## Lecture 18

Lecture date: Apr 14, 2011
Notes by: Taoran Chen

## 1 Kasteleyn's theorem

Theorem 1 (Kasteleyn) Let $G$ be a finite induced subgraph of $\mathbb{Z}^{2}$. Define the Kasteleyn matrix of $G$ to be the $V \times V$ matrix:

$$
K_{u, v}= \begin{cases}1 & (u, v) \text { is a horizontal edge } \\ i & (u, v) \text { is a vertical edge } \\ 0 & \text { else }\end{cases}
$$

then

$$
\#\{\text { perfect matchings of } G\}=\sqrt{|\operatorname{det} K|}
$$

Proof:[continued] It suffices to show that any two nonzero terms in the expression

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}}(-1)^{\sigma} w\left(u_{1}, v_{\sigma(1)}\right) w\left(u_{2}, v_{\sigma(2)}\right) \ldots w\left(u_{n}, v_{\sigma(n)}\right)
$$

have the same sign. Given two perfect matchings $M, M^{\prime}$ of $G$, they correspond to some permutations (say, $\sigma$ and $\sigma^{\prime}$ respectively) and some nonzero terms in the expression above. Their union $M \cup M^{\prime}$ is a disjoint union of even cycles, so we can transform $M$ into $M^{\prime}$ by rotating the edges along each cycle in turn. It suffices to show that rotation along a single cycle does not affect the sign of the corresponding summand. In particular, we only need to consider the case when $M \cup M^{\prime}$ is a single cycle.

Let $M \cup M^{\prime}$ be the cycle $u_{1}, v_{1}, u_{2}, v_{2} \ldots . . u_{n}, v_{n}$, where $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \ldots\left(u_{n}, v_{n}\right)$ being edges of $M$ and $\left(u_{1}, v_{n}\right),\left(u_{2}, v_{1}\right) \ldots\left(u_{n}, v_{n-1}\right)$ being edges of $M^{\prime}$. Then $\sigma$ is the identity permutation, and $\sigma^{\prime}=(n, n-1, \ldots, 1)$ is the cyclic permutation having length $n$, thus $(-1)^{\sigma}=1$ and $(-1)^{\sigma^{\prime}}=(-1)^{n-1}$. By a lemma from the last lecture,

$$
\begin{aligned}
\frac{w\left(u_{1}, v_{\sigma(1)}\right) w\left(u_{2}, v_{\sigma(2)}\right) \ldots w\left(u_{n}, v_{\sigma(n)}\right)}{w\left(u_{1}, v_{\sigma^{\prime}(1)}\right) w\left(u_{2}, v_{\sigma^{\prime}(2)}\right) \ldots w\left(u_{n}, v_{\sigma^{\prime}(n)}\right)} & =\frac{w\left(u_{1}, v_{1}\right) w\left(u_{2}, v_{2}\right) \ldots w\left(u_{n}, v_{n}\right)}{w\left(v_{1}, u_{2}\right) w\left(v_{2}, u_{3}\right) \ldots w\left(v_{n}, u_{n-1}\right)} \\
& =(-1)^{n+l-1}
\end{aligned}
$$

where $l$ is the number of vertices enclosed by $M \cup M^{\prime}$. Since the interior of $M \cup M^{\prime}$ is a disjoint union of even cycles, $l$ is even. As a consequence, ratio of sign for $M$ and sign for $M^{\prime}$ is $(-1)^{n+l-1} /(-1)^{n-1}=1$, which completes the proof.

## 2 Domino tilings of a $m \times n$ rectangle

As an application of the Kasteleyn's theorem, we compute the number of tilings by $2 \times 1$ domino of a $m \times n$ rectangle, which is equivalent to find the number of perfect matchings of the dual graph, G.

Definition 2 Given graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, define $G_{1} \times G_{2}$ to be the graph having the following properties:

- The vertex set of $G_{1} \times G_{2}$ is $V_{1} \times V_{2}$
- Two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of $G_{1} \times G_{2}$ are connected by an edge if and only if either $\left(u_{1}, v_{1}\right) \in E_{1}$ or $\left(u_{2}, v_{2}\right) \in E_{2}$

Definition 3 Let $G=(V, E)$, the adjacency matrix, $A$, is the $V \times V$ matrix such that

$$
A_{u, v}= \begin{cases}1 & (u, v) \in E \\ 0 & \text { else }\end{cases}
$$

We begin our analysis by finding the eigenvalues of the adjacency matrix of the path graph $P_{n}$.

```
pathgraph.png
P
```

Proposition 4 Let $A_{n}$ be the adjacency matrix of the path graph $P_{n}$. The eigenvalues of $A_{n}$ are $2 \cos \frac{\pi j}{n+1}$ for $j=1,2, \ldots, n$.

Proof: The adjacency matrix $A_{n}$ has the form:

$$
A_{n}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 \cdots & 0 \\
1 & 0 & 1 & 0 \cdots & 0 \\
0 & 1 & 0 & 1 \cdots & 0 \\
& & \ddots & \vdots & \\
0 & 0 \cdots & 1 & 0 & 1 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

We know that $\lambda$ is an eigenvalue of $A_{n}$ if and only if there exists a nonzero vector $v=$ $\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{t}$ such that $A_{n} v=\lambda v$. Writting the condition $A_{n} v=\lambda v$ in coordinates, we
obtain the system of equations

$$
\left\{\begin{array}{cl}
v_{2} & =\lambda v_{1} \\
v_{1}+v_{3} & =\lambda v_{2} \\
v_{2}+v_{4} & =\lambda v_{3} \\
\cdots & \\
v_{n-1} & =\lambda v_{n}
\end{array}\right.
$$

If we make the convention that $v_{0}=0=v_{n+1}$, the system of equation becomes the linear recurrence $v_{i+1}+v_{i-1}=\lambda v_{i}, 1 \leq i \leq n$. Since the linear recurrence can also be written as $\left(E^{2}-\lambda E+1\right) v=0$, its solution has the form $v_{i}=a \alpha^{i}+b \beta^{i}$ (unless $\alpha=\beta$ ), where $\alpha, \beta$ are the solutions of the equation $x^{2}-\lambda x+1=0$. In particular, $\alpha \beta=1, \alpha+\beta=\lambda$. From the initial data $v_{0}=0=v_{n+1}$, we deduce $\alpha^{n+1}=\beta^{n+1}$. This, along with the equation $\alpha \beta=1$, gives us

$$
\left\{\begin{array}{cl}
\alpha^{2 n+2} & =1 \\
\beta & =\frac{1}{\alpha}
\end{array}\right.
$$

hence $\alpha$ is some $(2 n+2)^{\text {th }}$ root of unity. Consequently,

$$
\lambda=\alpha+\beta=2 \operatorname{Re}(\alpha)=2 \cos \frac{\pi j}{n+1}, \quad j=0,1, \ldots, 2 n+1 .
$$

Since $2 \cos \frac{\pi j}{n+1}=2 \cos \frac{\pi(2 n+2-j)}{n+1}$, we need only to consider the possibilities $j=0,1,2, \ldots, n+$ 1. If $j=0, \lambda=2$, the equation $x^{2}-\lambda x+1=0$ has root $x=1$ of multiplicity 2 . In this case the $v_{i}$ has the form $a i+b$. Solving the initial data $v_{0}=0=v_{n+1}$ we find that $v_{i}$ is constantly 0 , which is forbidden. Similarly, we can show that j cannot be $n+1$. Therefore, the remaining possible values of the eigenvalue $\lambda$ are $2 \cos \frac{\pi j}{n+1}, j=1,2, \ldots, n$. A $n \times n$ matrix has exactly $n$ eigenvalues, so we conclude that they are indeed the eigenvalues of $A_{n}$.

The dual graph, G, of the $m \times n$ rectangle can be expressed as $G=P_{m} \times P_{n}$, where $P_{m}$, $P_{n}$ are the path graphs. It's not hard to check that the Kasteleyn matrix of $G, \mathrm{~K}$, can be written as

$$
K=A_{m} \otimes I_{n}+i\left(I_{m} \otimes A_{n}\right)
$$

where the symbol $\otimes$ denotes tensor product of matrices, and $I_{n}$ and $I_{m}$ are the identity matrices. We are to find the eigenvalues of K .

Proposition 5 Let the eigenvalues of $A_{m}, A_{n}$ be $\mu_{k}, k=1,2, \ldots, m$ and $\lambda_{j}, j=$ $1,2, \ldots, n$,respectively. Let $w_{k}, v_{j}$ be the associated eigenvectors. Then $\mu_{k}+i \lambda_{j}, k=$ $1,2, \ldots, m, j=1,2, \ldots, n$ are the eigenvalues of $K$, with associated eigenvectors $w_{k} \otimes v_{j}$.

Proof: We check,

$$
\begin{aligned}
K\left(w_{k} \otimes v_{j}\right) & =\left(A_{m} \otimes I_{n}+i\left(I_{m} \otimes A_{n}\right)\right)\left(w_{k} \otimes v_{j}\right) \\
& =A_{m} w_{k} \otimes v_{j}+i w_{k} \otimes A_{n} v_{j} \\
& =\left(\mu_{k} w_{k}\right) \otimes v_{j}+i w_{k} \otimes\left(\lambda_{j} v_{j}\right) \\
& =\mu_{k}\left(w_{k} \otimes v_{j}\right)+i \lambda_{j}\left(w_{k} \otimes v_{j}\right) \\
& =\left(\mu_{k}+i \lambda_{j}\right)\left(w_{k} \otimes v_{j}\right)
\end{aligned}
$$

Finally, by the Kasteleyn's theorem and the two propositions, we are able to compute the number of domino tilings:

$$
\begin{aligned}
\#\{\text { domino tilings }\} & =\#\{\text { perfect matchings of G }\} \\
& =\sqrt{|\operatorname{det} K|} \\
& =\left(\prod_{k=1}^{m} \prod_{j=1}^{n}\left|\mu_{k}+i \lambda_{j}\right|\right)^{1 / 2} \\
& =\left(\prod_{k=1}^{m} \prod_{j=1}^{n}\left(4 \cos ^{2} \frac{k \pi}{m+1}+4 \cos ^{2} \frac{j \pi}{n+1}\right)\right)^{1 / 4}
\end{aligned}
$$

## 3 Matrix-Tree theorem

We begin with a few definitions.

Definition 6 The Complete graph, $K_{n}$, has vertex set $V=[n]$ and $E=\{(i, j), i \neq j\}$.

Definition 7 A spanning subgraph of a graph $G=(V, E)$ is a graph of the form $H=$ $(V, A)$ for some $A \subseteq E$.

Definition 8 A graph is connected if for every two vertices $u, v \in V, G$ contains a path from u to $v$.

Definition 9 A graph is acyclic if there does not exist $v_{0}, v_{1}, \ldots ., v_{n}=v_{0}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1,2, \ldots, n$. A acyclic graph is also called a forrest.

Definition 10 An acyclic connected graph is called a tree.

Definition 11 (verification needed) Given a finite graph $G$ with $n$ vertices, a spanning subgraph $T$ is called a spanning tree of $G$ if any two of the following conditions are met.

- $T$ is connected
- $T$ is acyclic
- Thas n-1 edges

Moreover, any two of the conditions imply the third.
Definition 12 The complexity of $G$ is $\chi(G):=\#\{$ spanning trees of $G\}$.
Theorem 13 (Cayley) $\chi\left(K_{n}\right)=n^{n-2}$

Proof: This will be a special case of the matrix-tree theorem.

Definition 14 The Laplacian matrix of $G$ is $L:=D-A$, where $A$ is the adjacency matrix and $D$ is given by

$$
\begin{gathered}
D:=\left[\begin{array}{llll}
d_{v_{1}} & & & \\
& d_{v_{2}} & & \\
& & \ddots & \\
& & & d_{v_{n}}
\end{array}\right] \\
d_{v_{i}}:=\operatorname{deg}\left(v_{i}\right)=\#\left\{\text { edges incident to vertex } v_{i}\right\}
\end{gathered}
$$

Example 15 For the complete graph $K_{4}$,

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \quad D=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \quad L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

It's easy to verify that the rows and columns of $L$ sum to 0 . In particular, $L$ is a singular matrix, so 0 is one of its eigenvalue.

Theorem 16 (version 1) Let $G=(V, E)$ be a connected graph such that $|V|=n$, then

$$
\chi(G)=\frac{1}{n} \lambda_{1} \lambda_{2} \ldots \lambda_{n-1}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ are the nonzero eigenvalues of $L$.

Proof will be provided in the next lecture.

