
In Proposition 3.22 of the first edition of the book the ring structure in H∗
(
J(Sn);Z

)
was computed only for even n , but the calculation for odd n is not much harder so

here is a revised version of the proposition that includes both cases.

Proposition 3.22. For n > 0 , H∗
(
J(Sn);Z

)
consists of a Z in each dimension a

multiple of n . If n is even, the ith power of a generator of Hn
(
J(Sn);Z

)
is i! times

a generator of Hin
(
J(Sn);Z

)
, for each i ≥ 1 . When n is odd, H∗

(
J(Sn);Z

)
is

isomorphic as a graded ring to H∗(Sn;Z)⊗H∗(J(S2n);Z
)
.

It follows that for n even, H∗
(
J(Sn);Z

)
can be identified with the subring of

the polynomial ring Q[x] additively generated by the monomials xi/i! . This subring

is called a divided polynomial algebra and is denoted ΓZ[x] . Thus H∗(J(Sn);Z
)

is

isomorphic to ΓZ[x] when n is even and to ΛZ[x]⊗ΓZ[y] when n is odd.

Proof: Giving Sn its usual CW structure, the resulting CW structure on J(Sn) consists

of exactly one cell in each dimension a multiple of n . If n > 1 we deduce immediately

from cellular cohomology that H∗
(
J(Sn);Z

)
consists exactly of Z ’s in dimensions a

multiple of n . For an alternative argument that works also when n = 1, consider

the quotient map q : (Sn)m→Jm(Sn) . This carries each cell of (Sn)m homeomorphi-

cally onto a cell of Jm(S
n) . In particular q is a cellular map, taking k skeleton to

k skeleton for each k , so q induces a chain map of cellular chain complexes. This

chain map is surjective since each cell of Jm(S
n) is the homeomorphic image of a cell

of (Sn)m . Hence the cellular boundary maps for Jm(S
n) will be trivial if they are triv-

ial for (Sn)m , as indeed they are since H∗
(
(Sn)m;Z

)
is free with basis in one-to-one

correspondence with the cells, by Theorem 3.16.

We can compute cup products in H∗
(
Jm(S

n);Z
)

by computing their images under

q∗ . Let xk denote the generator of Hkn
(
Jm(S

n);Z
)

dual to the kn cell, represented

by the cellular cocycle assigning the value 1 to the kn cell. Since q identifies all the

n cells of (Sn)m to form the n cell of Jm(S
n) , we see from cellular cohomology that

q∗(x1) is the sum α1+···+αm of the generators of Hn
(
(Sn)m;Z

)
dual to the n cells

of (Sn)m . By the same reasoning we have q∗(xk) =
∑
i1<···<ik αi1 ···αik .

If n is even, the cup product structure in H∗
(
(Sn)m;Z

)
is strictly commutative

and H∗
(
(Sn)m;Z

) ≈ Z[α1, ··· , αm]/(α2
1, ··· , α2

m) . Then we have

q∗(xm1 ) = (α1 + ··· +αm)m =m!α1 ···αm =m!q∗(xm)

Since q∗ is an isomorphism on Hmn this implies xm1 = m!xm in Hmn
(
Jm(S

n);Z
)
.

The inclusion Jm(S
n)↩ J(Sn) induces isomorphisms on Hi for i ≤ mn so we

have xm1 =m!xm in H∗
(
J(Sn);Z

)
as well, where x1 and xm are interpreted now as

elements of H∗
(
J(Sn);Z

)
.

When n is odd we have x2
1 = 0 by commutativity, and it will suffice to prove the

following two formulas:



(a) x1x2m = x2m+1 in H∗
(
J2m+1(S

n);Z
)
.

(b) x2x2m−2 =mx2m in H∗
(
J2m(S

n);Z
)
.

For (a) we apply q∗ and compute in the exterior algebra ΛZ[α1, ··· , α2m+1] :

q∗(x1x2m) =
(∑
i
αi
)(∑

i
α1 ··· α̂i ···α2m+1

)
=
∑
i
αiα1 ··· α̂i ···α2m+1 =

∑
i
(−1)i−1α1 ···α2m+1

The coefficients in this last summation are +1,−1, ··· ,+1, so their sum is +1 and (a)

follows. For (b) we have

q∗(x2x2m−2) =
( ∑
i1<i2

αi1αi2
)( ∑
i1<i2

α1 ··· α̂i1 ··· α̂i2 ···α2m

)
=

∑
i1<i2

αi1αi2α1 ··· α̂i1 ··· α̂i2 ···α2m =
∑
i1<i2

(−1)i1−1(−1)i2−2α1 ···α2m

The terms in the coefficient
∑
i1<i2(−1)i1−1(−1)i2−2 for a fixed i1 have i2 varying

from i1 + 1 to 2m . These terms are +1,−1, ··· and there are 2m − i1 of them, so

their sum is 0 if i1 is even and 1 if i1 is odd. Now letting i1 vary, it takes on the odd

values 1,3, ··· ,2m − 1, so the whole summation reduces to m 1’s and we have the

desired relation x2x2m−2 =mx2m . tu


