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Introduction

Driven by various applications, the development of sets of functions that are orthonormal with respect
to weighted integration (

∫
I W (x)fi(x)fj(x)dx = δij(x) ) have been well studied throughout history.

In particular, a variety of such orthogonal polynomials have been developed with applications ranging
from numerical integration to solutions of the harmonic oscillator. It can be shown that all sets of
orthogonal polynomials obey a 3-term recursion[SZ]:

xPj(x) = rj+1Pj+1(x) + AjPj(x) + rjPj−1(x) (1)

for certain coeffecients rj , Ajε<

Advances in numerical methods have produced stable techniques for computing the coefficients of
the 3-term recursion formula for a wide variety of weighting functions[M1-2]. In fact the notion of
orthonormal can be generalized to ∫

fi(x)fj(x)dµ = δij (2)

where µ is a measure.

In this paper we deal with a special case of self-similar measures. These Self-similar measures satisfy:∫
f(x)dµ(x) = P

∫
f

(
1
R

)
dµ(x) + (1− P )

∫
f

(
1
R

x + 1− 1
R

)
(3)

This paper analyzes two such extensions; orthogonal polynomials with respect to the standard Cantor
measure (hereon called Cantor Legendre Polynomials) which corresponds to P = 1/2 and R > 2 in
(3) as well as orthogonal polynomials with respect to a particular non-uniform weighting of the unit
interval (later called Weighted Legendre Polynomials) with P 6= 1/2 and R = 2. We use the method
and codes of Giorgio Mantica to compute the coefficients in the 3-term recursion relation.
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Cantor Legendre

The Cantor set is a subset of the real line with Lebesgue measure zero (has no length in the tra-
ditional sense). The original Cantor set was formed by removing the middle third of line segments.
The first step removes the middle third from the unit interval. Then the middle third of the 2 remain-
ing line segments are removed. This process is continued ad infinitum. This paper will use a general
Cantor set that takes an input parameter R that will determine the scale of the set. Then apply

C1 =
1
R

(0, 1)
⋃ (

1
R

(0, 1) + (1− 1
R

)
)

(4)

This will remove the middle 1 − 2/R of the unit interval. A Cantor set is obtained by iterating this
process:

C2 =
1
R

C1

⋃ (
1
R

C1 + (1− 1
R

)
)

Cn =
1
R

Cn−1

⋃ (
1
R

Cn−1 + (1− 1
R

)
)

Note that this reduces to the original Cantor set when R=3.

To see that this construction produces something with Lebesgue measure zero, observe that C0 = (0, 1)
has measure (length) 1, and that C1 has measure 1− 2/R (this is precisely how much was removed).
By analogy C2 has measure (1 − 2/R)2, and in general Cn has measure (1 − 2/R)n. As n tends to
infinity: limn→∞(1− 2/R)n = 0. Since the Cantor set has zero measure, we must adopt a meaningful
notion of the integral for the set. We will use the following (normalized Hausdorf measure):∫

µ
fi(x)fj(x)dµ = lim

m→∞
1/m

m∑
k=0

fi(xk)fj(xk) (5)

where {xi} is a discrete approximation of the Cantor set

In order to make the construction of the Cantor set amenable to a computer, we will follow the
iterative scheme outlined above, but truncate after 12 iterations producing an approximate Cantor set
containing 213 points. This will transform (4) into:

∫
µ

fi(x)fj(x)dµ =
1

213

213∑
k=0

fi(xk)fj(xk) (6)

Also, to make visualizing the graphs easier (rather than a plot of points) we will conduct all calcu-
lations on the truncated Cantor Set, but plot against a Distorted Cantor Set. The Distorted Cantor
construction will take ε and R as inputs and construct a modified Cantor set that has center gap ε, sec-
ondary gap ε/R and tertiary gaps of size ε/Rn where n is the iteration in which the gap is constructed.

The advantage to the Distorted Cantor set is that it has finite length (even in the event that it
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is not truncated), while maintaining the characteristic structure of a Cantor Set (there is a one to one
correspondence between points in a Cantor and points in a Distorted Cantor). This will make plots
more easily understood.

Weighted Legendre

A common set of Orthogonal Polynomials are the Legendre Polynomials. These are usually defined on
the interval (−1, 1), but can also be formulated on the interval (0,1). We can use the scheme outlined
above to produce the traditional Legendre Polynomials on the interval (0,1) by letting R=2. In this
case there is no gap and the unit interval is preserved.

A logical extension to the R=2 case involves modifying the weighting of the two half intervals. For
example, the left half interval could be assigned 70 percent of the total measure while the right half
would only receive 30 percent. Successive iterations produce a non-uniform distribution of the measure
on the unit interval, while maintaining a constant overall weight. As we will see, the resulting Or-
thogonal Polynomials (hereby called Weighted Legendre) share many of the properties of the original
Legendre Polynomials.

This paper should be viewed in the context of a long term effort to understand topics in classical
analysis extended to fractal measures. More data may be found at www.math.cornell.edu/˜orthopoly

Discussion

Figures 1 and 2 display the advantages to plotting with a Distorted Cantor set. As plotted the curves
resemble polynomials graphed on an interval that we are much more accustom to seeing.

Figure 4,5 and 6 show a rather unexpected property of the coefficients in the 3-term recurrence relation
(eq. 1). Most of the odd indexed coefficients have value less than .2 while most of the even indexed
coefficients have value greater than .3. In addition, there appears to a quasi-periodic structure to the
values. Fast fourier transforms of the coefficients for large numbers of data points indicates that this
may be quantifiable.

Figure 7 illustrates another property of the Cantor Legendre Polynomials (CLP). If we plot the CLPs
on the entire interval we observe that they are roughly gaussian in the middle gap for n ≡ 0, 2 (mod
4). Also, they are enormous in magnitude ( 1050) while the polynomial when restricted to the Cantor
set never exceeds a value of 20 for all n < 2000! Even more astonishing is that in the secondary
gap (produced during the second iteration of the construction of the Cantor set) the CLPs are also
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Figure 1: Plot of First 5 Cantor Legendre Polynomials for
R=3

Figure 2: Plot of First 5 Cantor Legendre Polynomials for
R=4
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Figure 3: Plot of some larger n Cantor Legendre Polynomials
with R=8; 97 ≤ n ≤ 100
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Figure 4: Plot of First 200 Rn Coefficients for R=4. Again
all of the An’s are 1/2 by symmetry. We continue to observe
a quasi-periodic pattern to the Rn’s and a stark contrast be-
tween even and odd values. This split occurred for most Rn
for all tested values of R.

Figure 5: Plot of the first Rn Coefficients for R=4 and n odd.
Again all of the An’s are 1/2 by symmetry. We continue
to observe a quasi-periodic pattern to the Rn’s and a stark
contrast between even and odd values. This split occurred
for most Rn for all tested values of R.
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Figure 6: Plot of the first Rn Coefficients for R=4 and n even.

Figure 7: Plot of P52(x) on the entire interval. Notice the
large value obtained by the polynomial off the Cantor Set
( 1028) compared to never exceeding the value 10 on the Can-
tor Set (∀n|Pn| < 20). The overall shape in the gap is also
extremely Gaussian as indicated by the fit. ∀n of the form 4k

the center gap is approximately gaussian. For n of the form
4k + 2 it is roughly a negative gaussian.
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Figure 8: Plot of P51(x) on the entire interval. This is roughly
the derivative of a Gaussian on the center gap. ∀n of the form
4k + 3 we observe this shape, and for 4k + 1 we observe the
negative.

Figure 9: Plot of P52(x) on a secondary gap. Again we ob-
serve a gaussian shape.
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Figure 10: The center of the approximate gaussian in the
secondary gap varies with index of the polynomial.

approximately gaussian. Figure 8 shows that for n ≡ 1, 3 (mod 4) the CLPs are approximately the
derivative of a Gaussian. Figure 10 shows that the center of the approximate Gaussian in the secondary
gap is not constant, but varies with index. The actual center of the gap occurs at .125, but the center
varies from roughly1.15 to 1.27, with the majority lying to the left of the actual center.
For large n, the odd indexed rn are frequently quite small (as observed in figures 4 and 5) which causes
P2n

∼= P2n+1 on the right half of the Cantor set (x > .5) from the 3-term recursion relation. This
approximate equality holds well for all n > 30 in the R = 8 case. Figure 11 shows an example of this.

The Dirichlet Kernel can be calculated using the defintion

DKn(x, y) =
n∑

i=0

Pi(x)Pi(y) (7)

where y is the center of the kernel. In the limit as n goes to infinity we are curious if DKn will ap-
proach an approximate identity. Unfortunately, we were unable to confirm this for the CLPs. Figures
12 and 13 show Dirichlet Kernels for the R=3 and R=4 case. Although the shape greatly resembles
an approximate identity, we were not able to confirm that the fluctuations away from the center were
in fact tending to zero as n increased.

There is an alternative method for computing the Dirichlet Kernel. The Christoffel-Darboux identity
states that:

DKn(x, y) =
n∑

i=0

Pi(x)Pi(y) =
(

Pn+1(x)Pn(y)− Pn(x)Pn+1(y)
x− y

)
rn+1 (8)
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Figure 11: Plot of P80(x) and P81(x) with R=8 on the right
half of the Cantor Set. Where the odd values of Rn are small,
the recursion relation forces this approximate equality on the
right half of the Cantor set. In general the odd Rn are small
(especially compared to the even Rn).

Figure 12: Plot of the Dirichlet Kernel for R = 3, n = 10
calculated using the definition of the kernel (

∑n
i=0 Pi(x)Pi(y)

where y is fixed as the right most point in the left half of the
interval).
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Figure 13: Plot of the Dirichlet Kernel for R = 4, n = 10
calculated using the definition of the kernel (

∑n
i=0 Pi(x)Pi(y)

where y is fixed as the right most point in the left half of the
interval).

Figure 14: Plot of the difference in the Dirichlet Kernel for
R=3 calculated using the definition and calculated using the
Christoffel-Darboux formula. The close agreement suggests
that numerical errors may be minimal.
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whenever the measure is symmetric. Figure 14 shows a plot of the difference between Dirichlet Kernels
calculated using the two different formulas. The small difference indicates that numerical errors are
likely not impacting the calculations.

Figure 15: Plot of P17(x) and P17(T4(x)) with R=8, where
Tm(x) is a function that flips the first m bits of a binary
number. In this case the Cantor set is thought of as a sequence
of points that have binary addresses. Based on experimental
determination, it appears that such an approximate equality
holds for all P2n+1(x) such that n = 2k (using Tk+1).

Figure 15 displays an interesting self-similarity property of the CLPs. If we look at the points in the
truncated Cantor set as binary addresses, then we can define the function Tm that flips the first m
bits of a binary number and acts on the Cantor set. For example, T1 corresponds to swapping the
left half of the Cantor set for the Right half. We experimentally determined the approximate equality
P2k−1+1(x) ∼= P2k−1+1(Tk(x)).

Instead of looking at the polynomials as a function of x, it is possible to think of them as a function
of n by fixing a value of x and letting the index be the variable. Figure 16 is an example of this with
R=8 plotting Pn(4097) vs. n. 4097 is the binary address of the leftmost point in the right half of
the Cantor Set. What is interesting is that there seems to be a forbidden zone around zero. Perhaps
the values of Pn(4097) lie in some form of modified Cantor Set. The large gap around zero seems to
support this conjecture.
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Figure 16: Plot of (n, Pn(4097)) where R = 8 and 4097 is the
binary address of the left most element in the right half of
the Cantor Set.

Figure 17: Plot of (Pn+1(4097), Pn(4097)) where R = 8 and
4097 is the binary address of the left most element in the right
half of the Cantor Set.
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Figure 18: Plot of (Pn+1(4097), Pn(4097)) where R = 8 and
4097 is the binary address of the left most element in the right
half of the Cantor Set, except this time n is incremented by 2
such that only the odd polynomials appear on the y-axis and
only the even on the x-axis.

Figure 19: Plot of (Pn+1(4097), Pn(4097)) where R = 8 and
4097 is the binary address of the left most element in the right
half of the Cantor Set, except this time n is incremented by
2 such that only the even polynomials appear on the y-axis
and only the odd on the x-axis.
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Another possibility is to plot vectors (Pn+1(x), Pn(x)). Figures 17,18 and 19 give examples of this
with R=8. It is clear that there is a large amount of structure to the resulting plots.

Figure 20: Plot of Pn(x) on the unit interval with weight-
ing 50 percent-50 percent (the unit interval). This gives the
Legendre Polynomials.

Figure 21: Plot of Pn(x) on the unit interval with weighting
60 percent-40 percent.
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Figure 22: Plot of Pn(x) on the unit interval with weighting
70 percent-30 percent.

Figure 20 shows the first several Legendre polynomials which are constructed using an even weighting
to reproduce the unit interval. Figures 21 and 22 show the first several Weighted Legendre Polynomials
(WLP) for the cases with asymmetric weighting 60%− 40% and 70%− 30%. Figures 23 and 24 show
some WLPs for larger values of n. In many ways the WLPs greatly resemble the legendre polynomials,
but one notable exception is near zero; the WLPs remain bounded near zero, whereas the Legendre
polynomials go to infinity.
Continuing with the idea of looking at the orthogonal polynomials as functions of index, figure 25 is
a plot of WLPn(1) vs. n. For the Legendre polynomials there is a characteristic growth proportional
to the

√
n. This fact holds with great accuracy for the weights 60-40, 65-45 and 70-30 as well. Figure

26 is a plot of WLPn(0) vs. n. An interesting periodic pattern is observed for all 3 weights with the
same period but a small phase shift.

Figures 27, 28 and 29 are a plot of WLPn(.5) vs. n for the weights 60%−40% and 70%−30%. In both
cases we observe an oscillation in sign. Also, in both cases there exist 4 distinct curves corresponding
to n of the form n = 4k, n = 4k + 1, n = 4k + 2 and n = 4k + 3 which can be seen in figures 31-34.
Figure 34 is a plot of the vectors (LPn+1(.1), LPn(.1)) (the weighting is 50-50). This graph is an ellipse
which is characteristic of the Legendre Polynomials for any x chosen. This can be derived by using
the following asymptotic expansion for the Legendre Polynomials:

Pn(cos θ) ≈
√

2n + 1
πn sin θ

sin
(

(n +
1
2
)θ +

π

4

)
(9)
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Figure 23: Plot of Pn(x) on the unit interval with weighting
70 percent-30 percent for 49 ≤ n ≤ 52.
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Figure 24: Plot of Pn(x) on the unit interval with weighting 70
percent-30 percent for 49 ≤ n ≤ 52 with the y-axis restricted
to the range -10 to 10.
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Figure 25: Plot of Pn(1) vs. index. For all 3 weights the
growth is proportional to the square root of n, which is char-
acteristic of the traditional Legendre Polynomials.

Figure 26: Plot of Pn(0) vs. index. The values are periodic
with essentially the same frequency (small phase shift) for all
3 weights.
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Figure 27: Plot of Pn(.5) vs. index for weighting 60 percent
left and 40 percent right. The values oscillate in sign between
adjacent points.

Figure 28: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right.
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Figure 29: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right for larger values of n.

Figure 30: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right for n a multiple of 4.
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Figure 31: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right for n of the form n = 4k + 1.

Figure 32: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right for n of the form n = 4k + 2.
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Figure 33: Plot of Pn(.5) vs. index for weighting 70 percent
left and 30 percent right for n of the form n = 4k + 3.

Figure 34: Plot of Pn(.1) vs. Pn+1(.1) 400 ≤ n ≤ 2000 for
Legendre Polynomials (weighting 50 percent left and 50 per-
cent right). This ellipse is characteristic of the Legendre Poly-
nomials.
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Figure 35: Plot of Pn(.1) vs. Pn+1(.1) 1 ≤ n ≤ 400 for
Weighted Legendre Polynomials with weighting 60 percent
left and 40 percent right).

Figure 36: Plot of Pn(.1) vs. Pn+1(.1) 401 ≤ n ≤ 800 for
Weighted Legendre Polynomials with P1 = .6. This better
approximates an ellipse than figure 35 and indicates that the
approximation improves for larger values of n.
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Figure 37: Plot of Pn(.1) vs. Pn+1(.1) 801 ≤ n ≤ 1200 for
Weighted Legendre Polynomials with P1 = .6.

Figure 38: Plot of Pn(.1) vs. Pn+1(.1) 1201 ≤ n ≤ 1600 for
Weighted Legendre Polynomials with weighting P1 = .6.
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Figure 39: Plot of Pn(.1) vs. Pn+1(.1) 1601 ≤ n ≤ 2000 for
Weighted Legendre Polynomials with weighting P1 = .6.

For a given θ if we denote
√

2n+1
πn sin θ as C and (n + 1

2)θ + π
4 as An then (9) becomes

Pn(cos θ) ≈ C sin(An) (10)

where C has negligible n dependence for sufficiently large values of n and therefore all the n dependence
resides in the An. We can now compute (Pn, Pn+1) = (x, y). Pn = x is simply C sin(An). To calculate
Pn+1 = y notice that An+1 = An + θ and then use the trig identities sin(An + θ) = sin(An) cos(θ) +
cos(An) sin(θ) and cos(An) = ±

√
1− sin2An; then y = C(cos θ sinAn ± sin θ

√
1− sin2An). We can

then plug sin(An) = x
c into the equation for y to get:

y = x cos θ ± sin θC

√
1− x2

c2

(y − x cos θ) = ± sin θC

√
1− x2

c2

y2 − 2xy cos θ + x2 = C2 sin2 θ (11)

where (10) is the equation of an ellipse for any θ in (0, π) which corresponds to the unit interval when
x = cos θ. The ellipse degenerates to a straight line when θ = 0 or θ = π.

Figure 35 is a similar plot but of (WLPn+1(.1),WLPn(.1)) with the weighting 60-40. This plot is
an approximation to an ellipse and as we increase n in Figures 36-38 this approximation appears to
improve. Unfortunately, Figure 39 with the highest n values deviates more than Figure 38 making it
difficult to assert that as n goes to infinity we recover the ellipse of the Legendre Polynomials.
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Conclusion

We have seen that there are a variety of interesting properties to the Cantor Legendre and the Weighted
Legendre Polynomials. It remains to determine which of these experimental observations can be ana-
lytically proven, and to supply the proofs.
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