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1 Introduction

Salmonella is a major zoonot ic disease that is transmitted from cattle to humans in beef [1],
milk and other dairy products [2][3], or through direct contact with sick animals and their
environment [4]. It accounts for approximately 1.4 million clinical cases, 16,000 hospitaliza-
tions and 600 deaths annually in the United States [5]. The recent emergence of multi-drug
resistant Salmonella strains increases the mortality rate of the salmonellosis, and compli-
cates the disease dynamics as well as the corresponding treatments and control strategies [6].

Mathematical models provide a comprehensive framework for understanding the disease
transmission behaviors, as well as for evaluating the effectiveness of different intervention
strategies [7]. These models have been widely used in studying diseases such as measles [8]
[9], influenza[10][11] and cholera[12][13] . However, there are only three existing mathemat-
ical models of Salmonella transmission dynamics in dairy herds. Xiao et al. investigated
the effects of demographic and epidemiologic factors on the transmission behavior and the
threshold for invasion using theoretical deterministic [14] and stochastic [15] models. Cha-
pagain et al. [16] fitted empirical data of a Salmonella Cerro outbreak in a dairy herd to an
SIR model with multiple infectious stages. A lot of significant issues involved in Salmonella
transmission dynamics were not addressed, such as the presence of subclinical cases as well
as long-term shedders.

Empirical studies have found that subclinical shedding is more common than clinical
disease[17]. Subclinical shedders are an important source of infection particularly in endemic
herds but have not been incorporated into previous models of Salmonella transmission [16].
Long-term shedders play an important role in Salmonella disease dynamics as they transmit
infection without showing any visible signs[18]. This makes detection and diagnosis difficult
and poses a challenge for control. The long-term shedders may be shedding the organism
undetected at slaughter, and therefore, pose a risk to human health. A US study found
that 14.9% of 2287 culled dairy cows at market were tested fecal positive for Salmonella[19].
Salmonella has been isolated from ground beef in the US[20] and the consumption of beef has
been associated with a number of Salmonella outbreaks [1][?] illustrating that the presence
of infected cattle and consequent risk of cross-contamination during processing represents a
significant food safety hazard.

The objective of this study is to show, through model simulations, how heterogeneity in
infectious period and contagiousness is demonstrated in the different infectious stages, and
how it relates to the prevalence of salmonellosis in dairy herds. In particular, the study aims
at showing the relative importance of clinical and subclinical cases in the transmission of
the infection, the role of long-term shedders, as well as the impact of heterogeneity in host
infectiousness on the efficiency of control strategies such as vaccination. To address these
questions we developed a series of state transition models, in which model parameters were
estimated from literature and field outbreak data. Different infectious states representing
current knowledge were included.
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2 Methods

2.1 Construction of the Models

Systems of ordinary differential equations (ODEs) are used to represent the changes of the
state variables in the compartmental flow models, derived from the Kermack and McKendrick
SIR model[22]. Two models are modified from the basic SIR model to incorporate multiple
infectious stages, each of which has a different force of infection as well as the infectious
period.

The systems of ODEs for Models 1 and 2 are shown below. Figures 1 and 2 display the
compartmental flow diagrams of the two models.

Model 1

dS

dt
= µN + rR− (βcIc + βsIs + µ)S

dIc

dt
= f(βcIc + βsIs)S − (e + m + µ)Ic

dIs

dt
= (1− f)(βcIc + βsIs)S + eIc − (h + µ)Is

dR

dt
= hIs − (r + µ)R

Model 2

dS

dt
= µN + rR− (βcIc + βsIs + βltIlt + µ)S

dIc

dt
= f(βcIc + βsIs + βltIlt)S − (e + m + µ)Ic

dIs

dt
= (1− f)(βcIc + βsIs + βltIlt)S + eIc − (h + µ)Is

dIlt

dt
= flthIs − (hlt + µ)Ilt

dR

dt
= (1− flt)hIs + hltIlt − (r + µ)R

Model 1 consists of individuals which belong to one of the following compartments at each
time step: susceptible (S), clinically infected (Ic), subclinically infected (Is), and recovered
(R). Model 2 is modified from Model 1, with a long-term shedding (Ilt) compartment
incorporated after Is to investigate the impact of long-term shedders. Note that latent state
is not included in any of the models, because the latent period in Salmonella infections
is thought to be very short (24-48 hours), and hence it has little impact on the infection
dynamics[7]. Also note that in the above diagrams, λ denotes the force of infection, defined as
(βI). This represents the density-dependence of the Salmonella transmission, which means
the prevalence of infection increases with the population size[23][24].
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Figure 1: Compartmental Flow Diagram of Model 1

In Model 1, a fraction of the infected animals was assumed to become subclinically in-
fected (Is) immediately following infection, and all clinically infected animals (Ic) will go
to the subclinical before full recovery. These states reflect the observed disease behavior
that not all infected animals develop clinical salmonellosis[27], and that individuals which
have recovered from clinical disease can continue to shed Salmonella, and hence infect other
susceptible animals[28]. It was found in previous studies that exposure to cattle with clinical
salmonellosis is a risk factor for development of salmonellosis[24][29], as individuals in Ic

tend to shed larger quantities of bacteria in their feces than individuals in Is. Therefore,
the transmission coefficient for Ic is assumed to be 0.0016, almost 27 times than that of Is,
which is 0.000016.

For Model 2, the addition of a Ilt compartment reflects the long-term persistence of
Salmonella at farm level observed for several serotypes, including multi-drug resistant S.
Newport [25] and S. Dublin [26]. On farms with persistent cases of salmonellosis, there are
always animals without clinical signs reported to shed Salmonella persistently or intermit-
tently. These animals belong to the Ilt compartment in Model 2. Since individuals at the
long-term shedding stage do not show clinical signs, the transmission coefficient of Ilt is
assumed to be equivalent to that of Is.

The models assume that the population size stays constant. The exit rate of individuals
due to natural death and also disease-induced mortality is balanced by the replacement rate.
This assumption is in fact a common management practice in dairy herds, as farmers tend
to keep the number of animals in a herd constant for efficient utilization of resources. It is
also assumed that all animals entering the system are susceptible, and that animals can die
from salmonellosis at any point during clinical disease.
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Figure 2: Compartmental Flow Diagram of Model 2

We further assume that the only route of Salmonella infection is direct fecal-oral trans-
mission. Indirect transmission routes such as the influence of the environment are not taken
into account, since the contribution of different types of infected animals to transmission
would remain unchanged whether or not the indirect routes of infection are included.

2.2 Estimation of Parameter Values

The descriptions and mean values of the parameters of Models 1 and 2 are listed in Table
1 below. The values of the parameters are obtained from several sources, including recent
field data, existing literature and assumptions based on biological knowledge of the disease
dynamics. The field data used was collected by in a longitudinal study performed by the
College of Veterinary Medicine of Cornell University between February 2004 and September
2005[30]. The longitudinal study aimed at determining the incidence of salmonellosis in dairy
cattle in the northeastern United States. Of the 34 herds enrolled in the study, 22 of them
had at least 2 laboratory-confirmed cases of salmonellosis. These 22 farms were then en-
rolled in a prospective follow-up study to determine the duration of fecal shedding following
clinical salmonellosis. Fecal samples from Salmonella culture-positive cases were collected
at approximately monthly intervals until 3 consecutive negative samples were obtained, or
the animal was lost to follow-up.

The mean replacement and exit rates (µ) for the models are read off directly from the
data set of the longitudinal study. The transmission coefficients could not be calculated
directly from the data because non-clinical cases (subclinical and long-term shedders) could
not be diagnosed on field. Hence the values of the transimission coefficients are estimated
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Parameters Description Mean Value Reference
µ Replacement and exit rate 0.0011 1
βc Transmission coefficient for clinical ani-

mals
0.0016 n/a

βs Transmission coefficient for subclinical an-
imals

0.00006 n/a

βlt Transmission coefficient for long-term
shedders

0.00006 n/a

f Proportion of infected animals that de-
velop clinical case

0.5 n/a

flt Proportion of subclinical cases that be-
come long-term shedders

0.14 2

e Rate of clinical cases that become subclin-
ical

0.25 1,3

h Recovery rate for subclinical case 0.041/ 0.057 2
hlt Recovery rate for long-term shedders 0.01 2
m Disease-induced induce mortality rate 0.011 2
r Immunity loss rate 0.01 1

Table 1: List of parameter values Note: 1 - From literature; 2 - From data obtained in the
longitudinal study; 3 - From expert opinion; n/a - Assumed value.

based on theoretical assumptions and previous models[?]. The recovery rate for Ic is defined
as reciprocal of the duration of the clinical signs. The duration of clinical signs was estimated
to be 4 days based on literature[27] and the consensus of a panel of experts (T. Divers, C.
Guard and L. Warnick, personal communication). Data from the two enrolled herds with
the largest outbreaks were used to estimate the remaining recovery rates (h, hlt), fraction of
long term shedders (flt) and diseased induced mortality rates (m):

The recovery rate from subclinical salmonellosis is defined as the reciprocal of the duration
of shedding the bacteria. The proportion of animals shedding after clinical salmonellosis
follows an exponential decay function. For Model 1, since all infected animals pass from Ic

to Is , the proportion of animals shedding at time t (P (t)) was is given by the function[7]:

P (t) = e−ht

In model 2, there are two populations of animals shedding sequentially. All animals
in Is shed at rate h, and a fraction of Is(flt) continues to shed at a rate hlt. Solving the
corresponding system of differential equations gives the solution P (t)[7]:

P (t) = (1− h

h− hlt

flt)e
−ht +

h

h− hlt

flte
−hltt
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The decay functions were fitted to the data by nonlinear regression, using the NLIN
procedure of SAS (SAS Institute, Cary, NC). The Levenberg-Marquard algorithm [31] was
used. Salmonella-induced mortality rate (m) is defined as

m =
number of death due to salmonellosis

(number of days at risk of death)(number of cows at risk)

Since disease-induced mortality is only possible when the individual is clinically infected, the
number of cows at risk is defined as the animals with clinical signs, and the number of days
at risk of death is the mean duration of clinical signs.

2.3 Derivation of the R0 Formula

R0, the basic reproductive ratio, is defined as the average number of secondary infections
produced when one infected individual is introduced into a host population where the rest
of the population is susceptible. R0 is the threshold parameter that determines the exis-
tence and local stability of the disease-free equilibrium of a compartmental infectious disease
model[32]. If R0 < 1, there exists a locally asymptotically stable equilibrium. In biological
terms, it means that on average an infected individual produces less than one new infected
individual over the course of its infectious period. Hence the infection cannot persist, and
the model will eventually reach a locally stable disease-free equilibrium [33]. Conversely, if
R0 ≥ 1, the disease-free equilibrium is locally unstable, and the infection will persist because
each newly infected individual will spread the disease to at least one susceptible individ-
ual on average[33]. The R0 expressions for Models 1 and 2 are formulated using the ’Next
Generation Method’as shown below. Detailed explanation and proofs of the method were
developed by van den Driessche and Watmough, 2002 [32].

First we enumerate the compartments in our models from left to right, ie Susceptible
(S) = Compartment1, Clinically infected(Ic) = Compartment2, and so on. Then let

F =

(
∂Fi(x)

∂xj

)

x=x0

and V =

(
∂Vi(x)

∂xj

)

x=x0

where Fi(x) denote the rate of appearance of new infections in compartment i, and Vi(x)is
the net transfer rate (other than infections) of compartment i. The net transfer rate is given
by Vi = V −

i − V +
i , where V −

i is the rate of transfer of individuals out of compartment i, and
V +

i is the rate of transfer of individuals into compartment i by means other than infection.

Therefore, in Model 1,

F =

(
fβcS(0) fβsS(0)

(1− f)βcS(0) (1− f)βsS(0)

)

V =

(
e + µ + m 0

−e h + µ

)
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S(0) is the initial value of compartment S. Note that both F and V are 2 × 2 square
matrices, because there are two infectious stages, Ic and Is. Further, note that F is non-
negative, and V is non-singular. Hence we can compute V −1 and FV −1, which are both
non-negative:

V −1 =

(
1

e+µ+m
0

e
(e+µ+m)(h+µ)

1
h+µ

)

FV −1 =

(
fβcS(0)
e+µ+m

+ feβsS(0)
(e+µ+m)(h+µ)

fβsS(0)
h+µ

(1−f)βcS(0)
e+µ+m

+ (1−f)eβsS(0)
(e+µ+m)(h+µ)

(1−f)βsS(0)
h+µ

)

Now we solve the characteristic equation of the matrix FV −1 and find its eigenvalues.
The (i, j)-th entry of FV −1 denotes the expected number of new infections in compartment
i, produced by an infected individual in compartment k. Hence FV −1 is referred as the
“Next Generation Matrix”, and R0 is given by the spectral radius (dominant eigenvalue) of
the next generation matrix[34]:

det

(
fβcS(0)
e+µ+m

+ feβsS(0)
(e+µ+m)(h+µ)

− Λ
fβsS(0)

h+µ
(1−f)βcS(0)

e+µ+m
+ (1−f)eβsS(0)

(e+µ+m)(h+µ)
(1−f)βsS(0)

h+µ
− Λ

)
= 0

i.e.

Λ

(
Λ− fβcS(0)

e + µ + m
− (1− f)βsS(0)

h + µ
− feβsS(0)

(e + µ + m)(h + µ)

)
= 0

Hence,

R0 =
fβcS(0)

e + µ + m
+

(1− f)βsS(0)

h + µ
+

feβsS(0)

(e + µ + m)(h + µ)

Similarly, for Model 2,

F =




fβcS(0) fβsS(0) fβltS(0)
(1− f)βcS(0) (1− f)βsS(0) (1− f)βltS(0)

0 0 0




V =




e + µ + m 0 0
−e h + µ 0
0 −flth hlt + µ||




Note that there are 3 infectious stages in Model 2, hence the dimension of F and V is 3× 3.

V −1 =




1
e+µ+m

0 0
e

(e+µ+m)(h+µ)
1

h+µ
0

eflth
(e+µ+m)(h+µ)(hlt+µ)

flth
(h+µ)(hlt+µ)

1
hlt+µ



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Hence the next generation matrix is

FV −1 =




a11 a12 a13

a21 a22 a23

0 0 0




where

a11 =
fβcS(0)

e + µ + m
+

feβsS(0)

(e + µ + m)(h + µ)
+

feflthβltS(0)

(e + µ + m)(h + µ)(hlt + µ)

a12 =
fβsS(0)

h + µ
+

fflthβltS(0)

(h + µ)(hlt + µ)

a13 =
fβltS(0)

hlt + µ

a21 =
(1− f)βcS(0)

e + µ + m
+

(1− f)eβsS(0)

(e + µ + m)(h + µ)
+

(1− f)eflthβltS(0)

(e + µ + m)(h + µ)(hlt + µ)

a22 =
(1− f)βsS(0)

h + µ
+

(1− f)flthβltS(0)

(h + µ)(hlt + µ)

a23 =
(1− f)βltS(0)

hlt + µ

On solving the characteristic equation of FV −1, we have

R0 = Λmax =
fβcS(0)

e + µ + m
+

(1− f)βsS(0)

h + µ
+

feβsS(0)

(e + µ + m)(h + µ)

+
(1− f)flthβltS(0)

(h + µ)(hlt + µ)
+

feflthβltS(0)

(e + µ + m)(h + µ)(hlt + µ)

Note that from our model assumptions, all the individuals enter the system as susceptible.
Hence the R0 expression only depend on the initial condition of the susceptible compartment
(S(0)).

2.4 Model Simulation

The models are coded and simulated using MATLAB 6.5. The source code can be found
in the Appendix. The total population is taken to be 345, which is the mean value of
the herd sizes involved in the longitudinal study described in Section 2.2. The numerical
simulation is started by introducing one clinically infected individual into the otherwise com-
pletely susceptible population. Hence, the initial conditions are S(0) = 344, Ic(0) = 1, and
Is(0) = Ilt(0) = R(0) = 0. Parameter values used are listed in Table 1. The epidemic curves
of the two systems with variable parameters are studied. The sensitivities of R0 with respect
to the transimission coefficients (β) and recovery rates are also investigated.
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In order to determine how heterogeneity in infectiousness affect vaccination programs, we
need to calculate the critical proportion of the population (pc) to be immunized so to make
R0 < 1. Since the efficacy for Salmonella vaccines is highly variable[35], pc is calculated for
different vaccination efficacies (Φ). The formula of pc1 is obtained from [7]:

pc1 =
1

Φ
(1− 1

R0

)

Here we are assuming that the population is homogeneously mixed, and that the vaccine
is equally effective across all infectious stages. The value of pc should be less than or equal
to 1, as the critical proportion to be vaccinated cannot exceed the entire population. The
vaccine is said to be not feasible if pc > 1.

In reality, however, a vaccine may not be able to prevent infection due to clinically infected
animals. It is only capable of reducing the transmission of clinically infected animals in a
homogeneously mixed population. In this case, pc2 is calculated as shown in [7]:

pc2 =
1

Φ
(1− 1−R∗

Rcl

)

where Rcl is the contribution of the clinically infected compartment to the R0 expression,
and R∗ is the contribution of other infectious stages, i.e. R0 = Rcl + R∗. If R∗ > 1, pc2 > 1,
and hence the vaccine is not feasible, because the reduction of the transmission from the
clinically infected animals would not be enough to prevent an epidemic, or eliminate an
endemic infection.

9



3 Results

Numerical methods are used to analyze the two systems of higher-order ordinary differential
equations. The dynamics of each compartment of the two models are plotted against time
in Figures 3 and 4. Figure 5 verifies that the total population of the system stays constant
over the course of simulation. The effect of a change in proportion of the infected stages on
the disease prevalence is studied. The relative contribution of each stage to new infections is
also assessed. Figure 6 shows the change in prevalence for Model 1 against different values
of f , the fraction of newly infected individuals that develop clinical diseases. The expected
value of f is 0.5, and we run the simulation using f = 0.5 as well as f = 0.5± 0.35. When
f = 0.15, subclinically infected animals dominate the infectious population. However, they
are not able to sustain the infection, because with the given parameter values, R0 < 1,
and hence an epidemic outbreak did not take place. On the other hand, when f is large
(f = 0.85), it results in a well-defined epidemic that peaks early, and is followed by damped
oscillations before reaching the steady state. Predicted endemic prevalence was greater for
larger f .

The early stages (before Day 100) of the epidemic in Model 2 is similar to that of Model
1, because the early contribution of the long-term shedders is relatively low (Figure 3,4).
We vary flt, that is the fraction of subclinically infected individuals that become long term
shedders in Model 2. Notice that the disease prevalence, while very sensitive to the change
in f (Figure 6), is not sensitive to the change in flt, as shown in Figure 7. The value of
the basic reproductive number, R0, is plotted against different values of the transmission
coefficients βc, βs and βlt in Figure 8. R0 is also plotted against e, h and hlt in Figure 9.
R0 increases linearly with the transmission coefficients, as suggested by the positively sloped
parallel lines observed in Figure 8. However, note that when βc < 0.8x10−3 in Model 1, R0

is less than 1. In Model 2, when βc is less than approximately 0.45x10−3, R0 < 1. On the
other hand, for all values of βs, given the values of βc = 0.0016 and βlt = 0.00006, the value
of R0 is always greater than 1. Moreover, R0 is sensitive to the value of e, especially when
e < 0.25, which is its mean value. Similarly, R0 is also very sensitive to the change in h,
when h is less than its expected value 0.041. When h > 0.041, the sensitivity of R0 to h
decreases, and finally shows no change in value when h ranges from 0.25 to 1.

The values pc1 and pc2 are calculated for the vaccine efficacies Φ = (0.25, 0.5, 0.75, 1).
Results are shown in Table 2.

Φ
φ = 0.25 φ = 0.50 φ = 0.75 φ = 1.0

Model pc1 pc2 pc1 pc2 pc1 pc2 pc1 pc2

1 nf nf 0.70 nf 0.46 0.68 0.35 0.51
2 nf nf 0.76 nf 0.51 0.78 0.38 0.58

Table 2: List of parameter values. Here nf stands for non-feasible.
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Figure 3: Distribution of the compartments of Model 1 and Model 2 with respect to different
values of f . The susceptible curves (S) are drawn in blue, Ic in red, Is in green, Ilt in magenta,
R in black.
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Figure 4: Constant total population for Models 1 and 2.

Figure 5: Impact of the fraction of clinically infected animals (f) on the prevalence of
infection in Model 1.

Figure 6: Impact of the fraction of subclinically infected animals that become long-term
shedders (flt) on the prevalence of infection in Model 2.
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Figure 7: Sensitivity of R0 with respect to the transmission coefficients. Blue lines stand
for R0 of Model 1, red lines stand for R0 of Model 2. Horizontal black line indicates the
threshold value R0 = 1.
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Figure 8: Sensitivity of R0 with respect to the recovery rates. Blue lines stand for R0 of
Model 1, red lines stand for R0 of Model 2. Horizontal black line indicates the threshold
value R0 = 1.
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4 Discussion

To study the impact of heterogeneity of infectiousness in contagiousness and infectious pe-
riod, two deterministic compartmental flow models are constructed. Heterogeneity is added
to these models by incorporating different homogeneous infected stages into the models.
After estimating the parameters from field data and statistical analysis, the systems of or-
dinary differential equations corresponding to the two models are solved numerically using
MATLAB. The dynamics displayed by the models and the thresholds quantities are studied.

The two models exhibited different qualitative dynamic patterns. First, it is obvious that
it takes a shorter time for Model 1 to reach an endemic equilibrium than Model 2. Over the
course of simulation of 600 days with the parameter values in Table 1, Model 1 is able to
reach its endemic state after damped oscillation, while Model 2 still demonstrates significant
fluctuations. By extending the simulation time, it is found that Model 2 takes approxi-
mately 2000 days to reach its endemic equilibrium. It is noted that Model 1 is more prone
to damped oscillations, especially when there is a high fraction of clinically infected animals,
high transmission coefficients or fast recovery rates. The prevalence of infection in Model 2
tends to increase until it reaches the endemic prevalence, and the epidemic curve of Model 2
is less defined. Here the significance of the additional long-term shedders stage is illustrated:
when the long-term shedding compartment is incorporated, the prevalence of infection sus-
tains at a higher level, and it takes more than six times longer to reach the equilibrium state.

Clinically infected animals are the main force of transmission for both models. Increas-
ing the number of clinically infected individuals results in larger outbreaks as well as a
larger equilibrium value, that is, a higher prevalence at endemic stage. The relevance of
clinical cases on Salmonella persistence has been outlined in previous studies. In a case
study, the prevalence was higher for the two herds that had a previous history of clinical
salmonellosis[36]. Exposure to cattle with clinical salmonellosis has been described as a risk
factor for development of salmonellosis[24][29]. In order to simulate the high prevalence of
subclinical infection displayed by some serotypes (e.g. S. Cerro) in the absence of clinically
infected animals (f = 0), slower recovery rates for subclinically infected animals and long
term shedders than the values reported in Table 1 are necessary.

Although heterogeneity in transmission has not been previously addressed for Salmonella,
extensive work has been undertaken to investigate sources of heterogeneity for another food-
borne bacteria, Escherichia coli O157 [37][38]. Matthews et al.[38] evaluated several stochas-
tic SIS models that included different sources of heterogeneity. They found that models which
included between-animal variability of infectious period in the same infectious compartment
failed to explain the observed data. Similarly to the case of E. coli, Model 2 shows that
R0 > 1 can be achieved if and only if the long-term shedders have a very slow recovery rate,
given that only 14% of the subclinically infected individuals move into the Ilt compartment.
This suggests that the few individuals with unusually long infectious period but low conta-
giousness do not play an important role on the persistence and transmission of the infection.
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It is a new concept in understanding the Salmonella transmission dynamics, as the role of
long-term shedders has long been overestimated.

Heterogeneity in the transmission of any disease is known to have the implication that
individual-specific control measures designed to target the most infectious individuals (e.g.
isolation) are more efficient in eradicating the disease than population-wide control measures
(e.g. vaccination at random)[39][40]. However, in our environment of study, targeting spe-
cific subgroups to control Salmonella transmission in dairy herds is very challenging. It is
because there are difficulties in identifying persistently infectious individuals without clinical
signs. For example, the reported sensitivity of bacterial culture of S. Dublin from feces may
be as low as 6-14 % in animals without clinical symptoms[41]. Furthermore, the isolation of
clinically ill cows in sick pens has been reported to favor Salmonella persistence as well as the
emergence of multi-drug resistance[25]. Therefore, in this study, the impact of heterogeneity
on population-wide control measures is evaluated. The aim of carrying out a vaccination
program is to eradicate an endemic Salmonella infection, or to prevent Salmonella introduc-
tion into a completely susceptible population.

The critical proportion of individuals that must be vaccinated in order to eliminate the
infection (pc) is correlated to both R0 and the vaccine efficacy (Φ). Results shown in Table
2 indicate that vaccines with low efficacy (Φ = 0.25) are rather ineffective at providing
protection against persistent or invasive Salmonella infection. High efficacy vaccines (Φ ≥
0.75) that either reduce transmission from clinically infected animals or from all infectious
individuals are feasible, since both (pc1) and (pc2) are less than 1. They are predicted to
aid in eradicating infection for Models 1 and 2. However, in most cases, more than 50%
of the individuals has to be vaccinated in order to protect the population from Salmonella
outbreak. The cost of such a vaccination program versus its actual effectiveness has to be
evaluated.
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5 Conclusion

The impact of individual heterogeneity on Salmonella transmission dynamics and eradication
thresholds has been evaluated. Infected individuals with clinical signs are the main force
of infection and the transmission for both models. Hence, it is suggested that reducing
transmission coefficient of Ic could be an effective way to reduce Salmonella prevalence, or
even prevent the outbreak of salmonellosis epidemic in dairy herds. Long-term shedders have
an unexpectedly small impact on the transmission of the infection as well as the estimated
vaccination thresholds. Model 1 and 2 are appropriate to describe Salmonella transmission
dynamics of different serotypes as well as different farm management practices. However, the
specific conditions applicable for each model remain contingent upon future findings. Further
work can be focused on other possible infectious stages, such as having a superspreading class
that develops from the clinically infected individuals, with the superspreaders being several
times more infectious than the normal clinical animals. With more extensive empirical data,
such as the fecal analysis of the animals without clinical signs, the final size distribution
of an Salmonella outbreak can be determined. Stochastic models can also be constructed
to help elucidate the relative contribution of the infected stages to transmission and would
move forward modeling efforts to address Salmonella spread.
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6 Appendix

6.1 Source Code of Model 1

% Yancy Lo

% Senior Thesis

% Salmonella Model 1

N = 345; % total population

tmax = 600; % time (in days) that the model runs through

mu = 0.0011; % replacement and exit rate

beta_c = 0.0016; % transmission coefficient for clinical animals

beta_s = 0.00006; % transmission coefficient for subclinical animals

f = 0.5; % proportion of infected animals that develop clinical disease

e = 0.25; % rate of clinical cases that become subclinical

h = 0.041; % recovery rate for subclinical cases

m = 0.011; % disease induced mortality rate

r = 0.01; % immunity loss rate

figure;

S = N-1;

Ic = 1; Is = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

tspan = [0 tmax];

x0 = [S;Ic;Is;R];

para = [mu beta_c beta_s f e h m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsR,tspan,x0,options,para);

len = length(x);

sus = zeros(len,1);

clin = zeros(len,1);

subclin = zeros(len,1);

recover = zeros(len,1);

total = zeros(len,1);

for t = 1:len

total(t) = x(t,1)+ x(t,2)+ x(t,3)+ x(t,4);

sus(t) = x(t,1);
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clin(t) = x(t,2);

subclin(t) = x(t,3);

recover(t) = x(t,4);

end

plot(T,total);

AXIS([0 600 0 400]);

XLABEL(’Time’);

YLABEL(’Total Population’);

figure;

plot(T,sus,’b’,T,clin,’r’, T, subclin,’g’,T,recover,’k’);

legend(’S’, ’I_c’, ’I_s’, ’R’);

XLABEL(’Time’);

YLABEL(’Population’);

--------------------

function dx=SIcIsR(t,x,p)

dx=zeros(4,1);

dx(1) = p(1)*p(9) + p(8).*x(4) - p(2).*x(2).*x(1)

- p(3).*x(3).*x(1) - p(1).*x(1);

dx(2) = p(4)*p(2).*x(2).*x(1) + p(4)*p(3).*x(3).*x(1)

- p(5).*x(2) - p(7).*x(2) - p(1).*x(2);

dx(3) = (1-p(4))*p(2).*x(2).*x(1) + (1-p(4))*p(3).*x(3).*x(1)

+ p(5).*x(2) - p(6).*x(3) -p(1).*x(3);

dx(4) = p(6).*x(3) - p(8).*x(4) - p(1).*x(4);

6.2 Source Code for Model 2

% Yancy Lo

% Senior Thesis

% Salmonella Model 2

N = 345; % total population

tmax = 600; % time (in days) that the model runs through

mu = 0.0011; % replacement and exit rate

beta_c = 0.0016; % transmission coefficient for clinical animals

beta_s = 0.00006; % transmission coefficient for subclinical animals

beta_lt = 0.00006; % transmission coefficient for long-term shedders

f = 0.5; % proportion of infected animals that develop clinical

% disease

f_lt = 0.14; % proportion of subclinical cases that become long-term
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% shedders

e = 0.25; % rate of clinical cases that become subclinical

h = 0.041; % recovery rate for subclinical cases

h_lt = 0.01; % recovery rate for long-term shedders

m = 0.011; % disease induced mortality rate

r = 0.01; % immunity loss rate

S = N-1;

Ic = 1; Is = 0; Ilt = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt+mu))

+ (f*e*f_lt*h*beta_lt*S)/((e+mu+m)*(h+mu)*(h_lt+mu))

tspan = [0 tmax];

x0 = [S;Ic;Is;Ilt;R];

para = [mu beta_c beta_s beta_lt f f_lt e h h_lt m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsIltR,tspan,x0,options,para);

len = length(x);

sus = zeros(len,1);

clin = zeros(len,1);

subclin = zeros(len,1);

longterm = zeros(len,1);

recover = zeros(len,1);

total = zeros(len,1);

for t = 1:len

total(t) = x(t,1)+ x(t,2)+ x(t,3)+ x(t,4)+ x(t,5);

sus(t) = x(t,1);

clin(t) = x(t,2);

subclin(t) = x(t,3);

longterm(t) = x(t,4);

recover(t) = x(t,5);

end

plot(T,total);

figure;

plot(T,sus,’b’,T,clin,’r’, T, subclin,’g’,T,longterm, ’m’, T,recover,’k’);

legend(’S’, ’I_c’, ’I_s’, ’I_lt’, ’R’);

XLABEL(’Time’);
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YLABEL(’Population’);

--------------------

function dx=SIcIsIltR(t,x,p)

dx=zeros(5,1);

dx(1) = p(1)*p(12) + p(1).*x(5) - p(2).*x(2).*x(1)

- p(3).*x(3).*x(1) - p(4).*x(4).*x(1) - p(1).*x(1);

dx(2) = p(5)*p(2).*x(2).*x(1) + p(5)*p(3).*x(3).*x(1)

+ p(5)*p(4).*x(4).*x(1) - (p(7)+p(10)+p(1)).*x(2);

dx(3) = (1-p(5))*p(2).*x(2).*x(1) + (1-p(5))*p(3).*x(3).*x(1)

+ (1-p(5))*p(4).*x(4).*x(1) + p(7).*x(2) - (p(8)+p(1)).*x(3);

dx(4) = p(6)*p(8).*x(3) - (p(9)+p(1)).*x(4);

dx(5) = (1-p(6))*p(8).*x(3) + p(9).*x(4) - (p(11)+p(1)).*x(5);

6.3 Varying f

% Yancy Lo

% Senior Thesis

% Salmonella Model 1 - Varying f

N = 345;

mu = 0.0011;

beta_c = 0.0016;

beta_s = 0.00006;

f = 0.15;

e = 0.25;

h = 0.041;

m = 0.011;

r = 0.01;

S = N-1;

Ic = 1; Is = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

tspan = [0 tmax];

x0 = [S;Ic;Is;R];

para = [mu beta_c beta_s f e h m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsR,tspan,x0,options,para);
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len = length(x);

clin = zeros(len,1);

subclin = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

prev(t) = (clin(t) + subclin(t))./N;

end

figure

plot(T,prev,’b-’);

hold on

f = 0.5;

S = N-1;

Ic = 1; Is = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

tspan = [0 tmax];

x0 = [S;Ic;Is;R];

para = [mu beta_c beta_s f e h m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsR,tspan,x0,options,para);

len = length(x);

clin = zeros(len,1);

subclin = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

prev(t) = (clin(t) + subclin(t))./N;

end

plot(T,prev,’r:’);

hold on

f = 0.85;

S = N-1;

Ic = 1; Is = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))
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+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

tspan = [0 tmax];

x0 = [S;Ic;Is;R];

para = [mu beta_c beta_s f e h m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsR,tspan,x0,options,para);

len = length(x);

clin = zeros(len,1);

subclin = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

prev(t) = (clin(t) + subclin(t))./N;

end

plot(T,prev,’g--’);

legend(’f=0.15’, ’f=0.5’, ’f=0.85’)

XLABEL(’Time’);

YLABEL(’Prevalence’);

6.4 Varying flt

% Yancy Lo

% Senior Thesis

% Salmonella Model 2 - Varying f_lt

N = 345;

mu = 0.0011;

beta_c = 0.0016;

beta_s = 0.00006;

beta_lt = 0.00006;

f = 0.5;

f_lt = 0.05;

e = 0.25;

h = 0.041;

h_lt = 0.01;

m = 0.011;

r = 0.01;
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S = N-1;

Ic = 1; Is = 0; Ilt = 0; R = 0;

R_0 = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt+mu))

+ (f*e*f_lt*h*beta_lt*S)/((e+mu+m)*(h+mu)*(h_lt+mu))

tspan = [0 tmax];

x0 = [S;Ic;Is;Ilt;R];

para = [mu beta_c beta_s beta_lt f f_lt e h h_lt m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsIltR,tspan,x0,options,para);

len = length(x);

clin = zeros(len,1);

subclin = zeros(len,1);

longterm = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

longterm(t) = x(t,4);

prev(t) = (clin(t)+subclin(t)+longterm(t))./N;

end

figure;

plot(T, prev, ’b-’);

hold on

f_lt = 0.12;

S = N-1;

Ic = 1; Is = 0; Ilt = 0; R = 0;

tspan = [0 tmax];

x0 = [S;Ic;Is;Ilt;R];

para = [mu beta_c beta_s beta_lt f f_lt e h h_lt m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsIltR,tspan,x0,options,para);

len = length(x);

clin = zeros(len,1);
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subclin = zeros(len,1);

longterm = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

longterm(t) = x(t,4);

prev(t) = (clin(t)+subclin(t)+longterm(t))./N;

end

plot(T, prev, ’r:’);

hold on

f_lt = 0.25;

S = N-1;

Ic = 1; Is = 0; Ilt = 0; R = 0;

tspan = [0 tmax];

x0 = [S;Ic;Is;Ilt;R];

para = [mu beta_c beta_s beta_lt f f_lt e h h_lt m r N];

options = odeset(’RelTol’,1e-4,’AbsTol’,1e-4);

[T,x] = ode23s(@SIcIsIltR,tspan,x0,options,para);

len = length(x);

clin = zeros(len,1);

subclin = zeros(len,1);

longterm = zeros(len,1);

prev = zeros(len,1);

for t = 1:len

clin(t) = x(t,2);

subclin(t) = x(t,3);

longterm(t) = x(t,4);

prev(t) = (clin(t)+subclin(t)+longterm(t))./N;

end

plot(T, prev, ’g--’);

hold on

legend (’f_lt = 0.05’, ’f_lt=0.12’, ’f_lt=0.25’);

XLABEL(’Time’)

YLABEL(’Prevalence’)
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6.5 Sensitivity of R0 with respect to transmission coefficients

%Yancy Lo

%Senior Thesis

%R_0 Sensitivity wrt Betas

N = 345;

mu = 0.0011;

beta_c = linspace(0,0.003,100);

beta_s = 0.00006;

beta_lt = 0.00006;

f = 0.5;

e = 0.25;

h = 0.041;

h_lt = 0.01;

m = 0.011;

r = 0.01;

S = N-1;

for i = 1: 100

R_01(i) = ((f*beta_c(i)*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)));

R_02(i)= ((f*beta_c(i)*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt+mu))

+ (f*e*f_lt*h*beta_lt*S)/((e+mu+m)*(h+mu)*(h_lt+mu));

end

plot(beta_c,R_01,’b-’,beta_c,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 0.003 0 6]);

XLABEL(’\beta_c’);

YLABEL(’R_0’);

%%%Vary beta_S%%%

beta_c = 0.0016;

beta_s = linspace(0,0.001,100);

for i = 1: 100

R_01(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s(i)*S)/(h+mu))

+ ((f*e*beta_s(i)*S)/((e+mu+m)*(h+mu)));

R_02(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s(i)*S)/(h+mu))

+ ((f*e*beta_s(i)*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt+mu))
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+ (f*e*f_lt*h*beta_lt*S)/((e+mu+m)*(h+mu)*(h_lt+mu));

end

figure;

plot(beta_s,R_01,’b-’,beta_s,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 0.001 0 10]);

XLABEL(’\beta_s’);

YLABEL(’R_0’);

%%%Vary beta_lt%%%

beta_s = 0.00006;

beta_lt = linspace(0,0.001,100);

for i = 1: 100

R_01(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)));

R_02(i)= ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt(i)*S)/((h+mu)*(h_lt+mu))

+ (f*e*f_lt*h*beta_lt(i)*S)/((e+mu+m)*(h+mu)*(h_lt+mu));

end

figure;

plot(beta_lt,R_01,’b-’,beta_lt,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 0.001 0 6]);

XLABEL(’\beta_s’);

YLABEL(’R_0’);

6.6 Sensitivity of R0 with respect to recovery rates

% Yancy Lo

% Senior Thesis

% R_0 Sensitivity wrt Recovery Rates

N = 345;

mu = 0.0011;

beta_c = 0.0016;

beta_s = 0.00006;

beta_lt = 0.00006;

f = 0.5;

f_lt = 0.14;

e = linspace(0,1,50);

h = 0.041;
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h_lt = 0.01;

m = 0.011;

r = 0.01;

S = N-1;

for i = 1: 50

R_01(i) = ((f*beta_c*S)/(e(i)+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e(i)*beta_s*S)/((e(i)+mu+m)*(h+mu)));

R_02(i) = ((f*beta_c*S)/(e(i)+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e(i)*beta_s*S)/((e(i)+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt+mu))

+ (f*e(i)*f_lt*h*beta_lt*S)/((e(i)+mu+m)*(h+mu)*(h_lt+mu));

end

plot(e,R_01,’b-’,e,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 1 0 5]);

XLABEL(’e’);

YLABEL(’R_0’);

%%%Vary h%%%

h = linspace(0,1,50);

e = 0.25;

for i = 1:50

R_01(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h(i)+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h(i)+mu)));

R_02(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h(i)+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h(i)+mu)))

+ ((1-f)*f_lt*h(i)*beta_lt*S)/((h(i)+mu)*(h_lt+mu))

+ (f*e*f_lt*h(i)*beta_lt*S)/((e+mu+m)*(h(i)+mu)*(h_lt+mu));

end

figure;

plot(h,R_01,’b-’,h,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 1 0 5]);

XLABEL(’h’);

YLABEL(’R_0’);

%%%Vary h_lt%%%

h = 0.041;

h_lt = linspace(0,1,50);

for i = 1:50

R_01(i) = ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))
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+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)));

R_02(i)= ((f*beta_c*S)/(e+mu+m)) + (((1-f)*beta_s*S)/(h+mu))

+ ((f*e*beta_s*S)/((e+mu+m)*(h+mu)))

+ ((1-f)*f_lt*h*beta_lt*S)/((h+mu)*(h_lt(i)+mu))

+ (f*e*f_lt*h*beta_lt*S)/((e+mu+m)*(h+mu)*(h_lt(i)+mu));

end

figure;

plot(h_lt,R_01,’b-’,h_lt,R_02,’r-’);

LEGEND(’Model 1’, ’Model 2’);

AXIS([0 1 0 5]);

XLABEL(’h_lt’);

YLABEL(’R_0’);
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