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Abstract. The main result in this paper is that the space of all smooth links
in R

3 isotopic to the trivial link of n components has the same homotopy type
as its finite-dimensional subspace consisting of configurations of n unlinked
Euclidean circles (the ‘rings’ in the title). There is also an analogous result
for spaces of arcs in upper half-space, with circles replaced by semicircles (the
‘wickets’ in the title). A key part of the proofs is a procedure for greatly reduc-
ing the complexity of tangled configurations of rings and wickets. This leads
to simple methods for computing presentations for the fundamental groups of
these spaces of rings and wickets as well as various interesting subspaces. The
wicket spaces are also shown to be aspherical.

1. Introduction

The classical braid group Bn can be defined as the fundamental group of the space
of all configurations of n distinct points in R

2. In this paper we consider a 3-
dimensional analog which we call the ring group Rn. This is the fundamental
group of the space Rn of all configurations of n disjoint pairwise unlinked circles,
or rings, in R

3, where we mean the word ‘circle’ in the strict Euclidean sense. It is
not immediately apparent that Rn is path-connected, but in Section 2 we recall a
simple geometric argument from [FS] that proves this. In particular, this says that
configurations of n pairwise unlinked circles form the trivial link of n components.

The ring group Rn turns out to be closely related to several other groups that have
been studied before in a variety of contexts under different names. This connection
arises from one of our main technical results:

Theorem 1. The inclusion of Rn into the space Ln of all smooth trivial links of

n components in R
3 is a homotopy equivalence.

Thus Rn is isomorphic to the group π1Ln first studied in the 1962 thesis of Dahm
[D], who identified it with a certain subgroup of the automorphism group of a free
group on n generators, subsequently called the symmetric automorphism group
[Mc], [C]. A finite-index subgroup of this group is the ‘braid-permutation group’ of
[FRR]. Other references are [G], [BL], [R], [BMMM], [JMM], [BWC].

We will show that the group Rn is generated by three families of elements ρi, σi,
and τi defined as follows. If we place the n rings in a standard position in the
yz-plane with centers along the y-axis, then there are two generators ρi and σi
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that permute the ith and (i+ 1)st rings by passing the ith ring either through the
(i+ 1)st ring or around it, respectively, as in Figure 1.

Figure 1. The generators ρi, σi, and τi.

The generator τi reverses the orientation of the ith ring by rotating it 180 degrees
around its vertical axis of symmetry. It is not hard to see that τi has order two
in Rn. We will show that the ρi’s generate a subgroup of Rn isomorphic to the braid
group Bn and the σi’s generate a subgroup isomorphic to the symmetric group Σn.

Parallel rings. The space Rn has a number of interesting subspaces. The first of
these we single out is the ‘untwisted ring space’ URn consisting of all configurations
of rings lying in planes parallel to a fixed plane, say the yz-plane. The loops of
configurations giving the generators ρi and σi lie in this subspace. We will show
that the untwisted ring group URn = π1 URn is generated by the ρi’s and σi’s,
and that the map URn → Rn induced by the inclusion URn →֒ Rn is injective, so
URn can be identified with the subgroup of Rn generated by the ρi’s and σi’s. We
will also see that URn can be described as the fundamental group of the 2n-sheeted
covering space of Rn consisting of configurations of oriented rings, so URn has
index 2n in Rn. The τi’s generate a complementary subgroup isomorphic to Z

n
2 ,

but neither this subgroup nor URn is normal in Rn.

Intermediate between URn and Rn is the space VRn of configurations of rings lying
in vertical planes, perpendicular to the xy-plane. The group VRn = π1VRn is also
generated by the ρi’s, σi’s, and τi’s, but the τi’s have infinite order in VRn.

Wickets. Another interesting subspace of Rn consists of configurations of rings,
each of which is vertical and is cut into two equal halves by the xy-plane. The upper
halves of these rings can be thought of as wickets, as in the game of croquet, in upper
half-space R

3
+, and this subspace of Rn can be identified with the space Wn of all

configurations of n disjoint wickets in R
3
+. The condition of being pairwise unlinked

is automatically satisfied for vertical rings that are bisected by the xy-plane. In
analogy to Theorem 1, one can compare Wn with the space An of configurations of
n disjoint smooth unknotted and unlinked arcs in R

3
+ with endpoints on ∂R3

+ = R
2.

Here ‘unknotted and unlinked’ means ‘isotopic to the standard configuration of n
disjoint wickets’.

Theorem 2. The inclusion Wn →֒ An is a homotopy equivalence.

In fact, we will prove a common generalization of this result and Theorem 1 that
involves configurations of both rings and wickets.

We call the group π1Wn the wicket group Wn. It too is generated by the ρi’s,
σi’s, and τi’s. The ρi’s again generate a subgroup isomorphic to Bn, but the σi’s
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now generate a subgroup that is isomorphic to Bn rather than Σn. The τi’s have
infinite order just as they do in VRn. There is also an untwisted wicket group
UWn = π1 UWn where UWn = Wn ∩ URn. We show that UWn is generated by
the ρi’s and σi’s, and that the map UWn → Wn induced by inclusion is injective,
so UWn can be identified with the subgroup of Wn generated by the ρi’s and σi’s.

When defining URn, VRn,Wn, and UWn as fundamental groups we did not mention
basepoints, and this is justified by the fact that URn, VRn, Wn, and UWn are all
connected, by the same argument that shows that Rn is connected.

Summarizing, we have the following commutative diagram relating the various ring
and wicket groups:

The two vertical maps are injective and correspond to adjoining the generators
τi. We will show that the two maps from the first column to the second column
are quotient maps obtained by adding the relations σ2

i = 1, and the lower right
horizontal map is the quotient map adding the relations τ2i = 1.

Presentations. In Section 3, we will derive finite presentations for all five of the
groups in the diagram above, with the ρi’s, σi’s, and τi’s as generators. The relations
that hold for all five groups are the usual braid relations among the ρi’s and σi’s
separately, together with certain braid-like relations combining ρi’s and σi’s, and
for the groups in the second row there are relations describing how the τi’s interact
with the other generators. For the three ring groups there are also the relations
σ2
i = 1, and in Rn the relations τ2i = 1 are added.

For URn the presentation was known previously [FRR], [BWC] using one of the
more classical definitions of this group. A presentation for Wn was derived in [T1],
using its interpretation as π1An, after generators had been found earlier in [H4].

Asphericity. The space of configurations of n distinct points in R
2 is aspherical,

with trivial higher homotopy groups, but this is no longer true for the ring spaces
Rn, URn, and VRn. This is because the groups Rn, URn, and VRn contain torsion,
the subgroup Σn generated by the σi’s, so any K(π, 1) complex for these groups
has to be infinite dimensional, but the spaces Rn, URn, and VRn are smooth
finite-dimensional manifolds, hence finite-dimensional CW complexes (as are Wn

and UWn). The situation is better for the wicket spaces:

Theorem 3. The spaces Wn and UWn are aspherical.

In particular, this implies that Wn and UWn are torsionfree. The proof of this
theorem in Section 5 is more difficult than the proof of the corresponding result for
configurations of points in R

2, as it uses Theorem 2 as well as some results from
3-manifold theory.

Wicket groups as subgroups of braid groups. There is a natural homomor-
phism Wn → B2n induced by the map which associates to each configuration of n
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wickets the 2n endpoints of these wickets, a configuration of 2n points in R
2. For

example, the generators ρi and σi give rise to the two braids shown in Figure 2.

Figure 2

It is a classical fact, whose proof we recall in Section 5, that this homomorphism
Wn → B2n is injective. This gives an alternative way of looking atWn as ‘braids’ of
n ribbons, where certain intersections of ribbons are permitted, intersections that
are known in knot theory as ribbon intersections.

Pure versions. Just as the braid group Bn has a pure braid subgroup PBn, so
do the five groups in the earlier commutative diagram have ‘pure’ subgroups, the
kernels of natural homomorphisms to Σn measuring how loops of configurations
permute the rings or wickets. As in the braid case, these pure ring and wicket
groups are the fundamental groups of the corresponding configuration spaces of
ordered n-tuples of rings or wickets. The full ring group Rn is the semidirect
product of the pure untwisted ring group PURn and the signed permutation group
Σ±

n . For the wicket group Wn there is a weaker result, a nonsplit short exact
sequence 0 → PUWn → Wn → ΣZ

n → 0 where ΣZ

n is the semidirect product of Σn

and Z
n.

Our simple geometric method for finding presentations of the five ‘impure’ ring and
wicket groups also gives presentations for the pure versions of the ring groups Rn,
URn, and VRn, but not for the pure wicket groups. In the case of the pure untwisted
ring group PURn the presentation was originally found in [Mc]. It has generators
αij in which all rings except the ith ring are stationary and the ith ring is pulled
through the jth ring and back to its initial position without passing through any
other rings, for each pair i 6= j.

Rings of unequal sizes. The subgroup of PURn generated by the αij with i < j
has been studied in [CPVW]. We show that this ‘upper triangular pure untwisted
ring group’ is the fundamental group of the subspace UR<

n of URn consisting of
configurations of rings of unequal diameters. The sizes of the rings then provide a
canonical ordering of the rings, hence loops in this space give elements of PURn,
and we show the resulting homomorphism π1 UR

<
n → PURn is injective with image

the subgroup generated by the αij with i < j.

Passing to the 3-sphere. In Section 6, we also obtain similar results for config-
urations of circles in S3 and wickets in a ball. In the latter case wickets can be
viewed as geodesics in hyperbolic 3-space, and the configuration space of disjoint
wickets is a subspace of the space of configurations of disjoint geodesics, a dense
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subspace having the same homotopy type as the larger space. (A pair of disjoint
geodesics can have an endpoint in common, so the two spaces are not identical.)

Complexity of configurations. A key step in proving these results is a process
for simplifying configurations of rings in Rn. General configurations in Rn can be
quite complicated, with all the rings tightly packed together. This happens already
in the subspace Wn where the unlinking condition is automatic. One can take an
arbitrary finite set of wickets, possibly intersecting in very complicated ways and
tightly packed together, and then with a small random perturbation remove all
the intersections to produce a configuration in Wn. The goal of the simplification
process is to produce configurations in which each circle is surrounded by a region
in which it is much larger than all other circles that intersect the region. This
region, or ‘microcosm’, is by definition a closed ball of double the radius of the
circle, and with the same center. We define the complexity of a configuration of
circles C1, · · · , Cn of radii r1, · · · , rn to be the maximum of the ratios ri/rj ≤ 1 for
the pairs of circles Ci, Cj whose microcosms intersect. If none of the microcosms
intersect, the complexity is defined to be 0. If we let Rc

n be the subspace of Rn

consisting of configurations of complexity less than c, then the simplification process
will show that the inclusion of Rc

n into Rn is a homotopy equivalence for any c > 0.

Configurations of small complexity can be thought of not only on the small scale
of microcosms, but also in large-scale astronomical terms. When the microcosms
of two circles intersect, one can think of the smaller circle as a ring-shaped planet
with the larger circle as its ring-shaped sun. There can be several such planets in
each solar system, each planet can have its own system of moons, the moons can
have their own ‘moonlets,’ and so on. The solar systems can form galaxies, etc.

The process of deformingRn into Rc
n is an elaboration on the argument for showing

Rn is path-connected by shrinking all circles simultaneously in a canonical way. If
one starts with a configuration which is in general position in the sense that no circle
has its center on the disk bounded by another circle, then this shrinking process
produces a configuration of circles lying in disjoint balls. This suffices to show
Rn is path-connected, but to capture its full homotopy type one cannot restrict
attention to configurations that are in general position. We deal with general
configurations by combining shrinking with a pushing process that is realized by
extending shrinkings of circles to ambient isotopies. This is explained in detail in
Section 2 of the paper.

Configurations of spheres and disks. The proof of Theorems 1 and 2, that
the inclusions Rn →֒ Ln and Wn →֒ An are homotopy equivalences, uses the
complexity reduction result described above, and it also involves a shift in focus
from codimension two objects to codimension one objects, embedded spheres and
disks, which are generally more tractable. In Section 4 we use a parametrized
disjunction technique to create the necessary configurations of spheres and disks,
then we use the analogs of Theorems 1 and 2 for spheres and disks to improve
configurations of smooth spheres and disks to round spheres and disks. This relies
ultimately on the proof of the Smale Conjecture in [H1], as does the final step of
turning smooth circles and arcs into round circles and arcs. The spheres and disks
are introduced to reduce the problem from configurations of many circles and arcs
to configurations of at most one circle or arc in each complementary region of a
configuration of spheres and disks.
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Dimension. The paper concludes with a brief discussion in Section 7 of some
elementary things that can be said about the homological dimension of the ring
and wicket groups.

2. Reducing Complexity.

One way to define the topology on Rn is in terms of its covering space consisting
of ordered n-tuples of disjoint oriented circles in R

3. This covering space can be
identified with an open subset in R

6n by assigning to each circle its centerpoint
together with a vector orthogonal to the plane of the circle, of length equal to the
radius of the circle and oriented according to the orientation of the circle via some
rule like the right-hand rule. Ignoring ordering and orientations of circles amounts
to factoring out the free action of the signed permutation group on this space. Thus
we see that Rn has a finite-sheeted covering space which is an open set in R

6n, and
so Rn itself is an open manifold of dimension 6n. By similar reasoning one sees that
the subspaces VRn, URn, Wn, and UWn of Rn are submanifolds of dimensions
5n, 4n, 4n, and 3n, respectively.

Let us recall the definition of complexity from the introduction. If C is a config-
uration in Rn consisting of disjoint circles C1, · · · , Cn, let Bi be the closed ball
containing Ci having the same center and double the radius. (There is nothing
special about the factor of 2 here, and any other number greater than 1 could be
used instead.) Then the complexity of the configuration C is the maximum of the
ratios ri/rj ≤ 1 of the radii of the pairs of circles Ci, Cj in C such that Bi ∩ Bj

is nonempty, with the complexity defined to be 0 if no Bi’s intersect. We remark
that complexity, as a function Rn → [0, 1], is upper semicontinuous, meaning that
small perturbations of a configuration C cannot produce large increases in the com-
plexity. They can however produce large decreases if two circles Ci, Cj whose balls
Bi, Bj intersect in a single point are perturbed so that Bi and Bj become disjoint.

Define Rc
n to be the subspace of Rn consisting of configurations of complexity less

than c. This is an open subset of Rn.

Theorem 2.1. The inclusion Rc
n →֒ Rn is a homotopy equivalence for each c > 0.

The same is true for the subspaces URc
n →֒ URn, VR

c
n →֒ VRn, W

c
n →֒ Wn, and

UWc
n →֒ UWn.

In preparation for the proof there are some preliminary things to be said. First we
describe the argument from [FS], Lemma 3.2, for showing that Rn is connected.
Each configuration of disjoint circles in R

3 bounds a unique configuration of hemi-
spheres in R

4
+ orthogonal to R

3. The claim is that these hemispheres will be disjoint

when each pair of circles is unlinked. To see this, think of R4
+ as the upper halfspace

model of hyperbolic 4-space, with the hemispheres as hyperbolic planes. If two such
planes intersect, they do so either in a single point or in a hyperbolic line, but the
latter possibility is ruled out by the disjointness of the original collection of circles.
Switching to the ball model of hyperbolic space, the point of intersection of two
hyperbolic planes can be moved to the center of the ball by a hyperbolic isometry,
so the planes become Euclidean planes through the origin. Any pair of transverse
planes through the origin can be deformed through such planes to be orthogonal.
Once the planes are orthogonal it is obvious that their boundary circles are linked
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in the boundary sphere S3. Thus unlinked circles in R
3 bound disjoint hemispheres

in R
4
+.

For a configuration of circles in R
3 bounding disjoint hemispheres in R

4
+, consider

what happens when one intersects the configuration of hemispheres with the hyper-
planes R3

u = R
3×{u} for u ≥ 0. As u increases, each circle shrinks to its centerpoint

and disappears. Let us call this the canonical shrinking of the configuration.

A given configuration of circles can be perturbed so that no centerpoint of one
circle lies on the disk bounded by another circle. Then if we perform the canonical
shrinking of the configuration, we can stop the shrinking of each circle just before it
shrinks to a point and keep it at a small size so that no other shrinking circles will
bump into it. In this way the given circle configuration can be shrunk until the disks
bounded by the circles are all disjoint. This says that the configuration of circles
forms the trivial link, and it makes clear that the space Rn is path-connected.

When dealing with a k-parameter family of circle configurations, however, one
cannot avoid configurations where one circle has center lying in the disk bounded
by another circle. If the latter circle is larger than the first, the two circles would
then collide if we stop the shrinking of the smaller circle just before it disappears.
Our strategy to avoid such collisions will still be to stop the canonical shrinking
of each circle just before it disappears, and thereafter shrink it at a slower rate
so that it does not disappear, but we also allow it to be pushed by ‘air cushions’
surrounding larger circles as they shrink, so that the smaller circle never intersects
the larger circles.

The pushing will be achieved by an inductive process that relies on extending
isotopies of circles to ambient isotopies of R3, so let us recall the standard procedure
in differential topology for extending isotopies of submanifolds to ambient isotopies.
An isotopy of a submanifold N of a manifold M is a level-preserving embedding
F :N × I →֒ M × I. This has a tangent vector field given by the velocity vectors
of the paths t 7→ F (x, t). The second coordinate of this vector field is equal to 1,
and we extend it to a vector field on M × I with the same property by damping
off the first coordinate to 0 as one moves away from F (N × I) in a small tubular
neighborhood of F (N × I). Then the flow lines of this extended vector field define
the extended isotopy. This also works with I replaced by [0,∞) as will be the
case in our situation. The manifold M will be R

3, and we can choose the tubular
neighborhood of the submanifold F (N × [0,∞)) to be an ǫ(t)-neighborhood of
F (N × {t}) in each level R3 × {t}.

Proof of Theorem 2.1. There will be two main steps in the proof. The first will be to
construct the modification of the canonical shrinking of an arbitrary configuration
in Rn. The second step will then be to show how to make this modification depend
continuously on the initial configuration.

Step 1: Modifying the canonical shrinking. For a configuration C in Rn

consisting of circles C1, · · · , Cn, let C
1 be the union of the largest circles in C, let

C2 be the union of the next-largest circles, and so on. Let u be the time parameter
in the canonical shrinking of C, and let u = ui be the time when the circles of Ci

shrink to their centerpoints, so u1 > u2 > · · · . Note that all the circles in Ci

have distinct centerpoints since two circles with the same center and radius must
intersect. The canonical shrinking defines an isotopy Φu(C

i) for u < ui. Our aim is
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to truncate this at a value u = u′i slightly less than ui, then extend this truncated
isotopy to values of u greater than u′i. The new extended isotopy Φu(C

i) will move
each circle Cj of Ci through circles parallel to itself, so Φu(Cj) will be determined
by specifying the centerpoint cj(u) and the radius rj(u) of Φu(Cj). The center
cj(u) is the centerpoint of Cj for u ≤ u′i since this point does not move during
the canonical shrinking, and we will in fact have cj(u) equal to this same point for
u ≤ ui, not just u ≤ u′i. For the function rj(u), the canonical shrinking specifies
this for u ≤ u′i, and it will be chosen to be a positive decreasing function of u for
u > u′i.

The extended isotopy Φu(C
i) will be constructed by induction on i. For i = 1

and Cj a circle of C1 we let cj(u) be constant for all u, and we let rj(u) be any
decreasing function r1(u) of u for u > u′1 where u′1 is chosen close enough to u1 so
that the microcosms of all the circles of Φu′

1
(C1) are disjoint. Such a u′1 exists since

the centerpoints of the circles of C1 are distinct. The microcosms of the circles
of Φu(C

1) will then remain disjoint for all u > u′1. To finish the first step of the
induction we extend the isotopy Φu(C

1) to an ambient isotopy Φ1
u :R3 → R

3 by
the general procedure described earlier, with Φ1

0 the identity.

For a circle Cj of C
2 with centerpoint cj we let cj(u) be constant for u ≤ u2 and then

we let it move via the isotopy Φ1
u. In formulas this means cj(u) = Φ1

u(Φ
1
u2
)−1(cj).

This will in fact be constant for u slightly greater than u2 as well as for u ≤ u2.
Since Φ1

u is an ambient isotopy, cj(u) will be disjoint from Φu(C
1) and from ck(u)

for other circles Ck of C2 for all u. This implies that if we choose u′2 close enough
to u2 and we choose the function r2(u) giving the radius of the circles of Φu(C

2)
small enough, then these circles will be disjoint from Φu(C

1) for all u and will have
disjoint microcosms for u > u′2. We can also make r2(u) small enough so that the
ratio r2(u)/r1(u) goes to 0 with increasing u. The second step of the induction is
completed by extending the isotopies Φu(C

1) and Φu(C
2) to an ambient isotopy

Φ2
u starting with Φ2

0 the identity.

Subsequent induction steps are similar. For example, at the next stage, for a circle
Cj of C

3 with centerpoint cj we let cj(u) move according to the isotopy Φ2
u, and we

choose u′3 close enough to u3 and r3(u) small enough so that the resulting circles
of Φu(C

3) are disjoint from Φu(C
1) and Φu(C

2) for all u and the microcosms of
the circles of Φu(C

3) are disjoint for u > u′3. Also we make r3(u) small enough so
that the ratio r3(u)/r2(u) goes to 0 with increasing u. We can also assume that
r3(u)/r2(u) < r2(u)/r1(u), and inductively that ri+1(u)/ri(u) < ri(u)/ri−1(u) for
all i.

When the induction process is finished we have a path Φu(C) in Rn, defined for
each C ∈ Rn. It is clear that the complexity of Φu(C) approaches 0 as u goes
to ∞ since the circles of Φu(C

i) have disjoint microcosms for large u and the
ratios ri+1(u)/ri(u) approach 0. We claim that the complexity of Φu(C) decreases
monotonically (in the weak sense) as u increases. To see this, consider two circles
of C, say C1 and C2. If they are in the same Ci, they have the same radius
throughout the isotopy Φu, and their centers are stationary until u = ui, after
which their microcosms remain disjoint, so their contribution to the complexity
decreases monotonically, being either 0 for all u or 1 for a while and then 0. If C1

and C2 belong to different Ci’s, with C1 in Ci1 and C2 in Ci2 for i1 > i2, the ratio
of their radii approaches 0 monotonically, so the only way they could contribute
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to a non-monotonic complexity would be for their microcosms to bump into each
other at a certain time u after having been disjoint shortly before this time. For
this to happen, both Φu(C1) and Φu(C2) would have to be within the microcosm
of some larger circle Φu(C3) in C

i3 for some i3 < i2. In this case the pair Φu(C2),
Φu(C3) would be contributing a larger number to the complexity than the pair
Φu(C1), Φu(C2), so the collision between the microcosms of the latter pair would
not be causing an increase in the overall complexity.

Step 2: The modification process for parametrized families. To show that
the inclusion Rc

n →֒ Rn is a homotopy equivalence for c > 0 it suffices to show
that the relative homotopy groups πk(Rn,R

c
n) are zero for all k, since both spaces

are smooth manifolds and hence CW complexes. Thus it suffices to deform a given
a map (Dk, ∂Dk) → (Rn,R

c
n), t 7→ Ct, through such maps to a map with image

in Rc
n. This would follow if we could add a parameter t ∈ Dk to our previous

construction of the deformation Φu. However, there is a problem with doing this
directly because the relative sizes of the circles in a family of configurations Ct ∈ Rn

can change with varying t, so the sequence of induction steps in the construction
of the desired deformation Φtu could change with t. What we will do instead is
concatenate initial segments of deformations Φtu over different regions in Dk to
produce a new family of deformations Ψtu.

As a preliminary step, note that choosing an ordering of the circles of the configu-
ration Ct for one value of t gives an ordering for all t since the parameter domain
Dk is simply-connected. Thus we can label the circles as Ct

1, · · · , C
t
n. The radius

of Ct
i varies continuously with t, and we can approximate these radius functions

arbitrarily closely by piecewise linear functions of t, close enough so that they cor-
respond to a deformation of the family Ct, staying in the open set Rc

n over ∂Dk.
Thus we may assume the radius functions are piecewise linear. This means we can
triangulate Dk so that the radius functions are linear on simplices. After a subdi-
vision of this triangulation, we can assume that on the interior of each simplex the
ordering of the circles Ct

i according to size is constant, and as one passes to faces
of a simplex all that happens to this ordering is that some inequalities among sizes
become equalities.

We will construct the final deformations Ψtu by a second induction, where the
inductive step is to extend Ψtu from a neighborhood of the p-skeleton of the trian-
gulation of Dk to a neighborhood of the (p+1)-skeleton. More specifically, we will
construct continuous functions ψ0 ≤ ψ1 ≤ · · · ≤ ψk from Dk to [0,∞) such that
the inductive step consists of extending Ψtu from being defined for 0 ≤ u ≤ ψp(t)
to being defined for 0 ≤ u ≤ ψp+1(t). The functions ψp will satisfy:

(a) ψp = 0 outside some neighborhood Np of the p-skeleton.

(b) Ψtu(Ct) lies in Rc
n for u = ψp(t) when t lies in a smaller neighborhood N ′

p of
the p-skeleton.

(c) ψp = ψp+1 = · · · = ψk in N ′
p.

The ordering of the circles of Ct according to size will be preserved during the
deformation Ψtu.

For the induction step of extending Ψtu over a p-simplex σ, let σ′ be a slightly
smaller copy of σ lying in the interior of σ and with boundary in the interior ofN ′

p−1.
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As t varies over σ′ the size ordering of the circles of Ct is constant. For each t in σ
′

we apply the earlier inductive procedure to construct a deformation Φtu, starting
with the family Ψtu(Ct) for u = ψp−1(t). This can be done continuously in t ∈ σ′

since the various choices in the construction can be made to vary continuously with
t. These choices are: the numbers u′i(t) < ui(t), the radius functions ri(t, u), and
the isotopy extensions Φi

tu. The construction of Φtu works in fact in a neighborhood
of σ′ in Dk by extending the functions u′i(t) and r

i(t, u) and the isotopy extensions
Φi

tu to nearby t values. As t moves off σ′ the size ordering in Ct may vary, as some
size equalities become inequalities, but we still use the same decomposition of Ct

into the subsets Ci
t , and we choose the functions ri(t, u) so that for each t in the

neighborhood, this size ordering is preserved throughout the deformation Φtu. To
finish the induction step we choose ψp by requiring ψp − ψp−1 to have support in
a neighborhood of σ′ and to have large enough values in a smaller neighborhood
of σ′ so that Φtu(Ct) lies in Rc

n for t in this smaller neighborhood and u ≥ ψp(t).
Then we extend the previously defined Ψtu(Ct) for u ∈ [0, ψp−1(t)] by defining it
to be equal to Φtu(Ct) for u ∈ [ψp−1(t), ψp(t)].

This finishes the proof for the inclusion Rc
n →֒ Rn. Since the deformations Φtu take

circles to parallel circles, the proof also applies for the inclusions URc
n →֒ URn and

VRc
n →֒ VRn. For the inclusions Wc

n →֒ Wn and UWc
n →֒ UWn, observe that in

the case of configurations of wickets, the extended isotopies Φi
tu take the xy-plane

to itself so they take wickets to wickets. �

Remarks on the proof of Theorem 2.1. We can strengthen the proof slightly
to give a deformation of the given family Ct to a family which not only has small
complexity but has the additional property that the microcosm around each circle is
disjoint from all larger circles. This can be achieved by choosing the radius function
ri(u) sufficiently small at each stage of the construction of the deformations Φu. In
the later part of the proof when Ψtu is constructed from truncated deformations
Φtu, initial segments of canonical shrinkings are also inserted, and these preserve
the additional property since smaller circles shrink faster than larger circles during
the canonical shrinking.

The proof also works for the configuration spaceWRm,n consisting of configurations
ofm wickets and n rings in R

3
+, all the wickets and rings being disjoint and pairwise

unlinked, and with the rings disjoint from the xy-plane. Thus WRm,0 is Wm, and
it is easy to see that WR0,n and Rn are homeomorphic, although they are not
identical since one consists of configurations in R

3
+ and the other of configurations

in R
3. Namely, both contain the space of configurations of rings for which the

minimum z-value of all the rings is 1, and WR0,n is the product of this subspace
with (0,∞) while Rn is the product of this subspace with R. In each case the
projection onto the first factor is given by vertically translating configurations to
make their minimum z-value 1, and projection onto the second factor is by taking
the minimum z-value of a configuration.

A further enhancement. A slight variation on the technique used to prove the
theorem will be used to prove the following result:

Proposition 2.2. The natural maps URn → Rn, URn → VRn, and UWn →
Wn induced by the inclusions URn →֒ Rn, URn →֒ VRn, and UWn →֒ Wn are

injective.
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Proof. Consider first the case of URn → Rn. Let PURn and PRn be the “pure”
versions of URn and Rn, the covering spaces of URn and Rn obtained by ordering
the rings, so that URn and Rn are the quotients of PURn and PRn with the action
of the symmetric group Σn factored out. It will suffice to show injectivity of the
map π1PURn → π1PRn induced by the inclusion PURn →֒ PRn.

By associating to each ring in R
3 the line through the origin orthogonal to the plane

containing the ring we obtain a map PRn → (RP2)n whose fibers over points in the
diagonal of (RP2)n are copies of PURn. Let us suppose for the moment that this
map is a fibration. It has a section, obtained by choosing a standard configuration
of rings lying in disjoint balls and taking all possible rotations of these rings about
their centers. The existence of the section would then imply that the long exact
sequence of homotopy groups breaks up into split short exact sequences, so in
particular there would be a short exact sequence

0 → π1 PURn → π1PRn → π1(RP
2)n → 0

which would give the desired injectivity.

We will make this into a valid argument by showing the weaker result that the
projection PRn → (RP2)n is a quasifibration. Recall that a map p :E → B is a
quasifibration if p∗ : πi(E, p

−1(b), e) → πi(B, b) is an isomorphism for each b ∈ B,
e ∈ p−1(b), and i ≥ 0. Thus a quasifibration has a long exact sequence of homotopy
groups just like for a fibration. The standard argument for showing that a map
p :E → B with the homotopy lifting property for maps of disks Dk, k ≥ 0, has
an associated long exact sequence of homotopy groups in fact proceeds by showing
that the quasifibration property is satisfied; see for example Theorem 4.41 in [H3].
This argument generalizes easily to a slightly weaker version of the homotopy lifting
property, which asserts the existence of a lift, not of a given homotopy Dk×I → B,
but of some reparametrization of this homotopy, obtained by composition with
a map Dk × I → Dk × I of the form (x, t) 7→ (x, gx(t)) for a family of maps
gx : (I, 0, 1) → (I, 0, 1). (Note that gx is canonically homotopic to the identity by
the standard linear homotopy.) We will use this generalization below.

To show that the projection PRn → (RP2)n is a quasifibration, the key observa-
tion is that we can enhance the construction of the deformations Φtu by not only
shrinking the rings and moving their centers, but also rotating the rings according
to any deformation of the planes that contain them, provided that we delay the
start of these deformations to the time u = u1(t). At the inductive step when Φi

tu

is constructed for the rings of Ci
t for u ≥ ui(t), these rings lie in microcosms that

are disjoint from each other and from the larger rings for which Φtu has already
been constructed, so they can be rotated arbitrarily about their centers, starting
at time u = u1(t).

With this elaboration on the construction of Φtu we construct the deformations Ψtu

as before. First we deform a given map Dk → PRn to make the radii of the rings
piecewise linear functions of the parameter t ∈ Dk. Then we proceed by induction
over the skeleta of the triangulation of Dk. Prior to the induction step of extending
over p-simplices, the deformation Ψtu for u ≤ ψp−1(t) will include some initial seg-
ment of a given deformation of the planes of the rings of Ct, reparametrized by the
insertion of pauses. Then we construct Φtu as in the preceding paragraph, starting
with Ψtu(Ct) for u = ψp−1(t). Thus the deformation of the planes containing the
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rings pauses for a time before continuing with the given deformation. At the end of
the induction step we choose the function ψp and truncate Φtu, which can truncate
the deformation of the planes containing the rings, so that they pause once more in
the next stage of the induction. It is no longer necessary to choose ψp large enough
to make Ψtu(Ct) lie in Rc

n for u = ψp(t) if t is near the p-skeleton. Instead, we only
need it large enough to allow time to carry out the deformation of the planes of the
rings.

At the end of the induction process we have a deformation Ψtu such that the planes
of the rings vary by a reparametrization of the given deformation of these planes.
The parameter u varies over an interval [0, ψk(t)] but we can rescale to make this
[0, 1]. This finishes the proof that the projection PRn → (RP2)n is a quasifibration,
and hence the proof that URn → Rn is injective.

Since the injection URn → Rn factors through VRn it follows that URn → VRn is
also injective. For UWn → Wn we can use the same quasifibration argument as
in the first case, the only difference being that (RP2)n is replaced by (RP1)n, an
n-dimensional torus. �

Another result stated in the introduction can be proved using the same method:

Proposition 2.3. The natural map from URn to the covering space R+
n of Rn

consisting of configurations of oriented rings induces an isomorphism π1 URn →
π1R

+
n .

Proof. The arguments in the preceding proof work equally well with oriented rings,
the only difference being that RP2 is replaced by S2. Since this is simply-connected,
the previous short exact sequence of fundamental groups for the quasifibration
reduces to an isomorphism π1 URn → π1R

+
n . �

In the proof of Proposition 2.2 we constructed a short exact sequence

0 → PURn → PRn → Z
n
2 → 0

with a splitting obtained by rotating the rings within disjoint balls. This sequence
embeds in a larger split short exact sequence

0 → PURn → Rn → Σ±

n → 0

where Σ±
n is the signed permutation group, the semidirect product of Σn and Z

n
2 .

The homomorphism Rn → Σ±
n assigns to each loop in Rn the permutation of

the rings that it effects, as well as the changes of orientations of the rings. The
sequence splits since Σ±

n is the fundamental group of the subspace of Rn consisting
of configurations of rings contained in disjoint balls. This short exact sequence
maps to another split exact sequence

0 → PRn → Rn → Σn → 0

which in turn contains the split exact sequence

0 → PURn → URn → Σn → 0

where splittings of these last two sequences can be obtained from the subspaces of
configurations of rings contained in disjoint balls and parallel to a fixed plane.
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The same arguments give analogous sequences with VRn in place of Rn and with
the Z2’s replaced by Z’s and Σ±

n replaced by ΣZ

n, the semidirect product of Σn and
Z
n.

For wicket groups there are similar short exact sequences obtained in the same way,
but the only one that splits is the one not involving Σn, namely

0 → PUWn → PWn → Z
n → 0

with the splitting obtained as before. The sequences involving Σn cannot split
because the wicket groups are torsionfree since the wicket spaces are aspherical, as
will be shown later.

3. Presentations

In this section we use the results in the preceding section to obtain finite presenta-
tions of ring and wicket groups. First an elementary result:

Proposition 3.1. The elements σi of UWn generate a subgroup isomorphic to the

braid group Bn, and so also do the elements ρi.

Proof. Let us take UWn to be the subspace of Wn consisting of configurations
of wickets lying in planes perpendicular to the x-axis. Sending each wicket to its
endpoint with larger y-coordinate defines a map UWn → Cn where Cn is the space of
configurations of n distinct points in R

2, so Bn = π1Cn. The restriction of this map
to the subspace UWσ

n of UWn consisting of configurations of wickets having disjoint
projections to the xy-plane is a homotopy equivalence since wickets in configurations
in UWσ

n can be shrunk to be arbitrarily small. The maps UWσ
n →֒ UWn → Cn

induce homomorphisms Bn → Wn → Bn whose composition is the identity. The
image of the first homomorphism is generated by the σi’s, so this subgroup of Wn

is isomorphic to Bn.

The argument for ρi’s is similar using the subspace UWρ
n of UWn consisting of

configurations of wickets, each of which is symmetric with respect to reflection
across the xz-plane. Wickets with this symmetry property are determined by their
endpoints in the upper half of R2, so UWρ

n can be identified with Cn viewed as the
space of configurations of n points in the upper half of R2. �

These arguments do not work with URn in place of UWn, but the ρi’s still generate
a copy of Bn in URn as we will show in Proposition 4.2. The σi’s, on the other
hand, generate a copy of Σn in URn since they have order 2 and satisfy the braid
relations, so the canonical map URn → Σn has a section.

Now we determine a presentation for UWn by a straightforward elaboration of
the standard procedure for computing a presentation for Bn using general position
arguments.

Proposition 3.2. The group UWn has a presentation with generators the elements

σi and ρi for i = 1, · · · , n− 1 and with the following relations:

[ρi, ρj ] = [σi, σj ] = [ρi, σj ] = 1 if |i− j| > 1

ρiρi+1ρi = ρi+1ρiρi+1, σiσi+1σi = σi+1σiσi+1

ρiσi+1σi = σi+1σiρi+1, σiσi+1ρi = ρi+1σiσi+1, σiρi+1ρi = ρi+1ρiσi+1
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Proof. We again take UWn to consist of configurations of wickets lying in planes
perpendicular to the x-axis. Let UW0

n be the open dense subspace of UWn con-
sisting of configurations of wickets all lying in distinct planes. This subspace is
homeomorphic to R

3n, so it is contractible. The complement of UW0
n decomposes

into a disjoint union of connected manifold strata, determined by which subsets of
wickets lie in the same planes and how these wickets are nested in these planes.
Each stratum is homeomorphic to a Euclidean space of the appropriate dimension.
The codimension one strata are formed by configurations with exactly two wickets
lying in the same plane. These form a codimension one submanifold UW1

n of UWn

defined locally by equating the x-coordinates of two wickets. The codimension
two strata, forming a codimension two submanifold UW2

n, consist of configurations
where either two disjoint pairs of wickets lie in coinciding planes, or three wickets
lie in a single plane.

To find generators for UWn consider a loop in UWn. By general position this can
be pushed off all strata of codimension 2 and greater until it lies in UW0

n ∪ UW1
n,

and we may assume it is transverse to UW1
n, crossing it finitely many times. Each

such crossing corresponds to a generator ρi or σi or its inverse. Since the strata
of UW1

n are contractible, they have trivial normal bundles and we can distinguish
between the directions of crossing these strata. Since UW0

n is contractible, it follows
that the given loop in UWn is homotopic to a product of ρi’s and σi’s and their
inverses, so these elements generate UWn.

To find a complete set of relations among these generators, consider a homotopy in
UWn between two loops of the type just considered. General position allows us to
push this homotopy off strata of codimension greater than 2, and we can make it
transverse to strata of UW2

n and UW1
n. Let us examine what happens near points

where the homotopy crosses UW2
n. For strata of UW2

n where two disjoint pairs of
wickets lie in coinciding planes we just have simple commuting relations: ρi and σi
commute with ρj and σj if |i − j| > 1. More interesting are the relations arising
from three wickets lying in the same plane. Here there are five cases according to
how the projections of the wickets to the xy-plane intersect. The three projections
can be completely disjoint, completely nested, or some combination of disjoint and
nested, as indicated in the first column of Figure 3, where for visual clarity we have
perturbed the overlapping projections of the three wickets so that they appear to
be disjoint.

A small loop around the codimension 2 stratum crosses codimension 1 strata six
times since the local picture is like the intersection of the three planes x = y, x = z,
and y = z in R

3. One can view the resulting relation as an equation between two
ways of going halfway around the codimension 2 stratum. The starting and ending
points of the two ways are shown in the second column of Figure 3. The relation
itself is written in the next column, and the final column shows the braid picture
of the relation, using the endpoint map UWn → B2n. �

Proposition 3.3. A presentation for URn is obtained from the presentation for

UWn in the preceding proposition by adding the relations σ2
i = 1.

Note that the relations ρiσi+1σi = σi+1σiρi+1 and σiσi+1ρi = ρi+1σiσi+1 in the
presentation for UWn become equivalent if σi and σi+1 have order 2, so either rela-
tion can be omitted from the presentation for URn. The geometric explanation for
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Figure 3. Relations in UWn.

this is that the third and fourth configurations in Figure 3 are obviously equivalent
when we are dealing with rings rather than wickets.

Proof. The argument is similar to that for UWn. We take URn to consist of the
configurations of rings lying in planes parallel to the xz-plane. Strata here are
defined just as for UWn according to the coincidences among these planes. The
only essential difference is that now not all strata are contractible. A codimension
one stratum where two planes coincide and the two rings in this plane are not
nested has the homotopy type of a circle. Crossing this stratum corresponds to a
generator σi. The normal bundle of this stratum is nontrivial, which means that
we cannot distinguish between σi and σ

−1
i , or in other words, we have the relation

σ2
i = 1. An alternative way to proceed would be to subdivide this stratum into

two contractible codimension one strata separated by a codimension two stratum,
the configurations where the centers of the two rings in this plane have the same
projection to the xy-plane. A small loop around this codimension two stratum
would give the relation σ2

i = 1. Using either approach we conclude that adding
the relations σ2

i = 1 to the earlier presentation for UWn gives a presentation for
URn. �

Next we turn to the pure untwisted ring group PURn. Recall the elements αij

passing the ith ring through the jth ring and back to its initial position, for i 6= j.

Proposition 3.4. The group PURn has a presentation with generators the ele-

ments αij for 1 ≤ i, j ≤ n, i 6= j, and relations

αijαkℓ = αkℓαij αikαjk = αjkαik αijαikαjk = αjkαikαij

where distinct symbols for subscripts denote subscripts that are distinct numbers.
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Using the second relation, the third relation can be restated as saying that αjk

commutes with αijαik.

Proof. The group PURn is the fundamental group of the covering space PURn

of URn in which the rings are numbered. Let PUR0
n be the subspace of PURn

consisting of configurations in which no circles are nested within the planes that
contain them. We claim that PUR0

n is simply-connected. To see this, consider
the projection of PUR0

n to the space of ordered n-tuples of distinct points in R
3

sending a configuration of circles to the configuration of its centerpoints. This
projection has a section, sending a configuration of points to the configuration of
circles of radius equal to one-quarter of the minimum distance between the points.
Further, PUR0

n deformation retracts to the image of this section by first shrinking
the circles whose radius is too large, then expanding the circles whose radius is too
small. Since the space of point configurations is simply-connected (by a standard
induction argument involving fibrations obtained by forgetting one of the points),
it follows that π1 PUR0

n = 0.

Let PUR1
n be obtained from PUR0

n by adjoining the codimension-one strata, the
configurations having exactly one circle nested inside another. The map π1 PUR1

n →
π1 PURn is surjective, so we see that PURn is generated by the elements αij .
To obtain the relations we adjoin the codimension-two strata, where two circles
are nested. If these occur in two different planes we have commutation relations
αijαkℓ = αkℓαij . If the two occurrences of nested circles occur in the same plane we
have either the second or the fifth configuration in Figure 3. The fifth configuration
gives another commutation relation αikαjk = αjkαik. The second configuration
gives a relation αijαikαjk = αjkαikαij . �

This argument does not immediately extend to the groups PUWn since the space
PUW0

n corresponding to PUR0
n is not simply-connected. Its fundamental group

is the pure braid group PBn, so in principle it should be possible to extend a
presentation for PBn to a presentation for PUWn by adjoining the generators αij

corresponding to the codimension-one strata as before, and then figuring out the
relations that correspond to the codimension-two strata.

The argument in the preceding proof does however work to prove the following:

Proposition 3.5. For the subspace UR<
n of URn consisting of configurations of

rings of unequal size, there is a presentation for π1 UR
<
n with generators the αij ’s

with i < j and with relations the same relations as in the preceding proposition,

restricted to these generators.

Proof. By ordering rings according to size we obtain an embedding UR<
n →֒ PURn.

The argument is then similar to the one for PURn. A small adjustment is needed
in showing the subspace of unnested configurations has the homotopy type of the
space of ordered point configurations; this we leave to the reader. �

Proposition 3.6. A presentation for the group Wn is obtained from the earlier

presentation for UWn by adding the generators τi for 1 ≤ i ≤ n and the following

relations:

[τi, τj ] = 1 for i 6= j
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[ρi, τj ] = 1 and [σi, τj ] = 1 for j 6= i, i+ 1

τεi σ
η
i = ση

i τ
ε
i+1 and τεi+1σ

η
i = ση

i τ
ε
i for ε, η = ±1

τεi ρi = ρiτ
ε
i+1 and τεi+1ρi = σ−ε

i ρ−1
i σε

i τ
ε
i for ε = ±1

τεi ρ
−1
i = σ−ε

i ρiσ
ε
i τ

ε
i+1 and τεi+1ρ

−1
i = ρ−1

i τεi for ε = ±1

The relations in the last three lines are highly redundant. For example, two of the
eight relations in the third-to-last line imply the other six.

Proof. It is not difficult to verify that the relations listed in the statement hold.
These relations guarantee that any product of ρi’s, σi’s, and τi’s can be rearranged
as a product ut where u is a product of ρi’s and σi’s and t is a product of τi’s.

To verify that the ρi’s, σi’s, and τi’s generateWn note first that for a given x ∈ Wn

there exists a product s of σi’s such that sx is in the subgroup PWn. As we saw
at the end of the preceding section, PWn is a semidirect product of PUWn and
the subgroup Z

n generated by the τi’s. Thus sx = ut for some u ∈ PUWn and t
a product of τi’s. Since u is in PUWn it is in UWn and can therefore be written
as a product of ρi’s and σi’s since we know these generate UWn. This implies that
x = s−1ut is a product of ρi’s, σi’s, and τi’s, so these elements generate Wn.

To prove that the relations listed (including those for UWn) defineWn, it will suffice
to show that a word w in the generators that represents the trivial element of Wn

can be reduced to the trivial word by applying the relations. To start, we can use
the relations to rewrite w in the form ut where u is a product of ρi’s and σi’s (thus
u ∈ UWn) and t is a product of τi’s. Since ut = 1 and the τi’s do not permute the
wickets, we see that u in fact lies in PUWn. The relation ut = 1 implies that u = 1
and t = 1 in view of the semidirect product structure on PWn. The relations for
UWn then suffice to reduce u to the trivial word, and the commutation relations
among the τi’s allow t to be reduced to the trivial word since the relation t = 1
holds in the group Z

n. �

The same argument works also for VRn and Rn to prove:

Proposition 3.7. Presentations for Rn and VRn are obtained from the presenta-

tion for Wn by adding the relations σ2
i = 1 and τ2i = 1 for Rn, or just σ2

i = 1 for

VRn. �

Note that the relations involving the τi’s can be simplified when σi = σ−1
i .

4. Rigidifying Floppy Wickets and Rings.

Generalizing the spaces An and Ln there is a space ALm,n of smoothly embedded
configurations of m arcs and n loops in R

3
+ which are unknotted and unlinked,

hence are isotopic to a configuration in WRm,n. We also require the loops to be
disjoint from the xy-plane. Thus ALm,0 = Am, and AL0,n is homeomorphic to Ln

by the same argument that showed that WR0.n is homeomorphic to Rn.

Theorem 4.1. The inclusion WRm,n →֒ ALm,n is a homotopy equivalence.

Note that Theorems 1 and 2 in the Introduction follow directly as corollaries of
Theorem 4.1.
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Proof. The space WRm,n is a smooth manifold and hence a CW complex, and
ALm,n has the homotopy type of a CW complex, so it will suffice to show that
the relative homotopy groups πk(ALm,n,WRm,n) vanish. As noted in the remarks
following the proof of Theorem 2.1, the inclusion WRc

m,n →֒ WRm,n is a homo-
topy equivalence for each c > 0, so it will in fact suffice to deform a given map
f : (Dk, ∂Dk) → (ALm,n,WRc

m,n) through such maps to a map (Dk, ∂Dk) →
(WRm,n,WRc

m,n), for any convenient choice of c > 0.

Denote the family of arc and loop systems f(t) by At. We will be interested in
systems St consisting of finitely many disjoint smooth disks and spheres embedded
in R

3
+ −At with St ∩ ∂R

3
+ = ∂St, such that each component of R3

+ −St contains at
most one component of At. We call such systems separating systems. We assume
that for each component of St there is a connected open set in the parameter domain
Dk such that the component of St varies only by isotopy as t ranges over this open
set, and outside the open set the component is deleted from St. If we choose the
constant c in WRc

m,n to be less than 1

2n
then for t ∈ ∂Dk we can choose St to

consist of at least one round hemisphere or sphere in the interior of the microcosm
of each wicket or ring of At, lying outside the wicket or ring, concentric with it, and
disjoint from all other wickets and rings of At. By the remarks following the proof
of Theorem 2.1, we can assume that microcosms are disjoint from larger circles (and
wickets). This prescription for St gives a separating system since each hemisphere
or sphere chosen separates the corresponding wicket or ring from all other wickets
or rings of equal or larger radius. For nearby t in ∂Dk the hemispheres and spheres
of the same radii remain a separating system, so we obtain in this way a family of
separating systems St consisting of round hemispheres and spheres for all t in ∂Dk.

There will be three main steps in the proof:

(1) Extend the family of round separating systems St over ∂D
k to smooth sepa-

rating systems St for t ∈ Dk.

(2) Deform these smooth separating systems to be round spheres and hemispheres
over all of Dk.

(3) Deform At so that it consists of round wickets and rings over all of Dk.

At each step the family At over ∂D
k will be unchanged.

Step 1: Extending over the disk. There is a fibration Diff(R3
+) → ALm,n

that sends a diffeomorphism to the image of a standard configuration of arcs and
circles under the diffeomorphism. Using the lifting property of this fibration, we
can choose a separating system for one parameter value t ∈ Dk and extend this to
a family of separating systems Σt for At that varies only by isotopy as t ranges over
all of Dk. For t ∈ ∂Dk we then have two families of separating systems St and Σt,
and it will suffice to construct a family Stu, (t, u) ∈ ∂Dk × I, which for each u is a
separating system for At, such that St0 = St and St1 = Σt. We can then place this
family Stu in a collar neighborhood of ∂Dk in Dk, after first deforming the family
At to be constant on each radial segment in this collar.

First thicken Σt to a family Σt× [−1, 1] of parallel separating systems for At. Sard’s
theorem implies that for each t ∈ ∂Dk there is a slice Σt × {s} in this thickening
that is transverse to St. This slice will remain transverse to St for all nearby t as
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well. By a compactness argument this means we can choose a finite cover of ∂Dk

by open sets Ui so that St is transverse to a slice Σi = Σi(t) for all t ∈ Ui.

For a fixed t ∈ Ui consider the standard procedure for surgering St to make it
disjoint from Σi. The procedure starts with a component of St ∩Σi, either a circle
or an arc, that cuts off a disk D in Σi that contains no other components of St∩Σi.
Using D we then surger St to eliminate the given component of St∩Σi. The process
is then repeated until all components have been eliminated. Note that each surgery
produces a system of disks and spheres that still separates R3

+−At into components
each containing at most one component of At.

A convenient way to specify the order in which to perform the sequence of surgeries
is to imagine the surgeries as taking place during a time interval, and then surgering
an arc or circle at the time given by the area of the disk it cuts off in Σi, normalized
by dividing by the area of Σi itself. The only ambiguity inherent in this prescription
occurs if one is surgering the last remaining arc and this arc splits Σi into two disks
of equal area. Then one would have to make an arbitrary choice of one of these
disks as the surgery disk.

We will refine this procedure so that it works more smoothly in our situation.
Thicken St to a family St × [−1, 1] of nearby parallel systems, all still transverse
to Σi for t ∈ Ui. Call this family of parallel systems St. For t ∈ Ui, with i fixed
for the moment, we perform surgery on St by gradually cutting through it in a
neighborhood of Σi, as shown in Figure 4. Thus we are producing a family Stu for

Figure 4

u ∈ [0, 1], where again we use the areas of the surgery disks in Σi to tell when to
perform the surgeries. Notice that Stu is allowed to contain finitely many pairs of
spheres or disks that touch along a common subsurface at the instant when these
spheres or disks are being surgered. To specify the surgeries more completely we
choose a small neighborhood Σi×(−εi, εi) of Σi in Σt× [−1, 1], which we rewrite as
Σi ×R, and we let the surgery on a component surface of Stu produce two parallel
copies of the surgery disk in the slices Σi × {±1/u} of Σi × R. Observe that this
prescription for constructing Stu avoids the ambiguity in choosing one of the two
equal-area surgery disks mentioned earlier since we can now surger using both these
disks simultaneously.

To convert the thickened family Stu back into an ordinary family Stu consisting
of finitely many disks and spheres for each (t, u) we replace each family of parallel
disks or spheres in Stu of nonzero thickness by the central disk or sphere in this
family. Thus this central disk or sphere belongs to Stu for an open set of values of
(t, u).
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As t varies over Ui we now have a family Stu, depending on i. To combine these
families for different values of i, letting t range over all of ∂Dk rather than just
over Ui, we proceed in the following way. For each i choose a continuous function
ϕi :Ui → [0, 1] that takes the value 1 near ∂Ui and the value 0 on an open set Vi
inside Ui such that the different Vi’s still cover D

k. Then construct Stu by delaying
the time when each surgery along Σi is performed by the value ϕ(t). We may
assume all the systems Σi are disjoint for fixed t and varying i with t ∈ Ui, and the
thickenings Σi × (−εi, εi) are disjoint as well, so the surgeries along different Σi’s
are completely independent of each other.

We have constructed the family Stu for (t, u) ∈ ∂Dk × [0, 1] such that all the curves
of St ∩Σi are surgered away as u goes from 0 to 1/2 for t ∈ Vi. We can then adjoin
Σi to Stu for (t, u) ∈ Vi × (1/2, 1), deleting the surgered disks and spheres of Stu

for u ≥ 3/4. We may assume all the thickenings Σi× (−εi, εi) are disjoint from the
original separating system Σt. Then we adjoin Σt to Stu for u > 3/4, so that for
u = 1 only Σt remains in Stu. This finishes Step 1.

Step 2: Rounding smooth disk and sphere systems. We will use the following
result:

Lemma 4.2. The space of systems of finitely many disjoint smooth disks and

spheres in R
3
+, where the disks have their boundaries in ∂R3

+, deformation retracts

onto the subspace of round disks and spheres.

Proof. We show the relative homotopy groups are zero, which is all we need for the
application of the lemma. Thus we are given a family St, t ∈ Dk, of disjoint smooth
disks and spheres that we wish to isotope to round disks and spheres, staying fixed
over ∂Dk where St is assumed to already consist of round disks and spheres. We can
assume in fact that St consists of round disks and spheres for t in a neighborhood
of ∂Dk.

First we show how to round the spheres of St by an inductive procedure, starting
with the outermost spheres. We construct families of embeddings of D3 in R

3
+ with

images bounded by the outermost spheres, such that near ∂Dk these embeddings are
rescaled isometric embeddings. This can be done by first applying isotopy extension
to construct families of embeddings without the condition near ∂Dk, then deforming
these embeddings to achieve this extra condition using the fact that the inclusion
of O(3) into Diff(D3) is a homotopy equivalence, which is a consequence of the
Smale conjecture that Diff(D3 rel∂D3) is contractible, proved in [H1]. We can also
arrange that the embeddings are rescaled isometric embeddings near the center of
D3, just by differentiability. By restricting these embedding to smaller and smaller
concentric spheres in D3 we can isotope the outermost spheres to be round over
all of Dk, damping the isotopy down to the identity near ∂Dk. The non-outermost
spheres are dragged along in this process. Having rounded the outermost spheres
in St, we do a similar construction for the next-outermost spheres, and so on.

To make the disks round we first make all their boundary circles round following
the same plan as for spheres, using Smale’s theorem that Diff(D2 rel∂D2) is con-
tractible. The rounding of the boundary circles can be done by a deformation of
the family St supported in a neighborhood of ∂R3

+. Having the boundary circles
round, we then deform the disks themselves to the round hemispherical disks span-
ning the round boundary circles. This is possible since the fibration obtained by
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restricting the disks to their boundaries has contractible fiber, the space of smooth
disk systems in R

3
+ with given boundary circles. For a single disk this is one of

the equivalent forms of the Smale conjecture, and for systems of disks it follows by
induction. When we perform these isotopies of the disks of St, the spheres of St

are to be dragged along, so the proper way to proceed is first to make all the disks
round, then make the spheres round by the procedure described earlier. �

Now we return to Step 2 of the proof. For each t0 ∈ Dk the components of St vary
only by isotopy as t varies over some neighborhood of t0. Choose a finite number of
these neighborhoods that cover Dk, then triangulate Dk so that each k-simplex of
the triangulation lies in one of these neighborhoods. Over each such k-simplex we
then have the associated set of disks and spheres of St that vary only by isotopy.
Over a face of the simplex we have the union of the sets of disks for the various
k-simplices that contain the face. Let us change notation slightly and call these
systems of surfaces St. (They are subsets of the systems St constructed in Step 1.)

Suppose inductively that we have isotoped the disks and spheres of St to be round
for t in the i-skeleton of the triangulation of Dk, without changing anything over
∂Dk where the systems St and At are already round. The possibility i = −1 is
allowed, which will give the start of the induction. For the induction step we apply
the lemma to extend the rounding isotopy of St over each (i + 1)-simplex in the
interior of Dk in turn. The arcs and circles of At are carried along during this
deformation of St, by isotopy extension. This completes Step 2.

Step 3: Rounding smooth arc and circle systems. Having the components
of St round over all of Dk, we can round the components of At by an inductive
procedure as in Step 2. Over a simplex σ of the triangulation of Dk we look at
a complementary region Ct of St. This contains at most one component of At,
and we need only look at the case when there is exactly one component, say αt.
Consider first the case that αt is an arc. The region Ct is bounded by the plane
R

2 together with some round disks and spheres of St that can vary by isotopy. Let

Ĉt be obtained from Ct by filling in the boundary spheres with balls. We can then

think of Ĉt as a region in the upper half-space model of hyperbolic 3-space bounded

by geodesic planes. There is always a unique round arc α′
t in Ĉt having the same

endpoints as αt. This means that the space of round arcs in Ĉt is the same as the
space of pairs of endpoints of smooth arcs. The map sending each unknotted smooth
arc to its endpoints is a fibration, and it is a homotopy equivalence since its fiber, the
space of unknotted arcs with fixed endpoints, is contractible, by another equivalent
form of the Smale conjecture. Since the fibration is a homotopy equivalence, this
implies that we can deform the arcs αt to round arcs over the simplex σ, staying
fixed over the boundary of σ where they are already round. We can drag the balls

of Ĉt − Ct and everything inside them along during the isotopy that rounds αt.
This could destroy the roundness of these balls, but this problem can be avoided
by first shrinking the balls sufficiently small so that they can stay round during the
isotopy.

The other case is that αt is a circle. There are then two subcases depending on
whether Ct is of the same type as in the preceding case or Ct is a ball with smaller

disjoint sub-balls removed. In the first subcase the space of round circles in Ĉt has

the homotopy type of RP 2 since such circles bound unique geodesic disks in Ĉt and
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the space of such disks has this homotopy type. The space of smooth unknotted

circles in Ĉt also has the homotopy type of RP 2 by the Smale conjecture, so we can
deform the circles αt to be round over σ as before, after first shrinking the balls of

Ĉt − Ct. The other subcase, that Ct is a ball with sub-balls removed, is done in
the same way, using the fact that the space of round circles in a ball has the same
homotopy type as the space of smooth circles, namely RP 2 again.

This finishes the proof of the theorem. �

Further injectivity results. We observed at the beginning of Section 3 that Wn

contains two copies of the braid group Bn, one generated by the ρi’s and the other
generated by the σi’s. Under the projection Wn → Rn the copy of Bn generated
by the σi’s becomes a subgroup Σn ⊂ Rn, and we can now see that the other copy
of Bn remains unchanged:

Proposition 4.3. The map σ : Bn → Rn sending the standard generators of the

braid group to the elements ρi is injective.

Proof. It suffices to show σ is injective on the ‘pure’ versions of these groups, the
kernels of the natural maps to Σn. The pure braid group fits into a well-known
split short exact sequence

0 → Fn−1 → PBn → PBn−1 → 0

where Fn−1 is the free group on n − 1 generators and the map PBn → PBn−1 is
obtained by ignoring the last strand of a pure braid. This short exact sequence
maps to a similar split short exact sequence

0 → Kn → PRn → PRn−1 → 0

which is part of the long exact sequence of homotopy groups associated to the
fibration which sends an ordered n-tuple of smooth circles forming the trivial link
to the ordered (n− 1)-tuple obtained by ignoring the last circle. The kernel Kn is
π1 of the fiber, the subspace of Ln consisting of configurations with n − 1 of the
circles in a fixed position and the last circle varying. It suffices by induction on n to
show that the map of kernels Fn−1 → Kn is injective. We do this by constructing
a homomorphism Kn → Fn−1 such that the composition Fn−1 → Kn → Fn−1 is
the identity.

The homomorphism Kn → Fn−1 is obtained by choosing a point in the nth circle
and taking the path it traces out in the complement of the other n−1 circles under
a loop in the fiber. This path may not be a loop, but it can be completed to a loop
by adjoining an arc in the nth circle. Since the circles are unlinked, the choice of
this arc does not affect the resulting element of Fn−1, the fundamental group of
the complement of the first n− 1 circles. This construction gives a homomorphim
Kn → Fn−1 such that precomposing with Fn−1 → Kn is obviously the identity. �

The kernelKn is the productKUn×Z forKUn the kernel of the projection PURn →
PURn−1. It is shown in [P] that KUn is not finitely presented for n ≥ 3, although
it is finitely generated, with the generators one might expect, αni and αin. The
lack of finite presentability probably means that these kernels do not have nice
geometric interpretations in terms of configuration spaces of circles.

Proposition 4.4. The map UR<
n → URn is injective.
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Proof. This is similar to the preceding proof. The map UR<
n → UR<

n−1 that ignores
the smallest ring is a quasifibration, as in Section 1, using the canonical shrinking
to first make the smallest ring point-sized. The fundamental group of the fiber is
Fn−1 so we get a split short exact sequence

0 → Fn−1 → UR<
n → UR<

n−1 → 0

which maps to the split short exact sequence

0 → Kn → PRn → PRn−1 → 0

from the preceding proof. The rest of the argument is the same. �

5. Asphericity.

As a warm-up to proving Theorem 3, which states that the spaces Wn and UWn

are aspherical, let us recall a standard sort of argument for showing that the map
Wn → B2n induced by the map An → C2n sending a configuration of arcs to
the configuration of its endpoints is injective. We can view An as the space of
configurations of n disjoint smooth unknotted, unlinked arcs in a ball D3 with
endpoints in a hemisphere D2

− of ∂D3. By restricting diffeomorphisms of D3 fixing

the other hemisphere D2
+ to the standard configuration A of n arcs we obtain a

fibration
Diff(D3, A relD2

+) → Diff(D3 relD2
+) → An (1)

where Diff(X,Y relZ) denotes the space of diffeomorphisms of a manifold X that
leave a submanifold Y setwise invariant and fix a submanifold Z pointwise. Re-
stricting everything to D2

− gives a map from this fibration to the fibration

Diff(D2
−, ∂A rel∂D2

−) → Diff(D2
− rel∂D2

−) → C2n (2)

In each fibration the projection map to the basespace is nullhomotopic by shrinking
the support of diffeomorphisms to a smaller ball or disk disjoint from A. Thus the
associated long exact sequences of homotopy groups break up into short exact
sequences. Since π0Diff(D2

− rel∂D2
−) = 0 and π0Diff(D3 relD2

+) = 0 (the latter by
Cerf’s theorem), we obtain isomorphisms An ≈ π0Diff(D3, A relD2

+) and B2n ≈

π0Diff(D2
−, ∂A rel∂D2

−). The problem is thus reformulated as showing injectivity
of the map

π0Diff(D3, A relD2
+) → π0Diff(D2

−, ∂A rel ∂D2
−)

This map is induced by the restriction map from the fiber of the first fibration
above to the fiber of the second fibration. This restriction map is itself a fibration

Diff(D3, A rel∂D3) → Diff(D3, A relD2
+) → Diff(D2

−, ∂A rel ∂D2
−) (3)

so it suffices to show that π0 of the fiber of this fibration is trivial. Note first that a
diffeomorphism f in Diff(D3, A rel∂D3) can be isotoped to be the identity onA, and
f cannot twist the normal bundles of the arcs of A, as one can see by looking at the
induced map on π1(D

3−A). Then f can be isotoped rel A∪∂D3 to be the identity
in a neighborhood of A, so f can be regarded as a diffeomorphism of a handlebody
fixing the boundary of the handlebody. The space of such diffeomorphisms is path-
connected since any two spanning disks in a handlebody are isotopic rel boundary,
and similarly for collections of disjoint spanning disks, so diffeomorphisms of a
handlebody rel boundary can be isotoped rel boundary to have support in a ball,
and then by Cerf’s theorem they can be isotoped to the identity. (With a little
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more work the use of Cerf’s theorem in this argument could be avoided by factoring
out the image of π0Diff(D3 rel ∂D3) in the various groups.)

Now we prove Theorem 3 by refining this argument to reduce asphericity of Wn to
asphericity of C2n.

Proof. Since Wn is homotopy equivalent to An, we can obtain the result for Wn

by showing that An is aspherical. The total space in the fibration (2) above is
contractible by a theorem of Smale. The total space in the fibration (1) is also
contractible, as one can see from the fibration

Diff(D3 rel∂D3) → Diff(D3 relD2
+) → Diff(D2

− rel∂D2
−)

where the base is contractible by Smale’s theorem and the fiber is contractible
by the Smale conjecture [H1]. The fiber of the fibration (3) is also contractible
by the following argument. Restricting diffeomorphisms in Diff(D3, A rel∂D3) to
normal bundles of the n arcs gives another fibration whose base space is homotopy
equivalent to the space of automorphisms of the normal bundles of these arcs that
are the identity at the endpoints of the arcs. For each arc this is the loopspace of
SO(2), which has contractible components. Components other than the identity
component can be ignored since diffeomorphisms in (D3, A rel∂D3) cannot twist
the normal bundles nontrivially, as we saw earlier. Thus from this fibration we can
replace (D3, A rel∂D3) by the subspace of diffeomorphisms that are the identity on
a neighborhood of the arcs. This can be identified with group of diffeomorphisms
of a handlebody fixing its boundary. This diffeomorphism group is path-connected
as we observed before, and it has contractible path-components by [H2]. (The key
point is that the space of spanning disks with fixed boundary is contractible.)

Thus for i ≥ 2 we have isomorphisms

πiAn ≈ πi−1Diff(D3, A relD2
+) ≈ πi−1Diff(D2

−, ∂A rel∂D2
−) ≈ πiC2n

so asphericity of An is reduced to asphericity of C2n, which is well-known.

For the case of UWn we can pass to the covering space PUWn obtained by ordering
the wickets, and then use the quasifibration PUWn → PWn → T n from Section 1,
where T n is the n-torus. The associated long exact sequence of homotopy groups
shows that PUWn is aspherical since PWn and T n are aspherical. �

6. Wickets and Rings in a Sphere.

Instead of wickets in upper halfspace one can consider wickets inside a sphere,
circular arcs in the interior of the sphere that meet the sphere orthogonally at
their endpoints. Configurations of n disjoint wickets of this type form a spherical
wicket space SWn. An equivalent space is the space of configurations of n disjoint
line segments in a ball that meet the boundary sphere in their endpoints. The
equivalence between the two definitions can be seen by considering two of the models
for hyperbolic 3-space, the standard ball model and the projective model. In the
ball model the geodesics are circular arcs orthogonal to the boundary sphere, while
in the projective model they are line segments in the ball with endpoints on the
boundary sphere. The disjointness condition is preserved in going from one model
to the other since intersecting geodesics lie in a common hyperbolic plane in both
cases.
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The space SWn is slightly smaller than the space of all configurations of n disjoint
geodesics in hyperbolic 3-space since geodesics do not include their endpoints in
the boundary sphere, so two disjoint geodesics could share a common endpoint
on the boundary sphere. The inclusion of SWn into this slightly larger space is
a homotopy equivalence, however, as one can see easily in the projective model
by shrinking the ball by a small amount for each configuration (without shrinking
the configuration itself). For example, the ball can be shrunk by one-half of the
minimum of the numbers di, where di is the maximum distance from points on the
ith line segment of a given configuration to the boundary of the ball. Note that this
is essentially the same as the canonical shrinking process considered in Section 1.

Comparing the ball model of hyperbolic 3-space with the upper halfspace model, we
see that Wn can be regarded as the subspace of SWn consisting of configurations
disjoint from a point ∞ in the boundary sphere. The configurations in SWn that
contain a line to ∞ form a codimension 2 submanifold. In terms of the upper half-
space model, this submanifold is the space of configurations of n−1 disjoint wickets
and one vertical line disjoint from the wickets. This submanifold is connected, by
the same argument with canonical shrinking used to show that Wn is connected.
From transversality it follows that the inclusion Wn →֒ SWn induces a surjection
on π1 with kernel generated by a small loop linking the codimension 2 submanifold.
This loop can be represented by taking the standard configuration of n wickets in
the xz-plane and dragging the left endpoint of the first wicket around a large circle
enclosing all the other wickets. It would not be hard to write this loop as a word
in the generators ρi, σi and τi. Thus π1SWn has a presentation obtained from the
presentation for Wn by adding one extra relation.

There is an analogous space SAn of configurations of n disjoint smooth arcs in a
ball with endpoints on the boundary sphere, all these arcs being unknotted and
unlinked.

Proposition 6.1. The inclusion SWn →֒ SAn is a homotopy equivalence.

Proof. This can be reduced to the corresponding result forWn →֒ An by considering
some fibrations. Let SW∗

N be the space of configurations consisting of n disjoint
wickets in a ball together with a basepoint in the boundary sphere disjoint from the
wickets. Projecting such a configuration onto either the wickets or the basepoint
gives two fibrations

F → SW∗

n → SWn Wn → SW∗

n → S2

Here the fiber F in the first fibration is just S2 with 2n points deleted, the endpoints
of a configuration of n wickets. The homotopy lifting property in the first fibration
follows by extending isotopies of configurations of wickets to ambient isotopies then
restricting these to the basepoint. The second fibration is actually a fiber bundle
since the basepoints in a neighborhood of a given basepoint can be obtained via a
continuous family of rotations of S2 applied to the given basepoint, and then these
rotations can be applied to configurations of wickets.

Similarly there are fibrations

F → SA∗

n → SAn An → SA∗

n → S2

The fiber F is the same as before. There are natural maps from the first two
fibrations to the second two fibrations. Applying the five lemma to the induced
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maps of long exact sequences of homotopy groups, we see that Wn →֒ An being a
homotopy equivalence implies first that this is true also for SW∗

n →֒ SA∗

n and then
also for SWn →֒ SAn. �

Similar things can be done for rings as well as wickets. Let SRn be the space
of configurations of n disjoint pairwise unlinked circles in S3, and let SLn be the
corresponding analog of Ln, the space of smooth n-component trivial links in S3.

Proposition 6.2. The inclusion SRn →֒ SLn is a homotopy equivalence.

Proof. This follows the line of argument in the preceding proof by comparing fi-
brations, using the space SR∗

n of configurations of circles in S3 with a disjoint
basepoint, and its smooth analog SL∗

n. �

One can also obtain a presentation for π1SRn from a presentation for Rn by adding
the same relation as was added to get a presentation for π1SWn. The justification
is the same as before, by using stereographic projection to identify Rn with the
complement of the codimension 2 submanifold of SRn consisting of configurations
passing through a given point in S3.

7. Remarks on Dimension

It is a classical fact that the general position argument for finding a presentation for
Bn can be refined to build a finite CW complex K(Bn, 1) having a single 0-cell, a
1-cell for each standard generator σi, and a 2-cell for each of the standard relations.
The cells are dual to the strata of the stratification of Cn according to coincidences of
the x-coordinates. Thus the 0-cell corresponds to the unique stratum of maximum
dimension consisting of configurations with distinct x-coordinates, the 1-cells to
the strata of codimension one where exactly two points in a configuration have the
same x-coordinate, and so on. The same procedure works also for UWn to give a
finite CW complex K(UWn, 1). The dimension of this complex is n − 1, just as
for Bn. For Bn there is a single cell in the top dimension, corresponding to the
stratum of configurations with all n points on one vertical line, but for UWn there
are a number of different strata consisting of configurations of wickets all lying in
one plane, so there are a number of top-dimensional cells. There cannot exist a
K(UWn, 1) of dimension less than n−1 since UWn has a subgroup Z

n−1 generated
by the elements αin for i < n.

For Wn the minimum dimension of a K(Wn, 1) is 2n − 1. There is a K(Wn, 1)
of this dimension since Wn is a subgroup of B2n, and there cannot be one of
lower dimension sinceWn contains a subgroup Z

2n−1, generated by the Zn−1 above
and the τi’s. It seems likely that Wn should have a finite CW complex K(Wn, 1)
of minimum dimension, perhaps constructible by extending the general-position
constructions referred to above.

For Rn the virtual cohomological dimension is known to be n − 1 by [C], where
a K(π, 1) which is a finite CW complex of dimension n − 1 was constructed for
the finite-index subgroup PURn. This K(π, 1) can be described as the space of
basepointed graphs consisting of n circles touching in a tree-like pattern, forming
a cactus-shaped object. The dimension n− 1 cannot be reduced since PURn again
contains a subgroup Z

n−1 generated by the elements αin.
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