2006-2007			
Discrete Probability	Game Theory	Revisiting Combinatorics	
Instructor: Abra Brisbin (CAM)	Instructor: Jason Anema (Math)	Instructor: Jay Schweig (Math)	
The first few days introduced set theory and	This course began with a study of matrix games	Combinatorics was taken in new directions for	
combinatorics. After that, they turned to	and a proof of the existence of Nash equilibria.	the students, covering graph and tree	
probability distributions, expected value, and	Students then studied decision graphs, which	enumeration, partitions, compositions, and	
independence. In the second half of the course,	included backwards induction, uncertainty and	generating functions. Responding to a request	
they worked on conditional probability, Bayes'	multiple-person decisions, and as an example	from the students, the second part of the session	
Theorem, the Monte Carlo method, and Markov	played "Indian Poker" in class. The next topic	covered the beginnings of formal logic, including	
chains. Throughout the course, they tackled	was the problem of maximizing utility in auctions	a treatment of sentential logic, a discussion of the	
questions involving applications of probability in	with incomplete information. The course	completeness and incompleteness theorems, and	
biology, medicine, social policy, and everyday	concluded with a consideration of voting schemes	a full proof of the compactness theorem for	
life.	and coalitions.	sentential logic.	
2007-2008			
Combinatorics: Unusual Counting Problems	Group Theory	Introduction to Knot Theory	
Instructor: Gwyneth Whieldon (Math)	Instructor: Jonathan Needleman (Math)	Instructor: Victor Kostyuk (Math)	
Students started with proofs of interesting	This course emphasized symmetries of	This session started with basic concepts of knot	
Fibonacci identities, and then moved on to more	mathematical objects, such as geometric shapes	and link projections, ambient isotopies, and	
general binomial identities, with the emphasis on	and sets. Basic properties of groups were	Reidemeister moves, and continued with simple	
using bijective counting arguments rather than	explored including subgroups, normal subgroups,	link and knot invariants (e.g., linking number,	
induction or other proof methods. Lucas and	and quotient groups. Lagrange's Theorem and	tricolorability, and crossing number). Alexander	
Gibonacci identities were studied, and more	the first isomorphism theorem were proved, and	and Jones polynomials were introduced, the latter	
difficult identities that combine Lucas and	the Sylow Theorems were stated. For an end of	defined in terms of the Kauffman bracket.	
Fibonacci numbers were studied. Binet's	the term group project the students decided to	Students examined the Dawker notation and	
formula using combinatorial and probabilistic	explore symmetries in M.C. Escher's artwork.	algebraic tangles, closed braid representations of	
arguments was proved. Identities on simple or		links, torus and satellite knots. The last few	
general continued fractions was studied. Students		weeks were spent discussing surfaces and the	
were introduced to Khinchin's constant and some		Euler characteristic, leading to a definition of a	
of its more unusual properties.		knot's genus and construction of Seifert surfaces.	

2008-2009			
Counting Problems & Generating Functions	Cardinality	Isometries & Symmetries	
Instructor: Saul Blanco Rodriguez (Math)	Instructor: Matt Noonan (Math)	Instructor: Victor Kostyuk (Math)	
Students looked at the connection between rational	This session extended the unit on generating	Students looked at isometries of the line and	
generating functions and linear recurrences, and	functions and examined how generating	plane, and symmetries of figures in the plane.	
used these to find closed formulas for the Fibonacci	functions can lead to a generalized notion of	This led to groups of isometries or symmetries.	
and Catalan numbers that were defined recursively	cardinality. Students applied generating	They discussed the axioms a set needs to satisfy	
as the solution to counting problems. Students	functions to the construction of "nonstandard	in order to be a group, and studied basic	
explored bijections between objects that are counted	dice." Understanding these dice is closely tied	examples of groups, their properties, and	
by Catalan and Motzkin numbers. Other topics	to understanding cyclotomic polynomials, and	geometric expression as symmetries or	
included composition, set and number partitions,	this became the new theme of the course. The	isometries. Injective and surjective functions	
their associated generating functions, and Euler's	seminar moved on to study constructability of	were covered, as well as homomorphisms and	
Pentagonal number theorem. Unlike the generating	regular polygons by ruler and compass.	isomorphisms. They explored kernels, normal	
functions connected to linear recurrences, students	Finally, after studying some basic number	subgroups, quotient groups, and the first	
discovered that the generating functions associated	theory in the form of Fermat's Little Theorem,	isomorphism theorem. Seminar closed with a	
with partitions are an infinite product and not an	Wilson's Theorem, and Euler's Theorem, the	discussion of generators, relations, and free	
infinite sum.	RSA encryption algorithm was introduced.	groups. Universal properties and commutative	
		diagrams were introduced in this context.	
2009-2010			
Group Theory: Rubik's Cube	Paradoxes and Infinity	Introduction to Cryptology	
Instructor: Jennifer Biermann (Math)	Instructor: Gwyneth Whieldon (Math)	Instructor: Benjamin Lundell (Math)	
Students first focused on determining the size of the	This seminar began with discussion of several	Basic Caesar and Rail Fence ciphers opened the	
Rubik's cube group. For this they learned about	classical math paradoxes, properties of numbers and number systems, and the	seminar. After introducing modular arithmetic, students generalized to multiplication and,	
permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations.	development of axiomatic mathematics.	eventually, affine ciphers. Students studied	
They investigated subgroups of the Rubik's cube	Students examined sizes of finite and infinite	monoalphabetic substitution ciphers using the	
group and Lagrange's Theorem. The last part of the	sets and several classic puzzles and paradoxes	Keyword cipher, and the cryptoanalysis of	
unit touched on several subjects as Cayley graphs	(e.g., Zeno's paradox, the Banach-Tarski	ciphers through frequency analysis and letter	
	(C.g., ZCHO S paradox, the Danach-Taiski	cipilers unough nequency analysis and relief	
and quotient groups. The students were not taught	paradox, the Littlewood Ping-Pong ball	distributions. They learned ways to make more	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher and the one-time pad. They studied	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher and the one-time pad. They studied cryptoanalysis of polyalphabetic ciphers via the	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students learned (on their own) how to solve the	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher and the one-time pad. They studied cryptoanalysis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite sums. Students took an historical examination	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher and the one-time pad. They studied cryptoanalysis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the Diffe-Hellman Key Exchange Protocol. We	
and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students learned (on their own) how to solve the	paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite	distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher and the one-time pad. They studied cryptoanalysis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the	

2010-2011			
Counterexamples in Mathematics	Probability	Numerical Analysis	
Instructor: Mircea Pitici (Math Education)	Instructor: Tilo Nguyen (CAM)	Instructor: Amy Cochran (CAM)	
This seminar was based exclusively on analyzing,	The first segment of this seminar was an	The seminar began with preliminary topics:	
constructing, and discussing counterexamples in	introduction to probability, starting with some	computer arithmetic, error, logic, and basic	
mathematics. We proceeded gradually, starting with	refresher combinatorics problems. Students then	programming using graphing calculators. The	
counterexamples pertaining to basic functional	learned how to use combinatorics and Venn	bulk of the seminar was focused on linear and	
notions and quickly advancing to counterexamples	diagram to calculate probability. We talked about	nonlinear systems of equations. For linear	
related to functional properties studied in calculus	the meaning of independent or mutually exclusive	systems, the students examined solution	
(continuity, differentiability, Darboux property,	events. We discussed conditional probability and	techniques (e.g., Gaussian Elimination,	
integrability). Among many examples we included	Bayes' Theorem, using disease testing as an	Backward/Forward Substitution, and Jacobi	
some of historical importance (e.g., Dirichlet	example. We studied popular discrete distributions	method), and learned about matrix and vector	
function and its variants, Weierstrass function).	(e.g., Bernoulli, binomial, negative binomial,	norms, singular value decomposition, and LU	
Most examples concerned functions of one variable,	geometric, and Poisson distributions). We studied	decomposition. For nonlinear systems, root-	
but toward the end we also studied counterexamples	Markov chains and briefly discussed the use of	finding and minimization techniques were	
in functions of two variables. The initial intent was	Markov chains in real life applications (e.g.,	studied, including Newton-Raphson, bisection,	
to include all branches of mathematics, but we	Google searches). The seminar ended with solving	golden search, and steepest descent methods.	
decided to stay just within calculus for the whole	fun and famous probability problems (e.g.,	Numerical calculus was also briefly studied.	
seminar. However, as a final project, one student	Buffon's needle).	Topics included Newton-Cotes formulas,	
studied counterexamples in number theory.		Gaussian, and Monte Carlo integration.	
2011-2012			
Special Curves	Axiomatic Development of Probability	Calculus of Variations	
Instructor: Mircea Pitici (Math Education)	Instructor: Mark Cerenzia (Math)	Instructor: Anoop Grewal (TAM)	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space).	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve,	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian	
<i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes'	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid,	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation).	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid, deltoid, nephroid), and various spirals. Pressed by	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation). Deriving everything formally from the axioms was	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	
Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid,	<i>Instructor: Mark Cerenzia (Math)</i> This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation).	<i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary	

2012-2013			
Complex Numbers and Geometry	Set Theory and the Foundations of Mathematic	s Axiomatic Development of Probability	
Instructor: Mircea Pitici (Math Education)	Instructor: Iian Smythe (Math)	Instructor: Mark Cerenzia (Math)	
During this seminar we reconstructed much of	We explored how sets can be used to axiomatically		
the school geometry (and more) from a novel	build up the whole of mathematics. Beginning with		
perspective: by using complex numbers. We	the basic algebra of sets, we built new sets from old		
defined special operations with complex	ones and defined functions, relations, and numbers		
numbers (such as the "real product" of two	terms of sets. Detours into the worlds of orders,	to facilitate and hasten the acquisition of this	
complex numbers and the "complex product"	graphs, and other relational structures were made	machinery, allowing us to cover paradoxes	
of two complex numbers) which lead to	along the way. We established induction on the	(notably Simpson's), distributions of random	
remarkable mathematical expressions for basic	natural numbers and constructed explicitly the basi		
geometrical relationships and concepts (such as	arithmetical operations. From here, the integers,	the seminar was a study of Brownian Motion	
collinearity, concurrence, area) and introduced	rationals, and reals (via Dedekind cuts) were	and its properties, including a computation of	
alternative systems of coordinates (i.e.,	constructed, and their basic properties were discuss		
baricentric coordinates). With these elements	including those used in the foundations of calculus.		
we proved important geometrical results of	Lastly, we turned to the issues of cardinality,	(such as the probability it hits zero on a given	
historical, theoretical, and educational value—	countable sets, uncountable sets, Cantor's Theorem		
some well-known and others little known. This	and basic cardinal arithmetic. As an epilogue, we	the arccos function), and lastly Marc Kac's	
was a capstone seminar during which we	briefly discussed other foundational issues, such as	derivation of the arcsin distribution of the time	
integrated elements of different mathematics	the Continuum Hypothesis, Godel's Incompleteness Brownian Motion spends in the positive axis.		
branches including geometry, algebra, linear	Theorems, Turing machines, and the undecidability		
algebra, and trigonometry.	the halting problem.		
2013-2014			
The Isoperimetric Problem	Classical Algebraic Geometry	Reflection Groups	
Instructor: Hung Tran (Math)	Instructor: Sergio Da Silva (Math)	Instructor: Balazs Elek (Math)	
This seminar was motivated by Queen Dido's	This session was devoted to learning classical	First we looked at a couple examples of groups,	
problem, isoperimetric regions on a plane. The	algebraic geometry (which is the study of	which we have shown to be reflection groups after	
first half was devoted to studying the history,	solutions to algebraic equations) by focusing	investigating how reflections interact with each	
practical relevance, geometry, and	more on the motivational aspects of the problems	other in Euclidean space. To motivate the	
symmetrization techniques. We also discussed	rather than the abstract techniques and	classification of all finite reflection groups, we	
variants of the problem in different contexts.	framework introduced in the 20th century. The	looked at regular polytopes, and investigated some	
In the second half, several proofs of the main	basic concepts of affine and projective varieties	of their combinatorial properties. Then we looked	
theorem, which asserts that circular balls are	and their morphisms were introduced. The first	at root systems associated to finite reflection groups,	
minimizers, were derived. Last but not least,	half built up to Bezout's Theorem, while the	and proved several theorems in detail with the aim	
we talked about related issues such as	second portion focused on the resolution of	of showing that every such group is generated by a	
compactness arguments, Gromov's magical	singularities (at least for curves and surfaces).	set of simple reflections. We used this knowledge	
construction, and bubbles.	Some classical constructions such as the Segre	to construct the Coxeter graph of a finite reflection	
	and Veronese embeddings were discussed, as	group, and we used Kostant's find the highest root	
	well as the process of blowing up a point in	game to give a combinatorial proof of the	
	affine space.	classification of Coxeter graphs of finite type.	

2014-2015			
Introduction to Combinatorics	Algebraic Obstructions in Topology	Fourier Analysis	
Instructor: Sergio Da Silva (Math)	Instructor: Aliaksandr (Sasha) Patotski (Math)	Instructor: Evan Randles (CAM)	
Combinatorics is the study of finite or	This seminar was intended to be an introduction to	The seminar focused on Fourier series of periodic	
countable discrete structures. This session was	algebraic topology, with the emphasis on the	functions on the real line. After introducing some	
devoted to learning classical enumerative	algebraic side. We considered some basic	basics and history of Fourier series, the seminar	
techniques, which eventually branched off	topological objects: knots and links, surfaces, and	was broken into three segments. In the first	
into graph theory. The basic concepts of	vector fields on them. Having these object in hand,	segment, the students were introduced to uniform	
enumerative combinatorics were taught,	there are plenty of questions you can ask: are given	convergence, integration, and the exchange of	
including general counting methods, generating	two knots isotopic? Can we classify surfaces up to	limits. This segment ended with the basic result:	
functions, recursion relations,	homeomorphism? Is this surface orientable? Are	Every twice continuously differentiable periodic	
the inclusion/exclusion principle, and rook	the two given vector fields homotopic? Can we	function has a uniformly convergent Fourier	
polynomials. A small portion was devoted to	classify them on a given surface? It turns out that	series. In the second segment, the focus turned to	
algebraic combinatorics, such as Polya	there are rather pretty algebraic constructions helping	applications and included a detailed discussion	
enumeration and to game theory. Topics in	to answer these questions, and studying them was the	and solution to the heat equation. The third	
graph theory included basic definitions, planar	main goal of the course. Students learned about	segment returned to the question of convergence,	
graphs, graph coloring, Hamiltonian circuits,	polynomial invariants of knots, about the Euler	in which the students learned about pointwise	
and various algorithms. In fact, one of the final	characteristic of a surface, about indices of vector	convergence, the Dirichlet kernel, and the Gibbs'	
projects was a problem from graph theory	fields, and how these things relate to each other and	phenomenon. The seminar ended with the	
featuring the Hoffman-Singleton graph and	how they help us to study topological objects.	statement of the celebrated theorem of Carleson.	
related topics.			
2015-2016			
Introduction to Number Theory	Group Theory Via Interesting Examples	Projective Geometry	
Instructor: Sergio Da Silva (Math)	Instructor: Aliaksandr (Sasha) Patotski (Math)	Instructor: Daoji Huang (Math)	
The study of the integers is a primary focus of	This course was an introduction to group theory,	Projective geometry was introduced from the	
number theory. During this seminar the	emphasizing examples and applications of group	synthetic point of view. The axioms of projective	
students learned about classical results from the	theory to mathematics and real life. The group	space and duality on the projective plane were	
subject, including finding integer solutions to	theoretic topics were rather standard, and included	discussed, and some basic properties of projective	
Diophantine equations, the Euler totient	definitions of groups, homomorphisms, group	spaces were proved. Then a few simple finite	
function, and the Euclidean algorithm. Two	actions, Lagrange's theorem, quotient groups, and	projective spaces were studied. After that, a	
main goals of the seminar were to understand	Cayley graphs. Abstract notions and theorems were	different point of view was taken, and	
the RSA algorithm that is used for encryption,	only introduced when motivated by a situation or a	homogeneous coordinates and projective	
and to introduce elliptic curves. Fermat's Last	problem not directly involving groups. For	transformation using some linear algebra were	
Theorem was also discussed. Final projects on	example, symmetric groups were used to prove that	introduced, which was explained along with	
elliptic cryptography and Pell's equation were	the famous Sam Loyd's puzzle is unsolvable. As	applications in computer graphics. In the last part	
chosen by the students.	another example, the problem of creating bell	of the course, the topics discussed were cross	
	ringing patterns for churches motivated the study of	ratio, Desargue's theorem, Pappus' theorem, and	
	Cayley graphs.	geometric constructions of sums and products,	
		with an emphasis on the interplay between	
		geometry and algebra.	

2016-2017			
Reflection Groups <i>Instructor: Balazs Elek (Math)</i> First we looked at a couple examples of groups, which we have shown to be reflection groups after investigating how reflections interact with each other in Euclidean space. To motivate the classification of all finite reflection groups, we looked at regular polytopes, and investigated some of their combinatorial properties. Then we looked at root systems associated to finite reflection groups, and proved several theorems in detail with the aim of showing that every such group is generated by a set of simple reflections. We used this knowledge to construct the Coxeter graph of a finite reflection group, and we used Kostant's find the highest root game to give a combinatorial proof of the classification of Coxeter graphs of finite type.	Continued Fractions Instructor: Gautam Gopal Krishnan (Math) This seminar was an introduction to working with real numbers using continued fractions. We looked at how Euclid's algorithm to compute the greatest common divisor of two integers can be used to compute the continued fraction of a rational number. Using this, we then studied how to best approximate irrational numbers by rational numbers. This led to a discussion of different notions of "best" approximations. A geometric approach to think about continued fractions and approximations was also considered. We then discussed applications of continued fractions, and studied Diophantine equations using continued fractions.	 Topological Data Analysis Instructor: Amin Saied (Math) In this module students learned how to apply ideas from topology to analyze so-called "big data." Examples included the following: Using graph theory to simulate the dynamics of the Internet, eventually leading to Google's famous Page Rank algorithm; and Using "persistent homology" to investigate the manifold hypothesis, that is, the idea that high- dimensional data sets appearing in nature tend to conform to low dimensional manifolds. https://aminsaied.github.io/topology-and-data-analysis/ 	
2017-2018	equations using continued nuctions.		
Understanding Computation <i>Instructor: Daoji Huang(Math)</i> In this seminar students studied computations from two different perspectives. The first was "abstract machines," namely, automata theory. Students were introduced to deterministic and non-deterministic finite automata and it was shown that non-deterministic finite automata can be determinized. Students then were introduced to Turing machines and shown that they are more powerful than finite automata. The halting problem was also discussed. In the end, students briefly studied the second perspective, which is an "abstract program," namely, lambda calculus.	Reflection Groups Instructor: Balazs Elek (Math) First we looked at a couple examples of groups, which we have shown to be reflection groups after investigating how reflections interact with each other in Euclidean space. To motivate the classification of all finite reflection groups, we looked at regular polytopes, and investigated some of their combinatorial properties. Then we looked at root systems associated to finite reflection groups, and discussed several theorems with lots of hands-on computations and examples.	 Numerical Methods Instructor: Matthew Hin (CAM) The seminar was an introduction to basic numerical methods and programming principles using Python. After introducing how computers represent numbers and how errors can propagate, the seminar was divided into four segments. 1. Students were introduced to Gaussian elimination and its uses in solving linear systems. 2. Students were introduced to bisection methods and Newton-Raphson methods and their uses in solving nonlinear equations. 3. Students learned about Lagrange interpolation and its application to Newton-Cotes integration. 4. Students explored the forward, improved, and backward Euler methods for ordinary differential equations.	

2018-2019			
Discrete Probability	Introduction to Knot Theory	Random Grap	ohs and Branching Processes
Instructor: Emily Fischer (ORIE)	Instructor: Hannah Keese (Math)	Instructor: Li	la Greco (Math)
This course developed the foundations of	In this course, we were motivated	The course beg	an with basic graph theory definitions and
discrete probability, with each topic motivated	by two foundational questions in	enumerating gr	raphs. The students then studied two random
through paradoxes or counterintuitive examples.	knot theory: how can we determine	graph models:	the Erdős-Rényi G(n,p) and G(n,m) models. They
Topics included introductory combinatorics, set	when two knots are the same, and	learned to calcu	ulate the probabilities of basic events in these
theory, the axioms of probability, conditional	how can we start to tabulate knots?	models, and ca	lculate expectations using indicator random
probability, independence, discrete random	We began with basic definitions		ally, students saw how the probabilistic method can
variables, and expectation. The course finished	and examples of knots and links and		ut random graphs to prove deterministic statements
with a brief overview of Markov Chains.	the Reidemeister theorem. To		v. For the second half of the course, students
Motivating paradoxes and examples included:	answer our motivating questions,		ton-Watson branching process. They learned
the boy or girl paradox, Simpson's paradox, the	we studied different knot invariants		ity generating functions and used these to find the
birthday problem, Polya urn problems, the	such as tricolourability. We then	probability of e	extinction of a branching process.
Monty Hall Problem, prosecutor's fallacy in	discussed Dowker notation and	*Note: This ses	sion relied heavily on the basic probability knowledge
DNA testing, Gambler's ruin, and other casino	rational tangles. Finally, we		in an earlier IHS Math Seminar session. If run as a
and poker games.	introduced polynomial invariants, in		ion, consider starting with basic probability and then
	particular the Jones polynomial.	introducing eithe	er random graphs or branching processes, but not both.
2019-2020			
Arithmetic from the Logician's Point of View	Probability		Graph Theory and Network Analysis
Instructor: Romin Abdolahzadi	Instructor: Yuwen Wang		Instructor: Ilya Amburg
This course was an introduction to model theory	This seminar started with introducing		This course contained an introduction to graph
with an emphasis on applications to number	working on basic problems in Ramsey		theory, with a focus on network analysis. I
theory, abstract algebra, and algebraic geometry.	we transitioned to probability (in which		began with a review of basic background
We investigated the ways in which	randomness comes from independent		material, such as techniques from linear algebra
understanding syntax-semantics dynamics can	coin flips) by practicing with solving		and basic graph theoretical concepts, then
provide information about mathematical	concentrating on the probabilistic method, and the		proceeded to apply this knowledge to network
structures. After reviewing the definition of	linearity of expectation. This subunit was wrapped		science problems in the context of analyzing
first-order logic we discussed the completeness	up with a probabilistic method proof for a lower		large datasets. Particular emphasis was placed
and compactness theorems, classical	bound for some Ramsey numbers. Lastly, I		on clustering and centrality measures. The
infinitesimal calculus using first-order types,	introduced the concept of Markov chains using		seminar concluded with a brief overview of
Löwenheim-Skolem, transfer principles between	simple examples. The students learned about what		hypergraph theory and higher-order network
finite fields and the complex field, and	it means for a chain to converge to a distribution and		analysis.
geometric stability theory as a means for	computed stable distributions for som		
understanding the ideas of independence and	well as absorbing states and how to compute the		
dimension.	expected time to absorption. We used		
	knowledge to compute the expected number of coin		
	flips it takes to get three heads in row	•	

2020-2021			
Numerical Analysis		Dynamics, Chaos, and Fractals	
Instructor: Max Ruth (CAM)		Instructor: Ilya A	mburg
The first part of this seminar consisted of an introduction to the subject of		The seminar began	with a study of discrete dynamical systems in one
numerical analysis, along with a discussion of the	he floating point	dimension. We de	lved in-depth into analysis of fixed points, cycles, basins
representation of numbers. Next, the basics of r			haotic properties of seemingly simple mappings. We
were discussed, including Gaussian elimination		proceeded to study continuous time dynamical systems in both one and two	
introduction to big-O notation and the condition			epts such as the phase plane and bifurcation were
nonlinear equation solving in one dimension, fo			eminar concluded with a brief overview of fractals and
Newton's method and their orders of convergen		fractal dimension.	
a discussion of two kinds of interpolation – poly			
with a brief introduction to Runge's phenomeno			
focused on methods in numerical calculus, inclu	e 1		
for numerical quadrature, finite differences for a	approximating derivatives,		
and Euler's method for solving ODEs.			
2021-2022			
Algorithms	Farey Diagrams and Conti		Discrete Probability
Instructor: Romin Abdolahzadi	Instructor: Nicole (Nicki) N		Instructor: Kathryn O'Connor
An introduction to algorithms with	In this seminar, students lear	-	The first half of this seminar was a course in general
applications to graph theory, number theory,	diagrams and used Farey dia		discrete probability. We began with basic combinatorial
and cryptography. Topics included Matching	study number theory. First,		probabilities, motivated by counterintuitive examples
Algorithms (e.g., Gale-Shapley), Randomized	properties of the Farey diagra		such as the Monty Hall problem and the Birthday
Algorithms (e.g., Miller-Rabin), Euclidean	different ways to draw it. This included		problem. We then reviewed probability in a more
Algorithm, Diffie-Helman Key Exchange,	looking at how the Farey diagram is related to		formal language: axioms of probability, expectation,
Hashing, RSA, and Zero Knowledge	the Euclidean algorithm. Then students used		conditional expectation, joint distributions, and so on.
Protocols.	the Farey diagram to study both rational and		In the second half of the seminar we covered Markov
	irrational continued fractions and finding		chains, building on the foundation of conditional
	integer solutions to Diophantine equations.		expectation. We explored a few basic types of Markov
	The seminar culminated with	6	Chains: Random Walks, Birth and Death chains, and
	how symmetries of the Farey	e	Queueing chains. With each example we connected
	periodic continued fractions.		back to the earlier lessons in general probability. The
			students learned to apply elementary probability laws to
			long-term real-world problems.

2022-2023		
2022-2023 Metrics and Distances <i>Instructor: Emily Dautenhahn</i> This seminar focused on metrics and metric spaces. We began by thinking about how to measure distance and what properties we might want a "distance" to have, motivating the definition of a metric space. After seeing some examples, we then looked at open balls in metric spaces and used this notion to define open and closed sets. Then we explored sequences and limits in metric spaces, which led us to topics such as Cauchy sequences and complete metric spaces. The seminar concluded with a fixed-point theorem: the Banach contraction principle.	Diophantine Equations <i>Instructor: Nicole (Nicki) Magill</i> In this seminar the focus was on studying integer solutions to Diophantine equations. We saw how different equations have different number of solutions and require different methods to solve them. Some equations we considered included Pythagorean triples, linear equations, and quadratic forms. The study of these equations brought us to consider rational points on curves, finding a basis for the integer lattice, visualizing all such bases through the topograph, the Euclidean algorithm, and modular arithmetic.	Young Tableaux and Symmetric Functions Instructor: Raj Gandhi This seminar began with a discussion of integer partitions, with students learning how to visualize integer partitions using Young diagrams. With Young diagrams, Young tableaux was defined, which are fillings of Young diagrams with positive integers. Students saw two different ways to multiply Young tableaux together to obtain a new Young tableau.: one is a "row-bumping" algorithm, and the other is a procedure known as "jeu de taquin." Students also learned how to extract a symmetric polynomial, called a <i>Schur</i> polynomial, from a Young diagram, by looking at all possible fillings of the Young diagram. The product of two Schur polynomials. The number of times a Schur polynomial appears in this sum is called a <i>Littlewood-Richardson</i> coefficient; these coefficients have deep applications in geometry and algebra. Seminar ended by computing several Littlewood-Richardson coefficients using <i>reverse lattice</i>
2022 2024		words.
2023-2024	a	
Astrodynamics and Least Squares	Graphics Programming	Posets
Estimation	Instructor: Benjamin Thompson	Instructor: Raj Gandhi
<i>Instructor: Jackson Kulik</i> Students were introduced to concepts from astrodynamics that required only a knowledge of pre-calculus. Kepler's laws and the drag paradox were two subjects emphasized. The course then pivoted to background in linear algebra to study least squares estimation and the geometry of the multivariate Gaussian distribution. Our capstone for the main course session involved estimating the height of Ithaca Falls using observations from a sextant. Some students went on to develop these prerequisites into an understanding of how satellites navigate using the Kalman filter.	This focus of this seminar was on direct applicat of precalculus concepts to graphics programmin Creating computer graphics from scratch using 1 level programming languages was emphasized, together with creating 2D graphics via fragment shaders. Students applied and improved their knowledge of basic functions from precalculus a Euclidean geometry to render a range of objects including triangles, disks, checkerboards, and Ju sets. Towards the end of the seminar, students rendered a range of basic 3D shapes using the O programming language and its bundled raylib library. Shapes covered include the tetrahedron, octahedron, and the humble cube. The course content is available online: https://bgthompson.com/teaching/2023/IHS-Ma	 g. (posets), which appear all throughout mathematics. A partially ordered set is set with an ordering (e.g., the se of natural numbers under divisibility; the set of integer under the usual ordering; the set of subsets of a set under set inclusion). The theory of posets was applied using a tool, known as Möbius inversion, to compute the famous Euler totient function from number theory. Posets were represented as graphs, and graph colorings were also discussed. Students learned about other concepts related to posets, such as the mysterious combinatorial reciprocity, lattice polytopes, and Catalan objects.

Seminar/course-page.html

Ithaca High School Math Seminar Topics

2024-2025

Generatingfunctionology Instructor: Gabe Udell

The focus of this seminar was combinatorics (the study of counting finite structures) and generating functions. The seminar began with fundamentals in enumerative combinatorics including the fundamental counting principle, recursive formulas, and combinatorial proofs. The next topic was generating functions, which are a way of encoding a sequence as the coefficients of a polynomial. For example, the sequence

3, 1, 4, 1, 5, 9 could be encoded as the polynomial $3 + x + 4x^2 + x^3 + 5x^4 + 9x^5$. One benefit of doing this is that familiar operations on polynomials (i.e., multiplication, differentiation) can easily yield new generating functions (and prove new identities) from old ones. During the course we learned how to use recursive formulas to derive generating functions and applied this technique to Fibonacci numbers and Catalan numbers.

Tropical Geometry Instructor: Raj Gandhi

There are two well-known operations on the real number line: addition (+) and multiplication (x). For example, given two numbers 4 and 7, we can compute their sum 4 + 7 = 11 and product 4 x 7 = 28. Let's replace + and x with their tropical counterparts: the tropical sum (\bigoplus) of two numbers is their minimum, and the tropical product (\bigotimes) of two numbers is their usual sum. For example, $4 \oplus 7 = \min(4,7) = 4$, and $4 \otimes 7 = 4 + 7 = 11$. We began this course by studying properties of tropical operations and their similarities with the usual operations. For example, tropical operations are commutative, associative, and distributive. We then studied tropical polynomials: for example, the usual polynomial v = x+2 defines a line in the plane, whereas the tropical polynomial $y = x \bigoplus 2$ defines a piecewise-linear curve in the plane. The Newton polytope of a tropical polynomial in two variables is a polytope, such as a triangle, in the plane. We showed that any tropical curve can be realized as the dual graph of a regular subdivision of its Newton polytope. We delved into the relationship between the tropical polynomial and the polytope it defines, including concepts such as "balancing conditions" and "intersection multiplicity." We also discussed applications of tropical geometry in solving optimization problems, such as shortest path problems in graph theory.

Computational Algebraic Geometry Instructor: Sara Stephens

I this seminar I presented an introduction to classical algebraic geometry, which is the study of the solution sets to systems of polynomial equations. Beginning with algebra, I introduced polynomial rings, including examples of fields. Switching to geometry, students explored affine varieties with both implicit and parametric representations. I then introduced ideals and examined their correspondence with varieties. In the second half of Math Seminar, I transitioned to projective geometry and analyzed singular points on varieties. Throughout Seminar, students computed many concrete, visual examples using SageMath.