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We now provide a few more details about the prerequisites for the REU in group theory,
where to find additional information about the mathematics and a little about the me-
chanics and goals of our program. In addition, we give a detailed version of the topics
and types of questions that will be considered.

Further Information

Students in the project should have a solid background in basic linear algebra and ab-
stract algebra. For example, the first six chapters of the textbook by Dummit and Foote,
Abstract Algebra, 3rd edition, Wiley, would be more than adequate for the required back-
ground in group theory. For example, section 5.2 defines the term elementary divisors

which appears below and in one standard description of the decomposition of finite
abelian groups as direct products of cyclic groups. The same book also has several chap-
ters on linear algebra (Chapters 10, 11, 12) but they’re at a level higher than we expect
most students to have seen.

The basic ideas for some of the specific topics we discuss below are worked out in detail
in the 2010 Cornell Senior Thesis of Daniel J. Collins. See

http://www.math.cornell.edu/Research/SeniorTheses/2010/collinsThesis.pdf

In particular, references for most of the other topics discussed can be found in the thesis
as well.

Basic Goals and Mechanics

During the summer students will learn several topics in group theory they’ve probably
not seen before by directly working with these new ideas, both theoretically and com-
putationally. In fact, one usually finds that writing programs helps one understand the
mathematics in a much more concrete way than ones does when only trying to prove theo-
rems. Conversely even small theoretical gains many times have substantial consequences
computationally which in return allows the study of even larger and more complicated
examples. This makes it much more likely that one is getting a true picture of what is
going on rather than only seeing the parts of the subject which are small enough and
simple enough to do by hand or with unsophisticated tools.

Those students accepted to participate in the program will receive further information
including a set of notes by Dan Collins covering most of the needed background in group
theory as well as a development of some of the topics described below.

http://www.math.cornell.edu/Research/SeniorTheses/2010/collinsThesis.pdf
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Previous programming experience will be an advantage as we study these topics by ex-
perimenting computationally. Many explicit examples in a number of different situations
can be given this way. Tutorials on programming will be given and a number of example
programs will be provided. The computer algebra systems GAP and Magma will be our
main tools. GAP is freely available for all operating systems. See

http://www.gap-system.org/

for further information as well as to get your own copy of the program. Magma is not
free, but will be available via a license provided by the Cornell Mathematics Department.

A separate computer lab containing Linux workstations will be available for Cornell REU
students. The students in this project will have access to a number of machines including
remotely accessing larger machines. The largest have 64G, 128G, and 192G of memory,
with the last two having 16 CPUs and 12 CPUs, respectively. GAP does have a facility
for parallel computation so students with a strong interest in computations might find
that of interest.

We’ll start this project with a small collection of computational tools, theorems, and
questions. Our goal is to significantly enlarge the contents of each of these collections.
The research program will not be fixed, but will develop according to the interests and
skills of the participants. An abundance of problems at many different levels of difficulty
will be considered. This is a relatively new area of study with a real possibility of
progress on problems at the edges of current research. New discoveries are likely to lead
to publication.

A Brief Description of the Mathematics

Let G be a finite group. Any subset s = { g1, ..., gn } of G generates a subgroup H .
We say s is irredundant (or independent) if every proper subset of s generates a proper
subgroup of H . Let r(G) be the smallest size of a generating set of G , m(G) the largest
size of an irredundant generating set, and i(G) the largest size of any irredundant set.
Clearly r(G) ≤ m(G) ≤ i(G) .

Exercise 1. Use the elementary divisor and primary decompositions of an abelian group
to calculate r(G) , m(G) , and i(G) for a finite abelian group G . Determine precisely
when r(G) = m(G) for G a finite abelian group?

Exercise 2. Construct a group G where m(G) < i(G) as follows. Let q = pn for p a
prime. Let Fq be a finite field with q elements. Recall that the multiplicative group F

∗

q

is cyclic of order r = q − 1 . Take G = Fq
+

o Fq
∗ be the semi-direct product where the

multiplicative group acts on the additive group by multiplication. Show that r(G) = 2 .
Show that the additive group is a simple Fq

∗ -module (i.e., considered as a module over
the group ring Fp[Fq

∗] ; that is, it has no proper non-trivial submodules). Suppose r is
a prime (e.g., q = 32 , r = 31 ). Show that m(G) = 2 as well. Note that i(G) = n (at
least n is clear; use that the module is simple to show it is exactly n ). Conclude that
it is not necessarily the case that any irredundant set can be extended to an irredundant
generating set. Next try to compute m(G) and i(G) in general.

http://www.gap-system.org/
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A finite dimensional vector space G over the integers mod p where p is prime (the
unique field with p elements, Fp = Zp ) is just an elementary abelian p -group, and an
irredundant generating set is just a basis. Some properties in this case are:

(1) any two bases have the same number of elements,

(2) every irredundant set is contained in some basis,

(3) every generating set contains some basis,

(4) for any basis and any non-trivial element of G , there is some element of the basis
that can be replaced by the given element to yield a new basis for G ,

(5) every element of a basis has prime order,

(6) given two ordered bases there exists a unique automorphism of G that takes one to
the other; so |Aut(G)| is the number of distinct bases of G .

Irredundant generating sets for arbitrary finite groups have very few of these properties
in the general case.

Exercise 3. All but one of these 6 properties fail to hold for some finite group G . Find
examples for the 5 that fail. For the one remaining property that always holds, give a
proof. These are easy to do.

Nevertheless for a given group, a study of how closely irredundant generating sets are to
having these properties provides a useful framework to guide their study. We list here a
few general results.

Tarksi’s Theorem

For example the first theorem in the subject, due to Tarski, asserts that there are no
gaps between the sizes of irredundant generating sets: For any k , r(G) ≤ k ≤ m(G) ,
there exists an irredundant generating set with k elements.

One interesting problem is to determine the numbers r(G) , m(G) , and i(G) . In 1936
P. Hall gave a method of computing r(G) using the Möbius function of the lattice of
subgroups of the finite group G . This method turns out to be fairly efficient and works
well computationally for groups of small size. More recently D. Collins found a formula
for m(G) in terms of the Möbius function. However, computationally the formula turns
out to be quite inefficient. The formulas of Hall and Collins actually determine more,
namely the number of irredundant generating sequences of a specific length. It’s thus
conceivable that there might be simpler methods to determine r(G) and m(G) without
determining how many there are of the given length at the same time. For solvable
groups there is an alternate method to compute m(G) in terms of a chief series for G
that is also efficient computationally. As yet no such method is known for determining
m(G) for non-solvable groups in terms of a chief series for the group. As yet there is no
easy way to determine i(G) .
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Several other results can be obtained from Tarski-like arguments, which are very simple:
Given a fixed irredundant generating set, one just measures distances between elements,
sets, sequences, etc. in a group by counting the number of operations (multiplications by
single elements of the given generating set) used to go from one to the other. Explicitly,
given an irredundant generating set B and an element g ∈ G write g as a product of
elements of B but use only positive exponents on the elements of B . For this particular
representation of g as a product, the sum of the exponents is called the length of g (with
respect to this representation as a product). We then define `B(g) to be the minimum
of the lengths of g taken over all possible ways of representing g as a product as just
described. One can then use this function ` to define distances between elements, sets
of elements, or sequences of elements in G , but in several different ways. In Tarski’s
original paper he uses the same kind of idea to define the notion of distance, but in yet
another way. However all methods are based on counting the number of multiplications
used. It seems very likely that there are other results which may be proven by using
variations on Tarski’s original idea. This is certainly an area which deserves further
study.

The Frattini Subgroup

The Frattini subgroup, Φ(G) , of a group G is the set of elements that are non-generators
(that is, can be removed from any set that generates yielding a set that still generates).
This subgroup can also be described as the intersection of all maximal subgroups of
the group. In many situations it plays a trivial role, that is, it is straightforward to
describe what happens for G in terms of what happens for G/Φ(G) . Sometimes below
we describe what happens in the Frattini-free case (i.e., Φ(G) = 1 ) to simplify the
statements. Section 6.1 of the book of Dummit and Foote and in particular the exercises
(page 199) provide a lot of information on the properties of the Frattini subgroup. If one
also knows something about ring theory, then one should see the analogy between the
behavior of the Frattini subgroup and the Jacobson radical.

The Replacement Property

An irredundant generating sequence s satisfies the replacement property if for any ele-
ment g not equal to 1 , there exists some element of s which when replaced by g , gives
a new generating set s′ for G . The group G satisfies the replacement property for k if
all irredundant generating sets of size k satisfy the replacement property. If G satisfies
the replacement property, then it’s easy to see that Φ(G) = 1 .

For vector spaces a standard result (appearing in developments of linear algebra in earlier
years) called the Steinitz Exchange Property asserts that for any basis B of a vector
space V and any independent subset S of V , there exists a subset of B which when
replaced by S yields a basis for V . Our replacement property differs in two ways: we
replace only one element, and the resulting new set generates G but isn’t necessarily
irredundant.

Using the same (Tarski) type of argument, one can show that there may be a weak
version of the Steinitz Exchange Property, but only for sets of size m(G) : If G has the
replacement property for all irredundant generating sets of size k , then k = m(G) .
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Many groups have the replacement property for m(G) : vector spaces, Frattini-free
abelian groups, the symmetric groups and many small non-abelian simple groups. How-
ever, many solvable groups do not, with the Frobenius group of order 20 (Aut(Z5) =
Z5 o Z4 ) being the smallest. One can give an explicit characterization of the solvable
groups having the replacement property, but very little is known about the non-solvable
case. An example of a simple group where the replacement property does not hold is
PSL(2, Z17) .

Geometry

One can determine the behavior of these functions on the direct product of groups. Both
m and i are additive, that is, m(G × H) = m(G) + m(H) . A theorem of Gaschütz
gives a simple but more complicated formula for r(G × H) . For two groups which
are relatively prime (no common non-trivial homomorphic images) all three are easily
shown to be additive. If further, both groups satisfy the replacement property, then the
irredundant generating sets of length m(G)+m(H) are obtained by taking the union of
the images (under the natural maps) of irredundant generating sets of maximal length
for G and H . Only in special cases (e.g., direct products of simple groups or solvable
groups) is this formula known more generally. This will be one of the problems we study.

The behavior of these functions under semi-direct products or more complicated ex-
tensions is not understood very well, especially in the non-solvable case. Examples of
specific questions are

• Find a nice description for length-m(G) irredundant generating set in An ,

• Determine m(G) exactly and find a nice description for length-m(G) irredundant
generating sets in various PSL(n, q) ,

• Determine m(G) in other simple group families (or for sporadic groups), and find
nice description for length-m(G) irredundant generating sets there.

• Determine a recursive way to find and count length-m(G) irredundant generating
sets for solvable groups.

Until recently, it would have been very difficult to make much progress on problems of
this type without a great deal of background in group theory. However, a new approach
which in essence is geometric in nature provides computationally very efficient ways to
quickly determine all irredundant generating sequences of any length for any finite group.
It seems likely that such ideas will also provide efficient means for proving theorems, but
much is still to be worked out. For example, it is now easy to prove the previously
unknown m(M11) = 5 where M11 denotes the smallest sporadic simple Mathieu group.
Such arguments are given by relating m(G) to i(M) for all maximal subgroups M of
G as is suggested by the work of Whiston:

m(G) ≤ 1 + max { i(M) | M maximal in G } .
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Thus, computationally at least, one should determine both m(G) and i(G) together
recursively. We develop a more subtle version of the preceding inequality that depends
on the existence of certain families of m(G) maximal subgroups of G which are in what
is called general position. The latter is in essence a geometric condition and will be one
of the main topics of study. Results for small groups suggests that one conceivable inter-
pretation of the computation is that it gives an explicit version of the Möbius function
computation: the terms have been grouped togather in a natural way so that all of the
cancellations from the negative values of the Möbius functions have already occurred
and what is left is a sum of positive terms.

Homogeneous Covers

If one considers universal mapping properties such as are possessed by bases of vector
spaces (the last property in our original list), bases of groups do not have that property
in general. Let G be any finite group and n an integer with n ≥ r(G) . Define the n -th

homogeneous cover of G to be the group H(n,G) = Fn/K where K is the intersection
of all of the kernels of the surjective homomorphisms from the free group of rank n onto
G . Note that each generating sequence of G of length n gives rise to such a kernel.
The groups H = H(n,G) that arise by this construction are called homogeneous of rank

n . They can be described in several equivalent ways:

• H satisfies a certain universal mapping propery,

• Aut(H) acts transitively on the set of generating sequences of H of length n ,

• the presentations for H with respect to any basis of size n are identical.

For G abelian, then H(n,G)≈(Ze)
n where e = exp(G) is the exponent of G . For

G = A5 we have H(2, A5)≈(A5)
19 . The exponent 19 occurs in the last example

because there are 19 orbits of the group Aut(A5) = S5 acting in the natural way on
the ordered pairs of generators (i.e., ordered bases of size 2 ) of A5 . More generally for
any non-abelian simple group S and any integer n ≥ r(S) = 2 , there exists a certain
unique integer-valued function f(n) (which depends on S ) such that H(n, S)≈Sf(n) .
This last result is a consequence of work of P. Hall around 1936. These and related
questions were investigated by Neumann and Neumann and were the motivation for the
result of Gaschütz mentioned earlier. In fact, essentially the same construction appears
in a standard proof that any finitely generated residually finite group is hopfian. The
ordinary quaternion group Q8 of order 8 has this property, as do all of the non-abelian
p groups of order p3 which have exponent p (that is, all non-identity elements have
order p ).

Exercise 4. Prove the statement about abelian homogeneous groups of rank n . Verify
that the groups of order p3 mentioned are the only non-abelian groups of this order
which are homogeneous of rank 2 .

The homogeneous cover of G is given as the subdirect product of a number of copies of
G and hence has properties that are very much like those of G . For example, H(n,G) is
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solvable if and only if G is solvable and they both have the same derived length. The two
groups even have the same simple Jordan-Hölder components although not necessarily
the same number of each type.

Many interesting questions arise from the study of these groups. For example, each of the
elements of a set of n generators of such a group will have all the same properties. They
all have the same exponent for example. If n > r(G) , that exponent is just exp(G) .
It is always true that the exponent of these generators divides exp(G) . However, if
n = r(G) that is not necessarily the case. The smallest such example which has order
72 is the group G = (Z3×Z3)o Q8 where Q8 acts as a group of matrices sitting inside
GL(2, Z3) . The group G has r(G) = 2 and exp(H(2, G)) = 4 whereas exp(G) = 12 .
It appears that a prime has vanished! The groups doing the acting in the semi-direct
product, e.g., Q8 were called “secretive” in some publications. A generalization of an
idea of W. Scharlau gives a way of directly determining which such groups have this
“secretive” property.

An even more suble question about homogeneous groups arises in the case of p -groups:
For a finite p -group G is it true that there exists an irredundant generating sequence
of G of length r(G) which contains an element having exponent exp(G) ? A group
for which this property fails will also fail to satisfy the Hughes Conjecture. The Hughes
Conjecture is known to be false, but the smallest counterexamples are of order 548 (Havas
and Vaughan-Lee); so a counterexample to our question about generators must be at
least as large.

Origins

The previous discussion is the original entry point into this topic for the second author
of this note. About 15 years ago, Persi Diaconis asked him if it would be possible to
define a “K-theory” of finite groups based on n -tuples of group elements (instead of
n -tuples of elements of a free module as in the classical case). Algebraic K -theory is
a subject which is often considered to be a generalization of linear algebra from the
study of vector spaces over a field to the study of modules over an arbitrary ring. The
ideas of Neumann and Neumann suggest a natural way to associate with any finite
group and positive integer n ≥ r(G) a homogeneous cover H of G having r(H) = n
with H being as close to G as possible (e.g., it has the same composition factors)
and which has the appropriate universal mapping property which could thus be used
as an analogue of “free modules”. One would then take the automorphism groups of
these along with natural maps to construct groups which would play the role of the
general linear groups in ordinary algebraic K-theory. This remark is inserted merely for
motivational purposes since we will neither be discussing nor attempting to construct
such a theory. In particular, it is not necessary to have any familiarity with any of the
concepts in this remark. However, this point of view and particularly trying to carry out
such a construction, gives rise to a multitude of interesting questions about finite groups.
Further, it suggests that any success in the current program might well have interesting
consequences for the development of group theory.


