The Role of Mathematics In
Understanding the Earth’s Climate

matics and Climate Research Network




Outline

 What is climate (change)"

e History of mathematics in climate science

« How do we study the climate?




Weather vs. Climate

« How the atmosphere
‘behaves” over a long period
of time

e Conditions of the atmosphere
over a short period of time
minutes - months

e Average of weather over time
and space (usually 30-yr avg

* Temp, humidity, precip, cloud
coverage (today




Weather vs. Climate

e Climate is what you expect, f

weather is what you get f
. \<Climate




What is Climate Change”
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Precipitation

Dry areas
get dryer,
wet areas
get wetter

CHANGE IN PRECIPITATION BY END OF 21st CENTURY

Climate scientists FEIREHRAR L b o
predict more oy

floods and

more droughts!




Mathematics and Climate
Change
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* Energy balance eqguation

. Incoming solar radiation
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Greenhouse Effect

Joseph Fourier attempted to
calculate the average
temperature of the Earth (c. 1820)

Hypothesized what has come to
be known as the “greenhouse
effect” — something is trapping
heat in the Earth’'s atmosphere

50 years before Stefan-Boltzmann
energy balance equation

/5 years before Arrhenius
quantified how much colder the
Earth “should” be




Greenhouse Effect

BNIE— (e o - o

Radiation
400 |- ¢




Energy Balance Cartoon
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* Mid-1700s: speculation that
iIce ages exists

 1830s: A few geologists claim
iIce-ages happend, ideas
rejected



lce Ages

« 1870s: Geologists reach
consensus that ice-ages
occurred (James Croll

e 1912-1924: Milutin Milankovic

o Eccentriciy (100 kyr) —




Milankovic Cycles

Milankovitch Cycles
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Snowball Earth

i .
2 — Qs(y)(l —aly,n) — (A+ BT(y)) — C(T(y) — T(n

ot

e Budyko and Sellers (1969
describe spatially dependent
energy balance model

e Assume Northern and
Southern hemisphere
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Snowball Earth

» 2 stable states of ice coverage:

 Warm climate (like now - and
Warm Climate :
even ice ages)
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e Snowball climate (entire
Earth covered in ice)
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e Dismissed as "‘mathematical
artifact” until 1990s

—
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Snowball!

20 30 40
AA = Radiative Forcing [W m™} * New consensus: 3 snowball
events (all over 600 myr

ago)
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How do we study
the climate”?
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How do we study
the climate”?
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the climate”?
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How do we study
the climate”?

D

Models! ﬂ—




Model Hierarchies
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Conceptual Models
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Comprehensive Models

Processes

Detail of Description




Conceptual Models

e Pros:

 Examples: Energy balance
e Simple enough to be analyzed

models
by a person
* Typically model 1 or 2 e Can explore all possibilities
processes/phenomena




Intermediate Complexity
and Process Models

atmaospheric grid

ocean basin boundary

Some spatial resolution

More processes (but not too
many)

ECBilt-Clio model

Simple enough for some i
iInterpretation — ——

y i | vegetation
+3 plant functicnal types: forest desett, grass

Thermodynamics using a 3-layer snow-ice model + leads

Too complex to analyze “by T

Ocean general circulation model

b ) *Primitive equations - free surface
a n *Mellor and Yamada's level-2.5 turbulence-closure scheme
*Parameterisation of density-driven downslope flows
+20 vertical levels

KNMI (The Netherlands)



GCMs and ESMs

* Joo complicated to interpret
causality

* Joo complicated to explore all
possibilities (where do we look?)

e Millions of lines of code (bugs?)

* Expensive (financially and
computationally)

CONTINENT

* [reated as “experimental Earths

e Useful for prediction”



Weather Prediction

Observation
of Current State
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Weather Prediction

Observation
of Current State
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Weather prediction

Observation
of Current State




Observations have error

Observed
state
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Error grows

Observed  State after 1
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and grows...

Observed State after Giae e
state 1hr 2 el
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Climate Prediction
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Climate Prediction




Climate Prediction




Climate Prediction




Confronting Models
with Data
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Confronting Models
with Data




Confronting Models
with Data




Data Assimilation




Data Assimilation




Data Assimilation




The Role of Mathematics
N Climate Science

Simulations

Observation as Experiments

/ Conceptual §
Models

Math




Dynamical Systems

Derivative —xample

from Calculus




Dynamical Systems

Derivative —xample

from Calculus




More than one variable?

System of
Differential Equations

= Ly




Vector Flelds

System of
Wilferential EclationsSa e e




Equllibrium Points
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Solutions
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Biturcation In
Algebra |

Quadratic equation

ar: +bxr+c=0
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Biturcation In
Algebra |

Quadratic equation

ar: +bxr+c=0




Biturcation In
Algebra |

Quadratic equation

No qualitative change
for small change
INn equatio

az’ +bxr+c=0




Biturcation In
Algebra |

Quadratic equation Big enough change
INn system leads to
gaciihei a0 qualitatively different

solutions




Biturcation In
Algebra |

Quadratic equation

Bifurcation occurs

N solution
T — when solutions

colligde




Bifurcations as
Tipping Points
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Tipping Points




Bifurcations as
Tipping Points




Hysteresis




Bifurcation vs.
INntrinsic Dynamics

* |dea of bifurcations assumes
modeler has control over how
parameters change — i.e., do
NOT depend on state of
system

Warm Climate
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e Snowball Earth: bifurcation
‘parameter” depends on
GHGs (which in turn depend
on temperature and ice)

Snowball!

30 40 50
= Radiative Forcing [W m™]

* How does behavior change?



Fast/Slow Dynamics

e Fast variable is like state of
system as before €L— 1

« Slow variable is acts partly like =
parameter, partly like state
variable




Picturing the
difference
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Example In
Ocean Circulation




Stommel’s Circulation Model

Figure: Schematic of Stommel's model (1961)—from Saha (2011).

Circulation variable: ¥



Stommel’s Circulation Model

Model Reduces: &
z~1,—1Tp—1

(Get one state
variable:

yNSe_Sp

Bifurcation

parameter:
ASA

K™ ATA




1 — slow variable
o= oy Al -

(a) Stable periodic orbit when (b) Time series for 1) for the
A=5 A=0.8 and 4 =0.1 trajectory in

(c) Canard trajectory when (d) Super-explosion when
A=1.1 A =0.995, and A=15 A=0.995, and
do = 0.01. do = 0.01.




Mixed-mode Oscillations

e 2D dynamical systems can have
up to 3 end states:

e Fixed equilibrium

e Periodic equilibrium (with
fixed amplitude and period)

 Run-away behavior
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« MMOs have big and small

oscillations—need 3D system! R R
Kyr Before Present

e 3D dynamics much more
complicated (chaos)



lce Ages over the
last 400 kyr
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lce Ages over the
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lce Ages over the
last 400 kyr




lce Ages over the
last 400 kyr
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lce Ages over the
last 400 kyr




El Nino-Southern Oscillation




How does ENSO work?

El Nino Conditions Normal Conditions

Convective
Ckctlation




The Data
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Predicting ENSO

August predictions

Talk of an El Nino year cools, but don’t
despair yet about winter

While a 'super EL Nino looks to be off the table
what does develop this year might not deliver what
many Canadians are hoping for

Don’t dismiss a 2014 ‘super’ El
Nino just yet




Predicting ENSO

e QOctober Prediction
* August Prediction

* Probability of ENSO: 0.68
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ENSO




Simulation




Simulation




Simulation 2




Simulation 2




Model Output

Cubic Approximation—-Dimensionalized




TYPICAL JANUARY-MARCH WEATHER ANOMALIES
AND ATMOSPHERIC CIRCULATION
DURING MODERATE TO STRONG
EL NINO & LA NINA
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