Mathematics of Dancing
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What is a group”

A group is a set (G together with an operation “®” that satisfies four
properties.

(1) The operation e takes elements of GG to other elements of G.
(If xand yarein G, sois xe y.)

(2) ldentity: There is a special element e in G (called the
identity) such that for every xin G, e® x=x® ¢ = Xx.

(3) Inverses: every xin GG has an inverse, an element y in G for
which xe y=ye x =g,
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An “Abstract” Group

Let Z denote the set of integers:
Z=1...,-3,-2,-1,0,1,2, 3, ...}.
Then Zis a group with operation “+".

(a) The sum of two integers is an integer.

(b) ldentity: the number O is the identity: 0 + n=n+ 0 = nfor
any n.

(c) Inverses: the inverse of an integer nis -n.
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Mattress FHlipping Problem

Goal: Find an "move” that we can do to a mattress to
move it through every possible position.
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So why can’t we apply a single move to put
the mattress into all possible positions?
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What's the Difference?

Line Dancing Moves

Mattress Flipping Moves

2nd

2nd

» T M R G
T | T M| R G
MM T G R
R|IR G T M
G| G R M| T

» I R P Y
I I R P Y
R R I Y P
P P Y I R
Y Y P R I

{TM,R,G} and {I,R,P,Y} are isomorphic groups.
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summary

Composing symmetries naturally leads to the definition of
a group.

Groups arise from “real lite” as well as from pure
mathematics (like the integers 2).

Ditferent objects can have the same (isomorphic!) groups
of symmetries

Studying the group of symmetries of an object can help to
obtain non-obvious properties of this object. (Like the
impossibility of constructing a simple mattress flipping
schedule.)



Thank you!



For More Information

Here is the link to a book about the mathematics of dancing:
https://www.artofmathematics.org/books/dance

Here is a link to lecture notes by P. Etingof, which is a
fantastic introduction to group theory:
http://www-math.mit.edu/~etingof/groups.pdf




