Mathematics of Dancing

What is Symmetry?

Types of Symmetries: Translational

Types of Symmetries: *Reflectional*

Types of Symmetries: Rotational

Types of Symmetries: *Glide Reflectional*

Types of Symmetries: *Glide Reflectional*

Translational (T)

2nd ^{2nd2nd} TTM MNA RRG GG

2nd 2nd 2nd 2nd 2nd TNTMN NR RERGGG

Translational (T)

Reflectional (M)

Rotational (R)

Glide Reflectional (G)

Compositions of Dance Symmetries

Compositions of Dance Symmetries

Activity: Fill in the Composition Table

Fill in the Composition Table

2nd 1st	Т	Μ	R	G
Т				
Μ				
R				
G				

Fill in the Composition Table

2nd 1st	Т	Μ	R	G
Т				
Μ			G	
R				
G				

Fill in the Composition Table

2nd 1st	Т	Μ	R	G
Τ	Τ	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Τ	Μ
G	G	R	Μ	Т

2nd 1st	Т	Μ	R	G
Τ	Τ	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Т	Μ
G	G	R	Μ	Т

2nd 1st	Т	Μ	R	G
Т	Τ	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Т	Μ
G	G	R	Μ	Τ

(1) The operation \bullet takes elements of *G* to other elements of *G*. (If *x* and *y* are in *G*, so is $x \bullet y$.)

2nd 1st	Т	Μ	R	G
Τ	Т	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Т	Μ
G	G	R	Μ	Т

(2) **Identity:** There is a special element *e* in *G* (called the *identity*) such that for every *x* in $G, e \bullet x = x \bullet e = x$.

2nd 1st	Т	Μ	R	G
Τ	Τ	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Т	Μ
G	G	R	Μ	Τ

(3) **Inverses:** every x in G has an *inverse*, an element y in G for which $x \bullet y = y \bullet x = e$.

2nd 1st	Т	Μ	R	G
Τ	Т	Μ	R	G
Μ	Μ	Τ	G	R
R	R	G	Т	Μ
G	G	R	Μ	Т

(4) **Associativity**: for all *x*, *y*, and *z* in *G*, $(x \bullet y) \bullet z = x \bullet (y \bullet z)$.

What is a group?

A **group** is a *set G* together with an *operation* "•" that satisfies four properties.

- (1) The operation \bullet takes elements of *G* to other elements of *G*. (If *x* and *y* are in *G*, so is $x \bullet y$.)
- (2) **Identity:** There is a special element *e* in *G* (called the *identity*) such that for every *x* in *G*, $e \bullet x = x \bullet e = x$.
- (3) **Inverses:** every x in G has an *inverse*, an element y in G for which $x \bullet y = y \bullet x = e$.

(4) **Associativity**: for all *x*, *y*, and *z* in *G*, $(x \bullet y) \bullet z = x \bullet (y \bullet z)$.

Let Z denote the set of integers:

Let *Z* denote the set of integers:

$$Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

Let *Z* denote the set of integers:

$$Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

Then Z is a group with operation "+".

Let *Z* denote the set of integers:

$$Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

Then Z is a group with operation "+".

(a) The sum of two integers is an integer.

Let *Z* denote the set of integers:

$$Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

Then Z is a group with operation "+".

(a) The sum of two integers is an integer.

(b) **Identity:** the number 0 is the identity: 0 + n = n + 0 = n for any *n*.

Let Z denote the set of integers:

$$Z = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$$

Then Z is a group with operation "+".

(a) The sum of two integers is an integer.

- (b) **Identity:** the number 0 is the identity: 0 + n = n + 0 = n for any *n*.
- (c) **Inverses:** the inverse of an integer *n* is *-n*.

Mattress Flipping Problem

Mattress Flipping Problem

Mattress Flipping Problem

Goal: Find an "move" that we can do to a mattress to move it through every possible position.

Mattress Moves

Translational

Reative tive type

Glide Refletional

Fill in the Mattress Move Table

2nd 1st	Ι	R	Ρ	Y
I				
R				
Р				
Y				

Translational

Reation to ready a

Glide Refletional

Fill in the Mattress Move Table

2nd 1st	I	R	Р	Y
I	I	R	Ρ	Y
R	R	I	Y	Ρ
Р	Ρ	Y	I	R
Y	Y	Р	R	I

Translational

Reation to the top at the second seco

Glide Refletional

Fill in the Mattress Move Table

2nd 1st	Ι	R	Ρ	Y
Ι	I	R	Ρ	Y
R	R	I	Y	Ρ
Ρ	Ρ	Y	I	R
Y	Y	Ρ	R	I

So why can't we apply a single move to put the mattress into all possible positions?

What's the Difference?

Translational Wheeler and t'S Rotational Official terms of the set of the set

Line Dancing Moves

2nd 1st	Т	Μ	R	G
Т	Т	Μ	R	G
Μ	Μ	Т	G	R
R	R	G	Т	Μ
G	G	R	Μ	Т

Line Dancing Moves

2nd 1st	Т	Μ	R	G
Т	Т	Μ	R	G
Μ	Μ	Т	G	R
R	R	G	Т	М
G	G	R	М	Т

Mattress Flipping Moves

2nd 1st	I	R	Р	Y
I	I	R	Ρ	Y
R	R	I	Y	Р
Р	Ρ	Y	I	R
Y	Y	Р	R	I

Line Dancing Moves

Mattress Flipping Moves

2nd 1st	Т	Μ	R	G
Т	Т	Μ	R	G
Μ	М	Т	G	R
R	R	G	Т	М
G	G	R	Μ	Т

2nd 1st	I	R	Ρ	Y
I	Ι	R	Ρ	Y
R	R	I	Y	Р
Р	Ρ	Y	I	R
Y	Y	Р	R	I

 $\{T,M,R,G\}$ and $\{I,R,P,Y\}$ are **isomorphic** groups.

• Composing symmetries naturally leads to the definition of a group.

- Composing symmetries naturally leads to the definition of a group.
- Groups arise from "real life" as well as from pure mathematics (like the integers *Z*).

- Composing symmetries naturally leads to the definition of a group.
- Groups arise from "real life" as well as from pure mathematics (like the integers *Z*).
- Different objects can have the same (isomorphic!) groups of symmetries

- Composing symmetries naturally leads to the definition of a group.
- Groups arise from "real life" as well as from pure mathematics (like the integers *Z*).
- Different objects can have the same (isomorphic!) groups of symmetries
- Studying the group of symmetries of an object can help to obtain non-obvious properties of this object. (Like the impossibility of constructing a simple mattress flipping schedule.)

Thank you!

For More Information

Here is the link to a book about the mathematics of dancing: <u>https://www.artofmathematics.org/books/dance</u>

Here is a link to lecture notes by P. Etingof, which is a fantastic introduction to group theory:

http://www-math.mit.edu/~etingof/groups.pdf