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1 Kasteleyn’s theorem

Theorem 1 (Kasteleyn) Let G be a finite induced subgraph of Z2. Define the Kasteleyn
matrix of G to be the V × V matrix:

Ku,v =


1 (u, v) is a horizontal edge

i (u, v) is a vertical edge

0 else

then
#{perfect matchings of G} =

√
|detK|

Proof:[continued] It suffices to show that any two nonzero terms in the expression

detA =
∑
σ∈Sn

(−1)σw(u1, vσ(1))w(u2, vσ(2))...w(un, vσ(n))

have the same sign. Given two perfect matchings M ,M ′ of G, they correspond to some
permutations (say,σ and σ′ respectively) and some nonzero terms in the expression above.
Their union M ∪M ′ is a disjoint union of even cycles, so we can transform M into M ′ by
rotating the edges along each cycle in turn. It suffices to show that rotation along a single
cycle does not affect the sign of the corresponding summand. In particular, we only need
to consider the case when M ∪M ′ is a single cycle.

Let M ∪ M ′ be the cycle u1, v1, u2, v2.....un, vn, where (u1, v1), (u2, v2)...(un, vn) be-
ing edges of M and (u1, vn), (u2, v1)...(un, vn−1) being edges of M ′. Then σ is the identity
permutation, and σ′ = (n, n − 1, ..., 1) is the cyclic permutation having length n, thus
(−1)σ = 1 and (−1)σ

′
= (−1)n−1. By a lemma from the last lecture,

w(u1, vσ(1))w(u2, vσ(2))...w(un, vσ(n))

w(u1, vσ′(1))w(u2, vσ′(2))...w(un, vσ′(n))
=

w(u1, v1)w(u2, v2)...w(un, vn)

w(v1, u2)w(v2, u3)...w(vn, un−1)

= (−1)n+l−1

where l is the number of vertices enclosed by M ∪M ′. Since the interior of M ∪M ′ is a
disjoint union of even cycles, l is even. As a consequence, ratio of sign for M and sign for
M ′ is (−1)n+l−1/(−1)n−1 = 1, which completes the proof. 2
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2 Domino tilings of a m× n rectangle

As an application of the Kasteleyn’s theorem, we compute the number of tilings by 2 × 1
domino of a m × n rectangle, which is equivalent to find the number of perfect matchings
of the dual graph, G.

Definition 2 Given graphs G1 = (V1, E1) and G2 = (V2, E2),define G1×G2 to be the graph
having the following properties:

• The vertex set of G1 ×G2 is V1 × V2

• Two vertices (u1, u2) and (v1, v2) of G1 ×G2 are connected by an edge if and only if
either (u1, v1) ∈ E1 or (u2, v2) ∈ E2

Definition 3 Let G = (V,E), the adjacency matrix,A, is the V × V matrix such that

Au,v =

{
1 (u, v) ∈ E
0 else

We begin our analysis by finding the eigenvalues of the adjacency matrix of the path graph
Pn.

pathgraph.png

P6

Proposition 4 Let An be the adjacency matrix of the path graph Pn. The eigenvalues of
An are 2 cos πj

n+1 for j = 1, 2, ..., n.

Proof: The adjacency matrix An has the form:

An =



0 1 0 0 · · · 0
1 0 1 0 · · · 0
0 1 0 1 · · · 0

. . .
...

0 0 · · · 1 0 1
0 0 · · · 0 1 0


We know that λ is an eigenvalue of An if and only if there exists a nonzero vector v =
(v1, v2, ..., vn)t such that Anv = λv. Writting the condition Anv = λv in coordinates, we
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obtain the system of equations 
v2 = λv1

v1 + v3 = λv2
v2 + v4 = λv3
· · ·
vn−1 = λvn

If we make the convention that v0 = 0 = vn+1, the system of equation becomes the linear
recurrence vi+1 + vi−1 = λvi, 1 ≤ i ≤ n. Since the linear recurrence can also be written as
(E2 − λE + 1)v = 0, its solution has the form vi = aαi + bβi (unless α = β), where α,β are
the solutions of the equation x2 − λx+ 1 = 0. In particular, αβ = 1, α+ β = λ. From the
initial data v0 = 0 = vn+1, we deduce αn+1 = βn+1. This, along with the equation αβ = 1,
gives us {

α2n+2 = 1
β = 1

α

hence α is some (2n+ 2)th root of unity. Consequently,

λ = α+ β = 2Re(α) = 2 cos
πj

n+ 1
, j = 0, 1, ..., 2n+ 1.

Since 2 cos πj
n+1 = 2 cos π(2n+2−j)

n+1 , we need only to consider the possibilities j = 0, 1, 2, ..., n+

1. If j = 0, λ = 2, the equation x2 − λx + 1 = 0 has root x = 1 of multiplicity 2. In this
case the vi has the form ai + b. Solving the initial data v0 = 0 = vn+1 we find that vi is
constantly 0, which is forbidden. Similarly, we can show that j cannot be n+ 1. Therefore,
the remaining possible values of the eigenvalue λ are 2 cos πj

n+1 , j = 1, 2, ..., n. A n × n
matrix has exactly n eigenvalues, so we conclude that they are indeed the eigenvalues of
An. 2

The dual graph, G, of the m × n rectangle can be expressed as G = Pm × Pn, where Pm,
Pn are the path graphs. It’s not hard to check that the Kasteleyn matrix of G, K, can be
written as

K = Am ⊗ In + i(Im ⊗An)

where the symbol ⊗ denotes tensor product of matrices, and In and Im are the identity
matrices. We are to find the eigenvalues of K.

Proposition 5 Let the eigenvalues of Am, An be µk, k = 1, 2, ...,m and λj , j =
1, 2, ..., n,respectively. Let wk, vj be the associated eigenvectors. Then µk + iλj , k =
1, 2, ...,m, j = 1, 2, ...., n are the eigenvalues of K, with associated eigenvectors wk ⊗ vj.
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Proof: We check,

K(wk ⊗ vj) = (Am ⊗ In + i(Im ⊗An))(wk ⊗ vj)
= Amwk ⊗ vj + iwk ⊗Anvj
= (µkwk)⊗ vj + iwk ⊗ (λjvj)

= µk(wk ⊗ vj) + iλj(wk ⊗ vj)
= (µk + iλj)(wk ⊗ vj)

2

Finally, by the Kasteleyn’s theorem and the two propositions, we are able to compute the
number of domino tilings:

#{domino tilings} = #{perfect matchings of G}
=

√
| detK|

= (

m∏
k=1

n∏
j=1

|µk + iλj |)1/2

= (
m∏
k=1

n∏
j=1

(4 cos2
kπ

m+ 1
+ 4 cos2

jπ

n+ 1
))1/4

3 Matrix-Tree theorem

We begin with a few definitions.

Definition 6 The Complete graph, Kn, has vertex set V = [n] and E = {(i, j), i 6= j}.

Definition 7 A spanning subgraph of a graph G = (V,E) is a graph of the form H =
(V,A) for some A ⊆ E.

Definition 8 A graph is connected if for every two vertices u, v ∈ V , G contains a path
from u to v.

Definition 9 A graph is acyclic if there does not exist v0, v1, ...., vn = v0 such that
(vi, vi+1) ∈ E for i = 1, 2, ..., n. A acyclic graph is also called a forrest.

Definition 10 An acyclic connected graph is called a tree.
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Definition 11 (verification needed) Given a finite graph G with n vertices, a spanning
subgraph T is called a spanning tree of G if any two of the following conditions are met.

• T is connected

• T is acyclic

• T has n− 1 edges

Moreover, any two of the conditions imply the third.

Definition 12 The complexity of G is χ(G) := #{spanning trees of G}.

Theorem 13 (Cayley) χ(Kn) = nn−2

Proof: This will be a special case of the matrix-tree theorem. 2

Definition 14 The Laplacian matrix of G is L := D − A, where A is the adjacency
matrix and D is given by

D :=


dv1

dv2
. . .

dvn


dvi := deg(vi) = #{edges incident to vertex vi}

Example 15 For the complete graph K4,

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 D =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


It’s easy to verify that the rows and columns of L sum to 0. In particular, L is a singular
matrix, so 0 is one of its eigenvalue.

Theorem 16 (version 1) Let G = (V,E) be a connected graph such that |V | = n, then

χ(G) =
1

n
λ1λ2...λn−1

where λ1, λ2, . . . , λn−1 are the nonzero eigenvalues of L.

Proof will be provided in the next lecture.
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