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Abstract. We study boundary value problems for the Laplacian on a domain
Ω consisting of the left half of the Sierpinski Gasket (SG), whose boundary

is essentially a countable set of points X. For harmonic functions we give

an explicit Poisson integral formula to recover the function from its boundary
values, and characterize those that correspond to functions of finite energy.

We give an explicit Dirichlet to Neumann map and show that it is invertible.

We give an explicit description of the Dirichlet to Neumann spectra of the
Laplacian with an exact count of the dimensions of eigenspaces. We compute

the exact trace spaces on X of the L2 and L∞ domains of the Laplacian on

SG. In terms of the these trace spaces, we characterize the functions in the
L2 and L∞ domains of the Laplacian on Ω that extend to the corresponding

domains on SG, and give an explicit linear extension operator in terms of
piecewise biharmonic functions.

1. Introduction

The Laplacian on the Sierpinski Gasket was first constructed as a generator of
a stochastic process, analogous to Brownian motion, by Kusuoka [6] and Goldstein
[3]. An analytic method of constructing the Laplacian on the Sierpinski Gasket as
a renormalized limit of graph Laplacians was later developed by Kigami [4]. With a
well defined Laplacian, it is possible to study differential equations on the Sierpinski
Gasket, although strictly speaking, these are not differential equations.

Harmonic functions on the Sierpinski Gasket have been studied in detail and
the Dirichlet problem on the entire gasket reduces to solving systems of linear
equations and multiplying matrices. However, there has been little research into
boundary value problems on bounded subsets of fractals, except for [8], [9] and
[13] that consider domains generated by horizontal cuts of the gasket. Hence we
believe it is appropriate to begin our exploration by studying the Dirichlet problem
on a boundary generated by a vertical cut along one of the symmetry lines of the
gasket. This is the simplest example of a boundary given as a level set of a harmonic
function. We hope our results give insight into more general techniques for solving
the Dirichlet problem and other boundary value problems on more general domains.

Most of our results are applications of Kigami’s harmonic calculus on fractals
to our half gasket. His theory includes many mathematical objects specific to the
world of fractal analysis, such as renormalized graph energies, normal derivatives
and renormalized graph Laplacians. We will present some notation as we proceed,
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but for precise definitions and known facts (in particular the results that we call
Proposition), see textbooks [5] and [11].

The Sierpinski Gasket, denoted SG, is the unique nonempty compact set satisfy-
ing SG =

⋃2
j=0 FjSG where Fj are contractive mappings given by Fjx = (x+qj)/2

and qj are the vertices of an equilateral triangle. Following convention, the bound-
ary of SG is defined to be V0 = {q0, q1, q2}. Hence boundary in our language differs
from the standard topological definition of boundary. Using the mappings Fj , we
can iteratively generate a set of vertices Vm where m depends on the number of
times we apply Fj . From Vm, we can find a graph approximation Γm. See Figure
1.1 for an illustration. Notice how the boundary points {qj} are oriented and we
keep this orientation for the entire paper.

q1 q2

q0

q1 q2

q0

q1 q2

q0

q1 q2

q0

Figure 1.1. Left to right: Γ0,Γ1,Γ2,Γ3 of SG

We work on the domain Ω, which can be defined in terms of the level sets of a
harmonic function. Let hs be the skew symmetric harmonic function with boundary
values (hs(q0), hs(q1), hs(q2)) = (0, 1,−1). Then Ω = {x ∈ SG \ V0 : hs(x) > 0}
and ∂Ω = q0 ∪ q1 ∪X where X = {x ∈ SG \V0 : hs(x) = 0}. We write Ω = Ω∪ ∂Ω.

Figure 1.2 provides an illustration of Ω, which is precisely the left half of SG
including the points on the symmetry line. In the figure, we labeled the points
xm = Fm−1

0 F2q1 and ym = Fm0 q1. Note that X = {xm}∞m=1, so each xm is
important for obvious reasons. Each ym is important topologically because the
removal of any ym turns Ω into a disconnected set.

We also labeled the open sets Ym = Fm−1
0 F1(SG \ V0). Note that ∂Ym =

{xm, ym−1, ym} and we write Y m = Ym ∪ ∂Ym. Y m is classified as a cell because
a cell is defined to be the image of SG under any compositions of contractive
mappings Fj . Thus Ω =

⋃∞
m=1 Y m, which is an almost disjoint union.

Although Ω is not globally self-similar because Ω cannot be written as a union
of smaller copies of itself, it is locally self-similar because each Y m is a fractal. The
retention of this local property is extremely important for our analysis because any
result regarding SG also holds for Y m with a proper normalization factor.
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Figure 1.2. A decomposition of Ω

In the later sections, we will be interested in restriction and extension operators.
Hence, we need to label points on the other half of the gasket. Let zm and Zm
the reflections of ym and Ym respectively across the symmetry line containing X.
Then SG =

⋃
m(Ym ∪ Zm) is an almost disjoint union and this decomposition will

be useful in the later sections.

We begin by studying the Dirichlet problem on Ω:

(1.1)


4u = 0 on Ω,

u(q1) = a0 on ∂Ω,

u(xm) = am on ∂Ω,

where 4 denotes the (Kigami) Laplacian with respect to the standard measure,
u : Ω → R is the unknown, and {am}∞m=0 is the boundary data. Notice that we
do not prescribe boundary data at q0 even though q0 ∈ ∂Ω. This is by preference
and is inconsequential because for almost the entire paper, we will assume {am}
converges. We will refer to (1.1) as the BVP.

In Section 2, we construct a solution to the BVP using the harmonic extension
algorithm, which we explain in that section. The space of C(Ω) solutions to the
BVP is one-dimensional, but in general, the solutions blow up at q0. We show that
if the boundary data converges, then we can find a C(Ω) solution that is unique in
this function space.

In Section 3, we study the graph energy of the C(Ω) solution to the BVP. Al-
though its energy is complicated, the culminating theorem presents an equivalence
between finite energy and the normalized summability of the the boundary data.
In fact, finiteness depends only on how quickly the data converges and not on the
limiting value.

In Section 4, we show that given stronger assumptions on the boundary data,
we can obtain the existence of normal derivatives on ∂Ω. In particular, we are
interested in the behavior of the normal derivatives on X. The normal derivatives
of the C(Ω) solution on X can be found in terms of the boundary data. This
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relationship allows us to define a Dirichlet to Neumann map and we show that this
map is invertible.

In Section 5, we discuss both Dirichlet and Neumann eigenfunctions on Ω. For
more information on eigenvalues and eigenfunctions on fractals, see [2] and [10].
There are no new eigenfunctions on Ω, but for a fixed eigenvalue, its multiplicity
on Ω is different from its multiplicity on SG. For each eigenfunction, we count the
dimension of its eigenspace.

Section 6 and Section 7 are closely related to each other. We define a restriction
operator that maps a function to its restriction to and normal derivatives on X.
We characterize the function spaces domL24(SG) and domL∞4(SG) in terms of
the restriction operator. Using this result, we provide necessary and sufficient
conditions for extending functions in domL24(Ω) and domL∞4(Ω) to biharmonic
functions in domL24(SG) and domL∞4(SG) respectively.

Section 8 acts as an appendix and in this section, we prove numerous lemmas
about Green’s functions and special types of sequences and series. Since these
results are used in multiple sections and are purely technical lemmas, we have
decided to place them in its own section. While the sequence and series lemmas
may not be new, we have not found them in previously published work.

2. Solution to the Boundary Value Problem

We begin this section by discussing the graph energy. The energy plays a central
role in fractal analysis on SG because other objects such as harmonic functions,
normal derivatives and the Laplacian, are defined in terms of the energy. Given
a fixed value of m and a real valued function u on SG, the (renormalized) graph
energy of level m is

Em(u) =
∑
x∼my

(
5

3

)m
[u(x)− u(y)]2,

where x ∼m y means x and y are in the same cell of level m. The graph energy of
u is E(u) = limm→∞ Em(u), allowing the value +∞.

Given boundary conditions, we define a harmonic function to be the unique
function that minimizes the graph energy subject these constraints. Additionally,
our suggestive use of the word “harmonic” is justified: harmonic functions as min-
imizers of energy are equivalent to functions that satisfy the differential equation
4u = 0. The Laplacian 4 is defined in Section 4.

The simplest tool for constructing harmonic functions subject to boundary con-
ditions is the harmonic extension algorithm. For a function u defined on Vm, we can
define its harmonic extension to Vm+1 as follows. Let {vj} be the three boundary
points of a cell with {u(vj)} given. Then the harmonic extension of u to the three
new points is shown in Figure 2.1. It is not difficult to see that given u on Vm, this
is the unique extension that minimizes the graph energy at level m+ 1.

We can apply the harmonic extension algorithm infinitely many times and the
resulting function on V∗ =

⋃
m Vm will be harmonic. It is not difficult to see

that functions generated by the harmonic extension algorithm must be continuous.
Furthermore, V∗ is dense in SG and so for continuous functions, it suffices to define
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them on a dense subset. Thus, we say a harmonic function is determined by its
boundary values.

u(v1) u(v2)

u(v0)

u(v0)+2u(v1)+2u(v2)
5

2u(v0)+2u(v1)+u(v2)
5

2u(v0)+u(v1)+2u(v2)
5

Figure 2.1. Harmonic Extension Algorithm

We can use the harmonic extension algorithm to construct a solution to the
BVP. Any harmonic function on Y m is determined by its values on ∂Ym. Since
Ω =

⋃
m Y m, any harmonic function on Ω is determined by its value at the points

{xm} and {ym}. In the following lemma, we see that there are additional constraints
we must take into account.

Lemma 2.1. Fix m ≥ 2. Let u be a continuous piecewise harmonic function with
boundary data given by (1.1). Then 4u(ym) = 0 if and only if

(2.1) u(ym) =
16

5
u(ym−1)− 3

5
u(ym−2)− am −

3

5
am−1.

Proof. Consider the level m approximation of Ym−1 ∪ Ym. The value of u at the
midpoint of ym−1 and ym−2 and the midpoint of ym−1 and xm−1 are determined by
the harmonic extension algorithm, shown in Figure 2.2. If 4u(ym−1) = 0, then u
satisfies the mean value property at ym−1. Thus, u(ym−1) is the average of its four
neighboring points in Vm and simplifying that equation yields (2.1). Conversely, if
(2.1) holds, then it is straightforward to check that 4u(ym−1) = 0. �

Theorem 2.2. For every choice of convergent boundary data {am}, there is a one
dimensional space of C(Ω) solutions to the BVP. Given a parameter λ, the solution
to the BVP uλ is the harmonic extension of uλ(xm) = am, uλ(y1) = λ and

uλ(ym) = 3mFm(λ) +
1

5m
Gm(λ),(2.2)

where

Fm(λ) =
1

14

(
5λ− a0 − a1 − 18

m∑
k=2

1

3k
ak

)
and

Gm(λ) =
1

14

(
−5λ+ 15a0 + 15a1 + 4

m∑
k=2

5kak

)
.
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u(ym−2) am−1

u(ym−1)

2u(ym−1)+2u(ym−2)+am−1

5
2u(ym−1)+u(ym−2)+2am−1

5

am

u(ym)

Figure 2.2. Harmonic extension

Proof. By Lemma 2.1, uλ must satisfy the recurrence (2.1). The recurrence is
linear, so we can formulate the equation in terms of matrices. Define

A =

[
0 0
− 3

5 −1

]
and B =

[
0 1
− 3

5
16
5

]
.

Then the recurrence can be written as[
uλ(ym)
uλ(ym+1)

]
= Bm

[
a0

λ

]
+

m∑
k=1

Bm−kA

[
ak
ak+1

]
.

Solving the system, we find that

uλ(ym) = 3m
(

1

14

)(
5λ− a0 −

m−1∑
k=1

1

3k
ck

)
+

1

5m

(
1

14

)(
−5λ+ 15a0 +

m−1∑
k=1

5kck

)
,

where ck = 5ak+1 + 3ak. We want our formula in terms of ak rather than ck, so
substituting

m−1∑
k=1

5kck = 4

m∑
k=2

5kak + 15a1 − 5m3am

and
m−1∑
k=1

1

3k
ck = 18

m∑
k=2

1

3k
ak + a1 −

1

3m
3am

into the previous equation for uλ(ym) yields (2.2). Extending these values by the
harmonic extension algorithm uniquely yields a harmonic function u continuous on
Ω. �

Since uλ is a linear combination of a 3m term and a 1/5m term, uλ may blow up
at q0. Naturally, we ask whether we can find a λ such that uλ is continuous on Ω.
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Lemma 2.3. Suppose uλ ∈ C(Ω) satisfies the BVP for convergent {am}. Then
uλ ∈ C(Ω) if and only if

(2.3) lim
m→∞

uλ(ym) = lim
m→∞

uλ(xm).

Proof. Suppose uλ ∈ C(Ω) solves the BVP. Then uλ is continuous at q0, which is
equivalent to (2.3). Conversely, it is easy to see that q0 is the only point at which
uλ can be discontinuous. Then (2.3) implies uλ is continuous at q0, which shows
that uλ ∈ C(Ω). �

Theorem 2.4. If am → 0 as m → ∞, then the function u given by the harmonic
extension of u(xm) = am,

(2.4) u(y1) =
1

5

(
a0 + a1 + 18

∞∑
k=2

1

3k
ak

)
,

and (for m ≥ 2)

u(ym) =
1

5m

(
a0 −

9

7

∞∑
k=1

1

3k
ak +

2

7

m∑
k=1

5kak

)
+

9

7

∞∑
k=1

1

3k
am+k(2.5)

solves the BVP. Furthermore, this function is the unique solution in C(Ω).

Proof. Substituting (2.4) into (2.2) yields (2.5). By triangle inequality,

|u(ym)| ≤ 1

5m

(
|a0|+

9

7

∞∑
k=1

1

3k
|ak|+

2

7

m∑
k=1

5k|ak|

)
+

9

7

∞∑
k=1

1

3k
|am+k|.

We claim that |u(ym)| → 0 as m→∞. Clearly the first term tends to zero in the
limit. The second term tends to zero because convergent sequences are bounded.
Since both the boundary data and 1/5m converge to zero, for all ε > 0, there exists
M such that for all m ≥ M , we have |am| < ε and 1/5m < ε. For m ≥ M , we see
that

∞∑
k=1

1

3k
|am+k| ≤ ε

∞∑
k=1

1

3k
=
ε

2

and

1

5m

m∑
k=1

5k|ak| =
1

5m

M∑
k=1

5k|ak|+
m∑

k=M+1

5k−m|ak| ≤ C1ε

(
max

1≤k≤M
|ak|
)

+ C2ε.

Therefore u satisfies condition (2.3) and by Lemma 2.3, u ∈ C(Ω). Since harmonic
functions that are continuous up to the boundary satisfy the maximum principle
[13], uniqueness follows from the standard uniqueness argument for linear differen-
tial equations that satisfy the maximum principle. �

Corollary 2.5. If am → A as m → ∞ for some constant A, then the function u
given by the harmonic extension of u(xm) = am,

(2.6) u(y1) =
1

5

(
a0 + a1 + 18

∞∑
k=2

1

3k
ak

)
,
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and (for m ≥ 2)

(2.7) u(ym) =
1

5m

(
a0 −

9

7

∞∑
k=1

1

3k
ak +

2

7

m∑
k=1

5kak

)
+

9

7

∞∑
k=1

1

3k
am+k

solves the BVP. Furthermore, this function is the unique solution in C(Ω).

Proof. Consider the modified BVP

(2.8)


4u = 0 on Ω,

u(q1) = a0 −A on ∂Ω,

u(xm) = am −A on ∂Ω.

Since am − A→ 0, the hypotheses of Theorem 2.4 are satisfied. Then there exists
w ∈ C(Ω) that solves (2.8) and the formula for w(ym) is given by (2.5) under the
map ak 7→ ak − A. By construction, the function u = w + A solves the BVP with
u ∈ C(Ω). The maximum principle implies that u is unique. �

3. Energy Estimate

In this section, we look to answer questions regarding the energy of the C(Ω)
solution to the BVP. In particular, is the energy always finite and if not, can we
characterize functions of finite energy in terms of a condition on the boundary
data? Our main theorem shows that harmonic functions on Ω do not necessarily
have finite energy and provides a simple characterization.

Given a function u, we say u ∈ domE if and only if E(u) <∞. Following standard
notation, dom0E is the space of functions that have finite energy and vanish on the
boundary V0. It is known that domE ⊂ C(SG) and in fact, is a dense subset.

Suppose u is a piecewise harmonic function on Ω that is harmonic on each Ym
with data given by (1.1). Then the energy of u restricted to Ym is constant after
level m and is determined by u(ym), u(ym−1), and am. It follows that

E(u)|Ym
=

(
5

3

)m [
(u(ym)− u(ym−1))2 + (u(ym)− am)2 + (u(ym−1)− am)2

]
,

where it is understood that u(y0) = u(q1) = a0. Then E(u) is the sum of the energy
of each cell,
(3.1)

E(u) =

∞∑
m=1

(
5

3

)m [
(u(ym)− u(ym−1))2 + (u(ym)− am)2 + (u(ym−1)− am)2

]
.

If we add the additional assumption that u ∈ C(Ω) solves the BVP, then an equation
for E(u) as a function of {am} can be obtained by substituting (2.6) and (2.7) into
(3.1). However, E(u) is series of quadratic terms of series, which is too complicated
to analyze directly. Instead, we estimate it.

Lemma 3.1. Suppose u ∈ C(Ω) solves the BVP with convergent {am}. Then we
have the energy estimate

C1

∞∑
m=1

(
5

3

)m
(am+1 − am)2 ≤ E(u) ≤ C2

∞∑
m=1

(
5

3

)m
(am+1 − am)2 <∞.
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Proof. We prove the lower bound first. By ignoring the first term of (3.1), we have

E(u) ≥
∞∑
m=1

(
5

3

)m [
(u(ym)− am)2 + (u(ym−1)− am)2

]
.

Using basic calculus, we find that u(ym) = (1/8)(5am+1 + 3am) minimizes the
previous series. Substituting this value of u(ym) into the previous inequality, we
obtain

∞∑
m=1

(
5

3

)m
5

8
(am+1 − am)2 +

5

3
(a1 − a0)2 ≤ E(u) <∞.

For the upper bound, consider the piecewise harmonic function w given by the
harmonic extension of w(xm) = w(ym) = am and w(q1) = a0. Since u is a global
harmonic function while w is a piecewise harmonic function, we have E(u) ≤ E(w).
Note that E(w) is given by (3.1) because w is a piecewise harmonic function satis-
fying the boundary conditions. Then

E(u) ≤ E(w) =

∞∑
m=1

(
5

3

)m
10

3
(am+1 − am)2 +

10

3
(a1 − a0)2 <∞,

which completes the proof. �

Theorem 3.2. Suppose u ∈ C(Ω) solves the BVP with convergent boundary data
am → A. Then u ∈ domE if and only if ‖(5/3)m/2(am −A)‖`2 <∞. Additionally,
we have the upper bound E(u) ≤ C‖(5/3)m/2(am −A)‖`2 .

Proof. Suppose u ∈ C(Ω) solves the BVP with convergent boundary data am → A.
Lemma 3.1 says that E(u) < ∞ if and only if ‖(5/3)m/2(am+1 − am)‖`2 < ∞.
Applying Lemma 8.9 yields the desired statement. �

4. Normal Derivatives

Although the normal derivative and the (standard) Laplacian on SG are defined
independently, they are closely connected via the Gauss-Green formula.

For a continuous function u, its normal derivative at qj ∈ V0, denoted ∂nu(qj),
is defined to be

(4.1) ∂nu(qj) = lim
m→∞

(
5

3

)m [
2u(qj)− u(Fmj qj+1)− u(Fmj qj−1)

]
.

We say ∂nu(qj) exists if the above limit exists. In the special case u is harmonic,
we have the simplified formula

(4.2) ∂nu(qj) = 2u(qj)− u(qj−1)− u(qj+1).

The formula for the normal derivative of a harmonic function at a boundary point
of a cell is similar to the above formula, except we require a renormalization factor
depending on the level. A junction point is a boundary point of two adjacent cells
of the same level, and the normal derivative with respect to the cells will differ
by a minus sign. If we need to distinguish between the two normal derivatives at
a junction point, we use either (←,→), (↗,↙) or (↖,↘), corresponding to the
geometrical notion of a normal derivative.
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Proposition 4.1. Suppose u ∈ dom4. Then at each junction point, the local
normal derivatives exist and ↗ ∂nu + ↙ ∂nu = 0. This is called the matching
condition for normal derivatives.

The Laplacian of a function is defined in terms of its weak formulation. First, we
define the (symmetric) bilinear form of the energy: given functions u, v and integer
m, the bilinear form of the energy is

Em(u, v) =
∑
x∼my

(
5

3

)m
[u(x)− u(y)][v(x)− v(y)].

SG has a unique symmetric self-similar probability measure that we denote dx.
Then the Laplacian can be defined as follows. Suppose u ∈ domE and f is contin-
uous. Then we say u ∈ dom4 with 4u = f if

E(u, v) = −
∫
SG

f(x)v(x) dx

for all v ∈ dom0E (functions in domE vanishing on V0). Since E(u, v) = E(v, u), sub-
tracting the Gauss-Green formula from its transposed version yields the symmetric
Gauss-Green formula

(4.3)

∫
SG

(4uv − u4v) dx−
∑
V0

(v∂nu− u∂nv) = 0.

The following result relates the normal derivatives of a function with its Laplacian.

Proposition 4.2 (Gauss-Green). Suppose u ∈ dom4. Then ∂nu exists on V0 and
the Gauss-Green formula,

E(u, v) = −
∫
SG

4uv dx+
∑
V0

v∂nu,

holds for all v ∈ domE.

For the remainder of this section, we assume u ∈ C(Ω) solves the BVP with
convergent boundary data. Naturally, we are interested in analyzing the behavior
of ∂nu(x) for x ∈ ∂Ω. For all points in Ω except q0, the formulas for the normal
derivatives of u are given by (4.2). Using this equation, with the appropriate
normalization factor, the normal derivative of u at ym with respect to the cell Ym
is

(4.4) ↗ ∂nu(ym) =

(
5

3

)m
[2u(ym)− u(ym−1)− am].

Similarly, the normal derivative of u at xm with respect to Ym is

(4.5) → ∂nu(xm) =

(
5

3

)m
[2am − u(ym)− u(ym−1)].

However (4.2) does not give us the equation for ↑ ∂nu(q0) because u is only defined
on Ω. But we can define ∂nu(q0) in a natural way.

Lemma 4.3. If u ∈ dom4(SG), then

(4.6) ↑ ∂nu(q0) = 2 · lim
m→∞

↗ ∂nu(ym).
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Proof. Write u = us + ua where us and ua are the symmetric and skew-symmetric
parts of u respectively. Since ua|Fm

0 (SG) = O(1/5m), we have

↑ ∂nua(q0) = 2 · lim
m→∞

↗ ∂nua(ym) = 0.

For the symmetric part, consider the triangle Tm with boundary points {q0, ym, zm}
and the harmonic function v on Tm with v(q0) = v(ym) = v(zm) = 1. Applying the
symmetric Gauss-Green formula (4.3) for us and v, we find that

↓ ∂nus(q0) +↗ ∂nus(ym) +↖ ∂nus(zm) =

∫
Tm

4us dx.

Notice that↗ ∂nus(ym) =↖ ∂nus(zm) by symmetry. Using the normal derivative
matching condition of u at q0, we see that ↑ ∂nus(ym) = − ↓ ∂nus(q0). Making
these substitutions and taking the limit m→∞, we find that

2 · lim
m→∞

↗ ∂nus(ym) − ↑ ∂nus(q0) = lim
m→∞

∫
Tm

4us dx = 0,

because 4u is bounded and the measure of Tm tends to zero in the limit. �

Motivated by this lemma, we define ↑ ∂nu(q0) for u defined on Ω by (4.6). In
the special case that u ∈ C(Ω) solves the BVP with convergent data, then

(4.7) ↑ ∂nu(q0) = lim
m→∞

[
5m
(

30

7

) ∞∑
k=m+1

1

3k
ak −

1

3m

(
12

7

) m∑
k=1

5kak

]
,

which we obtained by substituting (2.7) into the definition of ↑ ∂nu(q0).

Notice that (4.2) implies that for harmonic functions defined on SG, its normal
derivative exists everywhere. However, this is not true for harmonic functions on
Ω because the limit in (4.7) may not exist. It is straightforward to see that if
am = A1 + A2(3/5)m + o((3/5)m), then the limit in (4.7) exists and equals a
constant times A2. It is not clear whether or not the converse of this statement
holds.

To find the normal derivatives on X in terms of the boundary data, we substitute
(2.7) into (4.5), which yields
(4.8)

ηm =

(
5

3

)m(
3am −

12

7

∞∑
k=1

1

3k
am+k

)
− 1

3m

(
6a0 +

12

7

m∑
k=1

5kak −
54

7

∞∑
k=1

1

3k
ak

)
,

where ηm = → ∂nu(xm). We can think of (4.8) as a Dirichlet to Neumann map
on X because it maps the Dirichlet boundary data to the corresponding normal
derivatives. Define the infinite vectors

η =


η1

...
ηi
...

 , a =


a1

...
ai
...

 and a0 = 6a0


1/3

...
1/3i

...

 ,
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and the infinite matrices L = Diag[(5/3)i] and K with entries

Ki,j =


7
16 −

27
8

1
5i

1
3j if i = j,

3
4

3i

3j − 27
8

1
5i

1
3j if i < j,

3
4

5j

5i − 27
8

1
5i

1
3j if i > j.

Then (4.8) can be written as

η =
16

7
L(I−K)a + a0.

Since we assumed {am} converges and u ∈ C(Ω), we see that {am}, {u(ym)} ∈ `∞.
Then (4.5) implies ‖(3/5)mηm‖`∞ < ∞. For this reason, for a real number r, we
define the space

`r,∞ = {{cm} : ‖rmcm‖`∞ <∞}.

Then we define the Dirichlet to Neumann map DN : `∞ → `3/5,∞ given by

DNa =
16

7
L(I−K)a + a0.

Theorem 4.4. The Dirichlet to Neumann map is invertible.

Proof. We see that DN is a composition of L : `∞ → `3/5,∞ with I−K : `∞ → `∞

plus a translation. The translation is not important and obviously L is invertible
because it is diagonal.

It is well known that I−K is invertible if and only if ρ(K) < 1, where ρ(K) is the
spectral radius of K. The sum of the entries of the i-th row is

∞∑
j=1

Ki,j = Ki,i +

i−1∑
j=1

Ki,j +

∞∑
j=i+1

Ki,j <
7

16
+

3

4

i−1∑
j=1

5j

5i
+

∞∑
j=i+1

3i

3j

 .

Consequently,

‖K‖∞ = sup
i

∞∑
j=1

Ki,j <
7

16
+

3

4

 ∞∑
j=1

1

5j
+

∞∑
j=1

1

3j

 = 1.

Since K is a positive matrix, the Perron-Frobenius Theorem for positive matrices
states that ρ(K) ≤ ‖K‖∞. Thus, ρ(K) < 1, which shows that I−K is invertible. �

5. Eigenfunctions

The exact spectral asymptotics on the whole gasket and the structure of the
spectrum has been analyzed previously [12]. Motivated by that result, we discuss
eigenvalues and eigenfunctions on the half gasket. Observe that:

(1) A Dirichlet eigenfunction on Ω extends by odd reflection to a Dirichlet eigen-
function on SG and conversely.

(2) A Neumann eigenfunction on Ω extends by even reflection to a Neumann eigen-
function on SG and conversely.
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Thus there are no new eigenvalues on Ω because odd eigenfunctions on SG are
Dirichlet eigenfunctions on Ω and even eigenfunctions on SG are Neumann eigen-
functions on Ω. Hence we count the number of even and odd eigenfunctions on
SG.

On SG, there are #Vm = (3m+1 + 3)/2 vertices on level m, of which m + 1 lie
on q0 ∪ X and three are boundary points V0. The eigenfunctions with eigenvalue
λ ≤ C05m for a specific choice of C0 are born on level k ≤ m and are in one-to-one
correspondence with the graph eigenfunctions on Vm, so there are (3m+1 + 3)/2
Neumann eigenfunctions and (3m+1 − 3)/2 Dirichlet eigenfunctions. Thus on Ω,

#{Neumann eigenfunctions with λ ≤ C05m} =
1

2

(
3m+1 + 3

2
+m+ 1

)
,

#{Dirichlet eigenfunctions with λ ≤ C05m} =
1

2

(
3m+1 − 3

2
−m

)
,

because the m + 1 vertices on q0 ∪ X contribute even functions to the Neumann
count while the m vertices on X do not contribute to the Dirichlet count. Note
that the correction terms m+ 1 and −m are of the order log 5m. This is consistent
with the observation that ∂Ω is zero dimensional. We can be more specific about
individual multiplicities of eigenvalues on Ω. For a set U , define the functions

N(U) = #{Neumann eigenfunctions on U},
D(U) = #{Dirichlet eigenfunctions on U}.

(1) 0-series (constant eigenfunctions) have multiplicity N(Ω) = 1 and D(Ω) = 0.
(2) 2-series only show up in the Dirichlet spectrum on SG, but they are all even

so they are absent from the Dirichlet spectrum of Ω. Thus, N(Ω) = 0 and
D(Ω) = 0.

(3) 3-series are entirely Neumann eigenfunctions on SG that are born on level 0
with multiplicity 2. Then N(Ω) = 1 and D(Ω) = 0.

(4) 5-series are born on level k where k ≥ 1 for Dirichlet eigenfunctions and k ≥ 2
for Neumann eigenfunctions. If Sk denotes the number of cycles of level less
than k, then on SG, we find that N(SG) = Sk and D(SG) = Sk + 2. For a
cycle that lies on X, the eigenfunction is odd, so that contributes to D(SG)
but not to N(SG). See Figure 5.1 for an example of such a function. Note
that any unlabeled point means the function is defined to be zero at that point.
Additionally, of the two extra Dirichlet eigenfunctions on SG, exactly one is
odd, as shown in Figure 5.2.
The number of cycles of level n is 3n−1 and exactly one of these lies on X. So
there are (3n−1 +1)/2 odd eigenfunctions and (3n−1−1)/2 even eigenfunctions.
Thus

N(Ω) =

k∑
n=1

1

2
(3n−1 − 1) =

1

2

(
3k − 1

2
− k
)

and

D(Ω) =

k∑
n=1

1

2
(3n−1 + 1) + 1 =

1

2

(
3k + 3

2
+ k

)
.

(5) 6-series on SG are born on level k where k ≥ 1 for Neumann eigenfunctions
and k ≥ 2 for Dirichlet eigenfunctions. We know that N(SG) = #Vk−1 and
D(SG) = #Vk−1−3. Neumann eigenfunctions are obtained by giving arbitrary
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−1

1

1

−1

−1 1

Figure 5.1. Odd eigenfunction on Γ2

1 −1 −11

Figure 5.2. Another odd eigenfunction on Γ2

values on the points in Vk−1, while Dirichlet eigenfunctions are obtained by
giving arbitrary values on the points Vk−1 \ V0.
To find the multiplicities on Ω, we just have to count the even eigenfunctions
and the odd eigenfunctions. Hence

N(Ω) =
1

2

(
3k + 3

2
+ k

)
and D(Ω) =

1

2

(
3k − 3

2
− k + 1

)
.

6. Trace Theorem

Consider the restriction map R given by Ru = {(u(xm), ∂nu(xm))}, where u is
some function defined on some set containing X. That is, R maps u to its function
values on X and its normal derivatives on X. In this section, we determine the
image of domL24(SG) and domL∞4(SG) under R. We say that u ∈ domL24(SG)
if u is continuous on SG and4u ∈ L2(SG), and analogously for u ∈ domL∞4(SG).

To simplify notation, we define the following spaces. Define the Lipschitz space

Lip = {{cm} : there exists M such that |cm+1 − cm| ≤M for all m}.

The norm on Lip/Constants is ‖cm‖Lip = inf M where the infimum is taken over
all M satisfying the previous condition. It follows directly from the definition of
Lip that {cm} ∈ Lip if and only if there exists M such that |cm − cn| ≤M |m− n|
for all m and n.
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We define the following trace spaces:

T∞ =
{
{(am, ηm)} : am = A1 +A2(3/5)m + a′m, ‖5ma′m‖`∞ , ‖3mηm‖Lip <∞

}
,

T2 =
{
{(am, ηm)} : am = A1 +A2(3/5)m + a′m, ‖(25/3)m/2a′m‖`2 , ‖3m/2ηm‖`2 <∞

}
,

with their respective norms

‖{(am, ηm)}‖T∞ = |A1|+ |A2|+ ‖5ma′m‖`∞ + ‖3mηm‖Lip,

‖{(am, ηm)}‖2T2 = |A1|2 + |A2|2 + ‖(25/3)m/2a′m‖2`2 + ‖3m/2ηm‖2`2 .
Clearly both trace norms satisfy the triangle inequality. Note that the defined norm
‖·‖T2 makes T2 a Hilbert Space with the obvious inner product. Similarly, we define
norms on domL∞4(SG) and domL24(SG) by

‖u‖domL∞4(SG) = ‖u‖L∞(SG) + ‖4u‖L∞(SG),

‖u‖2domL24(SG) = ‖u‖2L2(SG) + ‖4u‖2L2(SG).

In the above definition, we could have replaced ‖ · ‖2L2 term with ‖ · ‖2L∞ , but that
would not be a Hilbert Space norm.

As suggested by the notation, our goal is to prove that R maps domL∞4(SG)
and domL24(SG) to their corresponding trace spaces. In Section 7, we will show
that the mapping is onto.

Theorem 6.1 (Trace Theorem).

(1) The restriction operator R : domL∞4(SG)→ T∞ is bounded and

‖Ru‖T∞ ≤ C1‖u‖L∞(SG) + C2‖4u‖L∞(SG).

(2) The restriction operator R : domL24(SG)→ T2 is bounded and

‖Ru‖T2 ≤ C1‖u‖L∞(SG) + C2‖4u‖L2(SG).

The proof of the theorem is technical and rather long, so we split the proof into
multiple lemmas. Our primary tool will be the Green’s formula. Given any function
u on SG for which 4u exists, we can write

(6.1) u(x) =

∫
SG

G(x, y)4u(y) dy + h(x),

where G(x, y) is the Green’s function (the definition is given in Section 8.1) and
h is the harmonic function with boundary conditions h|V0

= u|V0
. We will use

the Green’s function to relate an arbitrary function to its restriction to X and its
normal derivatives on X. The derivations are digressive, so we have placed these
computations into their own section. The important formulas and inequalities are
given by (8.4), (8.5), and (8.7). Note that the definition of the function Ψm is given
in (8.3).

Since it is easy to check the conditions for the harmonic function h in (6.1), let
us do that first.

Lemma 6.2. If h is harmonic, then Rh ∈ T∞ and Rh ∈ T2 with

‖Rh‖T∞ = |u(q0)|+ 1

2
|u(q1) + u(q2)− 2u(q0)|+ 1

2
|u(q1)− u(q2)|,(6.2)

‖Rh‖T2 = |u(q0)|+ 1

2
|u(q1) + u(q2)− 2u(q0)|+ 1

2
√

2
|u(q1)− u(q2)|.(6.3)
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Proof. If h is harmonic, then h is a linear combination of the constant function,
the skew-symmetric harmonic function (with respect to X) and the symmetric
harmonic function (with respect to X). Thenu(q0)

u(q1)
u(q2)

 = A1

1
1
1

+A2

0
1
1

+A3

 0
−1

1

 ,

where the coefficients are the coefficients A1, A2, and A3 are the weights of the
constant, symmetric and skew-symmetric functions respectively. Solving the system
for A1, A2, A3 in terms of u|V0

, we find

A1 = u(q0), A2 =
1

2
(u(q1) + u(q2)− 2u(q0)), and A3 =

1

2
(u(q1)− u(q2)).

On X, we see that

(1) a constant function is constant with zero normal derivative.
(2) a skew-symmetric harmonic function is zero with normal derivative A3/3

m.
(3) a symmetric harmonic function has values A2(3/5)m with zero normal de-

rivative.

Then h(xm) = A1 +A2(3/5)m and ∂nh(xm) = A3/3
m. �

In the following lemma, we prove the bulk of the domL∞4(SG) case. Proving
the lemma directly from the Green’s formula would be difficult, so we employ the
following indirect method. For the function values of u ∈ domL∞4(SG) on the
vertical boundary, we prove an intermediate statement about the linear combination
5u(xm+1)−3u(xm). We consider the linear combination 5u(xm+1)−3u(xm) because
the troublesome

∑m
k=1 Ψk(1, 2, 2) term of (8.5) cancels out in the linear combination

5G(xm+1, y)−3G(xm, y). Then the intermediate result, coupled with a lemma from
Section 8.2, will give us the desired statement, except for a few estimates which we
prove without much trouble.

Likewise, for the normal derivatives of u ∈ domL∞4(SG) on the vertical bound-
ary, we prove an intermediate statement about the linear combination 3ηm+1 − ηm
because the troublesome

∑m
k=1 3kΨk(0,−1, 1) term in (8.7) disappears in the lin-

ear combination. The intermediary result, combined with the proper lemma from
Section 8.2 and more bounding, yields the desired normal derivative estimate.

Lemma 6.3. If u ∈ domL∞4(SG) with u = 0 on V0, then Ru ∈ T∞ and

(6.4) ‖Ru‖T∞ ≤ C‖4u‖L∞(SG).

Proof. Suppose u ∈ domL∞4(SG) with Ru = {(am, ηm)}. Using the Green’s
formula (Proposition 8.1) on 5am+1 − 3am and the equation for G(xm, y) given by
(8.5), after some simplification, we obtain

5am+1 − 3am =
1

10

(
3

5

)m ∫
SG

[3Ψm+1(3, 1, 1)− 5Ψm(−1, 1, 1)]4u dy

Then applying inequality (8.4) yields

|5am+1 − 3am| ≤ ‖4u‖L∞
1

10

(
3

5

)m ∫
SG

|3Ψm+1(3, 1, 1)− 5Ψm(−1, 1, 1)| dy

≤ ‖4u‖L∞
C

5m
.
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Rearranging the above inequality yields

‖5m(5am+1 − 3am)‖`∞ ≤ C‖4u‖L∞ .
Lemma 8.6 implies that am = A(3/5)m + a′m, where A = limm→∞(5/3)mam and

‖5ma′m‖`∞ ≤ ‖5m(5am+1 − 3am)‖`∞ .
The previous two inequalities immediately yield

(6.5) ‖5ma′m‖`∞ ≤ C‖4u‖L∞ .
It follows from the Green’s formula and standard bounding methods that(

5

3

)m
|am| ≤

(
5

3

)m ∫
SG

|G(xm, y)||4u| dy ≤ C1‖4u‖L∞ + C2‖4u‖L∞
1

3m
.

Since A = limm→∞(5/3)mam, the above implies that

(6.6) |A| ≤ C‖4u‖L∞ .
We use a similar technique to prove the desired statement about the normal deriva-
tives. Using the equation for ηm given by (8.7) to compute 3ηm+1 − ηm, we obtain

3ηm+1 − ηm =
1

10

∫
SG

[−3Ψm+1(5, 1,−1) + 5Ψm(1,−1, 1)]4u dy − 3ϕm+1 + ϕm,

where ϕm was defined in the lemma. Then

|3ηm+1 − ηm| ≤ C‖4u‖L∞
∫
SG

|3Ψm+1(5, 1,−1)− 5Ψm(1,−1, 1)| dy + |3ϕm+1 − ϕm|

≤ C‖4u‖L∞
1

3m
,

where we used (8.4) and (8.1) to bound the first and second terms respectively.
Rearranging, we find that

‖3m(3ηm+1 − ηm)‖`∞ ≤ C‖4u‖L∞ .
The above estimate allows us to apply Lemma 8.7 which gives us

‖3mηm‖Lip = ‖3m(3ηm+1 − ηm)‖`∞ .
The previous two inequalities imply

(6.7) ‖3mηm‖Lip ≤ C‖4u‖L∞ .
Finally, combining our inequalities (6.5), (6.6) and (6.7), we see that

‖Ru‖T∞ = |A|+ ‖5ma′m‖`∞ + ‖3mηm‖Lip ≤ C‖4u‖L∞ .
Since am = A(3/5)m + a′m and ‖Ru‖ <∞, we conclude that Ru ∈ T∞. �

In the following lemma, we prove the majority of the domL24(SG) statement
of the Trace Theorem. We use an indirect approach similar to that of the proof for
the domL∞4(SG) case, except the statements are considerably harder to prove.
Proving the lemma directly from the Green’s formula without proving the inter-
mediary result would be extremely difficult, mainly because the Cauchy-Schwarz
inequality is too wasteful for the type of estimate we desire.

The outline of the proof is similar to that of Lemma 6.3. For u ∈ domL24(SG),
we prove intermediary results about the linear combinations 5am+2− 8am+1 + 3am
and 3ηm+1−16ηm+1 +5ηm, where as usual, am = u(xm) and ηm = ∂nu(xm). These
linear combinations are written as linear combinations of integrals, but the primary
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integrand of each linear combination is supported on a set not containing q0. This
support allows us give a more precise estimate, thereby limiting the wastefulness of
Cauchy-Schwartz. Then applying results from Section 8.3 and some more bounding
will give us the desired statements.

Lemma 6.4. If u ∈ domL24(SG) with u = 0 on V0, then Ru ∈ T2 and

(6.8) ‖Ru‖T2 ≤ C‖4u‖L2(SG).

Proof. Suppose u ∈ domL24(SG) with Ru = {(am, ηm)}. Using the Green’s for-
mula (Proposition 8.1) on 5am+2 − 8am+1 + 3am and the equation for G(xm, y)
given by (8.5), after much computation, we obtain

5am+2 − 8am+1 + 3am =

(
3

5

)m ∫
SG

Gm4u dy,

where we defined

Gm(y) =
1

50
[9Ψm+2(3, 1, 1)− 20Ψm+1(1, 0, 0) + 25Ψm(1,−1,−1)].

We show that Gm is supported on Dm = Ym ∪ Ym+1 ∪ Ym+2 ∪Zm ∪Zm+1 ∪Zm+2.
Since Gm is a linear combination of harmonic splines, we see that Gm vanishes on
Ym′ ∪ Zm′ for m′ < m. Using the harmonic extension algorithm, notice that

25Ψm(1,−1, 1)(ym+2) = 25Ψm(1,−1, 1)(zm+2) = −9,

20Ψm+1(1, 0, 0)(ym+2) = 20Ψm+1(1, 0, 0)(zm+2) = 0,

9Ψm+2(3, 1, 1)(ym+2) = 9Ψm+2(3, 1, 1)(zm+2) = 9.

Thus Gm(ym+2) = Gm(zm+2) = 0 and consequently, Gm vanishes on Ym′ ∪Zm′ for
m′ > m + 2, which proves that Gm is supported on Dm. Taking advantage of the
support of Gm, we can write

5am+2 − 8am+1 + 3am =

(
3

5

)m ∫
Dm

Gm4u dy,

Applying Cauchy-Schwarz and inequality (8.4) on the above equation yields

|5am+2 − 8am+1 + 3am|2 ≤ C‖4u‖2L2(Dm)

(
3

25

)m
.

By definition of Dm and linearity of the integral, we have

‖4u‖2L2(Dm) =

m+2∑
k=m

‖4u‖2L2(Yk∪Zk),

‖4u‖2L2(SG) =

∞∑
k=1

‖4u‖2L2(Yk∪Zk).

(6.9)

Using the upper bound on |5am+2 − 8am+1 + 3am|2 and the above two equations,
we obtain

‖(25/3)m/2(5am+2 − 8am+1 + 3am)‖`2 ≤ C‖4u‖L2(SG).

This estimate allows us to apply Lemma 8.10. Thus am = A1 + A2(3/5)m + a′m,
where A1 = limm→∞ am, A2 = limm→∞(5/3)m(am −A1), and

‖(25/3)m/2a′m‖`2 ≤ C‖(25/3)m/2(5am+2 − 8am+1 + 3am)‖`2 .



BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET 19

The above two inequalities immediately yield

(6.10) ‖(25/3)m/2a′m‖`2 ≤ C‖4u‖L2(SG).

We claim that A1 = 0 and |A2| ≤ C‖4u‖L2(SG). Applying Cauchy-Schwarz to the
Green’s formula for am, we find that that(

5

3

)m
|am| ≤ C1‖4u‖L2(SG) + C2‖4u‖L2(SG)

1

3m/2
.

The above inequality implies that A1 = 0 and

(6.11) |A2| ≤ C‖4u‖L2(SG).

We use a similar argument to prove the estimate on the normal derivatives. Using
Lemma 8.5 to compute 3ηm+2 − 16ηm+1 + 5ηm, we see that

3ηm+2 − 16ηm+1 + 5ηm =

∫
SG

Φm4u dy − (3ϕm+2 − 16ϕm+1 + 5ϕm),

where we defined

Φm =
1

10
[−3Ψm+2(5, 1,−1) + 10Ψm+1(8, 1,−1)− 25Ψm(1,−1, 1)].

We show that Φm has support on Dm as well. Since Φm is a linear combination
of harmonic splines, Φm vanishes on Ym′ ∪ Zm′ for m′ < m. Using the harmonic
extension algorithm, we have

− 25Ψm(1,−1, 1)(ym+2) = 25Ψm(1,−1, 1)(zm+2) = 1,

− 10Ψm+1(8, 1,−1)(ym+2) = 10Ψm+1(8, 1,−1)(zm+2) = −2,

− 3Ψm+2(5, 1,−1)(ym+1) = 3Ψm+2(5, 1,−1)(zm+1) = −3.

Thus, Φm(ym+2) = Φm(zm+2) = 0 and consequently, Φm vanishes on Ym′ ∪Zm′ for
m′ > m+ 2. Using the compact support of Φm, we can write

3ηm+2 − 16ηm+1 + 5ηm =

∫
Dm

Φm4u dy − (3ϕm+2 − 16ϕm+1 + 5ϕm),

It is straightforward to find an upper bound on the linear combination of ϕm terms.
Using Cauchy-Schwarz and inequality (8.2), we obtain

|3ηm+2 − 16ηm+1 + 5ηm|2 ≤ C
(
|ϕm+2|2 + |ϕm+1|2 + |ϕm|2

)
≤ C‖4u‖2L2(Dm)

1

3m
.

Using Cauchy-Schwarz and inequality (8.4), we find that∣∣∣∣∫
Dm

Φm4u dy
∣∣∣∣2 ≤ ‖4u‖2L2(Dm)

∫
Dm

|Φm|2 dy ≤ C‖4u‖2L2(Dm)

1

3m
.

Combining the above two inequalities and (6.9) yields

(6.12) ‖3m/2(3ηm+2 − 16ηm+1 + 5ηm)‖`2 ≤ C‖4u‖L2(SG).

The hypothesis of Lemma 8.11 is satisfied, so we have ηm = 5mA+ η′m with

(6.13) ‖3m/2η′m‖ ≤ C1(η2 − 5η1)2 + C2‖3m(3ηm+2 − 16ηm+1 + 5ηm)‖`2 .

However, applying Cauchy-Schwarz to (8.7) yields

|ηm| ≤ C‖4u‖L2(SG)
1

3m/2
.
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This forces A = 0 and so ηm = η′m. Note that the above bound provides the upper
bound (η2 − 5η1)2 ≤ C‖4u‖2L2(SG). Combining this inequality with (6.12) and

(6.13) yields

(6.14) ‖3m/2η′m‖2 ≤ C‖4u‖2L2(SG).

Finally, using (6.10), (6.11) and (6.14), we see that

‖Ru‖2T2 = |A1|2 + |A2|2 + ‖(25/3)m/2a′m‖2`2 + ‖3m/2ηm‖2`2 ≤ C‖4u‖2L2(SG).

Since am = A2(3/5)m + a′m and ‖Ru‖2T2 <∞, we conclude that Ru ∈ T2. �

Finally, we have the necessary results to prove the Trace Theorem.

Proof of the Trace Theorem. Suppose u ∈ domL∞4(SG) or u ∈ domL24(SG),
andRu = {(am, ηm)}). Let h be the harmonic function determined by the boundary
values h|V0

= u|V0
. Let w = u−h, and note that 4w = 4u and w = 0 on V0. The

Green’s formula states that

u(x) = h(x) +

∫
SG

G(x, y)4w(y) dy.

(1) Suppose u ∈ domL∞4(SG). Using triangle inequality on u = w + h, the
estimate (6.2) applied to h, and the estimate (6.4) applied to w, we find that

‖Ru‖T∞ ≤ |u(q0)|+ 1

2
|u(q1)+u(q2)−2u(q0)|+ 1

2
|u(q1)−u(q2)|+C‖4u‖L∞(SG).

(2) Suppose u ∈ domL24(SG). Using triangle inequality on u = w + h, (6.3)
applied to h, and (6.8) applied to w, we find that

‖Ru‖T2 ≤ |u(q0)|+1

2
|u(q1)+u(q2)−2u(q0)|+ 1

2
√

2
|u(q1)−u(q2)|+C‖4u‖L2(SG).

�

7. Extension Operators

In this section, we present two different extension theorems. The first extension
will be a right inverse to the restriction map R. The second extension will map
solutions to differential equations on the half-gasket to a well-behaved function
on the whole gasket. The ideas behind the two extensions are similar, but with
different computations and formulas. In order to construct the desired extensions,
we will require the following result. If will give us the exact conditions under which
a piecewise function is in the domain of the Laplacian.

Proposition 7.1 (Gluing Theorem). Let u and f be defined by gluing pieces {uj}
and {fj} (j = 0, 1, 2), with 4uj = fj on FjSG. Then u ∈ dom4 with 4u = f if
and only if fj(Fiqj) = fj(Fjqi) (i 6= j) holds for {uj} and {fj} (so u and f are
continuous) and the matching conditions on normal derivatives hold at the three
points.
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7.1. The Inverse Operator to R. We seek a linear extension operator E that
is a right inverse of the restriction operator R. The desired extension will satisfy
E : T∞ → domL∞4(SG) and E : T2 → domL24(SG). In order to construct this
extension operator, we study piecewise biharmonic functions. Biharmonic functions
satisfy the differential equation 42u = 0 and in particular, biharmonic functions
satisfying 4u = C for some constant C is a four-dimensional space on SG. One
way to specify a constant Laplacian function on SG is to specify the value of the
function on V0 and the constant.

Lemma 7.2. Suppose 4u = C on some cell of level m with boundary points
p0, p1, p2. Then the outward normal derivative of u at pj is

(7.1) ∂nu(pj) =

(
5

3

)m
[2u(pj)− u(pj+1)− u(pj−1)] +

C

3m+1
.

Proof. Let v be the harmonic function on the cell with the boundary values v(pj) =
1 and v(pj+1) = v(pj−1) = 0. Since v is harmonic on a cell of level m, using (4.1)
with the proper normalization, we have ∂nv(pj) = 2(5/3)m while ∂nv(pj+1) =
∂nv(pj−1) = −(5/3)m. Applying the symmetric Gauss-Green formula (4.3), we
obtain the desired formula. �

Lemma 7.3. Given any sequences {am} and {ηm}, there exist a piecewise bihar-
monic function u on SG and sequences {C ′m} and {Cm} such that Ru = {(am, ηm)},
4u = C ′m on Ym, 4u = Cm on Zm, and the normal derivative matching conditions
hold at {xm}, {ym}, and {zm}.

Proof. We construct two functions u1 and u2 such that u1(xm) = am but ∂nu1(xm) =
0, while u2(xm) = 0 but ∂nu(xm) = ηm. Then the sum u = u1 + u2 will satisfy
Ru = {(am, ηm)}. Of course, we must do this carefully so that u satisfies the other
claimed properties.

Consider the symmetric piecewise biharmonic function u1 satisfying u1(xm) =
am, u1(ym) = u1(zm) = (1/8)(5am+1 + 3am), and 4u1 = D′m on Ym ∪ Zm with

D′m = 5m
(

3

8

)
(5am+1 − 8am + 3am−1).

This information determines u1 on Ym∪Zm because as mentioned earlier, a constant
Laplacian function is determined by its boundary values and the value of its Lapla-
cian. Consequently, u1 is determined everywhere because SG =

⋃
m(Ym ∪ Zm).

Using (7.1) to compute the normal derivatives of u1 at xm, ym and zm, it is straight-
forward to check that ∂nu1(xm) = 0 and the normal derivative matching conditions
hold.

Consider the skew-symmetric piecewise biharmonic function u2 satisfying the
conditions u2(xm) = 0, u2(ym) = −(1/8)(3/5)m(ηm+1 + ηm), u2(zm) = −u2(ym),
4u2 = −Em on Ym and 4u2 = Em on Zm, where

Em = 3m
(

1

8

)
(3ηm+1 − 16ηm + 5ηm−1).

Again, these constraints determine u2 everywhere on SG. Writing down the normal
derivatives of u2 at xm, ym and zm using (7.1), we see that ∂nu2(xm) = ηm and
the normal derivative matching conditions hold.
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Then the function u = u1 + u2 satisfies u(xm) = am, ∂nu(xm) = ηm,

u(ym) =
1

8
(5am+1 + 3am)− 1

8

(
3

5

)m
(ηm+1 + ηm),

u(zm) =
1

8
(5am+1 + 3am) +

1

8

(
3

5

)m
(ηm+1 + ηm),

(7.2)

4u = C ′m on Ym and 4u = Cm on Zm where

C ′m = 5m
(

3

8

)
(5am+1 − 8am + 3am−1)− 3m

(
1

8

)
(3ηm+1 − 16ηm + 5ηm−1),

Cm = 5m
(

3

8

)
(5am+1 − 8am + 3am−1) + 3m

(
1

8

)
(3ηm+1 − 16ηm + 5ηm−1).

(7.3)

Because normal derivatives add linearly, u satisfies the normal derivative matching
conditions at xm, ym and zm. �

As a result of the above lemma, we can define the extension operator E which
maps two sequences {(am, ηm)} to the function u given in the lemma. This operator
is well defined because the process described by the lemma generates exactly one
function for each pair of sequences. Additionally, it is not difficult to see that E is
a linear operator.

Theorem 7.4. There exist a bounded linear extension map E : T∞ → domL∞4(SG)
and E : T2 → domL24(SG) with R ◦ E = Id.

Proof. Suppose {(am, ηm)} ∈ T∞ and let u = E{(am, ηm)}. In order to apply the
Gluing Theorem, we need to check that u is continuous. It suffices to check for
continuity at q0 because u is clearly continuous everywhere else. In order to show
that u is continuous at q0, we need to show that limm→∞ u(xm) = limm→∞ u(ym) =
limm→∞ u(zm). Since {(am, ηm)} ∈ T∞, we have am = A1 + A2(3/5)m + a′m with
‖5ma′m‖`∞ <∞ and ‖3mηm‖Lip <∞. Then (7.2) reads

u(ym) = A1 +
3

4

(
3

5

)m
A2 +

1

8
(5a′m+1 + 3a′m)− 1

8

(
3

5

)m
(ηm+1 + ηm),

u(zm) = A1 +
3

4

(
3

5

)m
A2 +

1

8
(5a′m+1 + 3a′m) +

1

8

(
3

5

)m
(ηm+1 + ηm).

Taking the limit m→∞ in the above equations, we see that A1 = limm→∞ u(ym) =
limm→∞ u(zm) = limm→∞ am, which verifies the continuity of u at q0. Recall that
Lemma 7.3 tells us that u satisfies the normal derivative matching conditions at
{xm}, {ym} and {zm}. Thus the hypotheses of the Gluing Theorem are satisfied, so
the theorem implies that 4u is well defined. We need to show that 4u ∈ L∞(SG).
Observe that (7.3) reads

C ′m = 5m
(

3

8

)
(5a′m+1 − 8a′m + 3a′m−1)− 3m

(
1

8

)
(3ηm+1 − 16ηm + 5ηm−1),

Cm = 5m
(

3

8

)
(5a′m+1 − 8a′m + 3a′m−1) + 3m

(
1

8

)
(3ηm+1 − 16ηm + 5ηm−1).
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Using Lemma 8.7 to obtain an upper bound on the normal derivative terms in Cm
and C ′m, we find that

‖4u‖L∞ ≤ ‖Cm‖`∞ + ‖C ′m‖`∞ ≤M1 ‖5ma′m‖`∞ +M2 ‖3mηm‖Lip .

Therefore, E : T∞ → domL∞4(SG).

Suppose {(am, ηm)} ∈ T2 and let u = E{(am, ηm)}. Again, we need to check that
u is continuous at q0 in order to apply the Gluing theorem. By definition of T2, we
have am = A1 +A2(3/5)m +a′m with ‖(25/3)m/2a′m‖`2 <∞ and ‖3m/2ηm‖`2 <∞.
Then |a′m| → 0 and |ηm| → 0. By the same argument for the T∞ case, u is
continuous at q0, hence continuous everywhere. By Lemma 7.3, u satisfies the
normal matching conditions at {xm}, {ym} and {zm}. Then 4u is well defined by
the Gluing Theorem. Finally, 4u ∈ L2(SG) because

‖4u‖2L2 =

∞∑
m=1

|C ′m|2 + |Cm|2

3m
≤M1

∞∑
m=1

(
25

3

)m
|a′m|2 +M2

∞∑
m=1

3m|ηm|2.

Therefore, E : T2 → domL24(SG). �

7.2. Extensions of Solutions to Differential Equations on Ω. The material
presented in this section is motivated by the classical theory of extending functions
with 4u ∈ Lp on a nice domain in Euclidean space Rn to functions with the same
property on Rn. We ask:

(1) Given u ∈ domL∞4(Ω), does there exist an extension u ∈ domL∞4(SG)?
(2) Given u ∈ domL24(Ω), does there exist an extension u ∈ domL24(SG)?

We present two motivating examples before we proceed to the main extension re-
sults.

Theorem 7.5. If u is a nonconstant harmonic function on Ω, then its even reflec-
tion is not in dom4.

Proof. Suppose, for the purpose of contradiction, even reflection extends to a func-
tion u ∈ dom4(SG). Then 4u = 0 on SG, and

→ ∂nu(xm) = 2u(xm)− u(ym)− u(ym−1),

← ∂nu(xm) = 2u(xm)− u(zm)− u(zm−1).

Since u is assumed non-constant, both normal derivatives are nonzero. However,
→ ∂nu(xm) =← ∂nu(xm), so the normal derivative matching condition at xm does
not hold. Therefore, u 6∈ dom4(SG). �

Theorem 7.6. Suppose u ∈ C(Ω) solves the BVP with a0 = C1 and am =
(2/3)(3/5)m(C1 + C2) for some constants C1, C2. Then there exists a harmonic
extension of u.

Proof. Consider the harmonic function u on SG determined by the boundary values
u(q0) = 0, u(q1) = C1 and u(q2) = C2. Simple computation shows that u(xm) =
(2/3)(3/5)m(C1 +C2). Thus, u = u on Ω and 4u = 0, which shows that u is indeed
a harmonic extension. �

In special cases, such as the one presented in the previous result, there exists a
harmonic extension. In general, the desired extension will not be harmonic because
the space of harmonic functions on SG is a three dimensional space so finding a
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harmonic extension u of u satisfying the infinite number of conditions u(xm) = am
is unlikely. For that reason, we look for a piecewise biharmonic extension. In fact,
this motivates our study of piecewise biharmonic functions to begin with. To prove
the existence of an extension, we need the analogue of Lemma 7.3.

Lemma 7.7. Suppose u ∈ domL∞4(Ω) or u ∈ domL24(Ω). Then there exist a
sequence {Cm} and a piecewise biharmonic function u on SG satisfying u = u on
Ω, 4u = Cm on Zm, and the normal derivative matching conditions hold at {xm}
and {zm}.

Proof. For convenience, we write am = u(xm) and ηm = ∂nu(xm). Consider the
function u = u on Ω,

(7.4) u(zm) =
1

8
(5am+1 + 3am) +

1

8

(
3

5

)m
(ηm+1 + ηm),

and 4u = Cm on Zm where

(7.5) Cm = 5m
(

3

8

)
(5am+1− 8am + 3am−1) + 3m

(
1

8

)
(3ηm+1− 16ηm + 5ηm−1).

For the same reason as before, these constraints completely determine u on Zm.
Hence we have defined a function u on SG.

We claim that the normal matching conditions hold at xm and zm. Using (7.1),

← ∂nu(xm) =

(
5

3

)m
[2u(xm)− u(zm)− u(zm−1)] +

Cm
3m+1

,

↖ ∂nu(zm) =

(
5

3

)m
[2u(zm)− u(zm−1)− u(xm)] +

Cm
3m+1

,

↘ ∂nu(zm) =

(
5

3

)m+1

[2u(zm)− u(zm+1)− u(xm+1)] +
Cm+1

3m+2
.

It is straightforward to check that our formulas for u(xm), u(zm), and Cm imply
the matching conditions hold at {xm} and {zm}. �

The lemma allows us to define an extension operator. Let EΩ be the extension
operator that maps a function u ∈ domL∞4(Ω) or u ∈ domL24(Ω) to the function
EΩu on SG as given in the lemma. This operator is well defined because for each
u, there is exactly one EΩu. It is clear that EΩ is linear and that EΩu is continuous
except possibly at q0.

Theorem 7.8. Suppose u ∈ domL∞4(Ω). If Ru ∈ T∞, then EΩu ∈ domL∞4(SG)
and

‖4(EΩu)‖L∞(SG) ≤ ‖4u‖L∞(Ω) + C‖Ru‖T∞ .
The Trace Theorem implies the converse: if EΩu ∈ domL∞4(SG), then Ru ∈ T∞.

Proof. Suppose u ∈ domL∞4(Ω) and Ru = {(am, ηm)} ∈ T∞. By definition of T∞,
we have am = A1 +A2(3/5)m+a′m with ‖5ma′m‖`∞ <∞ and ‖3mηm‖Lip <∞. We
need to check that EΩ is continuous at q0. Observe that (7.4) becomes

EΩu(zm) = A1 +A2

(
3

5

)m
+

1

8
(5a′m+1 + 3a′m) +

1

8

(
3

5

)m
(ηm+1 + ηm).
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Taking the limit in the above equation, we see thatA1 = limm→∞ am = limm→∞EΩu(zm).
This proves that EΩu is continuous. By Lemma 7.7, the matching conditions for u
at {xm} and {zm} are satisfied. This allows us to apply the Gluing Theorem, and
so 4(EΩu) exists.

To prove that EΩu ∈ domL∞4(SG), observe that

‖5m(5am+1 − 8am + 3am−1)‖`∞ ≤ 16 ‖5ma′m‖`∞
and by Lemma 8.7,

‖3m(3ηm+1 − 16ηm + 5ηm−1)‖`∞ ≤ 16 ‖3mηm‖Lip .

Using the above inequalities and the equation for Cm given by (7.5), we find that

‖4(EΩu)‖L∞(Ω′) = max
m
|Cm| ≤M1‖5ma′m‖`∞ +M2‖3mηm‖Lip.

Then by triangle inequality,

‖4(EΩu)‖L∞(SG) ≤ ‖4u‖L∞(Ω) +M1‖5ma′m‖`∞ +M2‖3mηm‖Lip,

which completes the proof. �

Theorem 7.9. Suppose u ∈ domL24(Ω). If Ru ∈ T2, then EΩu ∈ domL24(SG)
and

‖4(EΩu)‖2L2(SG) ≤ ‖4u‖
2
L2(Ω) + C‖Ru‖2T2 .

The Trace Theorem implies the converse: if EΩu ∈ domL24(SG), then Ru ∈ T2.

Proof. Suppose u ∈ domL24(Ω) and Ru = {(am, ηm)} ∈ T2. By definition of
T2, we know that am = A1 + A2(3/5)m + a′m with ‖(25/3)m/2a′m‖`2 < ∞ and
‖3m/2ηm‖`2 < ∞. Then |a′m| → 0 and |ηm| → 0. Using these limits, the same
argument given in the proof of Theorem 7.8 shows that EΩu is continuous. Again,
Lemma 7.7 guarantees the matching conditions for u at {xm} and {zm} hold. The
Gluing Theorem implies 4(EΩu) is well defined.

To see why EΩu ∈ domL24(SG), we first see that

‖4(EΩu)‖2L2(Ω′) =

∞∑
m=1

1

3m
|Cm|2 ≤M1

∞∑
m=1

(
25

3

)m
|a′m|2 +M2

∞∑
m=1

3m|ηm|2.

Since ‖4(EΩu)‖2L2(SG) = ‖4u‖2L2(Ω) +‖4(EΩu)‖2L2(Ω′), using the above inequality

gives us

‖4(EΩu)‖2L2(SG) ≤ ‖4u‖
2
L2(Ω) +M1

∞∑
m=1

(
25

3

)m
|a′m|2 +M2

∞∑
m=1

3m|ηm|2.

�

We can interpret Theorem 7.8 and Theorem 7.9 by the following: Ru ∈ T∞
is the minimal condition for extending an arbitrary function in domL∞4(Ω) to a
function in domL∞4(SG) and Ru ∈ T2 is the minimal condition for extending an
arbitrary function in domL24(Ω) to a function in domL24(SG).

A function belonging to domL24(Ω) or domL∞4(Ω) is naturally a solution to
the differential equation 4u = f for f ∈ L2 or f ∈ L∞ respectively. Solutions to
this differential equation can be found using Theorem 8.2.

As a special case of EΩ, we can extend harmonic functions u on Ω provided that
Ru ∈ T2 or Ru ∈ T∞. Recall that the solution to this differential equation was
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explicitly given in Section 2. The formula for the extended function will be given
by (7.4) and (7.5), which can be simplified by using the normal derivative formula
for harmonic functions (4.2) and the recurrence relation (2.1).

8. Appendix

8.1. Green’s Function Formulas. For a given m and a point x ∈ Vm \ V0, let
ψmx (y) denote the piecewise harmonic spline of level m satisfying ψmx (y) = δx(y) for
y ∈ Vm and extended harmonically for levels m′ > m. Notice that ψmx ∈ dom0E
because x 6∈ V0.

Proposition 8.1 (Green’s Formula). On SG, the Dirichlet problem −4u = f on
SG\V0 and u = 0 on V0 has a unique solution in dom4 for any continuous f , given
by u(x) =

∫
SG

G(x, y)f(y) dy for the Green’s function G(x, y) = limM→∞GM (x, y)
(uniform limit) where

GM (x, y) =

M∑
k=1

∑
s,s′∈Vk\Vk−1

g(s, s′)ψks (x)ψks′(y)

and

g(s, s′) =


3
10

(
3
5

)k
for s = s′ ∈ Vk \ Vk−1,

1
10

(
3
5

)k
for s, s′ ∈ FwK, |w| = k − 1 and s 6= s′.

From the Green’s formula, we have the following simple observation.

Theorem 8.2. Let G(x, y) denote the Green’s function on SG. Let GΩ(x, y) =
G(x, y) − G(x,Ry) for x, y ∈ Ω where R denotes the reflection. Then GΩ is the
Green’s function for Ω, namely

u(x) =

∫
Ω

GΩ(x, y)f(y) dy

solves −4u = f on Ω subject to u|Ω = 0.

To simplify notation, we drop the superscript m on functions of the form ψmxm
,

ψmym , and ψmzm because unless otherwise notated, the superscript index matches the
subscript index. It follows immediately from the definition that

(8.1)

∫
SG

|ψxm | dy =

∫
SG

|ψym | dy =

∫
SG

|ψzm | dy =
2

3m+1
.

Additionally, since |ψxm
|2 ≤ |ψxm

|, we have

(8.2)

∫
SG

|ψxm
|2 dy =

∫
SG

|ψym |2 dy =

∫
SG

|ψzm |2 dy ≤
2

3m+1
.

To further simply notation, define the function

(8.3) Ψm(a, b, c)(y) = aψxm
(y) + bψym(y) + cψzm(y).

Using (8.1) and (8.2), we have the estimates

(8.4)

∫
SG

|Ψm(a, b, c)| dy ≤ C1

3m
and

∫
SG

|Ψm(a, b, c)|2 dy ≤ C2

3m
,

for constants C1 and C2 depending only on a, b, c.



BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET 27

Lemma 8.3. The Green’s function evaluated at xm is

(8.5) G(xm, y) =
2

15

(
3

5

)m m∑
k=1

Ψk(1, 2, 2)(y) +
1

6

(
3

5

)m
Ψm(1,−1,−1)(y).

Proof. Note the following observations:

(1) If k > m, then ψks (xm) = 0.
(2) If k = m, then ψxm

(xm) = 1. If k = m and s 6= xm, then ψms (xm) = 0.
(3) If k < m with s 6= yk and s 6= zk, then ψks (xm) = 0.

Using these facts, we have

G(xm, y) =

m−1∑
k=1

∑
s′∈Vk\Vk−1

[g(yk, s
′)ψyk(xm) + g(zk, s

′)ψzk(xm)]ψks′(y)

+
∑

s′∈Vm\Vm−1

g(xm, s
′)ψms′ (y).

Using the harmonic extension algorithm, for k < m, we have

ψyk(xm) =
2

3

(
3

5

)m−k
and ψzk(xm) =

2

3

(
3

5

)m−k
.

Since g(s, s′) = 0 if s and s′ are in different cells of level k − 1, we deduce that∑
s′∈Vk\Vk−1

[g(yk, s
′) + g(zk, s

′)]ψks′(y) =
1

5

(
3

5

)k
Ψk(1, 2, 2)(y),

∑
s′∈Vm\Vm−1

g(xm, s
′)ψms′ (y) =

1

10

(
3

5

)m
Ψm(3, 1, 1)(y).

Substituting these equations into the most recent equation for G(xm, y) completes
the proof. �

Lemma 8.4. The Green’s function evaluated at zm is

(8.6) G(zm, y) =
1

10

(
3

5

)m m∑
k=1

Ψk(1, 2, 2)(y) +
1

10

(
1

5m

) m∑
k=1

3kΨk(0,−1, 1)(y).

Proof. We use a similar process to find the formula for G(zm, y). Note the following
observations:

(1) If k > m, then ψks (zm) = 0.
(2) If k = m, then ψzm(zm) = 1. If k = m and s 6= zm, then ψms (zm) = 0.
(3) If k < m with s 6= yk and s 6= zk, then ψks (zm) = 0.

Using these facts, we have

G(zm, y) =

m−1∑
k=1

∑
s′∈Vk\Vk−1

[g(yk, s
′)ψyk(zm) + g(zk, s

′)ψzk(zm)]ψks′(y)

+
∑

s′∈Vm\Vm−1

g(zm, s
′)ψms′ (y).
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Using the harmonic algorithm, for k < m, we have

ψyk(zm) =
1

2

(
3

5

)m−k
−1

2

(
1

5

)m−k
and ψzk(zm) =

1

2

(
3

5

)m−k
+

1

2

(
1

5

)m−k
.

Since g(s, s′) = 0 if s and s′ are in different cells of level k − 1, we deduce that∑
s′∈Vk\Vk−1

g(yk, s
′)ψks′(y) =

1

10

(
3

5

)k
Ψk(1, 3, 1)(y),

∑
s′∈Vk\Vk−1

g(zk, s
′)ψks′(y) =

1

10

(
3

5

)k
Ψk(1, 1, 3)(y),

∑
s′∈Vm\Vm−1

g(zm, s
′)ψms′ (y) =

1

10

(
3

5

)m
Ψm(1, 1, 3)(y).

Making these substitutions into the previous equation for G(zm, y) completes the
proof. �

Lemma 8.5. If u = 0 on V0 and 4u exists on SG, then
(8.7)

∂nu(xm) =
3

5

(
1

3m

) m∑
k=1

3k
∫
SG

Ψk(0,−1, 1)4u dy−1

2

∫
SG

Ψm(1,−1, 1)4u dy−ϕm,

where ϕm =
∫
Zm

ψxm
4u dy.

Proof. Let v be the harmonic function on Zm determined by the boundary values
v(xm) = 1 and v(zm−1) = v(zm) = 0. Note that v = ψxm

on Zm. Since Zm is a cell
of level m and v is harmonic, using (4.1) with the proper normalization constant, we
have ← ∂nv(xm) = 2(5/3)m and ↘ ∂nv(zm−1) = ↖ ∂nv(zm) = −(5/3)m. These
equations, together with the symmetric Gauss-Green formula (4.3) applied to the
functions u and v, yield

← ∂nu(xm) =

∫
Zm

ψxm4u dy +

(
5

3

)m
[2u(xm)− u(zm)− u(zm−1)] .

Using the Green’s formula, the formulas for G(xm, y) and G(zm, y) given by (8.5)
and (8.6) respectively, and the normal derivative matching condition at xm yields
the desired formula. �

8.2. Lemmas for Sequences.

Lemma 8.6. Given a sequence {am}, ‖5m(5am+1 − 3am)‖`∞ < ∞ if and only if
am = A(3/5)m + a′m with ‖5ma′m‖`∞ <∞. Furthermore,

‖5ma′m‖`∞ ≤ ‖5m(5am+1 − 3am)‖`∞ .

Note that the equation for am and the bound for a′m implies A = limm→∞(5/3)mam.

Proof. Clearly the second statement implies the first statement. Conversely, making
the substitution dm = (5/3)mam, we find that

3‖3m(dm+1 − dm)‖`∞ = ‖5m(5am+1 − 3am)‖`∞ <∞.
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This inequality implies that {dm} is a Cauchy sequence and by completeness of the
reals, dm → D for some D. Then am = (3/5)mD + (3/5)m(dm −D). Writing dm
as a telescoping series

dm = D +

∞∑
k=m

(dk − dk+1)

and using the inequality ‖3m(dm+1 − dm)‖`∞ <∞, we obtain

|dm −D| ≤
∞∑
k=m

|dk − dk+1| ≤
1

3m
‖5m(5am+1 − 3am)‖`∞ .

Then defining a′m = (3/5)m(dm −D), we see that

‖5ma′m‖`∞ = ‖3m(dm −D)‖`∞ ≤ ‖5m(5am+1 − 3am)‖`∞ .

�

Lemma 8.7. Given a sequence {ηm}, ‖3m(3ηm+1 − ηm)‖`∞ < ∞ if and only if
‖3mηm‖Lip <∞. In fact,

‖3m(3ηm+1 − ηm)‖`∞ = ‖3mηm‖Lip .

Proof. If ‖3m(3ηm+1 − ηm)‖`∞ <∞, then

‖3mηm‖Lip = sup
m

3m|3ηm+1 − ηm| = ‖3m(3ηm+1 − ηm)‖`∞ <∞.

Conversely, if ‖3mηm‖Lip <∞, then

3m|3ηm+1 − 3η| =
∣∣3m+1ηm+1 − 3mηm

∣∣ ≤ ‖3mηm‖Lip <∞.

�

8.3. Lemmas for Series.

Lemma 8.8. Fix a constant r < 1 and a sequence {am}. Then ‖rm/2am‖`2 < ∞
if and only if ‖rm/2(am+1 − am)‖`2 <∞. More specifically,

‖rm/2am‖`2 ≤ C1|a1|2 + C2‖rm/2(am+1 − am)‖`2 .

Proof. The first statement obviously implies the second statement. Conversely,
writing am as a telescoping series

am = a1 +

m−1∑
k=1

(ak+1 − ak) = a1 +

m−1∑
k=1

(am−k+1 − am−k),

we see that

rm/2am = rm/2a1 +

m−1∑
k=1

(am−k+1 − am−k)r(m−k)/2rk/2.
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Using Minkowski’s inequality, we have∥∥∥∥∥
m−1∑
k=1

(am−k+1 − am−k)r(m−k)/2rk/2

∥∥∥∥∥
`2

≤
∞∑
k=1

rk/2
∥∥∥(am−k+1 − am−k)r(m−k)/2χk<m

∥∥∥
`2

≤
∞∑
k=1

rk/2‖(am+1 − am)rm/2‖`2 .

Using Minkowski’s inequality again and the above inequality, we find that

‖rm/2am‖`2 ≤ ‖rm/2a1‖`2 +

∥∥∥∥∥
m−1∑
k=1

(am−k+1 − am−k)r(m−k)/2rk/2

∥∥∥∥∥
`2

,

which completes the proof. �

Lemma 8.9. Fix a constant r > 1 and a sequence {am}. Then am = A+ a′m with
‖rm/2a′m‖`2 <∞ if and only if ‖rm/2(am+1 − am)‖`2 <∞. In fact,

‖rm/2a′m‖`2 ≤ C‖rm/2(am+1 − am)‖`2 .

Proof. Clearly, the first statement implies the second statement. To prove the
converse, we first show that {am} is Cauchy. For m > n, we have

am − an =

m−1∑
k=n

(ak+1 − ak) rk/2r−k/2

and applying Cauchy-Schwarz yields

|am − an| ≤

(
m−1∑
k=n

(ak+1 − ak)2rk

)1/2(m−1∑
k=n

1

rk

)1/2

≤ C
√

1

rn
.

It follows that {am} is Cauchy and by completeness of the reals, am → A for some
A. Since

am −A =

∞∑
k=m

(ak − ak+1) =

∞∑
k=0

(am+k − am+k+1),

we see that

rm/2(am −A) =

∞∑
k=0

r(m+k)/2r−k/2(am+k − am+k+1).

Using this equation and Minkowski’s inequality, we have

‖rm/2(am −A)‖`2 ≤
∞∑
k=0

r−k/2‖(ak+m − ak+m+1)r(k+m)/2‖`2

≤
∞∑
k=0

r−k/2‖(am − am+1)rm/2‖`2 ,

which completes the proof. �
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Lemma 8.10. Given a sequence {am}, ‖(25/3)m/2(5am+2−8am+1 +3am)‖`2 <∞
if and only if am = A1 + A2(3/5)m + a′m with ‖(25/3)m/2a′m‖`2 < ∞. More
specifically,

‖(25/3)m/2a′m‖`2 ≤ C‖(25/3)m(5am+2 − 8am+1 + 3am)‖`2 .

Note that the equation for am and the bound for a′m imply that A1 = limm→∞ am
and A2 = limm→∞(5/3)m(am −A1).

Proof. Clearly the second statement implies the first statement. To prove the con-
verse, we apply Lemma 8.9 twice. Making the substitution 3mdm = 5m(am+1−am)
yields

∞∑
m=1

(
25

3

)m
(5am+2 − 8am+1 + 3am)2 = 9

∞∑
m=1

3m(dm+1 − dm)2 <∞.

The hypotheses of the lemma are satisfied for {dm}, so we have dm = D+ d′m with

∞∑
m=1

3m|d′m|2 ≤ C
∞∑
m=1

3m(dm+1 − dm)2.

In order to apply the lemma again, define em = am + (5/2)(3/5)mD so that

∞∑
m=1

3m|d′m|2 =

∞∑
m=1

(
25

3

)m
(em+1 − em)2 <∞.

Using the lemma again, except on the sequence {em}, we have em = E + e′m with
the estimate

∞∑
m=1

(
25

3

)m
|e′m|2 ≤ C

∞∑
m=1

(
25

3

)m
(em+1 − em)2.

Finally, using the definition of em, we find that am = E − (5/2)(3/5)mD + e′m.
Combining the above equations and inequalities, we obtain

∞∑
m=1

(
25

3

)m
|e′m|2 ≤ C

∞∑
m=1

(
25

3

)m
(5am+2 − 8am+1 + 3am)2.

�

Lemma 8.11. Given a sequence {ηm}, ‖3m/2(3ηm+2 − 16ηm+1 + 5ηm)‖`2 <∞ if
and only if ηm = 5mA+ η′m with ‖3m/2η′m‖`2 <∞. Furthermore,

‖3m/2η′m‖2`2 ≤ C1(η2 − 5η1)2 + C2‖3m/2(3ηm+2 − 16ηm+1 + 5ηm)‖2`2 .

Proof. The second statement obviously implies the first statement. To prove the
converse, we use both Lemma 8.8 and Lemma 8.9. Define em = 3m(ηm+1 − 5ηm)
so that

∞∑
m=1

3m(3ηm+2 − 16ηm+1 + 5ηm)2 =

∞∑
m=1

1

3m
(em+1 − em)2 <∞.

Applying Lemma 8.8 to the sequence {em} gives us

∞∑
m=1

1

3m
|em|2 ≤ C1|e1|2 + C2

∞∑
m=1

3m(3ηm+2 − 16ηm+1 + 5ηm)2 <∞.
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Making the substitution 5mdm = ηm, we see that
∞∑
m=1

1

3m
|em|2 =

∞∑
m=1

3m(ηm+1 − 5ηm)2 = 25

∞∑
m=1

75m(dm+1 − dm)2 <∞.

Applying Lemma 8.9 to the sequence {dm}, we find that dm = D + d′m with∑
75m|d′m|2 ≤ C

∞∑
m=1

75m(dm+1 − dm)2.

It follows from the definition of dm that ηm = 5mD+ 5md′m. Defining η′m = 5md′m
and combining the above equations and inequalities, we obtain

∞∑
m=1

3m|η′m|2 ≤ C1(η2 − 5η1)2 + C2

∞∑
m=1

3m(3ηm+2 − 16ηm+1 + 5ηm)2.

�
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