side a room whose walls, floor and-ceiling are covered with mirrors; 
there is, however, no mirror reversal of the images. The line of sight 
passes into, say, the right wall and emerges from the left wall; look- . 

ing right, therefore, the observer sees the room as it would appear 
from the left wall. Similarly, looking forward the observer sees the 

room as it would appear from the back wall, and looking up the ob­
server sees the room as it would appear from the floor. Since the line 
of sight continues indefinitely across the three-torus, the room ap­
pears to be an infinite rectangular lattice extending in all directions. 
The three-torus is not infinite, however, because the images in the 
infinite rectangular array are really all images of the same thing. 
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were found, none of them proved to be a 
mechanically practical design. 

A mechanical linkage can be repre­
sented mathematically by a set of line 
segments in the plane; at some intersec­
tions of the lines there may be pivot 
points, or pins, for the linkage. In the 
mathematical theory one assumes the 
lines and pivot points can pass freely 
through one another. The problem of 
constructing a physical model whose 
bars and pins replicate the motions of 
the idealized linkage is not a trivial one, 
but it is secondary to the mathematical 
analysis. It turns out that for any mathe­
matical version of a linkage there is a 
physical linkage that executes the same 
motion, although the physical linkage 
may be much more complicated than its 
theoretical counterpart and may look 
quite different. 

The set of all possible positions for a 
mechanical linkage is called the configu­
ration space of the linkage; in most cases 
it is a topological manifold. Consider 
the simplest possible linkage, made up 
of a single bar pinned to an anchor point 
at one end but otherwise free to move 
in a plane. The moving end of the bar 
traces a circle in space, and each point 
on the circle corresponds to only one 
position of the linkage. The configura­
tion space is a circle, which can also be 
viewed as a straight line segment whose 
ends are abstractly glued together. The 
circle is a one-dimensional manifold 
analogous to the two-torus, and every 
point in the manifold is identified with 
one position of the linkage. 

By pinning another bar to the end of 
the first bar one obtains a double 

crank, a mechanical linkage with two 
degrees of freedom. If the second bar in 
the linkage is shorter than the first, the 
free end of the second bar can reach any 
point in a ring centered on the anchor 
point. The ring is bounded on the out­
side by a circle whose radius is the sum 
of the lengths of the two bars and bound­
ed on the inside by a circle whose ra­
dius is the difference between the two 
lengths. If the second bar is the same 
length as the first, the free end of the 
second bar can reach any point in a cir­
cle whose radius is equal to the sum of 
the lengths of the two bars. If the second 
bar is longer than the first, the trace of 
the free end is also a ring whose inside ra­
dius is equal to the difference between 
the two lengths. One. must not mistake 
these sets of points, however, for. the 
configuration space of the linkage. The 
reason is that knowledge about the posi­
tion of the end point of the second bar 
does not uniquely determine the config­
uration of the linkage. For every point 
reached by the free end of the second 
bar, the elbow of the double crank can 
bend in either of two ways. 

In order to analyze the configur:ation 
space correctly it is easier to consider 
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DOUGHNUT WITH ONE HOLE can be slit open and str.etched into a square. If the oppo­
site edges. of the square are abstractly glued, the resulting surface is topologically equivalent 
to the doughnut.. Since the square is flat like the plane, its geometry is Euclidean; hence. from 
a topological point of view the one-hole doughnut is said to admit a Euclidean geometry. 

the possible configurations of the dou­
ble crank without regard for the position 
of the free end. Every configuration can 
be described by two angles, namely the 
angle between each bar and some fixed 
direction (say to the right), measured 
in a counterclockwise sense. The two 
angles range freely and independently 
from zero to 360 degrees, but for each 
bar the angle zero degrees is identified 
with the angle 360 degrees. If the two 
angles are plotted on mutually perpen­
dicular coordinate axes in the plane, ev­
ery point within the sq uare bounded by 
the lines labeled zero and 360 degrees 
for each angle corresponds to a different 
configuration of the double crank. Fur­
thermore, every configuration of the 
double crank is represented by a point 
within the square. Since zero and 360 
degrees are identified, the top edge of 
the sq uare is identified with· the bottom 
edge and the left edge is identified with 
the right edge. The configuration space 
is the two-torus. 

If a third bar is added to the free end 
of the double crank, any position of the 
resulting triple crank can be described 
by giving the three angles of the bars. 
The angles.are again measured counter­
clockwise· from a fixed direction; and 
again they range - freely and' indepen-

dently from zero to 360 degrees. The 
angles zero and 360 degrees are identi­
fied as before. When the three angles are 
plotted on three mutually perpendicular 
coordinate axes, every possible position 
of the triple crank is represented by a 
unique point in a cube whose opposite 
pairs of faces are abstractly glued to­
gether. The configuration space of the 
triple crank is therefore equivalent to 
the three-torus. 

All the configuration spaces we have 
I\.. described so far lead to polygons or 
polyhedrons whose edges or faces can 
be glued together without distortion. 
There is no topological rule, however, 
that forbids abstract gluing when the 
edges or surfaces fail to be geometrical­
ly congruent; in fact, the examples we 
have given are quite special in that the 
gluings do not require distortion of the 
parts to be glued. Consider a mechanical 
linkage made up of three double cranks, 
each one fixed to a vertex of an equilat­
eral triangle and pinned at its moving 
end to the moving ends of the other two 
double cranks [see illustration on next 
pagel In order to understand the config­
uration space of the linkage, . first plot 
the set of possible positions for the cen­
tral pin. Each double crank keeps the 
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LINKAGE of three .double cranks joined by a central pin also gives rise to a two-manifold. 
The motion is confined to a plane, and the central pin can reach any point inside the hexagon. 

pin within a ring. centered on the anchor 
point of that double crank. Hence the 
central pin can reach any point that lies 
in the intersection of the three rings cor­
responding to the three double cranks. 
The intersecting region is a curvilinear 
hexagon in the plane. 

There is more to the configuration 
space,· however, than one planar hex­
agon. Remember that for one double 
crank there are two configurations of 
the linkage for each point reached by 
the end of the second crank. Similarly, 
for each point in the interior of the pla­
nar hexagon, the elbow of each double 
crank can be bent in one of two ways. 
With three double cranks the total num­
ber of configurations for each point in 
the interior of the planar hexagon is 23, 
or eight configurations. The configura­
tion space for the three double cranks 
can therefore be assembled by abstract­
ly gluing the edges of eight abstract cur­
vilinear hexagons. 

How are the eight abstract hexagons 
to be glued together in the configuration 
space? When the central pin of the three 
double cranks lies on an edge of the hex­
agon in the plane, one of the double 
cranks is forced into straight alignment. 
The alignment can be straight in one of 
two ways: the bars of the double crank 
can point in the same direction or in op­
posite directions. In both cases, how­
ever, the configuration of the entire link­
age is specified as soon as one specifies 
the position of the central pin and the 

1 14 

sense of the bend of the two unstraight­
ened double cranks. 

For each of the two edges of the pla­
nar hexagon that can be traced when the 
first double crank is straight, there cor­
respond only 22, or four, distinct edges 
in the configuration space instead of 
eight. Along any such edge in the config­
uration space two. hexagons are glued 
together. The two hexagons represent 
the two ways in which the first double 
crank can bend. The opposite edge of 
the first hexagon in the configuration 
space is also glued to the opposite edge 
of the second hexagon, because the first 
double crank also becomes straight 
there. The bending of the other two dou­
ble cranks does not change from the first 
to the second hexagon. The analysis is 
identical for all the other edges of the 
configuration space. 

Similarly, when the central pin of the 
three double cranks lies on a vertex of 
the hexagon in the plane, two of the dou­
ble cranks are forced into straight lines. 
In the configuration space, therefore, 
there are only two points instead of eight 
that correspond to each vertex of the 
planar hexagon, one point for each way 
in which the third double crank can 
bend. The four abstract hexagons that 
correspond to the four ways in which 
the two straight double cranks can bend 
when the central pin moves inside the 
planar hexagon must share a vertex in 
the configuration space. 

The configuration space is a surface 

that, unlike the planar hexagon, has no 
corners and no boundary. The surface 
can be tiled, or covered, with eight hexa­
gons.There are 6 X 22, or 24, edges be­
tween the tiles and 6 X 2, or 12, vertexes 
where four tiles meet. 

The description of the configuration 
. space for the three double cranks 

that we have given so far is logically 
complete, because all the abstract glu­
ings have been specified. Nevertheless, it 
is much more satisfying to carry out the 
gluings and exhibit the manifold as a 
closed surface in space. It turns out that 
such a construction is always possible 
when the gluing description gives rise to 
a manifold satisfying a technical condi­
tion called orientability. The manifold 
we have described is orientable and so 
the gluing can be done, but it is not 
straightforward. 

It was proved in the mid-19th century 
that every orientable two-manifold is 
topologically equivalent to the surface 
of a doughnut with some number of 
holes. The number is called the genus 
of the surface. For example, the sphere 
is a surface of genus 0. The genus of the 
surface of a one-handle coffee cup, like 
the genus of the surface of a one-hole 
doughnut, is 1. The genus of the sur­
face of a pretzel depends on the brand. 

For any surface divided into polygo­
nal cells of arbitrary shape the number 
of polygonal faces minus the number of 
edges plus the number of vertexes is a 
numerical constant that depends only 
on the surface. Remarkably, the number 
is independent of the way in which the 
surface is divided into polygonal cells. 
The constant is called the Euler number, 
after the Swiss mathematician Leon­
hard Euler. The Euler number of a·sur­
face of genus n is equal to 2 - 2n. Be­
cause the surface can be curved in space, 
the polygons need not be planar and 
their edges may curve almost arbitrari­
ly. For example, a sphere can be divided 
into eight triangles by connecting the 
north and south poles to four points 
along the equator. Because there are no 
holes on the sphere, its genus is 0, and its 
Euler number should be 2 - 2 X 0, or 2. 
One can easily verify that there are six 
vertexes and 12 edges on the surface, 
and so the Euler number of the eight 
triangular regions on the sphere is in­
deed 2. It is worth noting that the num­
ber of faces, vertexes and edges in the 
example is also characteristic of the reg­
ular octahedron, which is topologically 
equivalent to the sphere. 

Since the configuration space of the 
three double cranks can be divided into 
eight hexagonal faces, with 24 edges 
and 12 vertexes, the Euler number of 
the configuration space must be 8 - 24 
+ 12, or -4. The genus n of the mani­
fold can be calculated by setting the 
Euler number -4 equal to 2 - 2n. It 
follows that n is equal to 3. The eight 
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hexagons in the configuration space for 
th\! three double cranks can be depicted 
in their proper relation to one another 
on a three-hole doughnut [see illustration 
on next page]. 

The visual representation of a mani­
fold such as the three-hole doughnut 

is satisfying because it is concrete, but it 
also has a number of disadvantages. For 
example, many of the symmetries that 
are present in the abstract description of 
the manifold must be given up in or­
der to picture the manifold in ordinary 
space. In the abstract description we ini­
tially gave for the configuration space of 
the three double cranks every hexagon 
is congruent to every other hexagon. 
Moreover, a rotation of any one hex­
agon by 120 or 240 degrees leaves its 

A 

c A 

shape unchanged. In the visual represen­
tation of the configuration space, how­
ever, most of the abstract symmetry has 
been lost. The hexagons on the three­
hole doughnut are neither congruent to 
one another nor rotationally symmetri­
cal: a rotation of one of them by 120 
or 240 degrees cannot be done without 
changing its shape. 

Another problem with the three-hole 
doughnut is that the geometric proper­
ties of its surface vary from point to 
point: properties of the surface around 
the outer rim are different from the 
properties of the surface near one of the 
holes. It must be emphasized that the 
geometric properties we refer to are in­
trinsic to the surface. Intrinsic geometry 
can be determined by measurements 
made on the surface itself, without ref-

d 

erence to the surrounding space where 
the surface is found. It is to be distin­
guished from the extrinsic geometry of 
the surface, which describes how the 
surface is bent in space. For example, 
if a flat sheet of paper is bent without 
distortion to form a cylinder or a cone, 
both the cylinder and the cone have the 
same intrinsic geometry as the flat sheet, 
although their extrinsic geometries are 
quite different. 

The fact that a surface appears to 
bend in a nonuniform way when it is 
viewed from above is therefore not a 
reliable indicator of its intrinsic geome­
try. What is the intrinsic difference be­
tween the inner and outer regions of the 
surface of the doughnut? Imagine that a 
small piece is cut out of the convex, out­
side portion of the doughnut and flat-

A 

A 

CONFIGURATION SPACE of the three double cranks is a two­
manifold on which distinct points represent distinct configurations, 
or possible arrangements, of the linkage. Every point inside the curvi­
linear hexagon traced by the central pin of the linkage can be reached 
when any one of the double cranks is bent in either of two ways (a). 
The bending of each double crank is independent of the bending of 

the other cranks, and so every point inside the hexagon gives rise to 
23, or eight, configurations of the linkage (b). Whenever the cen­
tral pin reaches an edge of the hexagon, only two double cranks can 
be bent; the linkage can assume only four configurations (c). When 
the central pin reaches a vertex of the hexagon, only one of the double 
cranks can bend; the linkage can assume only two configurations (d). 
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tened on a table. The piece rips open as it 
is flattened, much like the peel of an or­
ange. The reverse of the process is often 
exploited by tailors to form a part of a 
garment intended to fit a convex shape, 
such as the bust of a dress. A pointed 
section called a dart is removed from 
the fabric and the two sides of the gap 
are sewn together. 

On the other hand, when a small piece 
is cut out of the surface of the doughnut 
near the hole, the piece wrinkles and 
overlaps itself when it is flattened on a 
table. The tailor can reverse the process 
by slitting the fabric and sewing a godet, 
or pointed patch, into the slit. The de-

I 
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vice is often used to make a skirt that is 
tight below the knees but flares at the 
bottom. Whether a finished piece of fab­
ric splits, overlaps or conforms to a flat 
surface when it is spread out on the sur­
face is an important property of its in­
trinsic geometry. 

The intrinsic geometry of the surface 
of a one-hole doughnut varies in a way 
quite similar to that of the three-hole 
doughnut. As we have emphasized, 
the one-hole doughnut and the square 
whose opposite edges are identified have 
the same topology. On the square, how­
ever, the intrinsic geometry is much sim­
pler than it is on the one-hole doughnut: 

EIGHT ABSTRACT HEXAGONS make up the configuration space of the three double 
cranks; each hexagon corresponds to one of the eight ways the three double cranks can bend to 
reach one of the points in the interior of the curvilinear hexagon. If the elbow of a double crank 
is bent clockwise, its configuration is labeled 0; if it is bent counterclockwise, its configuration 
is labeled 1. The abstract hexagons are labeled with three binary digits. In order to visualize 
the eight hexagons and the relations imposed on them in the configuration space the hexagons 
can be placed on the surface of a three-hole doughnut and distorted as if they were made of 
rubber. The three-hole doughnut has been deformed to the topologically equivalent manifold 
at the bottom of the illustration in order to show the eight hexagons more symmetrically. The 
binary digits assigned to the abstract hexagons reflect the pattern of gluings. If the digits for 
two hexagons match at two of the three positions, the hexagons are glued along two opposite 
edges; the two edges correspond to the edges of the curvilinear hexagon where the double crank 
associated with the non matching binary digit is straight. Any four hexagons with one match­
ing binary digit meet at a vertex in the configuratior space. The diametrically opposite ver­
texes of the four hexagons meet at a second point in the space. The two points represent straight 
configurations of the two double cranks associated with the two nonmatching digit positions. 

1 16 

the intrinsic geometry in a small region 
around every point in the square is the 
same as the geometry in a small region 
of the plane. The property holds even 
for points on the edges or the vertexes of 
the square. In other words, the intrinsic 
geometry in any small region of the 
square whose opposite edges are identi­
fied is the same as that in any other small 
region on the square. When the intrinsic 
geometry of a manifold has uniformity 
of this kind, the geometry is said to be 
locally homogeneous. 

The introduction of the concept of 
local' homogeneity was an impor­

tant advance in the understanding of 
two-manifolds. About 100 years ago it 
was proved that any surface-not only 
the one-hole doughnut-can be generat­
ed in such a way that its geometry is lo­
cally homogeneous. Moreover, no man­
ifold can be given more than one kind 
of locally homogeneous geometry. 

For a surface there are only three 
kinds of intrinsic geometry that are lo­
cally homogeneous. The first kind is the 
simple Euclidean geometry of the plane. 
On the plane the circumference of a cir­
cle is equal to pi times its diameter, and 
the sum of the interior angles of a trian­
gle is 180 degrees. The plane is said to 
have zero Gaussian curvature, which 
is a measure of the intrinsic shape of a 
surface first developed by Carl Fried­
rich Gauss. 

The second locally homogeneous ge­
ometry is the geometry on the surface of 
a sphere. A circular cap cut from the 
surface of a sphere rips open when it is 
flattened on a plane much like the piece 
from the convex region of the three-hole 
doughnut. Hence the circumference of a 
circle on the sphere is less than the cir­
cumference of.a circle having the same 
radius on the plane. The missing circum­
ference suggests the standard name for 
the locally homogeneous geometry of 
the sphere: elliptic geometry, from the 
Greek word for falling short. The inte­
rior angles of a triangle constructed on 
the sphere add up to more than 180 de­
grees, and the greater the ratio of the 
area of the triangle to the area of the 
surface of the sphere, the greater the 
sum of the angles [see top illustration on 
opposite page]. The sphere has constant 
positive Gaussian curvature. 

As one might expect, a circle cut from 
a surface having the third kind of locally 
homogeneous geometry overlaps when 
it is flattened like the piece from the re­
gion near a hole of the three-hole dough­
nut. The circumference of such a circle 
is greater than the circumference of the 
corresponding circle on the plane. The 
geometry is therefore called hyperbolic 
geometry, from the Greek word for ex­
cess. It is impossible to define a com­
plete hyperbolic surface with any ana­
lytic formula, but one can make approx­
imate models of large pieces of such a 
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GEOMETRY ON A SPHERE, which is called elliptic geometry, dif­
fers from the ordinary Euclidean geometry on the plane. The interior 
angles of a triangle do not add up to 180 degrees on the sphere as they 
do on the plane; instead the sum increases with the area of the spheri-

cal triangle (left). A circular cap cut out of a sphere and flattened on 
the plane would crack and split as shown at the right. The area of a 
circle on the sphere is less than the area of a circle that has the sam e 
radius on the plane. The sphere has a constant positive curvature. 

surface [see illustration below]. The inte­
rior angles of a triangle constructed on 
the surface add up to less than 180 de­
grees, and the greater the area of the 
triangle, the smaller the sum of the an­
gles. The hyperbolic surface has con­
stant negative Gaussian curvature. 

It is instructive to show how the three­
hole doughnut can be given a locally ho­
mogeneous geometry. Remember that 
each of the eight hexagons from which 
the manifold was originally construct­
ed can be bent and deformed in any 
way, as long as no hexagon is cut or 

torn. The method is then to deform each 
hexagon in such a way that it has a local­
ly homogeneous geometry and still fits 
together with the other hexagonal pieces 
of the manifold as it does on the three­
hole doughnut. 

All eight hexagons on the three-hole 

GEOMETRY ON A SURFACE of constant negative curvature (left) 
is called hyperbolic geometry. The sum of the interior angles of a tri­
angle is less than 180 degrees, and the sum decreases as the triangle 
grows. A circle cut out of a hyperbolic surface would wrinkle and 

overlap as shown at the right; its area is greater than the area of a cir­
cle that has the same radius on the plane. A paper model of a hyper­
bolic surface can be made by gluing many equilateral triangles along 
their edges in such a way that seven triangles meet at each vertex. 
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ANGLES OF A REGULAR HEXAGON can be reduced in size if 
tbe bexagon is allowed to grow on a byperbolic surface. In tbe illus­
tration tbe bexagon grows until eacb interior angle is equal to a rigbt 
angle. Tbe eigbt bexagons in tbe configuration space of tbe tbree dou­
ble cranks must meet four bexagons at a vertex, and so all six interior 

angles of eacb bexagon must be rigbt angles. If tbe eigbt bexagons 
are topologically deformed into rigbt-angled byperbolic bexagons 
and abstractly glued as before, tbe resulting two-manifold bas a con­
stant curvature; its geometry is said to be locally bomogeneous. Tbe 
geometry of tbe configuration space is tbereby greatly simplified. 

doughnut meet four at a vertex. If the 
hexagons were Euclidean, the angles at 
any vertex would add up to 480 degrees, 
which is impossible. If the hexagons 
were spherical, the sum of the four an­
gles at a vertex would be even greater 
than 480 degrees, which is also impossi­
ble. In the hyperbolic plane, however, 
the larger the polygon, the smaller the 
interior angles. A sufficiently large hexa­
gon in the hyperbolic plane must have 
interior angles of 90 degrees; four such 
hexagons would fit snugly together at a 
vertex. Hence if the eight hexagons are 
placed on the surface of a hyperbolic 
plane and inflated on that plane until 
each interior angle shrinks to 90 degrees, 
the manifold constructed by gluing the 
eight hexagons will have a locally ho­
mogeneous, hyperbolic geometry. The 
manifold cannot be directly visualized 
in its new form, but the geometric prop­
erties of the manifold are much simpler. 

The reader may enjoy verifying that 
the surface of any doughnut with 

two or more holes can be cut into hexa­
gons that meet four at a vertex. The re­
sulting manifold can be given a hyper­
bolic geometry by constructing it from 
right-angled, hyperbolic hexagons.

· 
A 

more traditional procedure is to cut 
the surface open into a polygon whose 
vertexes all meet on the surface at one 
point. The three-hole doughnut, for ex­
ample, can be split open into a dodeca­
gon, or 12-sided polygon, as well as into 
eight hexagons. If the surface is suffi­
ciently complex, the polygon derived 
from the split must have at least six ver­
texes. If all six vertexes are to fit togeth­
er properly, the interior angles of the 
polygon must be reduced. The reduc­
tion is done by allowing the polygon to 
grow in the hyperbolic plane. When the 
edges of the polygon are glued in pairs, 
the new surface is topologically identi­
cal with the original surface, but it has 
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the locally homogeneous geometry of 
the hyperbolic plane. 

There are only four finite surfaces for 
which the locally homogeneous geome­
try is not hyperbolic, because the poly­
gons that arise from the cuts in the sur­
faces have fewer than six sides. The one­
hole doughnut gives rise to a square, and 
all four corners of the square can be 
abstractly glued without changing the 
interior angles of the square. Since no 
further deformation is needed, the local­
ly homogeneous geometry given to the 
two-torus is Euclidean. Similarly, the 
sphere and a nonorientable two-mani­
fold called the projective plane are given 
an elliptic geometry, and a nonorient­
able two-manifold called the Klein bot­
tle is given a Euclidean geometry. 

A three-manifold can be curved in 
much the same way as a surface can: 
every two-dimensional slice of a posi­
tively curved three-manifold would 
split open if it were placed in ordinary 
Euclidean space, and every two-dimen­
sional slice of a negatively curved three­
manifold would wrinkle and overlap. 
Elliptic geometry, Euclidean geometry 
and hyperbolic geometry all have their 
three-dimensional counterparts. 

In 1976 one of us (Thurston) began to 
suggest that locally homogeneous, hy­
perbolic geometry is the key to the un­
derstanding of almost all three-mani­
folds. The development has come as a 
surprise to many topologists, because 
three-manifolds are so much more com­
plicated than two-manifolds. Whereas 
any orientable two-manifold can be 
specified and listed according to its ge­
nus, every three-manifold, like a tangled 
loop of string, seems to have its own 
distinct properties and resists fitting into 
any larger pattern. On closer scrutiny, 
however, larger patterns have begun to 
emerge. The patterns depend on the fact 
that many three-manifolds can be given 
a locally homogeneous geometry. 

How can such a simple geometric 
structure be imposed? A procedure 
quite similar to the one we have de­
scribed for two-manifolds works for a 
large number of cases. The manifold is 
cut apart into a polyhedron, and one 
must determine how many vertexes of 
the polyhedron are to be fit in place 
when it is abstractly glued back togeth­
er. For example, in the Seifert-Weber 
space all 20 corners of the dodecahe­
dron that generates the space are ab­
stractly glued together. The solid angle 
formed at each vertex of a Euclidean 
dodecahedron is much too large for 20 
such vertexes to fit together at a point. If 
the dodecahedron is placed in three-di­
mensional hyperbolic space, however, it 
can be expanded until the solid angle at 
each vertex is small enough to pack 20 
equal vertexes around a point [see illus­
tration on the cover of this issue]. When 
opposite faces of the hyperbolic dodeca­
hedron are abstractly glued together 
after a rotation of three-tenths of a 
turn, the resulting manifold is a Seifert­
Weber space with a locally homogene­
ous, hyperbolic geometry. 

The Poincare dodecahedral space is 
also derived by gluing the faces of 

a dodecahedron, but the vertexes are 
glued together in five groups of four. 
The solid angle at the vertex of an ordi­
nary dodecahedron is slightly too small 
to pack tightly around a point in groups 
of four, but a suitably large dodecahe­
dron in a positively curved space has 
corners that are just the right size. The 
enlarged dodecahedron makes it possi­
ble to construct a Poincare dodecahe­
dral space with a locally homogeneous, 
elliptic geometry [see illustration at right 
on opposite page]. In this context it is 
worth mentioning how a locally homo­
geneous geometry is given to the three­
torus. In the construction of the mani­
fold the eight vertexes of a cube are 
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abstractly glued. Because the eight cor­
I}ers can fit together at a point without 
distortion, the locally homogeneous ge­
ometry of the three-torus is Euclidean. 

Lest the reader be misled, we must point 
out that the preceding examples are not 
really typical because they are highly 
symmetrical. When a three-manifold is 
defined by gluing the faces of an irregu­
lar polyhedron, more care must be tak­
en to give the polyhedron a shape that 
leads to a locally homogeneous geome­
try for the three-manifold. The shapes 
of the polyhedral faces that are glued 
together must match, and the angles 
between the faces that surround any 
edge must add up to 360 degrees. 

There are at least two major differ­
ences between the geometry of two­
manifolds and the geometry of three­
manifolds. First, there are five more 
kinds of locally homogeneous geometry 
that can be given to three-manifolds, 
in addition to the three we have men­
tioned. The additional geometries come 
about because in three or more dimen­
sions an intrinsic curvature is defined for 
each two-dimensional slice that passes 
through a point. A locally homogeneous 
geometry need not have the same curva­
ture in all the two-dimensional slices. 
Nevertheless, an understanding of the 
intrinsic curvature of all eight geome­
tries can be based on the simpler geome­
tries of two-manifolds. 

The second difference between the 
two- and three-manifolds might seem to 
present insurmountable complications . . 
It is possible to combine three-mani­
folds in such a way as to yield new three­
manifolds that cannot be given a local­
ly homogeneous geometry. Fortunately, 
topologists know how to split a three­
manifold into primitive pieces by purely 
topological methods. 

One of us (Thurston) has proposed 
that after a three-manifold has been 

cut up into its primitive pieces, each of 
the resulting pieces does in fact admit a 
locally homogeneous geometry of one 
of the eight possible types. The conjec­
ture has been proved for wide classes of 
manifolds, and it has been empirically 
tested for many other examples either 
by hand or with the aid of a computer, 
and it has never been found wanting. It 
now seems unlikely a counterexample 
will be found. 

The empirical studies also suggest 
that for most three-manifolds the com­
plications of three-manifold geometry 
do not come into play. Indeed, it has 
been proved that, in a certain technical 
sense of the word, "most" three-mani­
folds can be given a locally hyperbolic 
geometry. The finding is fortunate, be­
cause hyperbolic three-manifolds have 
many beautiful properties. For exam­
ple, in 1971 G. D. Mostow of Yale Un i-

) 

versity proved that if a three-manifold 
can be given a locally hyperbolic geom­
etry, the geometry is completely deter­
mined by the topology. A consequence 
of Mostow's theorem is that all mani­
folds having a locally homogeneous ge­
ometry can in principle be classified. 
Moreover, for hyperbolic three-mani­
folds the theorem gives a rough-and­
ready test of identity. When a manifold 
is deformed into its geometrically trac­
table form, its volume can be measured, 
and the theorem guarantees that the vol­
ume depends only on the topological 
type of the manifold. It can often be 
quite difficult to distinguish two mani­
folds in their arbitrary topological form, 
and so the volume turns out to be a 
handy signature for each manifold. 

With these results in mind it is worth 
returning to our initial speculations 
about the topological structure of the 
universe. Observational evidence sug­
gests the universe is homogeneous ev­
erywhere and has either elliptic, hy­
perbolic or Euclidean geometry. There 
is also strong support for the theory that 
the universe is currently in a stage of 
expansion that has continued since the 
beginning of the big bang. It is interest­
ing to speculate on what the distant fu­
ture holds in store, but there are essen­
tially only two possibilities. One' is that 
the mutual gravitational attraction of 
the matter in the universe will finally 

SEIFERT-WEBER SPACE can be given a locally hyperbolic geom­
etry if the dodecahedron that generates the space is allowed to grow 
in hyperbolic space. The growth of a polyhedron in hyperbolic space 
is similar to the growth of a polygon on a hyperbolic surface. When 
the dodecahedron grows, the solid angle at each vertex shrinks, and 
so each vertex becomes progressively sharper. The abstract gluings 
that lead to the Seifert-Weber space specify that all 20 vertexes of 
the dodecahedron must meet at a point. The solid angle at each ver­
tex must therefore be. shrunk in the hyperbolic space until all 20 of 
the solid angles are small enough to fit together around a single point. 

POINCARE DODECAHEDRAL SPACE is also generated by glu­
ing pairs of opposite faces of a dodecahedron, but one member of 
each pair is matched to its counterpart after a rotation of one-tenth 
of a turn instead of the three-tenths of a turn required for the Seifert­
Weber space. The abstract gluings lead to the identification of four 
vertexes of the dodecahedron at every vertex in the manifold. The sol­
id angle at each vertex of an ordinary dodecahedron is slightly too 
small for four dodecahedrons to fit snugly around a point, but the sol­
id angles can be increased if the dodecahedron is inflated in elliptic 
space. The effect is the reverse of the inflation in hyperbolic space. 
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halt the expansion and cause the uni­
verse to recollapse in a "big crunch. " A 
second possibility is that the gravitation­
al attraction is not strong enough to halt 
the expansion, and the universe will ex­
pand forever. 

One conseq uence of the general the­
ory of relativity is that the ultimate 

fate of the universe depends on its ge­
ometry. If the universe has an elliptic 
geometry, it will eventually recollapse. 
If it has a hyperbolic geometry, it will 
expand forever. If it has a Euclidean ge­
ometry, it will also expand forever, but 
the rate of the expansion will approach 
zero. In principle it would be possible 

to determine the geometry of the uni­
verse by laying out a huge triangle and 
accurately measuring its interior angles. 
If the sum of the angles were greater 
than 1 80 degrees, the geometry of space 
would be elliptic; if the sum of the an­
gles were eq ual to 1 80 degrees, the geom­
etry would be Euclidean and if the sum 
were less than 180 degrees, the geome­
try would be hyperbolic. In practice cos­
mologists try to estimate the density of 
the matter in the universe and the rate 
of the expansion, because the geometry 
of the universe can be correlated with 
the two measurements. If the density is 
high enough for a given rate of expan­
sion, the universe will recollapse. 

There is a widespread misconception, 
however, that the curvature of the uni­
verse determines whether the universe is 
finite or infinite in extent. It is often as­
serted that if the universe is finite, its 
geometry must be elliptic and, converse­
ly, that if the geometry of the universe is 
hyperbolic, the universe must be infi­
nite. The Seifert-Weber space, which is a 
finite three-manifold with a locally hy­
perbolic geometry, shows that neither 
of these beliefs is true. Indeed, most fi­
nite topological models of space are 
three-manifolds like the Seifert-Weber 
space with a locally hyperbolic geom­
etry. Such manifolds yield models of a 
finite universe that expands forever. 

SPHERICAL "SLICE" of a curved three-manifold, analogous to 
the circular pieces of the two-manifolds shown in the illustrations 
on page 117, cannot be fitted into ordinary Euclidean space without 
deformation. A positively curved three-manifold would split open 
everywhere (a); every two-dimensional slice of the manifold has the 
curvature of an ordinary sphere (b). Similarly, every two-dimension-

al slice of a negatively curved three-manifold would wrinkle and 

overlap as if it were cut out of a hyperbolic surface (c). A three­

manifold whose curvature varies with direction can still have a ·local­

ly homogeneous geometry, as long as the pattern is the same at every 

point. For example, one slice of the manifold could wrinkle and over­

lap in ordinary space, whereas two other slices could split apart (d). 
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types d i rectly, w h i l e  g e n e rat ing m o d u les i n  
o n e  o f  t h e  t h ree I nte l  M em o ry  M ode ls. I n c l u d es 
RTOS a n d  s u pport for o n e  year . . . . . . $1 350 

87 BASIC'· i n c l u des patc h es to the I B M  
Basic C o m p i l e r  a n d  both r u n t i m e  l i b ra ries for 
U S E R  T RA N S PA R E N T  and C O M PL ETE BOB7 
su pport P rovides super fast perlormance for 
a l l  n u m eric operat ions i n c l u d i n g  tr igono­
met rics, t ransce ndentals, addit ion, subt ract ion,  
m u lt i pl icat ion, and d iv is io n .  . . $1 50 

MATRIXPAK'· manages a M EGABYTE! 
Written in assem bly language, o u r  ru nt ime 
package accu rately manipulates large matrices 
at very fast speeds. I ncludes matrix i nversion 
and the solution of s i m u ltaneous l in ear equa­
tions. Callable from MS Fortran 3.2,  B 7 M AC RO, 

RTOS D E V E LOPM E N T PAC KAG E 
i n c l u d es B7 FO RTRA N ,  B7 PASCAL, PL/ M-B6, 
U t i l i t i es, TX S c reen Edi to r a n d  RTOS . . . $2500 
RTOS-
REAL TI M E  M U LTI-TAS KI N G/ 
M U LTI- U S E R E X E C UTIVE 
RTOS is a M i c ro Ware conf i g u red version of 
i R M X-B6. l nc l udes ASM-B6,  L l N K-B6, LOC-B6, 
L l B-B6,  a n d  t h e  R O M  H ex Loader . . . . .  $600 
87 BASIC/ I N Ll N E'· generates in l ine 
BOB7 code! Converts the I B M  Basic Compi ler 
output i nto an assem bly language sou rce l ist ing 
which a l lows the user to make additional 
ref inements to h is program. Real expression 
evaluations ru n f ive t imes faster than i n  
B7 BASIC . . . . . . . . . . . . . . . . .  $200 

Micro 
Ware 

P.O. Box 79 
Kingston, MA 
02364 
(6 1 7) 746-7341 

87 MAC RO'· - o u r  complete B O B 7  software 
develo pment package. I t  contains a " Pre- p ro­
cessor," sou rce code for a set of BOB7 macros, 
and a l i bra ry  of n u m e ric fu nct ions i n c l u d i n g  
transce ndentals, tr igonom etrics, hyperbol ics, 
encodi ng, decod i ng and convers ions . . . $1 50 
8 7 0  E B UG ,. - a professional  debugger with 
BOB7 support, a soph ist icated screen-or iented 
macro command processor, and t race featu res 
which inc lude the a b i l ity to sk ip trac ing t h rough 
bran c h es to cal ls  and software a n d  h ardware 
i nterrupts. Breakpoints can be set i n  code or 
on g u a rded add resses i n  RAM . . . . . . . . .  $1 50 
FOR� BAS� - a l ibrary of i nterlace rout ines 
w h i c h  a l l ow MS Fort ran prog rams to ca l l  the 
IBM Basic Compi ler  l i b ra ry a n d  access 
feat u res such as the RA N D O M  N U M B E R  
G E N E RATO R, SO U N D, PLAY, D RAW a n d  
SC R E E N  com mands . . . . . . . . . . . . . . . . . . . .  $1 50 

You Can 
78lklb Us! 

B7 BASIC, and RTOS . . . . . . . . .  each $1 50 
M I C ROSOFT FORTRAN 3.2 or 
PASCAL 3.2 - These I E E E  compatible 
compi lers support double precision and the 
BOB7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  each $259 
M I C ROSOFT C COM PI LER includes 
Lattice C and the M S  Libraria n .  . . . . .  $350 
SCO X E N I X .  :� ���': . . . . . . . . . . .  . . . .  $595 
U n i source VEN I X!B6 :� :·:':�·.m: ':<. . . .  . . . .  800 
FLOATB7 for MS or LATTICE C. . . . . .  1 25 
Su perSoft Fortra n 66 . . . . . . . . . . . . 299 
Computer I n n ovations CB6 . . . . . . . . . . . . . . .  345 
STSC APL* PL US/ PC . . . . . . .  500 
TU R BO PASCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
T U R BO PASCAL with BOB7 Su pport . . . . . . . .  85 
HALO GRAPH i CS . . . . . . . . . . . . . . . . . . . . . . . .  CALL 
G RAPH MATIC. . . . . . . . . . . . . . . . . . . .  1 25 
E N E RG RAPH I CS . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
Professional BASIC . . . . . . . . . . . . . . . . . • . . . . . .  295 
Kidger Optical Desig n Program . . . . . . . . . .  3000 
COSMOS REVELATIO N  . . . . . . . . . . . . . . . . . . .  850 
SuperCalc I I I  with BOB7 Support . . . . . . . . .  CALL 
MAYNARD WS1 HARD D i S K  . . . . . . . . . . . . . .  995 
MAYNARD WS2 HARD D I S K  . . . . . . . . . . . .  1 1 70 
256K RAM C H i PS . . . . . . . . . . . . . . . . . . . . . . . .  CALL 
MAYNARD E L ECTRO N I CS Boards . . . . . . CALL 

ALL ITEMS IN STOCK 

HOW TO REACH THE PEOPLE WHO 
MAIm THE FUTURE HAPPEN IN SPAIN 

INVESTIGACION Y CIENCIA is the Spanish edi­
tion of SCIENTIFIC AMERI CAN which attracts 
a young audience of affiuent professionals who 
have come to the top because of their technical 
expertise . Almost half of them hold top man­
agement job titles.  The fortunes of major cor­
porations in Spain increasingly depend on 
technically sophisticated people. INVESTIGA­
CION Y CIENCIA keeps these people in touch 
with the advances in science that drive the 
growth of Spain's industry. 
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SCIENTIFIC AMERICAN speaks the languages 
of more than half the world's population. We 
are the one publication in the world today pro­
viding efficient coverage of technology-based 
management. We reach men and women in 
industry, whose qualification to make techni­
cal decisions places them in key positions in 
their country's government and industry. 

For more information on our Spanish-language edition contact : 

SCIENTIF IC  AMERICAN in eight language s :  
English, Spanish, Italian, French, German, Jap­
anese, Chinese and now Russian has gathered 
in its audience three million people who make 
the future happen around the world. 

Elena Sanchez-Fabres or in New York 
Prensa Scientifica, s .a .  John Kirbv, 
Calabria 2 3 5 -2 3 9  V. P.I Advertising Director 
Barcelona 29, SPAIN SCIENTIFIC AMERICAN 
Telephone ( OI l ) 343-322-05 5 1  4 1 5  Madison Avenue 

New York, New York 1 00 1 7  
Telephone 2 1 2-754-0262 
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