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Fabian Stedman: The First Group Theorist?

Arthur T. White

1. INTRODUCTION. Fabian Stedman, a son of the Reverend Francis Stedman,
vicar of Yarkhill, Herefordshire, England, was baptized there on December 7,
1640. At age fifteen he was apprenticed to the Master Printer Daniel Pakeman in
London. In London he joined the Scholars of Cheapside, a bell-ringing society,
serving as its Treasurer in 1662. The following year Stedman became a Freeman of
the Stationers Company. In 1664 he joined the Society of Colledg Youths, which
had been founded in 1637; renamed the Ancient Society of College Youths in the
nineteenth century, this bell-ringing society is still active today. There is some
evidence that Stedman moved from London to Cambridge in 1664 (see [3] and [5],
which are the sources for much of this background information), and he might
have been working as a printer there and also serving as parish clerk of St. Bene’t’s.
The early 11th-century Saxon tower of St. Benedict’s Church is the oldest surviving
building in Cambridgeshire.

In 1677 Stedman became Steward of College Youths; five years later he was
Master of the Society. Returning to (or staying in) London, he changed profession,
becoming a clerk in the office of Audit of Excise. He died in 1713, and was buried
at St. Andrew Undershaft on November 16.

Fabian Stedman’s claim to fame as at least one of the “fathers of bell ringing’
seems beyond doubt; his contributions to the first two books on change ringing,
Tintinnalogia (1668) [2] and Campanalogia (1677) [7], will be summarized shortly.
What is less well known, and what has occasioned this article, is the group theory
latent in his writings and in his compositions—a full century before Lagrange
wrote “Reflexions” (1770).

£

2. CHANGE RINGING. In England church bells are rung not in melody, but in
permutations (changes). To a limited extent, this practice has spread to Australia,
to Canada, and to the United States. The increase in control facilitated by the
mounting of each bell on a circular wheel allowed the inception of change ringing
in about 1610. Early forms of change ringing involved one row (one ordering of the
bells, denoted by 1,2,..., n; here n = 6), such as rounds (123456), queens (135246),
or tittums (142536) to be rung repeatedly until the conductor (one of the ringers)
called for a change; these are known as call changes. Due to mechanical considera-
tions arising from the manner of mounting the bells, if the rows are changed
constantly then no bell can readily change its order of striking by more than one
position. Thus each change (a transition from one row to the next) involves one or
more disjoint pairs of adjacent bells swapping over. At first plain changes, involving
one pair only at each step, were in vogue. The four rows in Figure la illustrate
three successive plain changes on six bells, commencing with rounds. Soon, cross
changes, allowing more than one swapping pair, replaced plain changes, continuing
to the present day. As we will see, Stedman was instrumental in effecting this
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Figure 1. Three Plain Changes and One Cross Change.

transition. In Figure 1b we see how to get from rounds to the last row in Figure 1a
by using one cross change, instead of three plain changes.

In about 1621, cross and plain changes were alternated to produce the plain
lead on four bells, as shown in Figure 2a. From a modern viewpoint, if we let
a = (12)(34) denote the cross change that swaps both the first two and the last two
bells and b = (23) the plain change that swaps the middle pair, and if we note that
reflections a and b generate the dihedral group D, (as the group of symmetries of
a square labelled as in Figure 2b), then we see that the eight rows of Figure 2a
coincide with the elements of D,. This lead (it could also be called the hunting
group [12], as the treble—bell 1—is plain hunting in this group of rows) is
described by the identity word (ab)* = e in the symmetric group S,. In change
ringing, every touch (on n bells, say) begins and ends with rounds, and thus is
described, in modern terms, by an identity word in S,, where each letter of the
word is an involution in S, consisting of disjoint pairs of adjacent interchanges.

-
N
w
=N

[Ny4

(a) (b)

Figure 2. The Plain Lead on Four Bells.

3. THE TWO MAIN SOURCES. Tintinnalogia [2] was published in 1668, written
“By a Lover of that ART”, and “printed by W. G. for Fabian Stedman, at his shop
in St. Dunstans Churchyard in Fleetstreet”. It is thought [3] that “W. G.” stands for
the publisher W. Godbid, that Stedman helped to arrange the printing and
perhaps helped to supply material for the book, but that the actual author was
Richard Duckworth. Duckworth was a fellow of Brasenose College, Oxford and
later rector of St. Martin’s, Carfax, Oxford. Fabian Stedman’s father also was a
member of Brasenose College and Fabian’s older brother Francis was contempora-
neous with Duckworth at Oxford. This might explain the connection between
Fabian Stedman of London/Cambridge and Richard Duckworth of Oxford.

At any rate, in Tintinnalogia its author describes first plain changes and then,
tentatively, cross changes, extending Figure 2a to its full extent, 24 rows now
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known as Plain Bob Minimus (discussed below), and goes on to discuss peals on
five and six bells. It is notable that leads of various peals are written out in full,
with no omitted rows. In 1671 a Second Edition of Tintinnalogia was printed (“for
F. S.”); only one copy of the Second Edition survives, at the Bodleian Library,
Oxford. This was not an updating of the first edition, but a reprinting.

The updating occurred in 1677, with the publication of Campanalogia [7),
printed “by W. Godbid, for F. S.”, and it was substantial. The Epistle Dedicatory
for this work, to the “Society of COLLEDG YOUTHS?”, is signed “A constant
Well-wisher to the Prosperity (though an unworthy member) of your Society, F. S.”
As the College Youths’ name book for this period shows only one name with
initials F. S.—Fabian Stedman—(see [4]), it seems safe to attribute authorship of
Campanalogia to him. At the outset (page 2) Stedman says

Although the practick part of Ringing is chiefly the subject of this Discourse,
yet first I will speak something of the Art of Changes, its Invention being
Mathematical, and produceth incredible effects, as hereafter will appear.

In the Epistle Dedicatory, Stedman had referred to the plain lead on five bells (ten
rows, generated from rounds by (ab)’ = e, where a = (12)(34) and b = (23)(45),
analogous to Figure 2(a)) as follows:

.. .it was thought impossible that double changes on five bells could be made
to extend further than ten...

The blockage was evidently caused by the awareness that the two changes gener-
ated a closed system, what we now call the dihedral group Ds, and was relieved by
the discovery that one closed system can be enlarged to another by the addition of
new elements (in this case adding first ¢ = (34) to produce the plain course
[(ab)*ac]* = e and then the bob d = (45) to ring all of Plain Bob Doubles:
[((ab)*ac)*(ab)*ad = e, as on page 104 of Campanalogia—except that Stedman
calls the bob an extream, and refers to the composition as Old Doubles).

After giving lengthy instruction on factorials and discussing the “Practice of
Ringing” and plain changes, Stedman describes a number of cross peals coinciding
with those in Tintinnalogia, with the innovation that only the first two leads are
written out in full (a lead is a block of rows, such as the first eight in Figure 2a,
from one treble lead—bell 1 in the first position—to the next); subsequent leads
were represented by only their first and last row (both treble leads), as the rows
between can be reconstructed from the pattern of the first leads given. The crucial
point here is that a subset of rows is being represented by two of its elements. As
the last row of a lead can be reconstructed from the first row, the last row is also
superfluous to list, but Stedman continued to do so in order to make more readily
apparent the change used to get to the first row of the next lead.

The second half of Campanalogia contains a large number of new methods, on
five, six, seven, and eight bells, including fifty-three of Stedman’s own compositions
under the heading “London Peals”. Other venues represented are Nottingham,
Oxford, and Cambridge. Included among the fifty-three London peals is “Stedman’s
Principle”, now known as “Stedman Doubles”. Extendable to any odd number of
bells (and even numbers as well, by having the tenor (bell #) ring last (in cover) in
every row), this composition is one of the most popular to this day.

4. IMPLICIT ELEMENTS OF GROUP THEORY. To make the point that group

theory is latent in change ringing to a substantial degree, we next analyze two
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1234 1342 1423

2143 3124 4132
2413 3214 4312
4231 2341 3421

4321 2431 3241
3412 4213 2314

3142 4123 2134
1324 1432 1243
1234

Figure 3. Plain Bob Minimus.

compositions—Plain Bob Minimus and Stedman Doubles—in some detail. We
then discuss the extent to which Fabian Stedman was aware of these connections.

In Figure 3 we list all twenty four rows of Plain Bob Minimus in three columns;
each column gives one lead of the full extent. At the end of the third column, we
show the required return to rounds. As for all extents (which ring the full »n!, on n
bells), it is crucial that no other row is repeated.

As before, let a = (12)(34) and b = (23) describe possible changes from one
row to the next. Add ¢ = (34) and let e denote the identity element of S,. As
before, a and b generate the dihedral subgroup D, of S, and the rows of the first
lead correspond to D, = {e, a, ab, aba, (ab)?, (ab)?a, (ab)?, (ab)*a}. (From a mod-
ern point of view—see [8—11], for example—ab = (12)(34)(23) = (1243), compos-
ing right to left, which we interpret as ringing in position 1 bell 2, in position 2 bell
4, in position 4 bell 3, and in position 3 bell 1; that is, the row 24 1 3. This extends
in a natural manner to a full correspondence between rows and permutations.) If
we follow row (ab)’a by change b we would regain rounds prematurely, since
(ab)* = e. Thus we employ change ¢ = (34) for the first time, obtaining the second
column {w, wa, wab, waba, w(ab)?, w(ab)’a, w(ab)?, w(ab)’a}, where w = (ab)%ac.
But this is just the left coset wD,! Using c a second time, we get the third column
as the final left coset w2D4, and a third and final use of ¢ returns us to rounds.

A composition such as Plain Bob Minimus is required to satisfy six conditions,
which we now list, together with an algebraic verification for each one.

(i) The extent must begin and end with rounds. (This follows from
[(ab)ac? =e.)

(ii) No other row is repeated. (The coset decomposition guarantees this.)

(iii) From one row to the next, no bell moves more than one position. (This is
forced by our choice of a = (12)(34), b = (23), and ¢ = (34).)

(iv) No bell rests in the same place for more than two successive rows. (The
alternation of a = (12)(34) moves every bell appropriately.)

(v) The working bells (here, all but the treble) should all do the same work.
(This is guaranteed by w = (234), so that what bell 2 does in the first lead,
bell 3 does in the second and bell 4 does in the third, etc.)

(vi) Each lead should be palindromic in its changes. (Examine (ab)’a.)

These axioms for a method, as it is called, are not formally combined by
Stedman in Campanalogia. His “Obser. 4” (pp. 38—39) corresponds to (iii); his
other “observations” apply to performance, rather than composition. Axioms (ii)

774 FABIAN STEDMAN: THE FIRST GROUP THEORIST? [November

This content downloaded from
108.52.141.62 on Tue, 14 Jul 2020 20:04:25 UTC
All use subject to https://about.jstor.org/terms



and (v) appear in Campanalogia on pages 3 and 84 respectively. Axiom (i) is
implicit throughout; (iv) and (iv) are more commonly employed in modern times.
Modern ringers have more formally set forth these and other requirements (see,
for example, [1, p. 8] and [16]), in what we now recognize as an axiomatic
approach.

In summary, the decomposition of S, into left cosets of D, shown by Figure 3
precisely describes Plain Bob Minimus. (In Campanalogia (p. 96) Stedman lists the
24 rows in one column, but he uses letters to show where each block of eight rows
(i.e., each coset) changes into the next.) But there are at least four other coset
decompositions of interest here. To describe these, it is helpful to think of Figure 3
as an 8 X 3 matrix, whose entries are the rows of Plain Bob Minimus. In what
comes immediately below, the term row* will refer to a row of this matrix, which
consists of three rows of the composition.

(1) The rows* of the matrix are the right cosets of the subgroup (e, w, w?} of S,.

(2) Rows* 1 and 8 give the subgroup (S,); = S, of S,; the set of all treble leads
is just the stabilizer in S, of (bell) 1. The other right cosets consist of rows* 2 and
7, rows* 3 and 6, and rows* 4 and 5. Note that the row* numbers of each coset are
symmetrical about the half lead, and that each half lead constitutes a right
transversal of (S,); in S, (each of the right cosets is represented exactly once, in
each half lead). Note also that each element of the ith coset fixes bell 1 in the ith
position, i = 1,2,3,4 (in accordance with the plain hunt). These follow from the
fact that (ab)’a is a palindrome (condition (vi)) and are useful in “proving” extents,
as we do for Plain Bob Minimus below.

(3) Rows* 1, 2, 5, and 6 give the subgroup A4, of S,, consisting of all the even
(in- course) rows. The other four rows*, which form the other (right or left) coset
of A, in S,, consist of all the odd (out-of-course) rows.

I believe that Stedman made use of all these decompositions, although of course
he lacked the modern terminology for them. Here is one decomposition that was
probably not used by Stedman.

(4) In Figure 2 of [8], a Cayley color graph C,(S,), with A = {a, b, ¢}, is shown
imbedded in the projective plane with 4-fold symmetry, as generated by ab =
(1243). The six right cosets of the corresponding subgroup allow an even simpler
depiction of Plain Bob Minimus, as a Schreier coset graph. This idea has been
exploited to great advantage in [9], [10], and [11].

Now we turn our attention to Stedman Doubles. The plain course (consisting of
60 rows) is given in Figure 4. For convenience the presentation differs slightly from
that given by Stedman in Campanalogia (pp. 129-132); both differ from that used
by ringers today. But the connection with group theory is unaffected. Letting
a = (12)(45), b = (23)(45), and ¢ = (12X34), we can describe the plain course by
w® =e, where w = (ab)?ac(ba)®bc = (13452). The sequence (word) ababa of
changes gives a slow six; the sequence babab, which is used in alternation, gives a
quick six. Each yields all the permutations on the front three bells, and thus a
subgroup isomorphic to S, if we start with rounds. We introduce ¢ = (12)(34),
called by Stedman a parting change, to link successive sixes—by exchanging one of
the back two bells with one of the front three. Stedman notes: “Bt this method the
peal will go sixty changes, and to carry it farther extremes must be made.” We
check that, with all changes (a, b, and c) even, the largest subgroup of S5 we can
generate is As. Figure 4 displays A; decomposed into ten left cosets of the
subgroup isomorphic to S; given by the first six rows. Or, if we focus on the rows*
of the 12 X 5§ matrix, we find twelve right cosets of the subgroup generated by
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12345 31452 43521 54213 25134
21354 13425 34512 45231 52143
23145 14352 35421 42513 51234
32154 41325 53412 24531 15243
31245 43152 54321 25413 12534
13254 34125 45312 52431 21543

31524 43215 54132 25341 12453
35142 42351 51423 23514 14235
53124 24315 15432 32541 41253
51342 23451 14523 35214 42135

15324 32415 41532 53241 24153
13542 34251 45123 52314 21435
12345

Figure 4. Plain Course of Stedman Doubles.

w = (13452), represented by the five rows of Stedman Doubles in the first row* of
the matrix. All 60 rows are in-course. (We note in passing that Stedman Doubles,
as a principle, has no hunt bell (bell 1 was plain hunting in Plain Bob Minimus,
where bells 2, 3, and 4 were working alike); now all five bells are working alike, as
forced by w being a 5-cycle. With this understanding, all “axioms” (i)—(iv) hold for
this principle, just as they did for the method Plain Bob Minimus. However, the
subgroup (S,); of S5 plays no role here, and we have no coset decomposition to
match (2) for Plain Bob Minimus.) To get the remaining 60 (out-of-course, i.e.,
odd) rows of Stedman Doubles, we replace the tenth use of the parting change c,
which brought us back to rounds after 60 rows, by an appropriate change, say
d = (34)—called by Stedman an extream, known now as a single. (The single (12)
would also work here.) This throws us into the other coset of A4 in S5, and we get
all of Stedman Doubles as {[(ab)’ac(ba)*bc]*(ab)’ac(ba)*bd}* = e. Stedman’s ar-
rangement in Campanalogia (p. 131) clearly reflects this division of S5 into cosets
of As. However, he does not emphasize the division of A4 (and the other coset)
into cosets of S,, as later change ringers have done.

5. STEDMAN A GROUP THEORIST? Certainly a knowledge of group theory
helps us analyze (and compose!) pieces of change ringing music such as Plain Bob
Minimus and Stedman Doubles for their structure and properties. Group theory, a
mathematical discipline developed in the late eighteenth and nineteenth centuries,
was of course not available to Fabian Stedman in 1677 and before, when he
composed the music he recorded in Campanalogia. But was he in reality function-
ing as a very early group theorist in composing and verifying his compositions?
Of all the six requirements for change ringing given above, (ii) is by far the most
difficult to verify: no row is repeated; each appears exactly once (except for rounds,
which appears first and last, but nowhere else). The verification of (ii) is called
proof by ringers, and if two rows that should differ in fact agree, then falsity has
been established. Not all change ringing compositions correspond to left coset
decompositions by a subgroup consisting of the rows of the first lead. But it is
interesting to note that the two most popular methods (Plain Bob, on any even
number of bells; Grandsire, on any odd number) and the most popular principle
(Stedman, on any odd number) all do (except that the bob leads for Grandsire are
not quite cosets). As mathematicians, we know that two left cosets are either
disjoint or identical, and that no one coset has any internal falsity. Thus if we just
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note that the three even (in-course) treble leads for Plain Bob Minimus (rows 1234,
1342, and 1423) are distinct, we have proved the composition.

But how might a ringer without explicit knowledge of group theory prove a
composition like Plain Bob Minimus? Suppose, for example, the row 2341 appears
twice. Since each lead is true, this must be in different leads. Since following 2341,
which is out-of-course, by a = (12)(34), b = (23), and then a again gets us to an
in-course treble lead (since row 2341 must be in either row* 4 or row* 5, and the
palindromic condition (vi) guarantees that moving up by aba (row* 4) or down by
aba (row* 5) will reach a treble lead head or a treble lead end respectively), the
two leads containing 2341 must be headed by the same in-course treble lead. But a
quick inspection shows that 1234, 1342, and 1423 are distinct. Thus 2341 cannot
appear twice. A similar analysis applies to any other row. In summary, we need
compare only one representative from each lead, even if we don’t know that that
lead is going to be called a coset more than a century later.

Did Stedman reason in this way? Here is what he said, on pages 94 and 95 of
Campanalogia; for whole hunt read “treble;” for course read “lead;” for peal read
“extent” (the full n!), for pricking read “writing.”

...every note in a cross-peal must of necessity lie as many times in one place,
as the rest of the notes are capable of making changes;

(In the 20th century, we would write [(S,);] =S, _;|.)

and also that two or more of the notes must jointly lie in the same places as
many times, as the remaining number are also capable of making changes:

(l(S,,)i,jl = |S,,_2|, etc.)

this being a certain touchstone to prove all cross-peals after they are prickt,
and must be held as a principle upon which to ground such methods of
pricking, that the course of all the notes may demonstrably tend to produce
those effects. And from hence it is, that the whole Aunt immediately derives
the manner of its uniform motion through the courses of each peal. And the
changes in every course are as so many guides to conduct the rest of the
notes in such sort, that they may be prepared to lie at the last change of the
course in apt places for each succeeding course to receive them, and to
perform the like. Now as the changes in all the courses of a peal are made
alike, ... so in the composing of cross-peals, by pricking of one course may
soon be discovered, whether a compleat peal will from these arise.

In connection with Stedman Doubles, the composer clearly seemed to know
that following 60 true in-course rows (the first 59 “changes are all double”, as he
said on page 129 of [7]) by an appropriate “extream” would produce 60 true
out-of-course rows, that wx = wy means that also x = y. And, he seemed aware
that the parity (in or out of course) of a row is dependent only on the row itself,
not on its position in the composition. The modern theorem is that the parity (even
or odd) of the number of transpositions into which a permutation can be decom-
posed is constant.

If we extend Stedman’s principle on five bells, Stedman Doubles, to seven bells,
we get Stedman Triples. Letting a = (12)(45)67), b = (23)45X67), and ¢ =
(12)(34)(56), we obtain the plain course w’ = e, where w = (ab)’ac(ba)?bc =
(1374562); this plain course consists of 84 of the 5040 rows. To expand this touch
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to a full extent, bob d = (12)(34X67) and single f = (12X34) have been used
effectively, replacing c in either or both of its occurrences in certain subwords w,
in order to get beyond the plain course, even as far as the full extent. Until
recently, the most famous unsolved problem in bell ringing was the following: Is it
possible to ring the full extent of Stedman Triples using only a, b, ¢, and d? In late
1994, Colin Wyld achieved such a composition [14], using, out of 840 positions
where a bob might be called, 705 bobs [13]. Then, in early 1995, Andrew Johnson
and Philip Saddleton also composed an extent of Stedman Triples using common
bobs only (no singles), and one week later their composition was successfully rung
by a Cambridge University Guild band, being called (579 bobs) at the first attempt
by Philip Agg, at St. John’s Waterloo Road [15]. See also Saddleton [6]. Thus a
centuries-old (mathematical!) problem derived from the work of Fabian Stedman
has finally been settled. The solution corresponds to a hamiltonian circuit in the
Cayley graph for the symmetric group S,, as generated by the involutions a, b, c,
and d above, incorporating slow and quick sixes in alternation, linked by genera-
tors ¢ and d.

I have not tried to make the case that Fabian Stedman was using group theory
explicitly, but rather that group-theoretical ideas were implicit in his writings and
compositions. These ideas, as we have seen, include closed systems, axiomatic
systems, coset decomposition (including the ideas of coset representative and
disjointness), even and odd permutations, factorials, and stabilizers in permutation
groups. We should remember that those usually thought of as the first group
theorists (Lagrange, Ruffini, Cauchy, Abel, and Galois) also were operating
implicitly in the context of permutation groups, many decades before the definition
of an abstract group as a set with a binary operation satisfying certain axioms.
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