18.312: Algebraic Combinatorics

Lionel Levine

Lecture 18

Lecture date: Apr 14, 2011

Notes by: Taoran Chen

1 Kasteleyn's theorem

Theorem 1 (Kasteleyn) Let G be a finite induced subgraph of \mathbb{Z}^2 . Define the Kasteleyn matrix of G to be the $V \times V$ matrix:

$$K_{u,v} = \begin{cases} 1 & (u,v) \text{ is a horizontal edge} \\ i & (u,v) \text{ is a vertical edge} \\ 0 & else \end{cases}$$

then

$$\#\{perfect \ matchings \ of \ G\} = \sqrt{|\det K|}$$

Proof: [continued] It suffices to show that any two nonzero terms in the expression

$$\det A = \sum_{\sigma \in S_n} (-1)^{\sigma} w(u_1, v_{\sigma(1)}) w(u_2, v_{\sigma(2)}) \dots w(u_n, v_{\sigma(n)})$$

have the same sign. Given two perfect matchings M, M' of G, they correspond to some permutations (say, σ and σ' respectively) and some nonzero terms in the expression above. Their union $M \cup M'$ is a disjoint union of even cycles, so we can transform M into M' by rotating the edges along each cycle in turn. It suffices to show that rotation along a single cycle does not affect the sign of the corresponding summand. In particular, we only need to consider the case when $M \cup M'$ is a single cycle.

Let $M \cup M'$ be the cycle $u_1, v_1, u_2, v_2, \dots, u_n, v_n$, where $(u_1, v_1), (u_2, v_2), \dots, (u_n, v_n)$ being edges of M and $(u_1, v_n), (u_2, v_1), \dots, (u_n, v_{n-1})$ being edges of M'. Then σ is the identity permutation, and $\sigma' = (n, n - 1, \dots, 1)$ is the cyclic permutation having length n, thus $(-1)^{\sigma} = 1$ and $(-1)^{\sigma'} = (-1)^{n-1}$. By a lemma from the last lecture,

$$\frac{w(u_1, v_{\sigma(1)})w(u_2, v_{\sigma(2)})\dots w(u_n, v_{\sigma(n)})}{w(u_1, v_{\sigma'(1)})w(u_2, v_{\sigma'(2)})\dots w(u_n, v_{\sigma'(n)})} = \frac{w(u_1, v_1)w(u_2, v_2)\dots w(u_n, v_n)}{w(v_1, u_2)w(v_2, u_3)\dots w(v_n, u_{n-1})}$$
$$= (-1)^{n+l-1}$$

where l is the number of vertices enclosed by $M \cup M'$. Since the interior of $M \cup M'$ is a disjoint union of even cycles, l is even. As a consequence, ratio of sign for M and sign for M' is $(-1)^{n+l-1}/(-1)^{n-1} = 1$, which completes the proof. \Box

2 Domino tilings of a $m \times n$ rectangle

As an application of the Kasteleyn's theorem, we compute the number of tilings by 2×1 domino of a $m \times n$ rectangle, which is equivalent to find the number of perfect matchings of the dual graph, G.

Definition 2 Given graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, define $G_1 \times G_2$ to be the graph having the following properties:

- The vertex set of $G_1 \times G_2$ is $V_1 \times V_2$
- Two vertices (u₁, u₂) and (v₁, v₂) of G₁ × G₂ are connected by an edge if and only if either (u₁, v₁) ∈ E₁ or (u₂, v₂) ∈ E₂

Definition 3 Let G = (V, E), the adjacency matrix, A, is the $V \times V$ matrix such that

$$A_{u,v} = \begin{cases} 1 & (u,v) \in E \\ 0 & else \end{cases}$$

We begin our analysis by finding the eigenvalues of the adjacency matrix of the path graph P_n .

Proposition 4 Let A_n be the adjacency matrix of the path graph P_n . The eigenvalues of A_n are $2\cos\frac{\pi j}{n+1}$ for j = 1, 2, ..., n.

Proof: The adjacency matrix A_n has the form:

$$A_n = \begin{bmatrix} 0 & 1 & 0 & 0 \cdots & 0 \\ 1 & 0 & 1 & 0 \cdots & 0 \\ 0 & 1 & 0 & 1 \cdots & 0 \\ & & \ddots & \vdots \\ 0 & 0 \cdots & 1 & 0 & 1 \\ 0 & 0 \cdots & 0 & 1 & 0 \end{bmatrix}$$

We know that λ is an eigenvalue of A_n if and only if there exists a nonzero vector $v = (v_1, v_2, ..., v_n)^t$ such that $A_n v = \lambda v$. Writting the condition $A_n v = \lambda v$ in coordinates, we

obtain the system of equations

$$\begin{cases} v_2 &= \lambda v_1 \\ v_1 + v_3 &= \lambda v_2 \\ v_2 + v_4 &= \lambda v_3 \\ \dots \\ v_{n-1} &= \lambda v_n \end{cases}$$

If we make the convention that $v_0 = 0 = v_{n+1}$, the system of equation becomes the linear recurrence $v_{i+1} + v_{i-1} = \lambda v_i$, $1 \le i \le n$. Since the linear recurrence can also be written as $(E^2 - \lambda E + 1)v = 0$, its solution has the form $v_i = a\alpha^i + b\beta^i$ (unless $\alpha = \beta$), where α, β are the solutions of the equation $x^2 - \lambda x + 1 = 0$. In particular, $\alpha\beta = 1$, $\alpha + \beta = \lambda$. From the initial data $v_0 = 0 = v_{n+1}$, we deduce $\alpha^{n+1} = \beta^{n+1}$. This, along with the equation $\alpha\beta = 1$, gives us

$$\begin{cases} \alpha^{2n+2} = 1\\ \beta = \frac{1}{\alpha} \end{cases}$$

hence α is some $(2n+2)^{th}$ root of unity. Consequently,

$$\lambda = \alpha + \beta = 2\operatorname{Re}(\alpha) = 2\cos\frac{\pi j}{n+1}, \quad j = 0, 1, ..., 2n+1.$$

Since $2 \cos \frac{\pi j}{n+1} = 2 \cos \frac{\pi (2n+2-j)}{n+1}$, we need only to consider the possibilities j = 0, 1, 2, ..., n+1. If $j = 0, \lambda = 2$, the equation $x^2 - \lambda x + 1 = 0$ has root x = 1 of multiplicity 2. In this case the v_i has the form ai + b. Solving the initial data $v_0 = 0 = v_{n+1}$ we find that v_i is constantly 0, which is forbidden. Similarly, we can show that j cannot be n + 1. Therefore, the remaining possible values of the eigenvalue λ are $2 \cos \frac{\pi j}{n+1}$, j = 1, 2, ..., n. A $n \times n$ matrix has exactly n eigenvalues, so we conclude that they are indeed the eigenvalues of A_n . \Box

The dual graph, G, of the $m \times n$ rectangle can be expressed as $G = P_m \times P_n$, where P_m , P_n are the path graphs. It's not hard to check that the Kasteleyn matrix of G, K, can be written as

$$K = A_m \otimes I_n + i(I_m \otimes A_n)$$

where the symbol \otimes denotes tensor product of matrices, and I_n and I_m are the identity matrices. We are to find the eigenvalues of K.

Proposition 5 Let the eigenvalues of A_m, A_n be $\mu_k, k = 1, 2, ..., m$ and $\lambda_j, j = 1, 2, ..., n$, respectively. Let w_k , v_j be the associated eigenvectors. Then $\mu_k + i\lambda_j, k = 1, 2, ..., n$, j = 1, 2, ..., n are the eigenvalues of K, with associated eigenvectors $w_k \otimes v_j$.

Proof: We check,

$$K(w_k \otimes v_j) = (A_m \otimes I_n + i(I_m \otimes A_n))(w_k \otimes v_j)$$

$$= A_m w_k \otimes v_j + iw_k \otimes A_n v_j$$

$$= (\mu_k w_k) \otimes v_j + iw_k \otimes (\lambda_j v_j)$$

$$= \mu_k (w_k \otimes v_j) + i\lambda_j (w_k \otimes v_j)$$

$$= (\mu_k + i\lambda_j)(w_k \otimes v_j)$$

Finally, by the Kasteleyn's theorem and the two propositions, we are able to compute the number of domino tilings:

$$#\{\text{domino tilings}\} = \#\{\text{perfect matchings of G}\} \\ = \sqrt{|\det K|} \\ = (\prod_{k=1}^{m} \prod_{j=1}^{n} |\mu_k + i\lambda_j|)^{1/2} \\ = (\prod_{k=1}^{m} \prod_{j=1}^{n} (4\cos^2 \frac{k\pi}{m+1} + 4\cos^2 \frac{j\pi}{n+1}))^{1/4} \end{cases}$$

3 Matrix-Tree theorem

We begin with a few definitions.

Definition 6 The Complete graph, K_n , has vertex set V = [n] and $E = \{(i, j), i \neq j\}$.

Definition 7 A spanning subgraph of a graph G = (V, E) is a graph of the form H = (V, A) for some $A \subseteq E$.

Definition 8 A graph is connected if for every two vertices $u, v \in V$, G contains a path from u to v.

Definition 9 A graph is acyclic if there does not exist $v_0, v_1, ..., v_n = v_0$ such that $(v_i, v_{i+1}) \in E$ for i = 1, 2, ..., n. A acyclic graph is also called a **forrest**.

Definition 10 An acyclic connected graph is called a tree.

Definition 11 (verification needed) Given a finite graph G with n vertices, a spanning subgraph T is called a spanning tree of G if any two of the following conditions are met.

- T is connected
- T is acyclic
- T has n-1 edges

Moreover, any two of the conditions imply the third.

Definition 12 The complexity of G is $\chi(G) := \#\{\text{spanning trees of } G\}$.

Theorem 13 (Cayley) $\chi(K_n) = n^{n-2}$

Proof: This will be a special case of the matrix-tree theorem. \Box

Definition 14 The Laplacian matrix of G is L := D - A, where A is the adjacency matrix and D is given by

$$D := \begin{bmatrix} d_{v_1} & & \\ & d_{v_2} & \\ & \ddots & \\ & & d_{v_n} \end{bmatrix}$$
$$d_{v_i} := deg(v_i) = \#\{edges incident \ to \ vertex \ v_i\}$$

Example 15 For the complete graph K_4 ,

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad L = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

It's easy to verify that the rows and columns of L sum to 0. In particular, L is a singular matrix, so 0 is one of its eigenvalue.

Theorem 16 (version 1) Let G = (V, E) be a connected graph such that |V| = n, then

$$\chi(G) = \frac{1}{n}\lambda_1\lambda_2...\lambda_{n-1}$$

where $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ are the nonzero eigenvalues of L.

Proof will be provided in the next lecture.