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Problem 1

Let a = .898989... and b = .010011000111...

(a) Find a+ b.

(b) Use your ideas about how to add a and b above to describe a procedure for adding any two real

numbers that are given as infinite decimals.

(c) Use the sum of .8989 and .0100 to estimate a + b. Explain why a + b and .8989 + .0100 differ

by less than 2
104

.
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(d) Use the sum of 700.8989 and 100.0100 to estimate the sum of 700.89898989... and 100.010011000111....

Do these sums differ by more, less or the same amount as the sums in part c) above?

(e) Use the product of .8989 and .0100 to estimate a times b. Explain why a times b and

(.8989)(.0100) differ by less than 1
104

(f) Use the product of 700.8989 and 100.0100 to estimate 700.89898989... times 100.010011000111....

Do you expect these products to differ by more, or less, or the same amount as answer to part

e) above?
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Problem 2

(a) Describe how to find the square of c = 9.373377333777....

(b) Let’s think about squaring any number between 0 and 50. What’s the smallest number of

decimal digits we can use in approximating the input and assure that the answer is within 1
105

of the true value? In other words, let cN be c truncated after N decimal digits. For example,

for c in part a) above, c2 = 9.37 and c4 = 9.3733. What’s the smallest number, N ,that will

assure that for any number c, 0 < c < 50, c2N is within 1
105

of c2?
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Problem 3

(a) For what values of x does the sequence x, x2, x3, ..., xn, ... converge? Let f(x) be the function

defined by lim
n→∞

fn(x) = f(x). What is the domain of f? Is f continuous on its domain?

(b) Let gn(x) = 1 + x + ... + xn−1 = 1−xn

1−x . For what values of x does gn(x) converge, and find its

limiting function, g(x). Given any tolerance ε, is there a place N in the sequence of functions

so that for n > N the error in using gn(x) as an approximation for g(x) is less than ε for all x

in I?
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Solution to Problem1

Let a = .898989... and b = .010011000111...

(a) Find a+ b.

[Discussion] Students quickly realize one of these numbers is irrational and so it is not possible to express the

sum as a sum of two rational numbers. What to do next? Most students have learned about irrational numbers

but have not thought about how to add two of them, or how to add an irrational to a rational number. Students

may need encouragement to “try something” and make some approximations. You might need to suggest that

they compute a few approximate sums, say truncating a and b after two decimal places and taking their sum,

or after ten, or after 20 decimal places. They will be hopeful that a pattern emerges. But after a number of

examples students see that there is no predictable pattern for the decimal digits of a+ b. I have often found that

it helps if I ask them, “Suppose I’m your boss, and your job during the next 10 minutes is to add these two

numbers. What would you do?” . Often students respond with something like, “If you were my boss, and I had

to add these numbers, I’d ask you how close you need the answer, and then I’d figure out how many decimal

places I needed to go out and chop them off and add them. ” That of course is exactly how you add the two

numbers.

(b) Use your ideas about how to add a and b to describe a procedure for adding any two real

numbers that are given as infinite decimals.

[Discussion] The process that students go through taking longer decimal approximations to a and b and adding

them is a process that defines a+b to within any tolerance we have for error. Let aN and bN be the finite decimal

numbers we obtain by truncating a and b after the Nth decimal place. The difference between a and aN is less than

1
10N

, and similarly the difference between b and bN is less than 1
10N

. Therefore, the difference between a+ b and

aN+bN is less than 2 1
10N

. We have described a process that determines a+b with arbitrary accuracy. The process

traps a+b in progressively narrower closed intervals that are nested one inside the next. This question of how to

add two real numbers leads to the topic of interval arithmetic, not only addition but multiplication and division of

infinite decimal numbers which are more complex. Key tools that are used in expressing these ideas more formally

are absolute value inequalities and the triangle inequality. We know that |a− aN | < 1
10N

and |b− bN | < 1
10N

. By

the triangle inequality (|c+ d| ≤ |c|+ |d|) we have |a+ b− (aN + bN )| ≤ |a− aN |+ |b− bN | < 1
10N

+ 1
10N

= 2
10N

.

Use enough decimal places, N , so that 2
10N

is less than your tolerance for error. Because many real numbers

are only known to us through a convergent sequence of rational numbers (think infinite decimals as a sequence

of finite decimal numbers) we add real numbers by adding the convergent sequences that represent them.
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(c) Use the sum of .8989 and .0100 to estimate a + b. Explain why a + b and .8989 + .0100 differ

by less than 2
104

.

[Discussion] If you choose not to use absolute value notation, here is how the discussion might go: We know

that 0 < a− a4 < 1
104 and 0 < b− b4 < 1

104 . Therefore a+ b− (a4 + b4) <
1

104 + 1
104 = 2

104 .

(d) Use the sum of 700.8989 and 100.0100 to estimate the sum of 700.89898989... and 100.010011000111....

Do these sums differ by more, less or the same amount as the sums in part c) above?

[Discussion] Use the same argument used for part b) letting a = 700.89898989... and b = 100.010011000111...

We know that 0 < a− a4 < 1
104 and 0 < b− b4 < 1

104 . Therefore a+ b− (a4 + b4) <
1

104 + 1
104 = 2

104 .

(e) Use the product of .8989 and .0100 to estimate a times b. Explain why a times b and

(.8989)(.0100) differ by less than 1
104

[Discussion] Let a = .89898989... and b = .010011000111... We know that 0 < a < a4 +
1

104 and 0 < b < b4 +
1

104 .

Multiplying the inequalities we get ab < a4b4 + a4
1

104 + b4
1

104 + 1
104

1
104 . Subtracting a4b4 from both sides and

factoring out the common 1
104 on the right side we get ab− (.8989)(.0100) < 1

104 (.8989 + .0100 + .0001) < 1
104 .

(f) Use the product of 700.8989 and 100.0100 to estimate 700.89898989... times 100.010011000111....

Do you expect these products to differ by more, or less, or the same amount as answer to part

e) above?

[Discussion] If we think the case is analogous to the case of addition, we would be mistaken. Let a = 700.89898989...

and b = 100.010011000111... then a4 = 700.8989 and b4 = 100.0100. As we can see from the work done in the so-

lution to part d) above ab < a4b4+a4
1

104 +b4
1

104 +
1

104
1

104 .. We get ab−a4b4 < (700.8989+100.0100+.0001) 1
104 =

.08009090. The size of the factors effects the error in using the product of rounded off numbers.
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Solution to Problem2

(a) Describe how to find the square of c = 9.373377333777....

[Discussion] Students will likely suggest that you can get an answer as close as you like to c2, by squaring a long

enough decimal approximation to c. This is the essence of the concept of continuity at a point c. It’s important

because many numbers, in fact most numbers, have to be rounded or approximated before we apply the function.

If f is continuous at c then given any tolerance we have for error, ε > 0 there is a precision for the input δ so

that whenever x is within δ of c, f(x) is within ε of f(c). That’s what it means when we write lim
x→c

f(x) = f(c).

(b) Let’s think about squaring any number between 0 and 50. What’s the smallest number of

decimal digits we can use in approximating the input and assure that the answer is within 1
105

of the true value? In other words, let cN be c truncated after N decimal digits. For example,

for c in part a) above, c2 = 9.37 and c4 = 9.3733. What’s the smallest number, N , that will

assure that for any number c, 0 < c < 50, c2N is within 1
105

of c2?

[Discussion] We want to know how close cN and c need to be so that |c2N − c2| ≤ 1
105 . Factoring the difference of

squares we see that this is equivalent to |cN − c| ≤ 1
105

1
cN+c . Observe that 0 < cN + c < 50 + 50 = 102. We see

that when |cN − c| ≤ 1
107 , |cN − c||cN + c| < |cN − c|100 ≤ 1

107 (100) =
1

105 . So if we use 7 decimal digits, c7, the

error we make in squaring c7 as opposed to squaring c does not exceed 1
105 . [Further Discussion] This problem

raises a very practical matter. If we are going to square truncated numbers in between 0 and 50, we’d like to use

the same decimal precision for all of the inputs and know that the error in the output is within our tolerance

for error. If a function f has this property on an interval I, we say f is uniformly continuous on I. So more

generally we are asking, is f(x) = x2 uniformly continuous on (0, 50)? As you can see, our argument above can

be used for any tolerance for error, not just 1
105 . So the answer is yes. [Even Further Discussion] Controlling

error in the output that arises from rounding off inputs is related to a function’s sensitivity to change. That is,

how does a change in input x− c compare to the change in output f(x)− f(c). This is measured by the slope of

the secant line between the points on the graph, and by the derivative when the change in input is small. Let’s

see how to generalize the approach above for a function that has a continuous derivative on a closed interval

[a, b] and how to use knowledge about the derivative to determine levels of precision for input on an interval.

That is, given any tolerance for error ε, and points any points x and c in [a, b], how close must x be to c to

assure that |f(x)−f(c)| < ε? Writing |f(x)−f(c)||x−c| |x− c| < ε, and using the mean value theorem for derivatives we

know that for some number d between x and c, |f(x)−f(c)||x−c| = |f ′(d)| . Since we assumed that f ′ is continuous on

[a, b], |f ′| is continuous as well. By the extreme value theorem |f ′| has a maximum M on [a, b]. As long as f is

not a constant function, M is not 0 and we can assure that |f(x)− f(c)| < ε by taking |x− c| < ε
M . (Constant

functions are uniformly continuous on any interval because the change in the output f(x)−f(c) = 0 < ε whatever

x and c are.)
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Solution to Problem 3

(a) For what values of x does the sequence x, x2, x3, ..., xn, ... converge? Let f(x) be the function

defined by lim
n→∞

fn(x) = f(x). What is the domain of f? Is f continuous on its domain? Why

do you think this example is interesting or important?

[Discussion] For any x such that |x| < 1 we have that lim
n→∞

xn = 0 and lim
n→∞

1n = 1. So the sequence of functions

fn converge to the function f(x) = 0 for |x| < 0 and f(1) = 1. f is not continuous on its domain, −1 < x ≤ 1.

The surprising thing about this example is that a sequence of functions that are each continuous on the interval

−1 < x ≤ 1 can converge to a function that is NOT continuous on that interval. We would like to avoid this

kind of outcome. For this reason we are interested in having a stronger definition of convergence of a sequence

of continuous functions on an interval. We don’t just want the limit to exist at each point, clearly that is not

enough. If we insist that the sequence of continuous functions converges uniformly on an interval, then it is

possible to prove that its limit function is continuous on the interval. We say that fn converges uniformly on

an interval I, if given any tolerance ε, there is an N so for n > N |f(x)− fn(x)| < ε for all x in I.

(b) Let gn(x) = 1 + x + ... + xn−1 = 1−xn

1−x . For what values of x does gn(x) converge, and find its

limiting function, g(x). Given any tolerance ε, is there a place N in the sequence of functions

so that for n > N the error in using gn(x) as an approximation for g(x) is less than ε for all x

in I?

[Discussion] Let 0 < c < 1. We will show that gn(x) converges uniformly to g(x) = 1
1−x on the interval [−c, c].

Let ε be any tolerance for error in approximating g by gn. The error in using gn(x) to approximate g(x) is

| 1−x
n

1−x −
1

1−x | = |
xn

1−x |. Since x is between −c and c which are between -1 and 1, we see that | x
n

1−x | < |
cn

1−c |.

Since c is a fixed number between 0 and 1 once we are given ε we can find a large enough N so that cN

1−c < ε.

Thus we have shown that for n > N , |gn(x)− g(x)| = | 1−x
n

1−x −
1

1−x | = |
xn

1−x | <
cn

1−c < ε for all x in [−c, c]. The

sequence of functions gn(x) = 1 + x + ... + xn−1 converges uniformly to 1
1−x on [−c, c]. Uniform convergence

of a sequence of functions is the kind of convergence you imagine a sequence of functions should have–that if

you go out far enough in the sequence and sketch the graphs of the gn the graphs are all within a narrow band

of each other. This result means that on the interval [−.99, .99] for example, for n big enough the graphs of the

polynomial functions gn(x) = 1 + x+ ...+ xn−1 become indistinguishable from the graphs of each other and the

graph of 1
1−x . Why do we care about sequences of functions converging uniformly to a function? It’s because in

order to evaluate a function like sinx or ex we’d like to be able to replace the function by a convergent sequence

of approximating polynomials, and we’d like to evaluate the approximating polynomial at numbers that are all

rounded off to the same level of precision. And we want to know that the result of evaluating the wrong function

at the wrong value gives the very close to right answer!
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