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Number Theory and Cryptography 

 
Chapter 0: Introduction 

Number Theory enjoys a very long history – in short, number theory is a study of 

integers. Mathematicians over millennia study how different integers are related to 

each other. For example, they ask something like: 

- Does the sequence 11, 111, 1111, 11111, … contain a square number? 

- Are there non-zero integer solutions for the equation  

xn + yn = zn 

for different values of n? (For example, when n=2, (x,y,z) = (3,4,5) is a solution) 

- Can every even number be written as sum of two primes? 

 

These questions all sound good and abstract. Do we have a more practical use of the 

theory? This brings us to the other part of the module – Cryptography. There are a 

few parts in cryptography: 

 

1) Substituting alphabets with integers, we can write any words or sentences in 

numbers. For example, we can assign A to 1, B to 2, C to 3 and so on.  

2) Designing an algorithm to encode the numbers, and an `inverse algorithm’ to 

decode the encoded numbers. The decoding algorithm is only known to the 

person who you wish to send your message to. 

3) The numbers are encoded using the algorithm, which is a junk of random 

numbers to anyone but the person who owns the decoding algorithm. 

 

And, of course, the design of such encoding and decoding algorithm relies heavily on 

the abstract number theory! In particular, we will learn one of the cryptography 

methods which is still heavily used on credit card transactions, internet shopping, etc.  

these days.  

 

Chapter 1: Congruence 

1.1 Basic Notions 

We begin our Chapter with some simple questions. Try to find the odd one out for the 

following numbers: 

a) 10, 15, 23, 165, 2000, 2170 

b) 11, 16, 24, 166, 2001, 2171 

c) 13, 21, 25, 39, 49, 65 

d) 1, 11, 111, 1111, 11111, 111111 



(a) is easy. 23 is not a multiple of 5 while the others are. With the similar mentality, we 

choose 24 in (b) since it is the only integer not ending with 1 or 6. Put it in another way, 24 is 

the only integer with remainder not equal to 1 when divided by 5. 

For (c), we choose 39 out for the same reason as (b) – the other integers have remainder 1 

when divided by 4, while 39 have a remainder of 3. And so does (d). 

 

The above examples bring out the idea of congruence – 

 

 

 

 

For example, if a is a multiple of 9, then 

a ≡ 0(mod 9) 

Also, we have 

11 ≡ 16 ≡ 166 ≡ 2001 ≡ 2171(mod 5) 

11 ≡ 111 ≡ 1111 ≡ 11111(mod 4) 

 

1.2 Some Practical Examples 

1) Check Digits 

Nearly every item we purchase has a Universal Product Code (UPC). This is the string 

of numbers appearing next to the bar code of the product. A type of UPC, UPC-A, 

contains 12 digits. The first 6 indicate the manufacturer, the next 5 indicate the 

product and the last one (5 below) is a check digit.  

 
A check digit is a redundant digit, which can be determined by the first 11 digits. 

With a check digit, one can detect simple errors in the input of a series of digits, such 

as a single mistyped digit or some permutations of two successive digits.  

 

To determine the check digit we do the following. Denote digits 1 though 12 as 

(a1,a2,a3,...,a12) then compute 

 
b ≡ (a1,a2,a3,...,a11)*(3,1,3,1,3,1,3,1,3,1,3) (mod 10) 

 

Let m be an integer. We say a is congruent to b modulo m, or  

a ≡ b(mod m) 

if a–b is a multiple of m, or if a and b have the same remainder upon dividing m. 

 



 

Where * denotes the dot product, which is short hand for 3a1+a2+3a3+...+3a11. Then  

 

 

To check whether a UPC-A code is valid, we do the following: 

Let’s check whether 036000 291453 is a valid one. We compute  

(0,3,6,0,0,0,2,9,1,4,5)*(3,1,3,1,3,1,3,1,3,1,3) mod 10 

which is 58 (mod10) = 8. Then a12 must be 10-8 = 2. However, the 12th digit is 3 

above, so it cannot be a valid UPC-A code. There must be an error for the input. 

 

The advantage of using this scheme is that it will detect all errors involving one digit 

and nearly all errors involving the transposition of two adjacent digits. If we switch 

the 2 and 3 positions in our example giving us a UPC of 063000 291452 the 

computation gives us 66mod10=6, not 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a12 = 10 - b 

Problems: 

1) Check whether the following UPC-A codes are valid or not: 

  

 

 

 

 



Another example of check digit is the ten-digit International Standard Book Number 

(ISBN). The last digit of the ISBN is a check digit. This check digit system helps ensure 

that you are purchasing the correct text book. The way that the check digit works for 

ISBNs is comparable to the UPC system. To verify that the ISBN is correct, we do this 

computation.  

 

 

If this does not yield 0, then there is an error in your ISBN.  

 

Sometimes it is necessary for the last digit to be 10, in this case the ISBN will end 

with the letter X. The check digit will always detect if you wrote one of the numbers 

down incorrectly.  

 

2) Caesar’s Cipher 

This is the first and easiest encryption method. To start encrypting our message, we 

first convert our alphabet system into numbers in the obvious way – A to 1, B to 2 

and so on. We have the following table of conversion: 

 

For example, JAMES will be converted to “10,1,13,5,19”. To start encoding the 

numbers, we do the following algorithm to every letter in the message: 

 

 

Therefore, the encoded word JAMES will read “18,9,21,13,1”. For those who do not 

know the encoding, the bunch of number reads SIUMA, which makes no sense at all. 

 

As we mentioned at the beginning, we need an algorithm to ‘decode’ the message, 

and it is given by 

 

(a1,a2,a3,...,a9,a10)*(10,9,8,7,6,5,4,3,2,1) (mod 11) 

 

x   goes to   x + 8 (mod 26) 

y   goes to   y - 8 (mod 26) 



 

For example, to decode the message “21,9,26,7”, we subtract 8 to each number, 

having “13,1,18,-1”. However, -1 ≡ 25(mod 26), so the decoded message is “13,1,18,25”, 

which is MARY according to the table. 

 

Problem: 

Discuss some of the disadvantages of Caesar’s Cipher (from the perspective of a 

student some 2000 years after Caesar). 



Chapter 2: Solving Congruence Equations I 

To better utilize the power of congruence, one shall learn how to solve equations involving 

congruence. We first start with the linear congruence equations  

 

 

2.1 Some Simple Examples 

Example 1 – Solve x + 3 ≡ 13 (mod 17) 

Solution: 

This is easy. We can take away 3 both sides to get x ≡ 10 (mod 17). 

Note that it means there are MANY solutions to the equation. In fact, any integer that has 

remainder 10 upon dividing 17 are solutions to the equation! 

 

Example 2 – Solve x + 25 ≡ 3 (mod 6) 

Solution: 

We can do the same thing as in Example 1, getting x ≡ -22 (mod 6). But remember  

0 ≡ 24 (mod 6). Hence, by property (1) we can add 0 on L.H.S., and 24 on R.H.S., yielding  

x ≡ 2 (mod 6). 

 

Example 3 – Solve 5x ≡ 2 (mod 13) 

Solution: 

Remember we need x to be an integer, so x = 0.4 is absurd. Think of an integer a so that 5 × a 

≡ 1 (mod 13). For example in our case a = 8 since 5 × 8 = 40 = 3 × 13 + 1. After getting such 

a, we multiply it on both sides of the equation, getting 

5x × 8  ≡ 2 × 8 (mod 13) 

40x ≡ 16 (mod 13) 

40x ≡ x ≡ 16 (mod 13)              

     x ≡ 16 ≡ 3 (mod 13)    

x ≡ 3 (mod 13) 

  

ax ≡ b (mod n) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Solving More Difficult Equations – Euclidean Algorithm 

Our equations so far dealt with some small numbers, one may ask in general, how do 

we solve equations like 

329x + 143 ≡ 16 (mod 271) 

Inspired by Example 3 above, if we can find an integer a so that 329a ≡ 1 (mod 271), 

then we can proceed by multiplying both sides by a: 

a(329x + 143) ≡ 16a (mod 271) 

a(329)x + 143a ≡ 16a (mod 271) 

a(329)x ≡ 1.x ≡ 16a – 143a (mod 271) 

 

Problems: 

Solve the following congruence equations (if there are no solutions, give a brief reason 

why it is so) 

a) x + 14 ≡ 2 (mod 15)  

 

 

 

b) 4x ≡ 7 (mod 23) [Hint: Note that 24 ≡ 1 (mod 23)] 

 

 

 

c) 3x + 9 ≡ 21 (mod 39) 

 

 

 

d) 3x + 9 ≡ 2 (mod 39) 

 

 

 

e) 8x + 3 ≡ 16 (mod 17) 

 

 

 

f) 26x + 3 ≡ 1 (mod 5) 

 



The problem is, how to find such a in general? Or does such a exist at all? 

The answer is given by Euclid, a Greek Mathematician in 3rd century BC! Here is the 

statement of what Euclid proved in his book of ‘Elements’: 

 

 

 

 

 

 

 

To put the theorem into perspective, take p = 329, q = 271. Euclid’s algorithm tells us 

two things: 

1) the g.c.d. of 329 and 271 (which is 1 in this case). 

2) the numbers a and b satisfying 329a + 271b = 1, so 329a ≡ 1 (mod 271)! 

 

I will roughly show the algorithm below: 

329 = 1 x 271 + 58 

271 = 4 x 58 + 39 

58 = 1 x 39 + 19 

39 = 2 x 19 + 1 

19 = 1 x 19 

And since we cannot proceed any more, the 1 appearing in the second last equality 

is the g.c.d. of 329 and 271. 

 

To find out the values of a and b, we just need to “substitute backwards”: 

329 – 1 x 271 = 58 

271 = 4 x (329 – 1 x 271) + 39 

329 – 1x271 = 1 x [271 – 4 x (329 – 1 x 271)] + 19 

271 – 4 x (329 – 1 x 271) = 2 x {329 – 1x271 – 1 x [271 - 4 x (329 – 1 x 271)]} + 1 

Therefore, 

5 x 271 – 4 x 329 = 2 x {329 – 1x271 – 271 + 4 x (329 – 271)} + 1 

5 x 271 – 4 x 329 = 2 x {5 x 329 – 6x271} + 1 

5 x 271 – 4 x 329 = 10 x 329 – 12x271 + 1 

-14 x 329 + 17 x 271 = 1 

 

Problems: 

1) Find the g.c.d. of the following pairs of integers, and find the a and b as above: 

(a) (245, 154) 

Theorem (Euclidean Algorithm): 

Suppose the greatest common divisor of p and q, denoted (p,q) is r. 

Then there are integers a and b so that 

ap + bq = r 

Moreover, there is an algorithm determining the values of a and b. 



(b) (187, 323) 

2) Solve the congruence equation 

154x ≡ 21 (mod 245) 

187x ≡ 16 (mod 323) 

3) Can you give a criterion on whether the equation 

px ≡ n (mod q) 

has solutions, in terms of n and r = (p,q)? 

  



Chapter 3: Solving Congruence Equation II 

As we move forward to studying the RSA encryption, we often need to solve 

equations of the form 

 

 

For example, 

2x  ≡  1 (mod 7) 

has a solution x = 3. 

Problem: 

 

1) The list of the powers of 2 is given as follows: 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, … 

Try to find their remainders upon dividing 7, and list the remainder below: 

 

 

 

Did you see a pattern? What other values of x will satisfy  2x ≡ 1 (mod 7)? 

 

 

 

 

However, not all choices of a and n will have a solution. For example 

3x  ≡  1 (mod 15) 

does not have any solutions. (Why?) 

 

So the questions are, again, the following: 

- When does the equation have solutions? 

- If it has solutions, what are the solutions? 

 

 

3.1 Euler  –function 

It turns out that the (partial) answers to the above questions rely a lot on the 

φ-function, which is introduced by Leonhard Euler, a Swiss mathematician in the 

1700s. Here is the definition of the φ-function: 

 

 

 

Where (a,n) means the greatest common divisor of a and n, e.g. (12, 18) = 6. 

ax  ≡  1 (mod n) 

 

φ(n) is the number of positive integers a with (a,n) =1. 

 

Problem: 

1) The list of the powers of 2 is given as follows: 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, … 

Try to find their remainders upon dividing 7, and list the remainder below: 

 

 

 

Did you see a pattern? What other values of x will satisfy  2x ≡ 1 (mod 7)? 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problems: 

2) Let n = 5, list all the integers a such that (a,5) = 1. How many possible values of 

a are there? The number of possible values of a is φ(5). 

 

 

 

Do the same for n = 7, 13, 23. What are φ(7), φ(13) and φ(23)? 

 

 

 

 

Can you give a formula for φ(p) if p is a prime number? 

 

 

3) We have seen how φ(p) can be computed if p is prime. Now let’s try a little bit 

harder. Let n = 3, 9, 27, 81, list all integers a such that (a, n) = 1. Or you can go 

straight ahead to find φ(n) for n = 3, 9, 27, 81. 

 

 

 

 

 

Do you see a pattern? What is φ(729)? 

 

 

 

4) Now let’s try to do the same for composite number of two different primes. 

Find φ(15), φ(21), φ(35). 

 

 

 

 

 

What is the relationship between φ(35), φ(5) and φ(7)? 

 

 

 

 

 

 

 



We have actually figured out the following rules: 

- For k a positive integer, and p prime, we have the formula  

φ(pk)=pk-1(p-1)  

- The function φ is multiplicative, which means if (a,b) = 1, then 

φ(ab)=φ(a)φ(b) 

 

3.2 Euler Theorem 

Now we are relating our original question of solving equations to the φ-function we 

just explored: 

 

 

 

 

 

Let’s put the theorem in practice! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem (Euler’s Theorem): For all integer n, and for all a so 

that (a,n) = 1,  

aφ(n) ≡  1 (mod n) 

 

Problems: 

5) Let n = 5. We have seen from last page that φ(5)=4. So the theorem says 

a4 ≡  1 (mod 5) 

for any a satisfying (a,5) = 1. So let’s try to compute 

24 (mod 5), 34 (mod 5), 44 (mod 5), 64 (mod 5) 

 

 

 

What about 54 (mod 5)? Why is it not 1(mod 5)? 

 

 

 

6) Can you immediately tell the remainder of 673268 upon dividing 269? 

(Hint: 269 is a prime number!) 

 

 

7*) Can you immediately tell the remainder of 3118 upon dividing 7? 

 

 

 

 

 

 

 

7) Now let’s try to do the same for composite number of two different primes. 

Find φ(15), φ(21), φ(35). 

 

 



 

  
Problems: 

8*) This is an important idea when we do RSA encryption next week. Let n = 15. 

Then φ(15)=2x4 = 8. So  

a8 ≡  1 (mod 15) 

if a is not divisible by 3 or 5. By using the powers of 2 on the first page, try to 

check it is true for a = 2, i.e. is  28 ≡  1 (mod 15)? 

 

 

 

If 28 ≡  1 (mod 15), we have seen that 216 ≡  1 (mod 15), 224 ≡  1 (mod 15) 

and so on. How about 29 (mod 15), 217 (mod 15), 225 (mod 15) and so on? 

 

 

 

 

 

 

How about 210 (mod 15), 218 (mod 15), 226 (mod 15) and so on? 

 

 

 

 

 

 

 

 

 

9**) Can you immediately tell the remainder of 3119 upon dividing 7? 

 

 

 



Chapter 4 - RSA Cryptography 

 

We finally come to the climax of the course – RSA Cryptopgraphy! RSA got 

its name from the last initials of the three people that first publicly 

described it in 1977, Ron Rivest, Adi Shamir, and Leonard Adleman, who 

were at MIT. RSA is very widely used in electronic commerce protocols, and 

is believed to be secure given sufficiently long keys combined with 

up-to-date implementations. 

 

Before we move on, let’s recall the crucial observation we made last week: 

1) Pick a product of two prime numbers n = pq, 

2) The Euler function φ(pq)=(p-1)(q-1) 

3) Therefore, Euler’s Theorem says if a is not a multiple of p or q, 

a(p-1)(q-1) ≡  1 (mod pq) 

4) So x = (p-1)(q-1) is a solution of the equation 

ax ≡  1 (mod pq) 

5) There are more solutions, namely all the multiples of (p-1)(q-1) are solutions. 

6) Here is the gist:  

IF WE KNOW ax ≡ 1 (mod pq),  THEN  ax+1 ≡ a (mod pq) 

So a“a multiple of (p-1)(q-1)” + 1 is going to have remainder a upon dividing over pq 

 

Now let’s try to put RSA into practice: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How RSA works: 

1) Pick p = 31 and q = 29, so pq = 899, and φ(899)=(29-1)(31-1)= 840. 

We can now encode any number between 1 and 26! 

Say we want to encode 5. By Euler’s theorem we know 

5 840 ≡  1 (mod 899) 

And also 5 2x840 ≡ 1 (mod 899), 5 3x840 ≡ 1 (mod 899), 5 4x840 ≡ 1 (mod 899)… 

Hence 5 2x840+1 ≡ 5 (mod 899), 5 3x840+1 ≡ 5 (mod 899), 5 4x840+1 ≡ 5 (mod 899)… 

 

Now pick e=31. This is the encryption key – we encrypt our number 5 by taking 

5e (mod 899) 

I get   531  ≡ 67 (mod 899). So the encrypted number is 67. 

 

To decrypt 180, we need to find a number d so that de= “multiple of 840” + 1 

But yes, d = 271 gives 271 x 31 = 10 x 840 + 1 

 

 

 

 

 

 

9**) Can you immediately tell the remainder of 3119 upon dividing 7? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now let’s play with the numbers! 

1)  (n, e) = (1147, 29)  d = ?? 

2)  (n, e) = (1763, 71)  d = ?? 

3)  (n, e) = (3127, 431)  d = ?? 

 

The above numbers are good enough to encode numbers from 1 to 26. So 

one may ask, how about bigger numbers? This is simple, we just need to 

pick two big prime numbers p and q to produce n! 

 

In order to break the code, one needs to know 

a) How n is factorized into two primes p and q 

b) After knowing what p and q are, we find d so that de is “a multiple of 

(p-1)(q-1)” + 1. This can be done using the Euclidean algorithm. 

Remember the money awards (up to $50,000!) on factorizing n with 200+ 

digits? Now you know why it worth that much money! 

  

Therefore 

531x271 ≡ 510 x 840 + 1 ≡ 5 (mod 899) 

Going back to decryption, with the encrypted number 67, we just need to take 

67271 ≡ (531)271 ≡531x271 ≡ 5 (mod 899) 

 

Now let’s see how the above mechanism works in practice: 

1) Alice wants to send a secret letter A,B,…,Z to Ben 

2) Ben comes up with the number n=899, e=31, d=271. 

3) Ben announces the numbers (n,e)=(899,31) publicly. This is called PUBLIC KEY. 

4) The secret letter Alice has in her mind is “M”, which is translated into a number 

13. 

5) With the public key, Alice encrypts her message by taking 

13e (mod n) = 1331 (mod 899) 

6) The encrypted message is 602. No one knows how to decrypt 602 except Ben. 

7) To decrypt, Ben only needs to do 

602271(mod 899) 

Which is precisely 13, the message Alice sent out. 



Finale: Make your own RSA code! 

With the aid of a computer, you can make your own RSA encryption! Here 

are the steps: 

 

Step 1: Pick two BIG prime numbers. This can be done in the website 

below- 

http://markknowsnothing.com/cgi-bin/primes.php 

Type a random number, and the website will show you all the primes close 

enough to the number you picked. As an example, my choice of primes are 

p=57947 and q=4515419. Hence my n is 

n = pq = 57947 x 4515419 = 261654984793 

I can now encode almost every number below n. 

 

Step 2: Pick the ‘encryption number’ e. Generally any odd number smaller 

than n works. I pick e = 57 as an example. 

 

Step 3: To see whether e = 57 is a good choice, use the following website: 

http://www.math.sc.edu/~sumner/numbertheory/euclidean/euclidean.html 

Put the “n” slot with value (p-1)(q-1) = 261650411428, and “m” slot with e 

= 57 as shown below: 

 
 

http://markknowsnothing.com/cgi-bin/primes.php
http://www.math.sc.edu/~sumner/numbertheory/euclidean/euclidean.html


Click “get GCD”, you will get 

 
e = 57 is a good choice as long as the GCD is 1. 

 

Step 4: Now find the decryption number d. It is shown in the bottom line of 

the calculation, right next to the number 57. In our example, 

d = -100987878095 

But wait, we don’t want a negative power of d, so we add d = 

-100987878095 by 261650411428 and get 

d = -100987878095+261650411428 = 160662533333 

KEEP THIS NUMBER PRIVATE! 

 

Step 5: Announce (n,e) to the public, and convert your message using the 

table below 

 



With the conversion table, convert APPLE into 1126262215. Now encode 

APPLE by 1126262215e(mod n), using the website below – 

http://web2.0calc.com/ 

 
The encoded message is 44706490807. 

 

Step 5: To decode the message, we just need to do 44706490807d(mod n) 

(Be careful that the online calculator cannot deal with very big powers!) 

 
We get back the number 1126262215! 

 

 

 

 

 

http://web2.0calc.com/

