
Corrections to the book Algebraic Topology by Allen Hatcher

Some of these are more in the nature of clarifications than corrections. Most of the

corrections have already been incorporated into later printings of the book and into

the online version of the book.

Note: Some of these corrections are no longer applicable due to subsequent revi-

sions that have been made.

Table of Contents. In Chapter 1 the item “Applications to Cell Complexes" is on

page 49 rather than 50, as of late 2015.

Chapter 0, page 9, line 12. Change “lines" to “line".

Chapter 0, page 9. In the next-to-last paragraph delete the sentence “This view-

point makes it easy to see that the join operation is associative." Also, in the sentence

preceding this one, change the word “regarded" to “constructed". Set-theoretically it is

true that join is associative, but there are examples where the topologies on (X∗Y)∗Z

and X∗ (Y ∗Z) can be different. This is another instance of how mixing product and

quotient constructions can lead to bad point-set topological behavior. For CW com-

plexes the issue can be avoided by using CW topologies, as in the first paragraph at

the top of the next page.

Chapter 0, page 9, line -11. Replace 0ti by 0xi .

Chapter 0, page 14. The discussion of the homotopy extension property in the

middle of this page skims over a somewhat delicate question in point-set topology,

whether a function X×{0}∪A×I→Y is continuous if its restrictions to X×{0} and

A×I are continuous. This is true if A is closed in X , which covers most applications

of the homotopy extension property. The online version of the book gives a corrected

version of the argument. The trickier case that A is not assumed to be closed has

been added to the Appendix.

Chapter 0, page 15, Example 0.15. If you have an early version of this chapter with

no figure for this example, then in the next-to-last line of this paragraph change “the

closure of X−N " to “X−h(Mf −Z)". [This paragraph was rewritten for later versions,

making this correction irrelevant.]

Chapter 0, page 16. The second sentence of the proof of Proposition 0.18 may

need further explanation of the underlying point-set topology. The assertion is that

X0 ⊔f X1 and X0 ⊔g X1 are subspaces of X0 ⊔F (X1×I) , so in particular the quotient

topologies on X0 ⊔f X1 and X0 ⊔g X1 are the same as the subspace topologies from

X0 ⊔F (X1×I) . This is a special case of the following general fact about quotient

topologies. Suppose q :X→Y is a quotient map, so q is surjective and a set V in Y

is open if and only if q−1(V) is open in X . For a subspace B of Y one can ask whether

the restriction map q :A→B from the subspace A = q−1(B) to B is also a quotient



map. This is not always the case, but it is true if A is closed in X . To see this, let

us define a subset U of X to be saturated if U = q−1(q(U)) . What must be checked

is that the saturated open sets in the subspace A are the intersections of saturated

open sets in X with A . Obviously the intersection of a saturated open set in X with

A is an open set in A that is saturated. Conversely, if A is closed in X and U is an

open set in X such that A∩U is saturated in A , then U ∪ (X−A) is a saturated open

set in X whose intersection with A is A∩U .

Chapter 0, page 17. The fourth line should say that (Y ,A) has the homotopy

extension property, rather than (X,A) . Also, in the next paragraph there are two

places where ktu :A→A should be changed to ktu :A→X , in the fourth and twelfth

lines following the displayed formula for kt .

Chapter 0, page 17. In the third-to-last line, f1 :X→X should be f1 :X→Y . Also,

on the seventh-to-last line it might be clearer to say “Viewing ktu as a homotopy of

kt ||A"

Chapter 0, page 19, Exercise 21. The space X should be assumed to be Hausdorff.

For a more general version, let X be a connected quotient space of a finite set of

disjoint 2 spheres obtained by identifying finitely many finite sets of points.

Chapter 0, page 20, Exercise 26, third line: Change (X,A) to (X1, A) .

Chapter 0, page 20, Exercise 27. To avoid point-set topology difficulties, assume

that f is not just surjective but a quotient map. Here is a more general version of this

exercise: Given a pair (X,A) and a homotopy equivalence f :A→B , show that the

natural map X→B ⊔f X is a homotopy equivalence if (X,A) satisfies the homotopy

extension property.

§1.1, page 30, line 14. Change “paths lifting the constant path at x0 " to “paths

lifting constant paths"

§1.1, page 32, third paragraph. The reference should be to Corollary 2.15, not 2.11.

§1.1, page 32, last paragraph. The reference should be to Corollary 2B.7, not Propo-

sition 2B.6.

§1.1, page 36, line 6. The reference should be to Theorem 2.26, not 2.19.

§1.1, page 39, Exercise 16(c). In case it’s not clear, the

circle A is supposed to be the dark one in the figure, in the

interior of the solid torus.

§1.2, page 43. In Example 1.21 I forgot to mention that the spaces Xα should be

assumed to be path-connected, hence also the neighborhoods Aα that deformation

retract onto them.

§1.2, page 46, sixth line from bottom. Repeated “the" — delete one.

§1.2, page 49, line 3. The reference should be to Corollary 3.46 rather than 3.45.



§1.2, page 53, Exercise 5. Part (b) is simply wrong, and should be deleted.

§1.2, page 53, Exercise 6. Add the assumption that the discrete subspace of Rn

is closed. The result still holds without this condition but the proof is considerably

more complicated.

§1.2, page 54, Exercise 15. It should be specified that if the triangle T has vertices

P , Q , R , then the three edges are oriented as PQ , PR , QR .

§1.2, page 55, line 1. A comment: the reduced suspension depends on the choice

of basepoint, so the statement is that C is the reduced suspension of CX with respect

to a suitable choice of basepoint.

§1.3, page 56, second paragraph. A comment about the definition of a covering

space: The way that p−1(Uα) could be empty is that it could be the union of an empty

collection of open sets homeomorphic to Uα .

§1.3, page 57. In the discussion of covering spaces of S1
∨ S1 , instead of saying

that four edges meet at each vertex it would be more accurate to say that there are

four ends of edges at each vertex since an edge with both its ends at the same vertex

should be allowed. The text has been modified at several points on this page to clarify

this.

§1.3, page 57, third-to-last line. Change Koenig to König, to agree with the spelling

in the Bibliography and in the original source itself.

§1.3, page 61, next-to-last line of the proof of Proposition 1.32: g1g2 should be

g1 g2 , with a dot to denote composition of paths.

§1.3, page 62. Near the top of the page, in the two sentences that originally pre-

ceded the proof of Proposition 1.33 I mentioned a slightly more general definition

of local path-connectedness in which any two points in V were joinable by a path in

U rather than in V . It seems I was mistaken about the terminology and this weaker

condition has a different name: 0-local connectedness, or 0-LC for short. Since this

more general condition is not used in the book I have deleted these two sentences.

§1.3, page 63. Typo in the next-to-last line of the third-to-last paragraph: “simply-

connected" has two n’s, not three.

§1.3, page 65, line 12. Change “cover space" to “covering space"

§1.3, middle of page 69. It should say “assuming that X is path-connected, locally

path-connected, and semilocally simply-connected".

§1.3, bottom of page 69 (or top of page 70 in earlier printings). In the paragraph

that begins “Notice that the definition” the set F should be regarded as a space with

the discrete topology.

§1.3, page 79, Exercise 3. Add the hypothesis that the covering space map p : X̃→X
is surjective.



§1.3, page 79, Exercise 8. The reference should be to Exercise 11 in Chapter 0, not

Exercise 10.

§1.3, page 82, Exercise 27. In the online version of the book this exercise has been

revised in August 2019 to clear up some confusion about the definition of the first

action, and the revision changes the answer to the exercise. In the original version

the intention was to define this action by letting an element of π1(X,x0) determined

by a loop γ send γ̃(0) to γ̃(1) for each lift γ̃ of γ . However, this produces what is

called an action “on the right” rather than an action “on the left”, which is the sort of

action considered in the book. Thus the definition above does not produce an action

according to the book’s definition unless π1(X,x0) happens to be abelian. The new

version of this exercise fixes this problem by simply interchanging γ̃(0) and γ̃(1) in

the definition above, as was done on page 69 when this action was first introduced.

§1.3, page 82, Exercise 28. The reference should be to part (c) of Proposition 1.40,

not part (b).

§1.3, page 82, Exercise 33. Change the ℓ in the fourth line to d .

§1.B, page 94. In the middle of the page, change the sentence that begins “To

see this" so that it reads “To see this, note that p : Ã→A is a covering space, so

we have injective maps π1(Ã)→π1(A)→π1(X) whose composition factors through

π1(X̃) = 0, hence π1(Ã) = 0."

§1.B, page 94, seventh line up from the bottom. Change “component Ã of A" to

“component Ã of p−1(A)".

§1.B, page 96, Exercise 9. Add the hypothesis that all the edge homomorphisms

are injective.

§2.1, page 109, line 5. The phrase “exactly two" is not quite correct since the two

faces in a canceling pair could be faces of the same simplex. To fix this, replace this

sentence by the following sentence: “If ξ is a cycle, all the (n− 1) dimensional faces

of the ∆ni ’s are identified in pairs." The online version of the book also contains some

slight rewordings in the remainder of this paragraph, for the sake of clarity.

§2.1, page 112. [Revised the text in the first paragraph to describe the subdivision

of ∆n×I more geometrically. Also revised the beginning of the next paragraph and

added a few more words on the next page in the paragraph following Proposition

2.12.]

§2.1, page 120, line −12. Change wi and wj to wj and wk .

§2.1, page 121, line −9. The equations should read S([w0]) = w0(S∂[w0]) =

w0(S([∅])) = w0([∅]) = [w0] . [This is corrected in later printings.]

§2.1, page 123, line −3. Add a period at the end of this line.

§2.1, page 125, Example 2.23. In the first paragraph of this example the sentence

beginning “The second isomorphism" needs to be modified in the special case n = 1



since ∂∆n−1 is empty in this case, which means that (∆n−1, ∂∆n−1) is not a good pair

when n = 1. However the claimed isomorphism is easy to see in this case since it

involves just H0 . The online version of the book has been rephrased to deal with this

issue. (The old version of this paragraph has 7 lines after the displayed formulas, the

revised version has 8 lines.)

§2.1, page 125, Example 2.23. Each occurrence of Hn(S
n) in this example should

have a tilde over the H .

§2.1, page 127. If you have an early printing of the book where the next-to-last

commutative diagram on this page is a small diagram consisting of two short exact

sequences joined by vertical maps α , β , and γ , then add the hypothesis that these

maps are chain maps, commuting with boundary homomorphisms. If you have a

later printing with a large three-dimensional commutative diagram which includes

the boundary maps as well as the maps α , β , and γ , then nothing more needs to be

added. However, in the line preceding this large diagram there may be a typo in the

word “sequences" in your printing of the book.

§2.1, page 129, next-to-last paragraph. In each of the first two lines of this para-

graph there is a c that should be c′ .

§2.1, page 131, Exercise 2. Made explicit the requirement that the identifications

should preserve orderings of vertices, though this was already implicit in the goal of

getting a ∆ complex structure on the quotient.

§2.2, page 134. The notion of degree for maps Sn→Sn is not very interesting

when n = 0, so it may be best to exclude this case from the definition to avoid having

to think about trivialities and whether Hn should be H̃n or not.

§2.2, page 135, last line. Add the nontriviality condition n > 0, to guarantee that

the groups Hn(S
n) in the diagram on the next page are Z .

§2.2, page 136. In the proof of Proposition 2.30 change lines 2-3 so that they read

“... with ki the inclusion of the ith summand. The map pi is projection onto the ith

summand since the upper triangle commutes and pikj = 0 for j ≠ i , as pikj factors

through Hn(Uj , Uj) = 0. Identifying ...”

§2.2, page 137, line 6. Change the word “stretching" to “shrinking."

§2.2, page 137. Part (c) of Lemma 2.34 has been expanded to say also that the

map Hk(X
n)→Hk(X) is surjective when k = n . The proof on the next page has been

revised to show this.

§2.2, page 141, two lines above Example 2.36. It should be H̃n−1(X
n−1/Xn−2) ,

with a tilde, though it doesn’t really matter since we are in the case n > 1.

§2.2, page 144, Example 2.42. The original wording here said that the restriction

of qϕ to each component of Sk−1
− Sk−2 was a homeomorphism, but it would be



clearer to specify the image of these homeomorphisms and say that qϕ restricts to

a homeomorphism from each component of Sk−1
− Sk−2 onto RPk−1

−RPk−2 .

§2.2, page 152. In the exact sequence at the top of the page delete the final 0 and

the arrow leading to it.

§2.2, page 156, Exercise 13. The second half of part (b) should say that the only

subcomplex A ⊂ X for which the quotient map X→X/A is a homotopy equivalence

is the trivial subcomplex consisting of the 0 cell alone.

§2.2, page 158, Exercise 30, line 2. The label 1− f∗ on the map should be 11− f∗ ,

with a blackboard bold 1.

§2.2, page 158, Exercise 34. The original form of this problem was to derive the

long exact sequence of homology groups for a pair (X,A) from the Mayer-Vietoris

sequence. However, this is hard to do without resorting to some type of circular

reasoning, so it seems best to delete this problem.

§2.3, page 164. There is something wrong with the syntax of the long sentence

beginning on line 8 of this page, the second example of a functor. The simplest

correction would be to change the word “assigns" to “assigning" in line 8. Perhaps a

better fix would be to break this long sentence into two sentences by putting a period

at the end of line 9 and then starting a new sentence on line 10 with “This is a functor

from the category ··· ".

§2.B, page 170. In some versions of the book there is a typo in the last line of the

proof of Proposition 2B.1, where H̃i
(
Sn − h(Dk)

)
was written in place of the correct

group H̃i
(
Sn − h(Sk)

)
. (Early printings of the book used a different notation here,

and the typo was only introduced when the notation was changed.)

§2.B, page 173. In the second paragraph after Theorem 2B.5 the historical com-

ments are in need of corrections. Frobenius’ theorem needs the hypothesis that the

division algebra has an identity element, and Hurwitz only proved that the condition

|ab| = |a||b| implies the dimension must be 1, 2, 4, or 8. Here is a revised version

of this paragraph:

The four classical examples are R , C , the quaternion algebra H , and the octonion

algebra O . Frobenius proved in 1877 that R , C , and H are the only finite-dimensional

associative division algebras over R with an identity element. If the product satisfies

|ab| = |a||b| as in the classical examples, then Hurwitz showed in 1898 that the

dimension of the algebra must be 1, 2, 4, or 8, and others subsequently showed that

the only examples with an identity element are the classical ones. A full discussion

of all this, including some examples showing the necessity of the hypothesis of an

identity element, can be found in [Ebbinghaus 1991]. As one would expect, the proofs

of these results are algebraic, but if one drops the condition that |ab| = |a||b| it

seems that more topological proofs are required. We will show in Theorem 3.20 that

a finite-dimensional division algebra over R must have dimension a power of 2. The



fact that the dimension can be at most 8 is a famous theorem of [Bott & Milnor 1958]

and [Kervaire 1958]. See §4.B for a few more comments on this.

§2.B, page 176, Exercise 3. A better hint would be to glue two copies of (Dn,D)

to the two ends of (Sn−1
×I, S×I) to produce a k sphere in Sn and look at a Mayer–

Vietoris sequence for the complement of this k sphere. (The hint originally given leads

to problems with the point-set topology hypotheses of the Mayer-Vietoris sequence.)

§2.C, page 180. In the line preceding the proof of 2C.3 the S3 should be S4 . Also, in

the line above this the reference should be to Example 4L.4 rather than to an exercise

in section 4K.

§2.C, page 180, line −11. Typo: The formula involving τ should be just τ(fr) =

τ(f) , without the star subscripts.

§2.C, page 180. The last sentence on this page continuing onto the next page is

somewhat unnecessary since the fact that K is a subdivision of L implies that its

simplices have diameter less than ε/2.

Introduction to Chapter 3, page 187. In the fourth-to-last line change “homology

group" to “cohomology group".

Introduction to Chapter 3, page 189, line 21. The minus sign in ψ−δϕ should be

an equals sign.

§3.1, page 198, line 20. There are two missing ϕ ’s. It should read ϕ(∂σ) =

ϕ
(
σ(v1)

)
−ϕ

(
σ(v0)

)
= 0.

§3.1, page 200. In the diagram that contains the long dashed arrow going diago-

nally downward there are four occurrences of the letter G . These should be deleted,

along with the semicolons that precede them.

§3.1, page 202 line 5. Change Hn(X,A) to Hn(X,A;G) .

§3.1, page 203, last line. Change the comma in Cn(A+ B,G) to a semi-colon.

§3.2, page 208. In the last sentence of the first paragraph on this page (this is the

sentence referring to Theorem 3.14) it might be a good idea to add, for the sake of

clarity, the phrase “assuming that the coefficient ring itself is commutative" at the end

of the sentence.

§3.2, page 210, fifth line of Example 3.11. Insert the word “of" following “genera-

tor".

§3.2, page 210, last line. Hn(I×Y ,R) should be Hn(I×Y ;R) , with a semicolon

instead of a comma.

§3.2, page 213, third paragraph, third line. Change Pn − {0} to Pn − {p} .

§3.2, page 215. In the statement of Theorem 3.14 change “with" to “when".

§3.2, page 216, first line. Cℓ(X,R) should be Cℓ(X;R) , with a semicolon instead

of a comma.



§3.2, page 217, sixth to last line. Change “a special case of the former if 2 ≠ 0 in

R " to “a consequence of the former if R has no elements of order 2".

§3.2, page 218, last line of second paragraph: Change the first Y to X , so that the

tensor product becomes H∗(X;R)⊗RH
∗(Y ;R) .

§3.2, page 221, line 9. The strict inequality n > i could be changed to n ≥ i ,

although this is not important for the argument being made.

§3.2, page 224, end of the first paragraph of the proof of Proposition 3.22. The

reference should be to Theorem 3.15, not 3.16.

§3.2, page 225, lines 15 and 17. Typo: Change the superscript i + j on x to a

subscript.

§3.2, page 227, first sentence. The reference to the 1980 paper of Adams and

Wilkerson is incorrect. In fact the proof of this fundamental result has only been

completed recently in a paper of K. Andersen and J. Grodal, The Steenrod problem of

realizing polynomial algebras, Journal of Topology 1 (2008), 747–760.

§3.2, page 228. The algebraic problem referred to at the end of the first paragraph

on this page has been solved. The answer is what one would hope: The simplicial

complex CX is uniquely determined by the cohomology ring H∗(X;Z) . In fact this is

true with Z2 coefficients. A similar result holds also in the situation mentioned in the

following paragraph, so a subcomplex of a product of n copies of CP∞ is uniquely

determined by its cohomology ring, up to permutation of the factors (and deletion

of a CP∞ factor if none of its positive-dimensional cells are used). The reference

is Theorem 3.1 in J. Gubeladze, The isomorphism problem for commutative monoid

rings, J. Pure Appl. Alg. 129 (1998), 35–65.

§3.2, page 228, Example 3.24. Change Macauley to Macaulay (3 times). Also in the

Index, page 540, under Cohen-Macaulay.

§3.2, page 229, Exercise 4. The reference should be to Exercise 3 in §2.C.

§3.2, page 229, Exercise 5. Change this to: Show the ring H∗(RP∞;Z2k) is isomor-

phic to Z2k[α,β]/(2α,2β,α
2
− kβ) where |α| = 1 and |β| = 2. [Use the coefficient

map Z2k→Z2 and the proof of Theorem 3.12.]

§3.2, page 230. In the next to last line of Exercise 14 the exponent on α should be

2n+ 1 instead of n+ 1.

§3.2, page 230, Exercise 17. This can in fact be done by the same method as in

Proposition 3.22, although the details are slightly more complicated. For a write-up

of this, see the webpage for the book under the heading of Revisions.

§3.3, page 234, line 7. Change “neighborhood of A" to “neighborhood of the clo-

sure of A".



§3.3, page 236. In the sixth line of the longish paragraph between Theorem 3.26

and Lemma 3.27, change the phrase “for B any open ball in M " to “for B any open

ball in M containing x ."

§3.3, pages 237-8. Mild revisions in steps (2)-(4) in the proof of Lemma 3.27 for

clarity.

§3.3, page 239, next-to-last line: Change “(k − ℓ) simplex" to “(k − ℓ) chain".

(This paragraph has been revised in later printings of the book, so this correction is

no longer relevant.)

§3.3, page 241. In the ninth-to-last line change “cycle" to “cocycle".

§3.3, page 242. In line 5 of the subsection Cohomology with Compact Supports

change “chain group" to “cochain group."

§3.3, page 245. At the end of the first paragraph on this page it is stated that

inclusion maps of open sets are proper maps, but this is not generally true. A proper

map f :X→Y does induce maps f∗ :Hic(Y ;G)→Hic(X;G) , but the proof of Poincaré

duality uses induced maps of a different sort going in the opposite direction from

what is usual for cohomology, maps Hic(U ;G)→Hic(V ;G) associated to inclusions

U֓ V of open sets in the fixed manifold M .

§3.3, page 245. In the diagram in the middle of the page the two vertical arrows are

pointing in the wrong direction in the first printing of the book. This was corrected

in the second printing.

§3.3, page 247, lines 1-2. There is a missing step here. The cocycle δϕA represents

δ[ϕ] as an element of H∗(M,A+B) rather than H∗(M,A∪B) , which is what we really

want. The inclusion of C∗(M,A ∪ B) into C∗(M,A + B) induces an isomorphism

H∗(M,A ∪ B) ≈ H∗(M,A + B) , so a cocycle in C∗(M,A ∪ B) representing the class

[δϕA] ∈ H
∗(M,A + B) is obtained by replacing δϕA by δϕA + δψ for some ψ ∈

C∗(M,A+ B) . Thus we replace ϕA and ϕB by ϕA +ψ and ϕB +ψ and all is well.

§3.3, page 248. In the next-to-last line of item (1) in the proof of Poincaré Duality,

change “the cocycle taking" to “a cocycle ϕ taking"

§3.3, page 249, line 12. Change Hi−1 to Hi+1 .

§3.3, page 249. In the line above the commutative diagram two-thirds of the way

down the page there are a couple missing symbols in the two Hom groups. It should

read HomR(Cℓ(X;R),R)→HomR(Ck+ℓ(X;R),R) .

§3.3, page 250. In the statement of Corollary 3.39 the condition on α should be

that it generates an infinite cyclic summand of Hk(M ;Z) . This is what is used in the

proof, and it is stronger than the original condition of being of infinite order and not a

proper multiple of another element. An example showing the difference is the group

Z×Zp with p prime, where the element (p,1) is not a proper multiple but it does not

generate a Z summand. One could also use the element (pn,1) for any n > 1.



§3.3, page 251, last line. There is a missing parenthesis following the second Hj .

§3.3, page 252. In the fourth paragraph, just below the middle of the page, it is

stated that every symmetric nonsingular bilinear form occurs as the cup product pair-

ing in a closed simply-connected manifold with miminum homology. This is true in

dimensions 4, 8, and 16 but not in other dimensions, where only the even forms are

realizable in this way. Certain other forms that are not even are realizable by mani-

folds with nonminimal homology (such as complex projective spaces), but it doesn’t

seem to be known whether all forms are realizable.

§3.3, page 253. In the last paragraph of the proof of Proposition 3.42 it might be

better to replace the subscripts i by k .

§3.3, page 255, line 5. Omit the coefficient group Z . (It should have been a black-

board bold Z in any case.)

§3.3, page 256, lines 1-2. Change the superscript 0 to a subscript, and change the

two superscripts n to n− 1.

§3.3, page 256, line 8. Change “Example 1.26" to “Example 1.24".

§3.3, page 256, two lines above the proof of Corollary 3.46. Typo: The semi-colon

was missing from H1(Xm,n;Z) .

§3.3, page 257, lines 12-14. The assertion about Čech cohomology satisfying a

stronger form of excision holds for compact pairs but not in general. Perhaps the

easiest correction here is simply to delete the last half of this sentence beginning with

“and indeed".

§3.3, page 258, Exercise 8, second line. Delete the second “of".

§3.A, page 262, tenth line from the bottom. Missing prime: b − b′ = i(a) .

§3.A, page 264. In the first sentence of the proof of Theorem 3A.3 change Ker in−1

to Ker(in−1 ⊗11) .

§3.B, page 268, tenth-to-last line. Change “homomorphism" to “bilinear map".

§3.B, page 272, first line. Change “for all i" to “for all n"

§3.B, page 273. In the displayed equations near the bottom of the page the coeffi-

cient (−1)i in front of the last nonzero term c ⊗ ∂2c′ should be deleted.

§3.B, page 274. In the statement of Theorem 3B.5 delete the parenthesis immedi-

ately preceding Tor.

§3.B, page 275, line 2. The last subscript in this line should be n − i − 1 instead

of n− i .

§3.B, page 276. The original version of the book had a Corollary 3B.2 near the

bottom of this page. This should have been numbered 3B.8, but this correction is no

longer relevant since in later versions of the book the corollary has been absorbed



into the surrounding text, which has been revised somewhat. See the online version

of the book.

§3.B, page 280, next-to-last line before the exercises. Change ∆T to T∆ .

§3.B, page 280, Exercise 5, lines 2 and 3. The slant products should map to the

homology and cohomology of X rather than Y .

§3.C, page 281. In the last two lines of the next-to-last paragraph, change it to

read “... compact Lie groups O(n) , U(n) , and Sp(n) . This is explained in §3.D for

GLn(R) , and the other two cases are similar."

§3.C, page 282, tenth line from the bottom. Change SPn+1 to SPn+1(X) .

§3.C, page 283. The summation in the displayed formula on line 14 is not suffi-

ciently general. The formula should say

∆(α) = α⊗1+ 1⊗α+
∑

i

α′i ⊗α
′′
i where |α′i| > 0 and |α′′i | > 0

There are four other places in this section where a similar correction is needed. In

item (2) later on the same page it should say “∆(α) = α⊗1 + 1⊗α +
∑
iα

′
i ⊗α

′′
i

whenever |α| > 0, where |α′i| > 0 and |α′′i | > 0." Lines 3-4 on page 284 should

say “so the terms α′i and α′′i in the coproduct formula ∆(α) = α⊗1 + 1⊗α +∑
iα

′
i ⊗α

′′
i must be zero." On page 290, item (2), it should say “∆(a) = a⊗1+ 1⊗a+∑

i a
′
i ⊗a

′′
i ." And in item (3) on that page it should say “the lower route gives first

∆(a)⊗∆(b) = (∑
i a

′
i ⊗a

′′
i

)
⊗
(∑

j b
′
j ⊗b

′′
j

)
, then after applying τ and π ⊗π this be-

comes
∑
i,j(−1)|a

′′
i ||b

′
j|a′ib

′
j ⊗a

′′
i b

′′
j =

(∑
i a

′
i ⊗a

′′
i

)(∑
j b

′
j ⊗b

′′
j

)
, which is ∆(a)∆(b) ."

§3.C, page 285, lines 7 and 8. As originally written, the definition of the coproduct

in the tensor product of two Hopf algebras was not given with sufficient care. It should

say: The tensor product A⊗B of Hopf algebras A and B is again a Hopf algebra, with

coproduct the composition A⊗B
∆⊗∆
----------------------------→ (A⊗A)⊗(B⊗B)→(A⊗B)⊗(A⊗B) where

the second map interchanging the middle two factors includes the usual sign in graded

commutativity.

§3.C, page 286, Example 3C.5, third line. Change 2i to ni .

§3.C, page 286, eleventh line up from the bottom (now the ninth line up). Modify

this to say “but not in ΓZp[α] when i > 0, since the coproduct in ΓZp[α] is given by

..."

§3.C, page 291, Exercise 3. Assume the H–space multiplication is associative up to

homotopy.

§3.C, page 291, Exercise 9. Add the hypothesis that X is connected.

§3.C, page 291, Exercise 10, part (c). Assume that an and bn are nonzero.

§3.C, page 293, line 16. Insert “finite-dimensional" before “CW structure".

§3.D, page 295. In the text to the left of the figure change Pn to Pn−1 .



§3.D, page 297. In the last line, βI should be βI .

§3.D, Proposition 3D.4. In the third line the symbol a2k+1 should be something

different, such as a′2k+1 , to avoid ambiguities. The last sentence in the proposition

and the last paragraph in the proof should be changed accordingly.

§3.D, page 300, thirteenth line from the bottom. The reference should be to The-

orem 3D.2 rather than Proposition 3D.2.

§3.C, page 302, Exercise 1. Add the hypothesis that the CW structure is finite-

dimensional.

§3.C, page 304, line 11. Change the subscript p in Zp to m .

§3.C, page 304, line 11 of Example 3E.2. Two typos: Change
∑
i z

2
i to

∑
i |zi|

2 and

change 0 < θ ≤ π to 0 < θ ≤ π/2.

§3.F, page 314, lines 9-10. The finite expressions bn ···b1b0 correspond just to

nonnegative integers.

§3.F, page 315, next-to-last line of first paragraph. Change Hn to hn .

§3.F, page 319. The proof of Proposition 3F.12 originally given was incomplete.

(The gap occurred in the third paragraph on page 319 where the possibility of torsion

of order relatively prime to p was overlooked.) A corrected proof is now included in

the online version of the book.

§3.G, page 322, line 5. Change Hk(X;F) to Hk(X̃;F) .

§3.G, pages 326-327. The list of Lie groups whose classifying spaces have poly-

nomial Zp cohomology rings is incomplete for the prime p = 2. Perhaps the best

way to describe the situation would be to restrict the discussion to odd primes up

until the last paragraph in this section, and then enlarge the final table for the prime

2 to include the missing examples. Among these are the following Lie groups, with

corresponding polynomial generators in the indicated degrees:

G2 4,6,7

Spin(7) 4,6,7,8

Spin(8) 4,6,7,8,8

Spin(9) 4,6,7,8,16

F4 4,6,7,16,24

PSp(2n+ 1) , n ≥ 1 2,3,8,12, ··· ,8n+ 4

Here PSp(n) = Sp(n)/(±I) , the quotient of Sp(n) by its center. I have been told

there may be other examples as well, and I will post these here when I obtain a more

complete list from the experts on this subject. (Note that for p = 2 the term ‘degree’

means the actual cohomological dimension, whereas for odd primes it meant half the

cohomological dimension.)

§3.H, page 332, line -9. Change “Bockstein" to “change-of-coefficient".

§3.H, page 333, line 13. Change “bundles of groups" to “bundles of abelian groups".



§3.H, page 334, line 2. Missing parenthesis in Cn(X;E) .

§3.H, page 334, end of line 5. Typo: Change γ ∈ G to γ ∈ π .

§3.H, page 334, line following Proposition 3H.5. Repeated “the" — delete one.

§3.H, page 335. In the statement of Theorem 3H.6, Poincaré duality with local

coefficients, change the second (or alternatively, the third) occurrence of MR to R ,

just ordinary coefficients in R rather than local coefficients. For more details see the

separate correction page.

§3.H, page 336, Exercise 5. The assertion that H1(X;Z[π1X]) is an infinite direct

sum of copies of Z holds only when π1(X) is free on two or more generators. When

π1(X) is infinite cyclic the cohomology group is just a single Z .

§3.H, page 336, Exercise 6. In the last part of the question add the assumption

that X is finite-dimensional.

§4.1, page 339, second line of last paragraph. The reference should be to §4.B

instead of §4.C.

§4.1, page 345, line 2. Change (X, B,x0) to (X,A,x0) .

§4.1, page 348. The first paragraph of the subsection on Cellular Approximation

has been revised to eliminate a reference to an earlier proof of Proposition 1.14 that

has been replaced by a different proof in later versions of the book.

§4.1, page 349, line 10. Delete the word “to" preceding “try".

§4.1, page 349, thirteen lines from the bottom. It should perhaps be mentioned

that the deformation of f on ek to make f(ek) miss the point p will not make f(ek)

intersect any more cells than it intersected before.

§4.1, pages 350-351. The statement and proof of Lemma 4.10 have been revised a

couple times. The statement was revised again in October 2012 to say explicitly that

the homotopy takes f−1(ek) to ek at all times. The proof gives this additional prop-

erty, and this property is needed when Lemma 4.10 is used in the proof of Theorem

4.23, Case 1, later in the chapter.

§4.1, page 352. Added a simple argument that CW approximations are unique up

to homotopy equivalence and deleted this statement from the later Corollary 4.19.

Also made small revisions in the bottom half of this page and the top of the next

page.

§4.1, page 358, Exercise 5. Change the coset αH to Hα . [Explanation: αH would

be correct if one thinks of π1(X,A,x0) as homotopy classes of paths in X from x0

to points in A , which is how I usually think of the relative π1 . However the definition

of π1(X,A,x0) on page 343 uses paths in the opposite direction, from points in A to

x0 , so this means the cosets should be Hα .]



§4.1, page 358, Exercise 9, first line. To avoid an abuse of notation, replace

π0(A,x0) by i∗
(
π0(A,x0)

)
. (The previous version of this correction mistakenly said

i∗ instead of the correct i∗ .)

§4.1, page 359, Exercise 22. Add the word “weakly" before “homotopy equivalent".

§4.2, page 361, line 18. Repeated “the" — delete one of them.

§4.2, page 361. The latter part of the paragraph preceeding the figure has been

reworded for clarity. See the online version of the book. (Another slight rewording:

January 2010)

§4.2, page 362, line 19. Replace In−1 by Ii−1 .

§4.2, page 370. The large diagram on this page will only commute up to sign unless

the generators α are chosen carefully. Commuting up to sign is good enough for most

purposes, so this isn’t really a big issue. It might be a good exercise to see how to

choose generators to make the diagram commute exactly.

§4.2, page 371, Twelfth line from the bottom. Wrong font for the symbol X near

the beginning of this line. (Should be italic.)

§4.2, page 371, next-to-last line. Change (W,X1) to (W,X) .

§4.2, pages 372-373. The proof of the general Hurewicz theorem has been rewrit-

ten.

§4.2, page 374. Delete the direct sum symbol ⊕ at the end of the displayed exact

sequence in the sixth line.

§4.2, page 376. In the proof of injectivity of p∗ there is an implicit permutation

of the last two coordinates of In×I when the relative homotopy lifting property is

applied.

§4.2, page 380. At the end of Example 4.50 replace K(Z,3) by K(Z,4) .

§4.2, page 385. In versions of the book before 2016 the chart showing the 2-

primary parts of the stable homotopy groups of spheres had a couple of errors in

the range above dimension 50. The original calculations in this range were done by

Kochman and Mahowald in the 1990’s. When these groups were recalculated by Dan

Isaksen by different methods in a 2014 arXiv preprint called "Stable stems", a few

discrepancies were found. Isaksen’s calculations have been checked by other experts,

so there is a high probability that they are correct. A corrected version of the chart

now appears in the online version of the book. A few changes were also made in the

accompanying text in pages 385-388.

§4.2, page 389, Exercise 11. There are counterexamples to the second half of

this problem as originally stated, which involved an analog of the first half with π2

replaced by π ′2 . The current online version of this exercise includes such a counterex-

ample.

§4.2, page 390, Exercise 15. The Poincaré conjecture has been proved.



§4.2, page 391, line 5. Hn(X) should be Hn+1(X) .

§4.2, page 391, Exercise 25. The CW complex X is assumed to be connected, as is

implicit in the notation πn(X) without a basepoint.

§4.2, page 391, Exercise 27. This exercise can be done directly from the definition

of relative homotopy groups, so it really belongs in §4.1.

§4.3, page 394, third paragraph. The hypothesis that X be connected is unneces-

sary. Also, a comment could be added at the end of the paragraph that H0(X;G) =

[X,K(G,0)] and H̃0(X;G) = 〈X,K(G,0)〉 .

§4.3, page 398, line 3. Change SX to SA .

§4.3, page 399, third paragraph. Change L to K′ , twice.

§4.3, page 399, middle. The label (4) on the displayed exact sequence can safely

be omitted.

§4.3, page 400, line 6. Replace hn(point) by hn(point) . (This typo crept in when

I modified this sentence some time after the first printing, so it doesn’t occur in the

first printing.)

§4.3, page 403. Sixteen lines from the bottom, change z to γ twice in this line, for

notational consistency with the use of γ earlier in the paragraph.

§4.3, page 409, next-to-last line of next-to-last paragraph. Switch γ and η , so that

it reads “composing the inverse path of pη with γ ."

§4.3, page 409, last paragraph. Made the definition of a fibration sequence more

explicit and added the alternative name “Puppe sequence”.

§4.3, page 410, third line above Proposition 4.67. Typo: Change Xn to Gn .

§4.3, middle of page 412. In the definition of the k invariant the coefficient group

should be πn+1(X) instead of πn+1(K) . (For consistency, the parentheses surround-

ing this X can be deleted.) Another correction: In the line preceding this, change πn+1

to πn+1X .

§4.3, page 417, last line. The reference should be to Lemma 4.7 rather than to an

exercise in §4.1.

§4.3, page 418. In the paragraph containing the diagram it should be stated, for

the sake of clarity, that F is the fiber of the fibration X→Y .

§4.3, page 419, Exercise 6. It should have been explained how the cross product

is defined since we are using coefficients in G rather than a ring. However, instead of

using cross products it would be better just to use Exercise 4 to construct the H–space

structure and prove the stated properties. The problem could also be expanded to

include showing that the H–space structure has a homotopy-inverse.

§4.3, page 419, Exercise 8. Typo in the second line: ps should be πs .

§4.3, page 420, Exercise 13. Small typo: It should begin “Given a map".



§4.A, page 422, second and sixth lines from the bottom. It should be Z[π1(X)]

instead of Z[πn(X)] .

§4.A, page 425, eleventh and tenth lines from the bottom. Change “octagon" to

“octahedron".

§4.B, page 428, line 6. Typo: Replace Adam’ by Adams’.

§4.C, page 429. In the line preceding the diagram, change Zn+1 to Zn+1 .

§4.C, page 430, third line of Example 4C.2. Insert the word “and" before Hn+1(X) .

§4.D page 438, line 13. The tensor product should be over the ring R , so add a

subscript R to the tensor product symbol.

§4.D, page 445, eleventh line from the bottom. Change “corollary" to “proposition".

§4.D, page 447, exercise 8. In the second line replace ΣnB by Σn(B+) where B+
is the union of B with a disjoint basepoint. Also, in the last part of the problem

the cohomology isomorphism should be H̃i(B;R) ≈ H̃n+i(ΣnB;R) with both groups

reduced.

§4.E, page 448, fourth line after Theorem 4E.1. Change the R to G as the coefficient

group.

§4.E, page 448. In the diagram near the bottom of the page all the A ’s should be

in the same italic font.

§4.E, page 449, tenth line from the bottom. Change the word “two" to “a few" (since

there are now three comments — see the next correction).

§4.E, page 450. There is a gap in the proof of Lemma 4E.4 (fifth sentence) that can

be filled by adding an item (3) after the first paragraph on page 450:

(3) If h satisfies axioms (i) and (iii) then h(ΣY) is a group and Tu : 〈ΣY ,K〉→h(ΣY)
is a homomorphism for all suspensions ΣY and all pairs (K,u) . The group structure

comes from the map c :ΣY→ΣY ∨ ΣY collapsing an equatorial copy of Y in ΣY to

a point, which induces an addition operation h(ΣY)×h(ΣY) ≈ h(ΣY ∨ΣY)→h(ΣY) .
Associativity follows from the fact that the two compositions ΣY→ΣY ∨ ΣY→ΣY ∨
ΣY ∨ ΣY , where the first map is c and the second is either c ∨ 11 or 11 ∨ c , are

homotopic. To show that the distinguished element 0 ∈ h(ΣY) is an identity for

the group operation, consider the composition ΣY→ΣY ∨ ΣY→ΣY where the first

map is c and the second map collapses one of the two summands to the basepoint

so it sends an element x ∈ h(ΣY) to (x,0) or (0, x) in h(ΣY)×h(ΣY) , hence the

composition of the two maps sends x to x + 0 or 0 + x . Since the composition

ΣY→ΣY is homotopic to the identity, this says x + 0 = x = 0 + x . For inverses,

let x֏ −x be the map on h(ΣY) induced by the map r :ΣY→ΣY reversing the

ends of the I factor of ΣY . Consider the composition ΣY→ΣY ∨ΣY→ΣY ∨ΣY→ΣY
where the first map is c , the second is 11 ∨ r or r ∨ 11 and the third map identifies

the two copies of ΣY . These maps send x ∈ h(ΣY) to (x,x) , then to (x,−x) or



(−x,x) , then to x+(−x) or (−x)+x . Since the composition ΣY→ΣY is homotopic

to the constant map, this says −x is an additive inverse to x . Thus we have a group

structure on h(ΣY) . It remains to see that Tu : 〈ΣY ,K〉→h(ΣY) is a homomorphism.

The sum of maps f ,g :ΣY→K is given by the composition ΣY→ΣY ∨ ΣY→K of c

with f ∨g . This composition takes u ∈ h(K) to (f +g)∗(u) , while f ∨g takes u to

(f∗(u), g∗(u)) and c takes this to f∗(u)+g∗(u) , so (f +g)∗(u) = f∗(u)+g∗(u)

which says that Tu(f + g) = Tu(f )+ Tu(g) , and so Tu is a homomorphism.

§4.E, page 450. Once the new item (3) has been added to this page, the sentence in

the paragraph before Lemma 4E.3 beginning “Note that having a trivial kernel" should

be deleted.

§4.E, page 450. In the third-to-last line Tn should be Tun , and again in the next

line as well.

§4.F, page 454, two lines above Proposition 4F.2. Typo: change lim
--→
π si+n(Kn) to

lim
--→
π si+n(X ∧Kn) .

§4.F, page 454. In the last paragraph it is stated that one can associate a cohomol-

ogy theory to any spectrum by setting hi(X) = lim
--→
〈ΣnX,Kn+i〉 . Unfortunately the

wedge axiom fails with this definition. For finite wedges there is no problem, so one

does get a cohomology theory for finite CW complexes. A way to avoid this problem

is to associate an Ω spectrum to a given spectrum in the way explained on the next

page, then take the cohomology theory associated to this Ω spectrum.

§4.G, page 456, thirteenth line up from the bottom. Change X1֓X1 to X0֓X1 .

§4.H, page 463, line 4. Delete the extra period at the end of the paragraph.

§4.H, page 463, line 5. Typo: let us consider.

§4.H, page 464, line 14. The superscript on D should be n rather than m .

§4.I, page 467, line 9. Change S1
֓ S1 to S1

֓ S1
∨ S1 .

§4.I, page 468. Exactly halfway down the page the term Jn(X) should be ΣJn(X) .
§4.I, page 470, Exercise 2. In the first line there are three missing Σ ’s. It should say

ΣK(Zm×Zn,1) ≃ ΣK(Zm,1)∨ΣK(Zn,1) . Also, in the last line the reference should be

to Proposition 4I.3 instead of 4E.3.

§4.I, page 470, Exercise 3. The lens space should be assumed to be of high dimen-

sion.

§4.J, page 473. At the end of the paragraph containing the commutative diagram,

add “by Example 4A.3".

§4.K, page 480. In the statement of part (b) of Lemma 4K.3, instead of assuming

that B has the weak or direct limit topology, assume that each compact set in B is

contained in some Bn . (This is to avoid point-set topology issues.) In the electronic

version of the book the proof of this lemma has also been revised slightly, clarifying

basepoint issues in parts (a) and (b) and simplifying the proof in (c).



§4.K, page 482. In Example 4K.5 it is the unreduced suspension rather than the

reduced suspension that is being used, so to be consistent with the notation elsewhere

in the book, each of the five occurrences of the symbol Σ in this example should be

replaced by S .

§4.L, page 488, first sentence of the proof of Proposition 4L.1. The identification

Hm(X;G) = 〈X,K(G,m)〉 is valid only for m > 0. For m = 0 one has H0(X;G) =

[X,K(G,0)] .

§4.L, page 488, next-to-last line. It would be better to say that there are no non-

trivial cohomology operations that decrease dimension.

§4.L, page 491, seventh line from the bottom. The exponent n + 4i should be

n + 2i . The same correction should be made again on the second line of the next

page.

§4.L, page 493. Replace the two sentences immediately preceding Example 4L.5

by the following: “In particular, d is not equal to −1. The Lefschetz number λ(f) =

1+d+···+dn = (dn+1
−1)/(d−1) is therefore nonzero since the only integer roots

of unity are ±1. The Lefschetz fixed point theorem then gives the result."

§4.L. Starting on page 496 and continuing for the rest of this section the name

Adem is mistakenly written with an accent, as Adém. (In fact the name is pronounced

with the accent on the first syllable.)

§4.L, page 500, sixth-to-last line. Change 4K.1 to 4L.1.

§4.L, page 501, line 15. In the displayed formula the signs on the two occurrences

of the index j in the exponents should be reversed, so the formula reads
∑
j

(
k
j

)
Sq2n−k+j−1Sqn−j = 0

The same correction needs to be made in the analogous formula involving Steenrod

powers near the end of this paragraph.

§4.L, page 503, line 5. Typo: The word “definition" should be “definitions".

§4.L, page 503, eighth and ninth lines from the bottom. Change (p − 1)n to (p −

1)n2 twice.

§4.L, pages 504-505, second and third paragraphs of the proof of Theorem 4.12.

There is a mistake here since λ is in fact not additive. Fortunately there is a simple

way to deduce additivity of Sqi from the other axioms, and this argument is now

given in the online version of the book. (Correcting this proof has produced changes

in the page breaks for pages 502-513.)

§4.L, page 509. There are sign problems in the proof of Lemma 4L.14. For a

corrected version of the argument see the online version of the book.

Appendix, page 521. The statement of condition (i) in Proposition A.2 has been

revised for clarity, to avoid an implicit dependence on condition (ii). The paragraph

following the proposition has been revised accordingly.



Appendix, page 528, ninth line from the bottom. At the beginning of the line

change X to X2i−1 .

Appendix, page 529, line before Corollary A.12. The reference should be to Corol-

lary A.9 instead of Corollary A.10.

Appendix, page 529, paragraph following Corollary A.12. Updated the information

on simplicial structures on manifolds.

Appendix, pages 529-533. In March 2019 a few minor revisions were made in the

section on the compact-open topology for the sake of clarity, expanding this section

by half a page.

Appendix, page 530, Proposition A.14. The definition of local compactness we are

using here is that each neighborhood of each point contains a compact neighborhood

of the point. This follows the general pattern described on page 62, but it is stronger

than the more common definition which is that each point has at least one compact

neighborhood. For Hausdorff spaces the two definitions agree.

Appendix, page 532, last line of the proof of Proposition A.16. Typo: Change

(XY )Z to XY .

Appendix, page 532, the added section on the Homotopy Extension Property. In

the first line of this added section change the reference to Chapter 1 to Chapter 0, and

in the second line the word “certain” is misspelled.

Appendix, page 533, fourth-to-last line of the proof of Proposition A.18 (this propo-

sition was only added to the Appendix in 2009). Add a bar over the symbol A . Also

the rest of this sentence should say that r1 is a continuous map to X and X ∩ O is

open in X .

Index. In the entry for cup product add the page number 206, which is where the

cup product is first defined.

Index. In the entry for the Hurewicz theorem the first two page numbers should

be 366 and 371.

Index. In the entry for projective space: quaternion, the first reference should be

to page 222, not 214.


