In Proposition 3.22 of the first edition of the book the ring structure in $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ was computed only for even n, but the calculation for odd n is not much harder so here is a revised version of the proposition that includes both cases.

Proposition 3.22. For $n>0, H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ consists of $a \mathbb{Z}$ in each dimension a multiple of n. If n is even, the $i^{\text {th }}$ power of a generator of $H^{n}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ is i ! times a generator of $H^{i n}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$, for each $i \geq 1$. When n is odd, $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ is isomorphic as a graded ring to $H^{*}\left(S^{n} ; \mathbb{Z}\right) \otimes H^{*}\left(J\left(S^{2 n}\right) ; \mathbb{Z}\right)$.

It follows that for n even, $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ can be identified with the subring of the polynomial ring $\mathbb{Q}[x]$ additively generated by the monomials $x^{i} / i!$. This subring is called a divided polynomial algebra and is denoted $\Gamma_{\mathbb{Z}}[x]$. Thus $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ is isomorphic to $\Gamma_{\mathbb{Z}}[x]$ when n is even and to $\Lambda_{\mathbb{Z}}[x] \otimes \Gamma_{\mathbb{Z}}[y]$ when n is odd.
Proof: Giving S^{n} its usual CW structure, the resulting CW structure on $J\left(S^{n}\right)$ consists of exactly one cell in each dimension a multiple of n. If $n>1$ we deduce immediately from cellular cohomology that $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ consists exactly of \mathbb{Z} 's in dimensions a multiple of n. For an alternative argument that works also when $n=1$, consider the quotient map $q:\left(S^{n}\right)^{m} \rightarrow J_{m}\left(S^{n}\right)$. This carries each cell of $\left(S^{n}\right)^{m}$ homeomorphically onto a cell of $J_{m}\left(S^{n}\right)$. In particular q is a cellular map, taking k-skeleton to k-skeleton for each k, so q induces a chain map of cellular chain complexes. This chain map is surjective since each cell of $J_{m}\left(S^{n}\right)$ is the homeomorphic image of a cell of $\left(S^{n}\right)^{m}$. Hence the cellular boundary maps for $J_{m}\left(S^{n}\right)$ will be trivial if they are trivial for $\left(S^{n}\right)^{m}$, as indeed they are since $H^{*}\left(\left(S^{n}\right)^{m} ; \mathbb{Z}\right)$ is free with basis in one-to-one correspondence with the cells, by Theorem 3.16.

We can compute cup products in $H^{*}\left(J_{m}\left(S^{n}\right) ; \mathbb{Z}\right)$ by computing their images under q^{*}. Let x_{k} denote the generator of $H^{k n}\left(J_{m}\left(S^{n}\right) ; \mathbb{Z}\right)$ dual to the $k n$-cell, represented by the cellular cocycle assigning the value 1 to the $k n$-cell. Since q identifies all the n-cells of $\left(S^{n}\right)^{m}$ to form the n-cell of $J_{m}\left(S^{n}\right)$, we see from cellular cohomology that $q^{*}\left(x_{1}\right)$ is the sum $\alpha_{1}+\cdots+\alpha_{m}$ of the generators of $H^{n}\left(\left(S^{n}\right)^{m} ; \mathbb{Z}\right)$ dual to the n-cells of $\left(S^{n}\right)^{m}$. By the same reasoning we have $q^{*}\left(x_{k}\right)=\sum_{i_{1}<\cdots<i_{k}} \alpha_{i_{1}} \cdots \alpha_{i_{k}}$.

If n is even, the cup product structure in $H^{*}\left(\left(S^{n}\right)^{m} ; \mathbb{Z}\right)$ is strictly commutative and $H^{*}\left(\left(S^{n}\right)^{m} ; \mathbb{Z}\right) \approx \mathbb{Z}\left[\alpha_{1}, \cdots, \alpha_{m}\right] /\left(\alpha_{1}^{2}, \cdots, \alpha_{m}^{2}\right)$. Then we have

$$
q^{*}\left(x_{1}^{m}\right)=\left(\alpha_{1}+\cdots+\alpha_{m}\right)^{m}=m!\alpha_{1} \cdots \alpha_{m}=m!q^{*}\left(x_{m}\right)
$$

Since q^{*} is an isomorphism on $H^{m n}$ this implies $x_{1}^{m}=m!x_{m}$ in $H^{m n}\left(J_{m}\left(S^{n}\right)\right.$; $\left.\mathbb{Z}\right)$. The inclusion $J_{m}\left(S^{n}\right) \hookrightarrow J\left(S^{n}\right)$ induces isomorphisms on H^{i} for $i \leq m n$ so we have $x_{1}^{m}=m!x_{m}$ in $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$ as well, where x_{1} and x_{m} are interpreted now as elements of $H^{*}\left(J\left(S^{n}\right) ; \mathbb{Z}\right)$.

When n is odd we have $x_{1}^{2}=0$ by commutativity, and it will suffice to prove the following two formulas:
(a) $x_{1} x_{2 m}=x_{2 m+1}$ in $H^{*}\left(J_{2 m+1}\left(S^{n}\right) ; \mathbb{Z}\right)$.
(b) $x_{2} x_{2 m-2}=m x_{2 m}$ in $H^{*}\left(J_{2 m}\left(S^{n}\right)\right.$; $\left.\mathbb{Z}\right)$.

For (a) we apply q^{*} and compute in the exterior algebra $\Lambda_{\mathbb{Z}}\left[\alpha_{1}, \cdots, \alpha_{2 m+1}\right]$:

$$
\begin{aligned}
q^{*}\left(x_{1} x_{2 m}\right) & =\left(\sum_{i} \alpha_{i}\right)\left(\sum_{i} \alpha_{1} \cdots \hat{\alpha}_{i} \cdots \alpha_{2 m+1}\right) \\
& =\sum_{i} \alpha_{i} \alpha_{1} \cdots \hat{\alpha}_{i} \cdots \alpha_{2 m+1}=\sum_{i}(-1)^{i-1} \alpha_{1} \cdots \alpha_{2 m+1}
\end{aligned}
$$

The coefficients in this last summation are $+1,-1, \cdots,+1$, so their sum is +1 and (a) follows. For (b) we have

$$
\begin{aligned}
q^{*}\left(x_{2} x_{2 m-2}\right) & =\left(\sum_{i_{1}<i_{2}} \alpha_{i_{1}} \alpha_{i_{2}}\right)\left(\sum_{i_{1}<i_{2}} \alpha_{1} \cdots \hat{\alpha}_{i_{1}} \cdots \hat{\alpha}_{i_{2}} \cdots \alpha_{2 m}\right) \\
& =\sum_{i_{1}<i_{2}} \alpha_{i_{1}} \alpha_{i_{2}} \alpha_{1} \cdots \hat{\alpha}_{i_{1}} \cdots \hat{\alpha}_{i_{2}} \cdots \alpha_{2 m}=\sum_{i_{1}<i_{2}}(-1)^{i_{1}-1}(-1)^{i_{2}-2} \alpha_{1} \cdots \alpha_{2 m}
\end{aligned}
$$

The terms in the coefficient $\sum_{i_{1}<i_{2}}(-1)^{i_{1}-1}(-1)^{i_{2}-2}$ for a fixed i_{1} have i_{2} varying from $i_{1}+1$ to $2 m$. These terms are $+1,-1, \cdots$ and there are $2 m-i_{1}$ of them, so their sum is 0 if i_{1} is even and 1 if i_{1} is odd. Now letting i_{1} vary, it takes on the odd values $1,3, \cdots, 2 m-1$, so the whole summation reduces to $m 1$'s and we have the desired relation $x_{2} x_{2 m-2}=m x_{2 m}$.

