In Proposition 3.22 of the first edition of the book the ring structure in $H^*(J(S^n);\mathbb{Z})$ was computed only for even n, but the calculation for odd n is not much harder so here is a revised version of the proposition that includes both cases.

Proposition 3.22. For n > 0, $H^*(J(S^n);\mathbb{Z})$ consists of a \mathbb{Z} in each dimension a multiple of n. If n is even, the i^{th} power of a generator of $H^n(J(S^n);\mathbb{Z})$ is i! times a generator of $H^{in}(J(S^n);\mathbb{Z})$, for each $i \ge 1$. When n is odd, $H^*(J(S^n);\mathbb{Z})$ is isomorphic as a graded ring to $H^*(S^n;\mathbb{Z}) \otimes H^*(J(S^{2n});\mathbb{Z})$.

It follows that for n even, $H^*(J(S^n);\mathbb{Z})$ can be identified with the subring of the polynomial ring $\mathbb{Q}[x]$ additively generated by the monomials $x^i/i!$. This subring is called a **divided polynomial algebra** and is denoted $\Gamma_{\mathbb{Z}}[x]$. Thus $H^*(J(S^n);\mathbb{Z})$ is isomorphic to $\Gamma_{\mathbb{Z}}[x]$ when n is even and to $\Lambda_{\mathbb{Z}}[x] \otimes \Gamma_{\mathbb{Z}}[y]$ when n is odd.

Proof: Giving S^n its usual CW structure, the resulting CW structure on $J(S^n)$ consists of exactly one cell in each dimension a multiple of n. If n > 1 we deduce immediately from cellular cohomology that $H^*(J(S^n);\mathbb{Z})$ consists exactly of \mathbb{Z} 's in dimensions a multiple of n. For an alternative argument that works also when n = 1, consider the quotient map $q:(S^n)^m \to J_m(S^n)$. This carries each cell of $(S^n)^m$ homeomorphically onto a cell of $J_m(S^n)$. In particular q is a cellular map, taking k-skeleton to k-skeleton for each k, so q induces a chain map of cellular chain complexes. This chain map is surjective since each cell of $J_m(S^n)$ is the homeomorphic image of a cell of $(S^n)^m$. Hence the cellular boundary maps for $J_m(S^n)$ will be trivial if they are trivial for $(S^n)^m$, as indeed they are since $H^*((S^n)^m;\mathbb{Z})$ is free with basis in one-to-one correspondence with the cells, by Theorem 3.16.

We can compute cup products in $H^*(J_m(S^n);\mathbb{Z})$ by computing their images under q^* . Let x_k denote the generator of $H^{kn}(J_m(S^n);\mathbb{Z})$ dual to the *kn*-cell, represented by the cellular cocycle assigning the value 1 to the *kn*-cell. Since q identifies all the *n*-cells of $(S^n)^m$ to form the *n*-cell of $J_m(S^n)$, we see from cellular cohomology that $q^*(x_1)$ is the sum $\alpha_1 + \cdots + \alpha_m$ of the generators of $H^n((S^n)^m;\mathbb{Z})$ dual to the *n*-cells of $(S^n)^m$. By the same reasoning we have $q^*(x_k) = \sum_{i_1 < \cdots < i_k} \alpha_{i_1} \cdots \alpha_{i_k}$.

If *n* is even, the cup product structure in $H^*((S^n)^m; \mathbb{Z})$ is strictly commutative and $H^*((S^n)^m; \mathbb{Z}) \approx \mathbb{Z}[\alpha_1, \dots, \alpha_m]/(\alpha_1^2, \dots, \alpha_m^2)$. Then we have

$$q^*(x_1^m) = (\alpha_1 + \dots + \alpha_m)^m = m!\alpha_1 \cdots \alpha_m = m!q^*(x_m)$$

Since q^* is an isomorphism on H^{mn} this implies $x_1^m = m! x_m$ in $H^{mn}(J_m(S^n);\mathbb{Z})$. The inclusion $J_m(S^n) \hookrightarrow J(S^n)$ induces isomorphisms on H^i for $i \leq mn$ so we have $x_1^m = m! x_m$ in $H^*(J(S^n);\mathbb{Z})$ as well, where x_1 and x_m are interpreted now as elements of $H^*(J(S^n);\mathbb{Z})$.

When *n* is odd we have $x_1^2 = 0$ by commutativity, and it will suffice to prove the following two formulas:

- (a) $x_1 x_{2m} = x_{2m+1}$ in $H^*(J_{2m+1}(S^n);\mathbb{Z})$.
- (b) $x_2 x_{2m-2} = m x_{2m}$ in $H^*(J_{2m}(S^n);\mathbb{Z})$.

For (a) we apply q^* and compute in the exterior algebra $\Lambda_{\mathbb{Z}}[\alpha_1, \dots, \alpha_{2m+1}]$:

$$q^*(x_1x_{2m}) = \left(\sum_i \alpha_i\right) \left(\sum_i \alpha_1 \cdots \hat{\alpha}_i \cdots \alpha_{2m+1}\right)$$
$$= \sum_i \alpha_i \alpha_1 \cdots \hat{\alpha}_i \cdots \alpha_{2m+1} = \sum_i (-1)^{i-1} \alpha_1 \cdots \alpha_{2m+1}$$

The coefficients in this last summation are $+1, -1, \dots, +1$, so their sum is +1 and (a) follows. For (b) we have

$$q^*(\boldsymbol{x}_2 \boldsymbol{x}_{2m-2}) = \left(\sum_{i_1 < i_2} \alpha_{i_1} \alpha_{i_2}\right) \left(\sum_{i_1 < i_2} \alpha_1 \cdots \hat{\alpha}_{i_1} \cdots \hat{\alpha}_{i_2} \cdots \alpha_{2m}\right)$$
$$= \sum_{i_1 < i_2} \alpha_{i_1} \alpha_{i_2} \alpha_1 \cdots \hat{\alpha}_{i_1} \cdots \hat{\alpha}_{i_2} \cdots \alpha_{2m} = \sum_{i_1 < i_2} (-1)^{i_1 - 1} (-1)^{i_2 - 2} \alpha_1 \cdots \alpha_{2m}$$

The terms in the coefficient $\sum_{i_1 < i_2} (-1)^{i_1 - 1} (-1)^{i_2 - 2}$ for a fixed i_1 have i_2 varying from $i_1 + 1$ to 2m. These terms are $+1, -1, \cdots$ and there are $2m - i_1$ of them, so their sum is 0 if i_1 is even and 1 if i_1 is odd. Now letting i_1 vary, it takes on the odd values $1, 3, \cdots, 2m - 1$, so the whole summation reduces to m 1's and we have the desired relation $x_2x_{2m-2} = mx_{2m}$.