Two-batch liar games on a general bounded channel

R.B. Ellis¹ K.L. Nyman²

¹Illinois Institute of Technology

²Loyola University Chicago

BilleraFest

The basic liar game

Basic liar game setting

Two-person game:

- Carole picks a number $x \in [n] := \{1, \ldots, n\}$
- Paul asks *q* questions to determine *x*: given $[n] = A_1 \dot{\cup} A_2 \dot{\cup} \cdots \dot{\cup} A_t$, for what *i* is $x \in A_i$?

Playing optimally, Carole answers with an adversarial strategy; it's a perfect information game.

Catch: Carole is allowed to lie up to *k* times.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example ternary game

- t = 3 (Ternary coding).
 - Paul partitions $[n] = A_1 \dot{\cup} A_2 \dot{\cup} A_3$ and asks "for what *i* is $x \in A_i$?"
 - Carole answers 1, 2, or 3

Example. n = 6, q = 4, t = 3, k = 1

Paul						Lies					
Rnd	A_1	A ₂	A_3	Carole	1	2	3	4	5	6	
1	{1,2}	$\{3, 4\}$	$\{5, 6\}$	2	\checkmark	\checkmark			\checkmark	\checkmark	
2	{3 }	{4 }	$\{1, 2, 5, 6\}$	3			\checkmark	\checkmark			
3	{1,2}	{3,4}	{5,6}	3	\checkmark	\checkmark	\checkmark	\checkmark			
4	{5 }	{6 }	Ø	1						\checkmark	

Therefore x = 5.

イロト イ団ト イヨト イヨ

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

Question. Given q, what is the maximum n for which Paul has a winning strategy to find x?

•
$$k = 0$$
, binary search, $n = 2^q$

- 4 ∃ ▶

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

< □ > < 同 > < 回 > <

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

- k = 0, binary search, $n = 2^q$
- *k* = 1, Pelc (87); *k* = 2, Guzicki (90); *k* = 3, Deppe (00)
- $k < \infty$, Spencer (1992) (up to bounded additive error)

Binary symmetric case

- t = 2 binary case \leftrightarrow "is $x \in A_1$?"
- symmetric lies: Carole may
 - lie with Yes when truth is No
 - lie with No when truth is Yes

イロト イポト イヨト イヨト

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

- k = 0, binary search, $n = 2^q$
- *k* = 1, Pelc (87); *k* = 2, Guzicki (90); *k* = 3, Deppe (00)
- $k < \infty$, Spencer (1992) (up to bounded additive error)
- $k/q \rightarrow f \in (0, 1/2)$, Berlekamp (1962+), Zingangirov

Binary symmetric case, k = 1

Question. Given *q*, what is the maximum *n* for which Paul has a winning strategy to find *x*?

- Let k = 1, Carole chooses $y \in [n]$
- q + 1 possible responses if y is the distinguished element:

	Game response string $w \in [2]^q$								
0 lies	$W_1 W_2 W_3 \cdots W_q$				<i>W</i> _{q-1}	Wq			
	\overline{W}_1	*	*	•••	*	*			
1 lio	<i>w</i> ₁	\overline{W}_2	*	• • •	*	*			
1 110		÷			÷				
	<i>w</i> ₁	W 2	W ₃	• • •	<i>W</i> _{q-1}	\overline{w}_q			

Sphere Bound y, y' can't both be $x \implies n \le 2^q / \binom{q}{\le 1}$ where $\binom{q}{\le 1} = \binom{q}{0} + \binom{q}{1}$.

イロト イポト イヨト イヨト 二日

Binary symmetric case, $k < \infty$

• $\binom{q}{\leq k}$ response strings corresponding to $y \in [n]$ being the distinguished element

Sphere Bound $n \leq 2^q / \binom{q}{<k}$

 $X_i :=$ elements of [n] with *i* accumulated lies

Paul balances $A_1 \dot{\cup} A_2$ by solving each round

$$|A_1 \cap X_i| \doteq \frac{|X_i|}{2}$$
, for $0 \le i \le k$.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Asymmetric lying

- asymmetric lies: Carole may
 - lie with Yes (1) when truth is No (2)
 - But not vice versa!

Called the Z-channel

- $k < \infty$, Dumitriu & Spencer (2004)
- $k < \infty$ w/improved asymptotics, Spencer & Yan (2003)

Asymmetric strategy: still based on balancing.

A motivating question

(Linial 2005): What if Paul knows that Carole is lying according to one of the *Z*-channels, but not which one?

Our answer: Yes! We generalize the "channel" constraining Carole's lies as much as possible.

A closer look: game lie strings

		Pau	l	Carole	6's lie string		
Rnd	<i>A</i> ₁	A_2 A_3		W	а	b	
1	{1,2}	$\{3, 4\}$	{5, <mark>6</mark> }	2	3	2	
2	{3 }	{4}	$\{1, 2, 5, 6\}$	3			
3	{1,2}	$\{3, 4\}$	{5, <mark>6</mark> }	3			
4	{5 }	{ 6 }	Ø	1	2	1	

Truthful string for y = 6w' = 3332Lie string for y = 6 $u = \begin{cases} 3 \\ 2 \end{cases}$ $2 \\ 1 \end{cases}$ Game response stringw = 233

Write u = (3, 2)(2, 1);

we say
$$w' \stackrel{u}{\rightarrow} w$$

The general bounded *t*-ary channel

- Lies: $L(t) := \{(a, b) \in [t] \times [t] : a \neq b\}$ (truth= a, Carole: b)
- Lie strings: $L(t)^j := \{(a_1, b_1) \cdots (a_j, b_j) : (a_i, b_i) \in L(t)\}$
- Empty string: $L(t)^0 := \{\epsilon\}$

Definition (General bounded channel)

Fix $k \ge 0$. A channel *C* of order *k* is an arbitrary subset

$$C\subseteq \bigcup_{j=0}^{k}L(t)^{j},$$

such that $C \cap L(t)^k \neq \emptyset$.

• • • • • • • • • • • •

Element survival and winning for Paul

Definition

An element $y \in [n]$ survives the game iff its lie string is in *C*.

Definition

Paul wins the original liar game iff at most one element survives after *q* rounds.

Paul wins the pathological liar game iff at least one element survives after *q* rounds.

 $\begin{array}{c} A_{C}(q) := \max n \\ A_{C}^{*}(q) := \min n \end{array} \right\} \quad \text{such that Paul can win the} \quad \begin{array}{c} \text{original} \\ \text{pathological} \end{array} \right\} \quad \text{liar} \\ \text{game with } n \text{ elements.} \end{array}$

< ロト < 同ト < ヨト < ヨト

Example channels

• Binary, symmetric, two lies. (t = 2, k = 2)

$$\begin{split} \mathcal{C} &= \{\epsilon, (1,2), \ (2,1), \\ &\quad (1,2)(1,2), \ (1,2)(2,1), \ (2,1)(2,1), \ (2,1)(1,2) \} \\ &\frac{2^q}{\binom{q}{\leq 2}} - \mathcal{O}(1) = \mathcal{A}_{\mathcal{C}}(q) \leq \mathcal{A}^*_{\mathcal{C}}(q) = \frac{2^q}{\binom{q}{\leq 2}} + \mathcal{O}(1) \\ &\text{Guzicki (`90); Ellis, Ponomarenko, Yan (`05)} \end{split}$$

• Binary, Z-channel, two lies. (t = 2, k = 2)

$$C = \{\epsilon, (2, 1), (2, 1)(2, 1)\}$$

 $A_C(q), A_C^*(q) \sim rac{2^{q+2}}{\binom{q}{\leq 2}}, \quad ext{Spencer, Yan (`03); here}$

Sac

イロト 不得 トイヨト イヨト 二日

Examples

Example channels (con't)

• Binary, unidirectional, two lies. (t = 2, k = 2)

$$C = \{\epsilon, (1, 2), (2, 1), (1, 2)(1, 2), (2, 1)(2, 1)\}$$
$$A_{C}(q), A_{C}^{*}(q) \sim \frac{2^{q+1}}{\binom{q}{\leq 2}}, \text{ here}$$

- Selective lies.
 - Pick arbitrary $L' \subseteq L(t)$.
 - Let $C = \bigcup_{j=0}^{k} (L')^{\overline{j}}$. $A_C(q), A_C^*(q) \sim \frac{t^{q+k}}{|L'|^k {q \choose \leq k}}$

Dumitriu, Spencer ('05); here

Example channels (con't)

Example (weighted lies).

- Weight the lies of L(t), normalized to minimum weight 1.
- Let *k* bound the total allowable weight of a game lie string.
- Let $C = \{ u \in L(t)^{\geq 0} : weight(u) \leq k \}.$

 $A_{C,t}(q)$ was solved asymptotically by Alshwede,Cicalese,&Deppe (2006+); slightly improved here.

Example (Model-based channel).

- Select a communication model (probability map $p: L(t)^{\geq 0} \rightarrow [0, 1]$).
- Select a probability threshold *p*₀.
- Let $C = \{u \in L(t)^{\geq 0} : p(u) > p_0\}.$

Paul must handle all likely errors/lie strings.

イロト イポト イヨト イヨト 二日

The proposed sphere bound

- Select Paul's strategy tree to be random partitions so the truthful response string is random.
- Carole picks a lie string $u \in C$, and places to put the lies.

Truthful string for y	w ' =	W'_1	•••	W'_{i_1}	•••	w'_{i_ℓ}	•••	w'_{i_j}	• • •	W'_q
Lie string for v	U =			a_1		a_ℓ		aj		
				b_1		b_ℓ		bj		
Response string	W =	<i>W</i> ₁		<i>W</i> _{<i>i</i>1}		W _i		Wij	• • •	Wq

• Compatibility: $\Pr(w'_{i_{\ell}} = a_{\ell}) = t^{-1}$

イロト イポト イヨト イヨト

The proposed sphere bound

• The expected number of response strings for which y survives is:

$$\sum_{u\in C} \binom{q}{|u|} t^{-|u|} \sim |C \cap L(t)^k| \binom{q}{k} t^{-k}.$$

Definition (Asymptotic Sphere Bound)

For q rounds, base t, and an order k channel C, the sphere bound is

$$\mathrm{SB}_{\boldsymbol{C}}(\boldsymbol{q}) := rac{t^{\boldsymbol{q}+k}}{|\boldsymbol{C}\cap L(t)^k|\binom{\boldsymbol{q}}{k}}$$

Carole's bound

Theorem (Carole's bound)

$$egin{array}{rcl} A_C(q) &\leq & {
m SB}_C(q)(1+o(1)), \ A_C^*(q) &\geq & {
m SB}_C(q)(1-o(1)). \end{array}$$

Proof idea.

- Get lower and upper bounds on the number of response strings for which an element *y* survives.
- If *n* is too large, the response string sets collide. If Carole responds with a string in the intersection, Paul cannot be sure which element Carole was thinking of.
- If *n* is too small, the response strings fail to cover $[t]^q$.

イロト イポト イヨト イヨト

Paul's bound

Theorem (Paul's bound)

$$egin{array}{rcl} A_C(q) &\geq & {
m SB}_C(q)(1-o(1)), \ A_C^*(q) &\leq & {
m SB}_C(q)(1+o(1)). \end{array}$$

Furthermore, we may restrict Paul to two nonadaptive batches of questions of sizes q_1 and q_2 , with

$$(\log_t q)^{3/2} << q_2 \leq \operatorname{cst} \cdot q^{k/(2k-1)},$$

Remark. Proof builds on techniques of Dumitriu&Spencer.

• • • • • • • • • • • •

(M, r)-balanced strings in $[t]^Q$

 By counting the number of ways to place lies in sections we can bound $|\{w': w' \xrightarrow{u} w\}|$.

Lemma

Let
$$\mathbf{u} = (a_1, b_1) \cdots (a_j, b_j)$$
, and $\mathbf{w} \in [t]^Q$ be (M, r) -balanced. Then

$$\binom{M}{j} \left(\frac{1}{t} \left\lceil \frac{Q}{M} \right\rceil - r(t-1) - \Theta(1)\right)^j \leq |\{\mathbf{w}' : \mathbf{w}' \xrightarrow{\mathbf{u}} \mathbf{w}\}| \leq \binom{M+j-1}{j} \left(\frac{1}{t} \left\lceil \frac{Q}{M} \right\rceil + r\right)^j$$

Ellis, Nyman (June 14, 2008)

DQA

イロト イロト イヨト イヨト

First batch of q_1 questions

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}.$)

- Paul maps *n* evenly to (M, r)-balanced vertices of $[t]^{q_1}$
- Paul asks: What is the *i*th coordinate in your element's length-*q*₁ string?

Carole's first batch response

Suppose Carole responds with balanced $w \in [t]^{q_1}$. Which $y \in [n]$ survive?

Any y identified with w' such that:

•
$$u \in C$$
, and
• $w' \stackrel{u}{\rightarrow} w$

Paul's second batch of q_2 questions

- y's survive in various ways
- Fit y's which can take more lies inside disjoint Hamming balls
- (M, r)-balance \Rightarrow control on $|\{w^{(i)} : w^{(i)} \xrightarrow{u} w\}|, |\{z : z \xrightarrow{v} z'\}|$
- Greedily pack other y's in unoccupied space

4 D b 4 A b

First batch, pathological case

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}$.)

- ⊒ - ≻

First batch, pathological case

(Proof illustrated with $C = \{\epsilon, (1, 2), (2, 1), (1, 2), (2, 1), (2, 1)\}$.)

Paul adds negligibly many elements evenly over [t]^{q1}

< < >> < <</p>

Paul's second batch, pathological case

Sac

ъ

• • • • • • • • • • • •

Paul's second batch, pathological case

- Count only additional y's for which Carole may not lie again
- Greedily convert packing into covering in $[t]^{q_2}$

4 A 1 - 4 ∃ →

Summary

Theorem

$$\mathrm{SB}_C(q)(1+o(1)) \ge A_C(q) \ge \mathrm{SB}_C(q)(1-o(1)),$$

 $\mathrm{SB}_C(q)(1-o(1)) \le A_C^*(q) \le \mathrm{SB}_C(q)(1+o(1)).$

Furthermore, (1) we may restrict Paul to two nonadaptive batches of questions of sizes q_1 and q_2 , with

$$q_1 + q_2 = q$$
 and
 $(\log_t q)^{3/2} << q_2 \leq \operatorname{cst} \cdot q^{k/(2k-1)},$

(2) the response sets for $A_C(q)$ are a subset of those for $A_C^*(q)$.

イロト イポト イヨト イヨト

Concluding remarks and open questions

Open Questions.

- Can we further reduce or eliminate completely the adaptiveness?
- Can these techniques be used to improved the asymptotic best known packings and coverings of [t]^q with fixed-radius Hamming balls (not tight for radius ≥ 2)?
- Will these techniques work for coin-weighing, fault-testing, and related search problems?

< ロト < 同ト < 三ト

Happy Birthday, Lou!and thank you!

DQC

< ロト < 回 > < 回 > < 回 > < 回</p>