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Let X be a smooth scheme over a field of characteristic 0. The Atiyah class of the tangent
bundle TX of X equips TX [−1] with the structure of a Lie algebra object in the derived
category D+(X) of bounded below complexes of OX modules with coherent cohomology
[6]. We lift this structure to that of a Lie algebra object L(D1

poly(X)) in the category of
bounded below complexes of OX modules in Theorem 2. The “almost free” Lie algebra
L(D1

poly(X)) is equipped with Hochschild coboundary. There is a symmetrization map

I : Sym•(L(D1
poly(X))) → D•

poly(X) where D•
poly(X) is the complex of polydifferential

operators with Hochschild coboundary. We prove a theorem (Theorem 1) that measures
how I fails to commute with multiplication. Further, we show that D•

poly(X) is the

universal enveloping algebra of L(D1
poly(X)) in D+(X). This is used to interpret the

Chern character of a vector bundle E on X as the “character of a representation”
(Theorem 4). Theorems 4 and 1 are then exploited to give a formula for the big Chern
classes in terms of the components of the Chern character.
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1. Introduction

1.1. Outline of main results

This paper is a result of an effort to understand the works of Markarian [3] and
Caldararu [10]. Another goal was to see whether the works of Markarian [3] and
Caldararu [10] lead to an explicit formula relating the big Chern classes to the
Chern character.

We begin by outlining the main results in this paper. Let X be a smooth scheme
over a field of characteristic 0. Let D•

poly(X) denote the complex of poly-differential
operators on X , with Hochschild co-boundary. We denote the sheaf of differential
operators on X by D1

poly(X). Let L(D1
poly(X)) denote the free Lie algebra gene-

rated over OX by D1
poly(X) concentrated in degree 1, equipped with the Hochschild
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co-boundary. There is a symmetrization map

I : ⊕kSymk(L(D1
poly(X)))→ D•

poly(X).

I is an isomorphism of complexes of OX -modules. Let

m : D•
poly(X)⊗D•

poly(X)→ D•
poly(X)

denote the multiplication on D•
poly(X) and let µ denote the natural product on

⊕kSymk(L(D1
poly(X))). Let

ad : ⊕kSymk(L(D1
poly(X)))⊗ L(D1

poly(X))→ ⊕kSymk(L(D1
poly(X)))

denote the right adjoint action of L(D1
poly(X)) on ⊕kSymk(L(D1

poly(X))). In Sec. 5,
we describe a map

ω : ⊕kSymk(L(D1
poly(X)))⊗L(D1

poly(X))→ ⊕kSymk(L(D1
poly(X)))⊗L(D1

poly(X))

such that µ ◦ ω = ad. Let Ch+(OX −mod) denote the category of bounded below
complexes of OX -modules. We then have the following theorem.

Theorem 1. The following diagram commutes in Ch+(OX −mod)

D•
poly(X)⊗ L(D1

poly(X)) m−−−−→ D•
poly(X)�I⊗id I

�
Sym•(L(D1

poly(X)))⊗ L(D1
poly(X))

µ◦ ω

1−e−ω−−−−−−→ Sym•(L(D1
poly(X)))

The next sections of this paper are devoted to a conceptual understanding of
the above theorem and its corollaries. Let D+(X) denote the derived category of
bounded below complexes of OX -modules with coherent cohomology. Recall that
the Atiyah class of a vector bundle E is an element in HomD+(X)(E ⊗ TX [−1], E).
In particular, the Atiyah class αTX of the tangent bundle of X is an element in

HomD+(X)(TX ⊗ TX [−1], TX) = HomD+(X)(TX [−1]⊗ TX [−1], TX [−1]).

Let IHKR denote the Hochschild–Kostant–Rosenberg quasi-isomorphism

IHKR : ⊕i ∧i TX [−i]→ D•
poly(X).

In Sec. 4.2, we define a map of complexes β : TX [−1]→ L(D1
poly(X)) such that

I ◦ Sym•β = IHKR

and show that β : TX [−1] → L(D1
poly(X)) is a quasi-isomorphism. Moreover, as

proven in Sec. 6,

Theorem 2. The following diagram commutes in D+(X)

TX [−1]⊗OX TX [−1]
β⊗β−−−−→ L(D1

poly(X))⊗OX L(D1
poly(X))

α(TX)

� �[,]

TX [−1]
β−−−−→ L(D1

poly(X))
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Note that all arrows in the diagram above except αTX are honest maps in
Ch+(OX −mod). This theorem says that the natural Lie bracket on L(D1

poly(X))
realizes the Atiyah class of TX as a map in Ch+(OX − mod). It follows from the
fact that β is a quasi-isomorphism that the map ω yields a map

ω̄ : ⊕i ∧i TX [−i]⊗ TX [−1]→ ⊕i ∧i TX [−i]⊗ TX [−1]

in D+(X). By an abuse of notation, let µ also denote the natural product in ⊕i ∧i
TX [−i]. An immediate consequence of Theorems 1 and 2 is the following corollary.

Corollary 1. The following diagram commutes in D+(X)

D•
poly(X)⊗D•

poly(X) m−−−−→ D•
poly(X)�IHKR⊗IHKR IHKR

�
⊕i ∧i TX [−i]⊗ TX [−1]

µ◦ ω̄

1−e−ω̄−−−−−−→ ⊕i ∧i TX [−i]

This is a result “dual” to [3, Theorem 1]. In another paper [16], we use this to
prove the relative Riemann–Roch theorem, thereby completely explaining [3]. One
can think of the Hochschild–Kostant–Rosenberg map as a symmetrization map from
⊕i ∧i TX [−i] to D•

poly(X). Corollary 1 thus tells us that the error term measuring
how this map fails to commute with multiplication is “d(exp−1)-like”. In order to
understand the classical situation of which Corollary 1 is an analog, we have the
following theorem.

Theorem 3. D•
poly(X) is the universal enveloping algebra of TX [−1] in D+(X).

In other words, let A be an associative algebra in D+(X). If f : TX [−1] → A is a
morphism in D+(X) making the following diagram commute in D+(X),

TX [−1]⊗OX TX [−1]
α(TX )−−−−→ TX [−1]

f⊗f
� �f

A⊗OX A
[,]−−−−→ A

then there exists a unique morphism f̄ : D•
poly(X) → A of algebras in D+(X) so

that the composite f̄ ◦ IHKR = f .

This makes the parallel between Theorem 1, Corollary 1 and their classical
analogs more explicit. In fact, as explained in Sec. 5, the classical analog of The-
orem 1 is a commutative diagram equivalent to the formula d(exp−1) = ad

1−e−ad .
Theorem 3 shows us that Corollary 1 is also analogous to the same classical result.

In the original version of this paper, Theorem 3 was proven first. Corollary 1 was
then interpreted as the analog for the Lie algebra TX [−1] of its classical version,
which followed from the formula d(exp−1) = ad

1−e−ad . However, no explicit details
of its proof were given. The same interpretation of an equivalent result has been
offered by Markarian [14] in an arXiv preprint subsequent to the first arXiv version
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of this paper. Again, as in the original version of this paper, hardly any further
details were offered. Theorem 1 removes these shortcomings. It is also stronger.

Theorem 3 is equivalent to a result claimed by Roberts [7]. It was however, not
proven in printed or online literature available to the author when the first version
of this paper was written. In a paper [11] that appeared on the arXiv after the
first version of this paper was uploaded on the arXiv, Roberts and Willerton prove
an equivalent result. Their proof is however, very different from the proof here.
The proof here is more explicit in the sense that f̄ as in Theorem 3 is directly
constructed in our proof.

There are other, more serious applications of Theorem 3. If E is a vector bundle
on X , the Atiyah class of E, α(E) is an element of

HomD+(X)(E ⊗ TX [−1], E) = HomD+(X)(TX [−1], End(E)).

By [6], α(E) equips E with the structure of a module over the Lie algebra TX [−1]
in D+(X). Thus,

α(E) : TX [−1]→ End(E)

is a morphism of Lie algebras in D+(X). By Theorem 3, there exists a morphism
θE : D•

poly(X) → End(E) of algebras in D+(X) lifting α(E). We also have a map
tr : End(E) → OX . Let ϕE = tr ◦ θE . Let p : ⊕i ∧i TX [−i] → ⊕nT⊗n

X [−n] be the
symmetrization map. There is a map of complexes J : ⊕nT⊗n

X [−n] → D•
poly(X),

such that IHKR = J ◦ p. Let t̃k(E) denote α(E)◦k ∈ HomD+(X)(T
⊗k
X [−k], End(E)).

Let ˜chk(E) = ˜tk(E) ◦ p. Let tk(E) denote the kth big Chern class of E and let
chk(E) denote the kth component of the Chern character of E. The following easy
consequence of Theorem 3 is stated as a theorem in its own right.

Theorem 4. (i) ˜tk(E) = θE ◦ J

(ii) ˜chk(E) = θE ◦ IHKR
(iii) ⊕ntn(E) = ϕE ◦ J

(iv) ch(E) = ϕE ◦ IHKR.

Part (iv) of Theorem 4 interprets the Chern character of E as the “character of
the representation E of TX [−1]”. We will comment on this aspect in greater detail
in Sec. 8. Theorem 4 is similar to Theorem 4.5 of Caldararu [10]. However, that
result does not lend itself to our interpretation of the Chern character as directly
as Theorem 4 does. Further, even more interesting applications of Theorem 3 may
be found in [7], but they are beyond the scope of this paper.

Note that we have a PROP ENDT [−1] such that

ENDT [−1](n,m) = HomD+(X)(T
⊗n
X [−n], T⊗m

X [−m]).

Let Ψ ∈ ⊕m≤nENDT [−1](n,m) be the element of ENDT [−1] given in Sec. 9. Let Ψkl

denote the component of Ψ in ENDT [−1](k, l). Let π : ⊕nT⊗n
X [−n]→ ⊕i ∧i TX [−i]

be the standard projection. Then,



June 16, 2008 14:23 WSPC/133-IJM 00485

The Big Chern Classes and the Chern Character 703

Theorem 5. (i) t̃k(E) = ˜chk(E) ◦ π +
∑

l<k
˜chl(E) ◦ π ◦Ψkl

(ii) tk(E) = chk(E) ◦ π +
∑

l<k chl(E) ◦ π ◦Ψkl.

We remark here that Ψ has been described by an explicit, albeit lengthy formula
in Sec. 9. This expresses the big Chern classes of a vector bundle on an arbitrary
smooth scheme over a field of characteristic 0 in terms of the components of its
Chern character. The existence of a formula similar to (ii) was proven in the author’s
thesis for vector bundles on projective varieties over a field of characteristic 0. The
proof there was entirely different. It crucially required the existence of an ample
line bundle on X . The proof there therefore did not generalize to arbitrary smooth
schemes, smooth complex manifolds etc. unlike the proof here. Further, it was
difficult to see the formula arising out of the trace applied to an almost identical
formula akin to (i) of Theorem 5. Also, the explicit description of Ψ was not given
in the author’s thesis [8].

1.2. Structure of this paper

Sections 2 and 3 are introductory and describe the basic properties of D•
poly(X). In

particular, Sec. 3 describes the Hopf-algebra structure of D•
poly(X) in Ch+(OX −

mod).
Section 4 proves a key lemma (Lemma 1) stating that the symmetrization map

I : ⊕kSymk(L(D1
poly(X)))→ D•

poly(X) is an isomorphism in Ch+(OX−mod). This
is done by first showing that it is a map of complexes of OX -modules, followed by
showing that it is an isomorphism of graded OX -modules.

Section 4 also recalls the definition of the Hochschild–Kostant–Rosenberg
(HKR) quasi-isomorphism IHKR from Yekutieli and shows that there is a quasi-
isomorphism β : TX [−1] → L(D1

poly(X)) so that I ◦ Sym•β = IHKR. This is later
used in Sec. 6.

Section 5 states and proves Theorem 1. Once again, this is done in stages. The
first stage involves an explicit calculation showing that all maps involved commute
with the relevant differentials. This enables us to “forget” the differentials in the
complexes involved. We then only need to show that the diagram involved commutes
in the category of graded OX -modules.

Let V be a vector space over a field K of characteristic 0. Let L(V ) be the
(graded) free Lie algebra generated over K by V concentrated in degree 1. The
universal enveloping algebra of L(V ) is the tensor algebra T (V ) of V . The second
stage in proving Theorem 1 involves reducing the problem further to the problem
of finding the error term that measures how the PBW map from Sym•(L(V )) to
T (V ) fails to commute with multiplication. This is carried out in the appendix at
the end of this paper.

Section 5 also contains a lemma (Lemma 2) that furthers our understanding
of Theorem 1. This states that D•

poly(X) is the universal enveloping algebra of
L(D1

poly(X)) in Ch+(OX − mod). This enables us to interpret I as a PBW-map
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from Sym•(L(D1
poly(X))) to D•

poly(X). Theorem 1 then says that the error term
that measures the failure of I to commute with multiplication is “d(exp−1) like”.

Section 6 recalls the definition of the Atiyah class of a perfect complex of
OX -modules on X . Theorem 2, which states that the Lie bracket on L(D1

poly(X))
realizes the Atiyah class of TX as a map of complexes of OX -modules, is also proven
here by an explicit computation. Theorems 1 and 2 immediately imply Corollary 1,
which is also stated in Sec. 6.

Section 7 is devoted to the proof of Theorem 3. We have attempted a careful
and self-contained treatment of Theorem 3 in this section. Theorem 3 enables us
to interpret the HKR-quasi-isomorphism as a PBW-map. Corollary 1 then says
that the error term that measures the failure of the HKR map to commute with
multiplication in D+(X) is “d(exp−1) like”.

Section 8 is used to state and prove Theorem 4. A spinoff of this result is a new
conceptual proof of result already proven in the author’s thesis (Corollary 6). This
result states that the big Chern classes commute with Adams operations. On the
other hand, one had the representation theoretic identity χψpE(g) = χE(gp) for any
element g of a group G and for any representation E of G. The parallel between the
fact that the big Chern classes commute with Adams operations and the identity
χψpE(g) = χE(gp) is made transparent by this proof.

Section 9 is devoted to describing a formula for the element Ψ of the PROP
ENDT [−1] mentioned before stating Theorem 5, and then proving Theorem 5.

There is an appendix at the end of this paper. LetK be a field of characteristic 0.
Let V be a graded vector space concentrated in degree 1. Let L(V ) be the (graded)
free Lie algebra generated by V over K. Let T (V ) be the tensor algebra of V . The
appendix devoted to a result (Theorem 6) about the error term measuring how
the PBW map from Sym•(L(V )) to T (V ) fails to commute with multiplication.
It says that this error term is “d(exp−1) like”. The precise statement and proof
are in the Appendix. Even though we expect this to be standard, such a result is
standard only for the case when V is concentrated in degree 0 as far as I know.
This is the reason for this result to be included as a theorem in the Appendix to
this paper.

1.3. Notation

Throughout this paper, Ch+(OX−mod) will denote the category of bounded below
complexes of OX -modules. D+(X) will denote the bounded below derived category
of complexes of OX -modules with coherent co-homology.

2. The Complete Hochschild Chain and Cochain Complexes

The purpose of this section is to recall definitions of and facts about the completed
Hochschild chain and cochain complexes. Most of the material in this section is
recalled from Yekutieli’s paper [1]. The notation also follows the same source closely.
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Throughout this article, we shall work with smooth schemes over fields of char-
acteristic 0. Let X be a smooth separated scheme over a field K of characteristic
0. We have the (closed) diagonal embedding ∆ : X → X ×K X . Let I be the sheaf
of ideals defining the diagonal in X ×K X .

2.1. The complete Bar complex and the complete Hochschild

chain complex

Let O∆ = ∆∗OX . On X ×K X , O∆ has a free OX×KX -module resolution given by
the Bar resolution:

Bn(X) = OX ⊗K · · · ⊗K OX(n+ 2 times).

The OX ⊗K OX -module structure given by multiplication with the extreme
factors. If U = SpecR is an open affine subscheme of X , then the differential
d : Bn(R)→ Bn−1(R) is given by the formula

d(a0 ⊗ · · · ⊗ an+1) = a0a1 ⊗ a2 ⊗ · · · ⊗ an+1 − a0 ⊗ a1a2 ⊗ · · · ⊗ an+1

+ · · ·+ (−1)na0 ⊗ · · · ⊗ anan+1ai ∈ R.
Let In be the kernel of the multiplication map Bn(X) → OX . Let B̂n :=

lim kBn/Ink. Note that the differential d takes In into In−1. The differential in
B• thus extends to a differential in the complete Bar complex B̂•. Note that the
complete Bar complex comes equipped with the I-adic topology.

Yekutieli ([1, Lemma 1.2]) shows that the complete Bar complex gives us a
resolution of O∆ in terms of flat OX×KX -modules. A resolution of ∆∗O∆ by flat
OX -modules would thus be given by what is called the completed Hochschild chain
complex of X . This complex Ĉ• is defined by

Ĉ• = ∆−1B̂• ⊗∆−1OX×KX
OX .

The complex Ĉ• is called the complete Hochschild chain complex of X . It has a
topology induced by that on B̂•.

Note that if U = SpecR is an open affine subscheme of X , and if M(R) denotes
Γ(U,M) for any OX -module M , and I is the kernel of the multiplication map
R⊗Kn+2 → R, we have

Bn(R) = R⊗Kn+2 B̂n(R) = lim R⊗Kn+2/Ik

Cn(R) = R⊗Kn+1

and the differential d : Cn(R)→ Cn−1(R) is given by

d(a0 ⊗ · · · ⊗ an) = a0a1 ⊗ · · · ⊗ an − a0 ⊗ a1a2 · · · ⊗ an
+ · · ·+ (−1)nana0 ⊗ · · · ⊗ an−1

Ĉn(R) = lim R⊗Kn+2/Ik ⊗R⊗kn+2 Cn(R)

and the differential on Ĉ• is the one induced by d.
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2.2. Hochschild homology, Hochschild cohomology and the

completed Hochschild cochain complex

We begin with the following definitions.

Definition 1. The Hochschild homology of X is defined to be RHom(OX ,∆∗O∆).

Definition 2. The complex of continuous Hochschild cochains on X is the complex

RHomHX (∆∗O∆,OX) = RHomHX×KX
(O∆,O∆).

Fact 1. Yekutieli ([1, Theorem 0.3]) shows that the complex of continuous
Hochschild co-chains is given by the complex Homcont

HX×KX
(B̂•(X),O∆). This is seen

to be equal to the complex Homcont
HX

(Ĉ•(X),OX). Here O∆ and OX are both given
the discrete topology.

Fact 2. It is proven by Yekutieli ([1, Proposition 1.6]) that the complex of contin-
uous Hochschild cochains on X is none other than the complex of polydifferential
operators on X introduced by Kontsevich [2]. In other words, if U = SpecR is an
open affine subscheme of X , and if Ccdn(X) = Homcont(Ĉn(X),OX), then

Ccd
n(U) = {f ∈ HomK(R⊗n, R)|f is a differential operator in each factor}.

We shall henceforth denote Ccdn(X) by Dn
poly(X).

Fact 3. We recall from Kontsevich ([2, Sec. 3.4.2]) that if U = SpecR and if
f ∈ Ccdn(U), then the differential d of Ccd• is given by

df(a0 ⊗ · · · ⊗ an) = a0f(a1 ⊗ · · · ⊗ an) +
i=n∑
i=1

(−1)if(· · ⊗ai−1ai ⊗ · · · ⊗ an)

+ (−1)n+1
f(a0 ⊗ · · · ⊗ an−1)an

for all a0, . . . , an ∈ R.

Remark. What we refer to here as the complex of polydifferential operators is
a shifted version of what Kontsevich [2] refers to as the complex of polydifferen-
tial operators. Kontsevich’s complex of polydifferential operators is, in our nota-
tion, D•

poly(X)[1].

3. Hopf Algebra Structure on D•
poly(X)

In this section, we describe the operations that make D•
poly(X) a Hopf algebra in

Ch+(OX−mod). By this, we mean that D•
poly(X) has a multiplication m, a comulti-

plication ∆, a unit η and a counit ε, all of which are morphisms in Ch+(OX −mod).
Recall that D1

poly(X) is the sheaf of differential operators on X . Note that
D1

poly(X) is a left OX module. We have the following proposition

Proposition 1. As OX modules, Dnpoly(X) is isomorphic to D1
poly(X)⊗OXn.
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Proof. This is something that can be checked locally. Consider an open affine sub-
scheme U of X with local coordinates {x1, . . . , xm}. Then, an element of Dn

poly(U)
is given by a map of the form

f1 ⊗ · · · ⊗ fn �
∑

(I1,...,In)

C(I1,...,In)(x1, . . . , xm)∂I1f1 · · ·∂Infn.

Here the Ij ’s are multi-indices and ∂Ij is the partial derivative corresponding to Ij .
The above polydifferential operator maps to

∑
(I1,...,In) C(I1,...,In)(x1, . . . , xm)∂I1

⊗ · · · ⊗ ∂In . This gives us a well defined map from Dn
poly(U) to D1

poly(U)⊗OU n.
On the other hand, we have a map from D1

poly(U)⊗OU n to Dn
poly(U) which takes

D1 ⊗ · · · ⊗Dn to the polydifferential operator f1 ⊗ · · · ⊗ fn � D1(f1) · · ·Dn(fn).
These maps are clearly inverses of each other.

We now describe the Hopf algebra structure on D•
poly(X).

Multiplication on D•
poly(X): Let U = SpecR be an affine open subscheme of X .

Let D1 ∈ Dk
poly(U) and D2 ∈ Dl

poly(U). Then we can set

m(D1, D2)(a1 ⊗ · · · ⊗ ak+l) = D1(a1 ⊗ · · · ⊗ ak)D2(ak+1 ⊗ · · · ⊗ ak+l)

for all a1, . . . , ak+l ∈ R. This defines the multiplication m on D•
poly(X). Note that

m(D1, D2) = D1 ⊗D2 after identifying Dn
poly(X) with D1

poly(X)
⊗OXn.

Comultiplication on D•
poly(X): On the other hand, if f1, . . . , fn are differential

operators on an open subscheme U , then f1, . . . , fn ∈ Dn
poly(U) and we can set

∆(f1, . . . , fn) =
∑

p+q=n

∑
σ a (p,q)-shuffle

sgn(σ)fσ(1)

⊗ · · · ⊗ fσ(p)

⊗
fσ(p+1) ⊗ · · · ⊗ fσ(p+q).

This gives us a well defined map ∆ : D•
poly(U)→ D•

poly(U)⊗OX D•
poly(U). This can

be easily seen to commute with restrictions, thus giving us a map

∆ : D•
poly(X)→ D•

poly(X)⊗D•
poly(X),

the tensoring being over OX .
Unit for D•

poly(X): We have the obvious inclusion map η : OX → D•
poly(X). On

U = SpecR, this is just the inclusion R ↪→ D0
poly(U) ↪→ D•

poly(U).
Counit for D•

poly(X): We also have a projection ε : D•
poly(X) → OX . On U =

SpecR with local coordinates x1, . . . , xm, this takes

C0(x1, . . . , xm) +
∑

I1,...,Ir

CI1,...,Ir (x1, . . . , xm)∂I1 ⊗ · · · ⊗ ∂Ir to C0(x1, . . . , xm).

We now have the following fact

Proposition 2. The multiplication m, the comultiplication ∆, the unit η and the
counit ε together make D•

poly(X) a Hopf-algebra in Ch+(OX −mod).
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Proof. Clearly, ε is an algebra homomorphism. Also, ∆(id) = id ⊗OX id tells us
that η is a coalgebra homomorphism. The fact that ∆ is an algebra homomorphism
is exactly analogous to the fact that the comultiplication of the tensor algebra of a
vector space over a field of characteristic 0 is an algebra homomorphism. Similarly,
the fact that m is a co-algebra homomorphism is proven in exactly the same way
by which one proves that the product in the graded tensor algebra of a vector space
over a field of characteristic 0 is a co-algebra homomorphism.

The only things that remain to be checked are that the differential follows
the Leibniz rule and respects co-multiplication — the latter fact following from
the fact that the Hochschild boundary is a graded derivation with respect to the
shuffle product (see Loday [4, Proposition 4.2.2]). Let U = Spec R be an open affine
subscheme of X . Let a1, . . . , ak+l+1 ∈ R. Let D1 ∈ Dk

poly(U) and D2 ∈ Dl
poly(U).

The following calculation verifies that the differential d on D•
poly(X) obeys the

Leibniz rule with respect to the multiplication m.

d(D1 ⊗D2)(a1 ⊗ · · · ⊗ ak+l+1)

= a1(D1 ⊗D2)(a2 ⊗ · · · ⊗ ak+l+1)− (D1 ⊗D2)(a1a2 ⊗ · · · ⊗ ak+l+1)

+ · · ·+ (−1)k(D1 ⊗D2)(a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ ak+l+1)

+ · · ·+ (−1)k+l+1(D1 ⊗D2)(a1 ⊗ · · · ⊗ ak+l)ak+l+1

= a1D1(a2 ⊗ · · · ⊗ ak+1) ·D2(ak+2 ⊗ · · · ⊗ ak+l+1)

−D1(a1 · a2 ⊗ · · · ⊗ ak+1)D2(ak+2 ⊗ · · · ⊗ ak+l+1)

+ · · ·+ (−1)kD1(a1 ⊗ · · · ⊗ akak+1)D2(ak+2 ⊗ · · · ⊗ ak+l+1)

+ (−1)k+1
D1(a1 ⊗ · · · ⊗ ak)ak+1D2(ak+2 ⊗ · · · ⊗ ak+l+1)

+ (−1)kD1(a1 ⊗ · · · ⊗ ak)ak+1D2(ak+2 ⊗ · · · ⊗ ak+l+1)

+ (−1)k+1
D1(a1 ⊗ · · · ⊗ ak)D2(ak+1ak+2 ⊗ · · · ⊗ ak+l+1)

+ · · ·+ (−1)k+l+1
D1(a1 ⊗ · · · ⊗ ak)D2(ak+1 ⊗ · · · ⊗ ak+l)ak+l+1

= dD1(a1 ⊗ · · · ⊗ ak+1)D2(ak+2 ⊗ · · · ⊗ ak+l+1)

+ (−1)kD1(a1 ⊗ · · · ⊗ ak)dD2(ak+1 ⊗ · · · ⊗ ak+l+1).

Corollary 2. The maps in D+(X) induced by m, ∆ η and ε make D•
poly(X) a

Hopf-algebra in D+(X).

Remark. In fact, the Hopf algebra structure on D•
poly(X) is that of the graded

tensor algebra. As OX -modules Dn
poly(X) is isomorphic to D1

poly(X)
⊗OXn (Propo-

sition 1). Thus, as far as the Hopf algebra structure is concerned, D•
poly(X) is

isomorphic to the tensor algebra T (D1
poly(X)) generated over OX by D1

poly(X) in
degree 1. They are isomorphic as Hopf algebras in Gr(mod −OX). But there is a
nontrivial differential (Hochschild cochain differential) on D•

poly(X).
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4. A Decomposition of D•
poly(X)

4.1. The decomposition

Recall that L(D1
poly(X)) denotes the free Lie algebra generated over OX by

D1
poly(X) concentrated in degree 1. As graded OX modules, it is a submodule of

D•
poly(X). Moreover,

Proposition 3. The differential on D•
poly(X) preserves L(D1

poly(X)).

Proof. By Proposition 2, the differential d on D•
poly(X) obeys Leibniz rule with

respect to the multiplication m on D•
poly(X). It follows that it obeys Leibniz rule

with respect to the Lie bracket [, ] induced by m on D•
poly(X). The restriction of [, ]

to L(D1
poly(X)) is precisely the Lie bracket on L(D1

poly(X)) and will also be denoted
by [, ]. Since D1

poly(X) (in degree 1) generates L(D1
poly(X)) as a Lie algebra over

OX , and d obeys the Leibniz rule with respect to [, ], it is enough to check that
d(D1

poly(X)) is contained in L(D1
poly(X)).

Since the differential d and the bracket [, ] are OX -linear, we only need to check
that if U = SpecR with local coordinates x1, . . . , xm and if I is a multi-index, and
if ∂I denotes the corresponding partial derivative, then

d(∂I(a1 ⊗ a2)) ∈ L(D1
poly(U)).

Recall that if I = (p1, . . . , pm) and if J = (q1, . . . , qm) then J ≺ I if qi ≤ pi ∀i and
J 
= I. Let I − J := (p1 − q1, . . . , pm − qm). Now,

d(∂I(a1 ⊗ a2)) = a1∂Ia2 − ∂I(a1 · a2) + a2 · ∂I(a1)

= −1
2

∑
J≺I

CIJ(∂J (a1) · ∂I−J(a2) + ∂I−J(a1)∂J(a2)

= −1
2

∑
J≺I

CIJ [∂J , ∂I−J ](a1 ⊗ a2).

Here CIJ are some rational constants. This completes the desired verification.

Symmetrization map I: We have a symmetrization map

I : ⊕kSymk(L(D1
poly(X)))→ D•

poly(X).

Let U = SpecR be an open affine subscheme ofX , and let z1, . . . , zk be homogenous
elements of L(D1

poly(U)) of degrees d1, . . . , dk respectively. If s(σ) is the sign such
that z1, . . . , zk = s(σ)zσ(1), . . . , zσ(k) ∈ Symk(L(D1

poly(U))) then

I(z1, . . . , zk) =
1
k!

∑
σ∈Sk

s(σ)zσ(1) ⊗ · · · ⊗ zσ(k) ∈ D•
poly(X).

Note that s(σ) depends on d1, . . . , dk and σ.
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We now have the following key lemma

Lemma 1. The symmetrization map I is an isomorphism in Ch+(OX −mod).

Proof. It follows directly from Propositions 2 and 3 and the definition of I that I
is a map of complexes of OX modules. It therefore suffices to show that I is a map
of graded OX -modules. This can be verified locally.

Note that D1
poly(X) is locally free. Let U = SpecR be an affine open subscheme

of X such that D1
poly(U) is trivial on U . Then, D1

poly(U) = V ⊗K OU . If L(V ) is
the free Lie algebra generated over K by V in degree 1 and if T (V ) is the tensor
algebra of V , then L(D1

poly(U)) = L(V ) ⊗K OU and D•
poly(U) = T (V ) ⊗K OU as

graded OU -modules.
Let IV : ⊕kSymk(L(V )) → T (V ) be the symmetrization map. Let L1, . . . , Lk

be homogenous elements of L(V ) of degrees d1, . . . , dk respectively. Let s(σ) be the
sign such that L1, . . . , Lk = s(σ)Lσ(1), . . . , Lσ(k) in Symk(L(V )). Then,

IV (L1, . . . , Lk) =
1
k!

∑
σ∈Sk

s(σ)Lσ(1) ⊗ · · · ⊗ Lσ(k).

Note that ⊕Symk(L(D1
poly(U))) = ⊕kSymk(L(V ))⊗K OU and that I = IV ⊗ idOU .

It thus suffices to show that IV is an isomorphism of graded K-vector spaces. This
is Proposition 17 of the Appendix to this paper.

4.2. The Hochcshild–Kostant–Rosenberg map

Throughout this subsection, let U = Spec R be an affine open subscheme of X
with local coordinates x1, . . . , xm. Recall (Yekutieli [1, Theorem 4.8]) that the
Hochschild–Kostant–Rosenberg map IHKR : ⊕i ∧i TX [−i] → D•

poly(X) is a map
of complexes which is a quasi-isomorphism. Also recall (Yekutieli [1, page 14]) that
if a1, . . . , ak ∈ R, then

IHKR

(
∂

∂xi1
∧ · · · ∧ ∂

∂xik

)
(a1 ⊗ · · · ⊗ ak) =

1
k!

∑
σ∈Sk

sgn(σ)
∂a1

∂xiσ(1)

· · · ∂ak
∂xiσ(k)

.

Note that we have a map of complexes β : TX [−1]→ L(D1
poly(X)) such that on

U , β( ∂
∂xi

)(a) = ∂a
∂xi
∀a ∈ R. Note that β induces a map of complexes

Sym•β : ⊕i ∧i TX [−i]→ ⊕kSymk(L(D1
poly(X))).

Proposition 4. Sym•β is a quasi-isomorphism.

Proof. Observe that if a1, . . . , ak ∈ R, then

I ◦ Sym•β

(
∂

∂xi1
∧ · · · ∧ ∂

∂xik

)
(a1 ⊗ · · · ⊗ ak) =

1
k!

∑
σ∈Sk

sgn(σ)
∂a1

∂xiσ(1)

· · · ∂ak
∂xiσ(k)

.

Thus I ◦ Sym•β = IHKR.
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Now IHKR is a quasi-isomorphism (by Yekutieli [1, Theorem 4.8]) and I is an
isomorphism of complexes of OX modules by Lemma 1 and therefore a quasi-
isomorphism. Thus, Sym•β is a quasi-isomorphism.

Proposition 5. Symkβ : ∧kTX [−k] → Symk(L(D1
poly(X))) is a quasi-

isomorphism.

Proof. Given a complex M in Ch+(OX −mod), let H∗(M) denote its cohomol-
ogy, which is a graded OX module. Then H∗(∧kTX [−k]) = ∧kTX [−k] as ∧kTX [−k]
has zero differential. Note that Sym•β induces a map Sym•β∗ : ⊕k ∧k TX [−k] →
H(⊕kSymk(L(D1

poly(X)))) which is an isomorphism of graded OX -modules by
Proposition 4. But Sym•β = ⊕kSymkβ by definition. Thus, Sym•β∗ = ⊕kSymkβ∗
where

Symkβ∗ : ∧kTX [−k]→ H(Symk(L(D1
poly(X))))

is the map induced on cohomology by Symkβ. Since Sym•β∗ is an isomorphism of
graded OX -modules, it follows that for all k, Symkβ∗ is an isomorphism of graded
OX -modules.

In particular β : TX [−1] → L(D1
poly(X)) is a quasi-isomorphism. We state this

as a separate corollary in order to highlight it. Thus,

Corollary 3. β : TX [−1]→ L(D1
poly(X)) is a quasi-isomorphism.

5. Theorem 1

5.1. Precise statement and proof of Theorem 1

Throughout this section let U = Spec R be an arbitrary affine subscheme of X .
Let z1, . . . , zk, y be homogenous elements of L(D1

poly(U)) of degrees d1, . . . , dk, d

respectively. Let

ω : ⊕kSymk(L(D1
poly(X)))⊗L(D1

poly(X))→ ⊕kSymk(L(D1
poly(X)))⊗L(D1

poly(X))

be the morphism in Ch+(OX −mod) such that on U ,

ω(z1, . . . , zk ⊗ y) =
i=k∑
i=1

(−1)di(di+1+···+dk)z1, . . . , ẑi, . . . , zk ⊗ [zi, y].

Note that if µ denotes the multiplication on Sym•(L(D1
poly(X))), then µ ◦ ω = ad

where ad denotes the right adjoint action of L(D1
poly(X)) on Sym•(L(D1

poly(X))).
Let I be as in Sec. 4.

More generally, if M is a locally free OX module, let T (M) denote the (graded)
tensor algebra of M . Let L(M) denote the free Lie algebra generated over OX
by M in degree 1. On an open affine subscheme U = SpecR, let q1, . . . , qk, r be
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homogenous elements of L(M |U ) of degrees d1, . . . , dk, d respectively. Let

ωM : Sym•(L(M))⊗ L(M)→ Sym•(L(M))⊗ L(M)

be the morphism of OX modules such that

ωM (q1, . . . , qk ⊗ r) =
i=k∑
i=1

(−1)di(di+1+···+dk)q1, . . . , q̂i, . . . , qk ⊗ [qi, r].

Let IM : Sym•(L(M))→ T (M) denote the symmetrization map such that

IM (q1, . . . , qk) =
∑
σ∈Sk

s(σ)qσ(1) ⊗ · · · ⊗ qσ(k),

where s(σ) is the sign such that q1, . . . , qk = s(σ)qσ(1), . . . , qσ(k) in Symk(L(M)).
If V is a vector space over K, let T (V ) be the (graded) tensor algebra generated

by V over K. Let L(V ) denote the free Lie algebra generated over K by V in
degree 1. Let v1, . . . , vk, w be homogenous elements of L(V ) of degrees d1, . . . , dk, d

respectively. Let

ωV : Sym•(L(V ))⊗ L(V )→ Sym•(L(V ))⊗ L(V )

be the map such that

ωV (v1, . . . , vk ⊗ w) =
i=k∑
i=1

(−1)di(di+1+···+dk)v1, . . . , v̂i, . . . , vk ⊗ [vi, w].

Let IV : Sym•(L(V ))→ T (V ) denote the symmetrization map such that

IV (v1, . . . , vk) =
∑
σ∈Sk

s(σ)vσ(1) ⊗ · · · ⊗ vσ(k),

where s(σ) is the sign such that v1, . . . , vk = s(σ)vσ(1), . . . , vσ(k) in Symk(L(V )).

Theorem 1. The following diagram commutes in Ch+(OX −mod).

D•
poly(X)⊗ L(D1

poly(X)) m−−−−→ D•
poly(X)�I⊗id I

�
Sym•(L(D1

poly(X)))⊗ L(D1
poly(X))

µ◦ ω
1−e−ω−−−−−−→ Sym•(L(D1

poly(X)))

Step 1 of Proof. (Checking that all morphisms involved commute with the relevant
differentials.)

Before we proceed, we note that the product m on D•
poly(X) and I commute

with the relevant differentials by Proposition 2 and Lemma 1 respectively.
Further, we need to see that µ◦ ω

1−e−ω commutes with the relevant differentials.
Since µ commutes with the relevant differentials, we only need to check that ω

1−e−ω
commutes with the relevant differentials. The latter expression is a power series in ω.
It is therefore enough to verify that ω commutes with the relevant differentials. This
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only needs to be checked locally. The following calculations are done to complete
the check

ω(z1z2, . . . , zk ⊗ y) =
∑
i

(−1)di(di+1+···+dk)z1, . . . , ẑi, . . . , zk ⊗ [zi, y],

d(ω(z1z2, . . . , zk ⊗ y)) =
∑
i

(−1)di(di+1+···+dk)

∑
j �=i

(−1)d1+··· bdi···+dj−1

× z1, . . . , dzj , . . . , ẑi, . . . , zn ⊗ [zi, y]

+ (−1)d1+··· bdi···+dkz1, . . . , ẑi, . . . , zk ⊗ d([zi, y])

 ,

d(z1z2, . . . , zk ⊗ y) =

∑
j

(−1)d1+···+dj−1z1, . . . , dzj, . . . , zk ⊗ y


+ (−1)

P
diz1, . . . , zk ⊗ dy,

ω(d(z1z2, . . . , zk ⊗ y)) =
∑
j


∑
i<j

(−1)d1+···+dj−1(−1)di(di+1+···+dk+1)

× z1, . . . , ẑi, . . . , dzj, . . . , zk ⊗ [zi, y]

+
∑
i>j

(−1)d1+···+dj−1(−1)di(di+1+···+dk)

× z1, . . . , dzj , . . . , ẑi, . . . , zk ⊗ [zi, y]


+ (−1)d1+···+dj−1(−1)(dj+1)(dj+1,...,dk)

× z1, . . . , ẑj, . . . , zk ⊗ [dzj , y]

+ (−1)
P
di(−1)dj(dj+1+···+dk)z1, . . . , ẑj , . . . , zk ⊗ [zj , dy]

.
We now compare the coefficients of [zi, y], [dzi, y] and [zi, dy] in d(ω(z1, . . . ,

zk ⊗ y)) and ω(d(z1, . . . , zk ⊗ y)) and check that they are equal.

Step 2 of Proof. (Reduction to an analogous result for the graded free Lie algebra
generated by a vector space over a field of characteristic 0.)

Having checked that all morphisms in the diagram given in the proposition
are morphisms in Ch+(OX − mod), it suffices to verify that the above diagram
commutes in the category of graded OX -modules. In other words, we can “forget
the differentials involved”. Recall that D1

poly(X) is a locally free OX module. It
therefore suffices to prove that if M is a locally free OX module, the following
diagram commutes in the category of graded OX modules. The map mM in the
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diagram below is the multiplication in T (M).

T (M)⊗ L(M) mM−−−−→ T (M)�IM⊗id IM

�
Sym•(L(M))⊗ L(M)

µ◦ ωM

1−e−ωM−−−−−−−→ Sym•(L(M))

All morphisms in the diagram in this proposition are OX module homomor-
phisms. It therefore suffices to check the claim that the above diagram commutes
locally. We may therefore, without loss of generality, assume that M is a free OX
module i.e. M = OX⊗KV for someK vector space V . Then, T (M) = OX⊗KT (V ),
L(M) = OX ⊗K L(V ) and Sym•(L(M)) = OX ⊗K Sym•(L(V )).

Since the morphisms in the commutative diagram before the previous paragraph
are all OX linear, it suffices to check that the following diagram commutes in the
category of graded K vector spaces. The map mV in the diagram below is the
multiplication in T (V ).

T (V )⊗ L(V ) mV−−−−→ T (V )�IV ⊗id IV

�
Sym•(L(V ))⊗ L(V )

µ◦ ωV

1−e−ωV−−−−−−−→ Sym•(L(V ))

This is Theorem 6 of the Appendix.

5.2. Some remarks on Theorem 1

Let A be an associative algebra in Ch+(OX − mod). In other words, there is a
multiplication morphism µA : A⊗A→ A in Ch+(OX−mod) which is associative i.e.
µA◦(µA⊗id) = µA◦(id⊗µA) as morphisms in Ch+(OX−mod) from A⊗A⊗A to A.

A Lie algebra L in Ch+(OX −mod) is an object in Ch+(OX −mod) equipped
with a morphism [, ]L : L⊗ L→ L in Ch+(OX −mod) such that

(i) [, ]L = −[, ]L ◦ τ where τ : L⊗ L→ L⊗ L is the swap map.
(ii) [, ]L ◦ (id⊗ [, ]L) = [, ]L ◦ ([, ]L ⊗ id) + [, ]L ◦ (id⊗ [, ]L) ◦ (τ ⊗ id).

Note that any algebra A in Ch+(OX −mod) has a Lie algebra structure with

[, ]A = µA ◦ (id− τ).

Note that by Proposition 2, D•
poly(X) is an algebra in Ch+(OX − mod) and

L(D1
poly(X)) is a Lie algebra in Ch+(OX −mod).

Given a Lie algebra L in Ch+(OX − mod), its universal enveloping algebra
(if it exists) is an algebra U(L) in Ch+(OX − mod) together with a morphism
i : L → U(L) of Lie algebras such that given any morphism f : L → A of Lie
algebras from L to an algebra A in Ch+(OX−mod), there exists a unique morphism
f̄ : U(L) → A of algebras in Ch+(OX −mod) such that f = f̄ ◦ i. We now prove
the following lemma.
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Lemma 2. D•
poly(X) is the universal enveloping algebra of L(D1

poly(X)) in
Ch+(OX −mod).

Proof. Let A be an algebra in Ch+(OX −mod). Let f : L(D1
poly(X)) → A be a

morphism of Lie algebras in Ch+(OX −mod). In other words, f ◦ [, ]L = µA ◦ (id−
τ) ◦ (f ⊗ f) as morphisms in Ch+(OX −mod). Let An denote the degree n term of
the complex A. Let fn : L(D1

poly(X))∩Dn
poly(X)→ An be the degree n component

of the morphism f . In particular, f1 : D1
poly(X)→ A1.

Note that f1⊗n : Dn
poly(X) = D1

poly(X)⊗n → (A1)⊗n is a map of OX -modules.
Note that the n-fold multiplication µn,A := µA ◦ (µA ⊗ id) ◦ · · · ◦ (µA ⊗ id⊗n−1) :
A⊗n → A maps (A1)⊗n to An. Set f̄n : Dn

poly(X) → An to be the composite
µn,A ◦ f1⊗n.

Let f̄ : D•
poly(X)→ A be the map of graded OX -modules whose degree n com-

ponent is f̄n. We need to check that f̄ is indeed a map of complexes of OX -modules.
This can be checked locally. Suppose U = SpecR is an affine open subscheme of X ,
and ifD1, . . . , Dn are differential operators on U . If d and dA denote the differentials
on D•

poly(U) and A|U respectively, then

dA(f1(D1), . . . , f1(Dn)) =
i=n∑
i=1

(−1)i−1
f1(D1), . . . , dA(f1(Di)), . . . , f1(Dn)

=
i=n∑
i=1

(−1)i−1
f1(D1), . . . , f2(d(Di)), . . . , f1(Dn).

The last equality holds because f is a map of complexes.
Let L(D1

poly(U))k denote the degree k term of the complex L(D1
poly(U)). Note

that d(Di) ∈ L(D1
poly(U))2 by Proposition 3. Also, if [, ] denotes the bracket on

L(D1
poly(U)), then f2 ◦ [, ] = µA ◦ (id− τ) ◦ f1 ⊗ f1 since f is a Lie algebra homo-

morphism in D+(X). Also, (id − τ) ◦ (f1 ⊗ f1) = (f1 ⊗ f1) ◦ (id − τ). More-
over, [, ] : D1

poly(U)⊗2 → L(D1
poly(U))2 is surjective. It follows that f2(d(Di)) =

(f1⊗f1)d(Di). (d(Di) on the right-hand side is thought of as an element of D2
poly(U)

after identifying L(D1
poly(U))2 with its image in D2

poly(U).)
It follows that

dA(f1(D1), . . . , f1(Dn)) =
i=n∑
i=1

(−1)i−1
f1(D1), . . . , f2(d(Di)), . . . , f1(Dn)

=
i=n∑
i=1

(−1)i−1
f1(D1), . . . , (f1 ⊗ f1)d(Di), . . . , f1(Dn)

=
i=n∑
i=1

f1⊗n+1
(D1 ⊗ · · · ⊗ d(Di)⊗ · · · ⊗Dn)

= f̄n+1d(D1 ⊗ · · · ⊗Dn).
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This shows that f̄ is indeed a map of complexes. f̄ is a map of algebras in Ch+(OX−
mod) is immediate from its construction.

If i : L(D1
poly(X))→ D•

poly(X) is the restriction of I to L(D1
poly(X)) we need to

check that f̄ ◦i = f . Since the maps involved are maps of complexes of OX -modules,
it is enough to check that f̄ ◦ i = f as maps of graded OX -modules. This can again
be checked locally.

Let τk denote the k-cycle (n−k+1, n−k+2, . . . , n) of Sn. Consider the element
σn := (1−τn), . . . , (1−τ2) of group ring KSn of Sn. Recall that Sn acts on A1⊗n on
the right by a1 ⊗ · · · ⊗ an � sgn(σ)aσ(1) ⊗ · · · ⊗ aσ(n). By K-linearity, this extends
to an action of KSn on A1⊗n.

Suppose U = SpecR is an affine open subscheme of X , and if D1, . . . , Dn are
differential operators on U . Let [, ]n : D1

poly(U) → L(D1
poly(U)) denote the “n-fold

bracket” i.e. the map takingD1⊗· · ·⊗Dn to [D1, [D2[. . . [Dn−1, Dn]]]]. The following
diagram commutes in the category of graded R-modules since f is a Lie algebra
homomorphism in Ch+(OX −mod).

D1
poly(U)⊗n

f1⊗n

−−−−→ A1⊗n

[,]n

� �µn,A◦σn

L(D1
poly(U))n

fn−−−−→ An

Note that Sn acts on the right on D1
poly(U)⊗n as well. Also, f1⊗n◦σn = σn◦f1⊗n.

Also i ◦ [, ]n = σn : D1
poly(U)⊗n → D1

poly(U)⊗n = Dn
poly(U). It follows that

fn = f1⊗n ◦ i : L(D1
poly(U))n → An.

This proves that f̄ ◦ i = f .
Finally, we need to prove that f̄ is the unique map with the required properties.

Suppose that g : D•
poly(X)→ A is a morphism of algebras in Ch+(OX −mod) such

that g ◦ i = f . Then, the restriction of g to D1
poly(X) is precisely f1. It then follows

from the fact that g is an algebra morphism in Ch+(OX−mod) that the restriction
of g to Dn

poly(X) = D1
poly(X)

⊗n
is precisely f̄n. This proves that g = f̄ .

5.2.1. Meaning of Theorem 1

Let g denote a finite-dimensional Lie algebra over a field K of characteristic 0. Let
U(g) denote the universal enveloping algebra of g. Let IPBW : Sym•g → U(g) be
the symmetrization map. If g1, . . . , gk ∈ g then,

IPBW (g1, . . . , gk) =
∑
σ∈Sk

1
k!
gσ(1)∗, . . . , ∗gσ(k)

where ∗ denotes the multiplication in U(g). Let exp : g → U(g) denote the expo-
nential map.
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Consider the following calculation of d(exp)−1. Note first that exp(v) = IPBW ◦
ev ∀ v ∈ g, where ev = 1 + v + v2

2! + · · · ∈ Sym•g. Also,

d(exp)−1
exp(X)(Y ) =

d

dt

∣∣∣∣
t=0

exp−1(exp(X) ∗ exp(tY )).

Thus exp−1(exp(X) ∗ exp(ty)) = X + d(exp)−1
exp(X))(Y ).t+ h.o.t.

It follows that I−1
PBW (IPBW (eX) ∗ IPBW (etY )) = e

X+d(exp)−1
exp(X)(Y ).t+h.o.t.

Taking the derivative with respect to t at t = 0 on both sides of the previous
equation, we get I−1

PBW (IPBW (eX) ∗ Y ) = eX .d(exp)−1
exp(X))(Y ) where the multipli-

cation on the right is the product in Sym•g.
Another way of looking at this phenomenon is to say that the calculation of

d(exp)−1 is equivalent to specifying ϕ in the following commutative diagram.

Ug⊗ g
µ−−−−→ Ug

IPBW⊗id

� �IPBW

Sym•g⊗ g
ϕ−−−−→ Sym•g

Let

ωg : Sym•g⊗ g→ Sym•g⊗ g

be the map such that for g1, . . . , gk, y ∈ g,

ωg(g1, . . . , gk ⊗ y) =
∑
i

g1, . . . , î, . . . , gk ⊗ [gi, y].

Note that if µ is the natural product in Sym•(g), then µ ◦ ωg = ad where ad
denotes the right adjoint action of g on Sym•g. In the classical situation, we know
that d(exp)−1

exp(X))(Y ) = ad(X)

1−e−ad(X) Y . It follows then that ϕ = µ ◦ ωg

1−e−ωg .
This in short describes how IPBW fails to commute with multiplication in the

classical situation. By Lemma 2, D•
poly(X) is the universal enveloping algebra of

L(D1
poly(X)) in Ch+(OX − mod). I is the symmetrization map, and is the direct

analog in our situation of IPBW . Theorem 1, therefore, specifies how I fails to
commute with multiplication and says that the error term measuring this failure
has the same “d(exp−1) like” form as the corresponding error term in the classical
situation. Since measuring how IPBW fails to commute with multiplication calcu-
lates d(exp)−1 in the classical situation, we can call Theorem 1 the calculation of
d(exp)−1 for the Lie algebra L(D1

poly(X)) of Ch+(OX −mod).

6. The Atiyah Class of TX

Recall that D+(X) denotes the derived category of bounded below complexes of
OX -modules with coherent cohomology. Let E be a vector bundle on X , and let
J1(E) be the bundle of first jets of E. Recall that the Atiyah class of E is the element
in HomD+(X)(E,E ⊗OX Ω[1]) arising out of the exact sequence 0 → E ⊗OX Ω →
J1(E)→ E → 0. We denote the Atiyah class of E by α(E).
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We can extend the definition of the Atiyah class of a vector bundle to elements
of D+(X) given by classes of perfect complexes of vector bundles on X . If E• is
such a complex, we have an exact sequence of complexes of vector bundles

0→ E• ⊗OX Ω
f→ J1(E•)

g→ E• → 0.

We thus have a quasi-isomorphism of complexes

Q : tot(0→ E• ⊗OX Ω→ J1(E•))→ E•

such that the map J1(En)⊕ En−1 ⊗OX Ω→ En is the composite

J1(En)⊕ En−1 → J1(En)
gn→ En

where the first arrow is projection to the first factor. On the other hand, we have
a map of complexes

R : J1(E•)⊕ E• ⊗OX Ω[1]→ E• ⊗OX Ω[1]

given by projection to the second factor. Consider the element

R ◦Q−1 ∈ HomD+(X)(E
•, E• ⊗OX Ω[1]).

One checks that replacing E• by a complex quasi-isomorphic to E• does not give
us a different element in HomD+(X)(E•, E• ⊗OX Ω[1]). In case E• is a complex
comprising a vector bundle E concentrated at degree 0, we check that this gives us
the Atiyah class of E. We can this call this element of HomD+(X)(E•, E•⊗OX Ω[1])
the Atiyah class of E•, and denote it by α(E•).

We now prove the following proposition that is stated without proof in Markar-
ian [3]. It has also been proven in [14].

Proposition 6. Let E• be a complex of vector bundles with differential d on X

such that every term of E• has a global connection �. Then the Atiyah class α(E•)
is given by {(−1)n(−�d+ d�)} ∈ HomD+(X)(E•, E• ⊗OX Ω[1]).

Proof. We recall that a connection � on a vector bundle E is a K-linear map
� : E → E ⊗OX Ω so that for a section e of E over an open set U , �(f.e) =
f(�e) + e⊗ df .

Also recall that J1(E) = p2∗(p∗1E ⊗ OX×KX/I2) where I is the kernel of the
multiplication map OX ⊗K OX → OX . On an open subset U = SpecR of X where
the sections of E on U are given by an R-module M , J1(E) = M ⊗R (R ⊗ R)/I2

with R-module structure given by multiplication with the second factor of R⊗KR.
For a, b in R, let ˆa⊗ b be the image of a⊗ b in R⊗K R/I2. Then, we have a map
p : E → J1(E) such that m� m⊗ ˆ1⊗ 1. We observe that for a morphism of vector
bundles f : E → E′, p ◦ f = J1(f) ◦ p.

Consider a complex E• of vector bundles on X as in this proposition. Note
that, since En has a global connection �n, the exact sequence 0 → En ⊗OX
Ω → J1(En) → En → 0 splits. The splitting map is given by p − �n where
p : En → J1(En) is as in the previous paragraph. This splitting gives rise to a map
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ϕn : J1(En) → En ⊗OX Ω of OX -modules. We observe that {(−1)nϕn} gives us a
homotopy between the second projection J1(E•) ⊕ E• ⊗OX Ω[1] → E• ⊗OX Ω[1]
and the map

ψ : J1(E•)⊕ E• ⊗OX Ω[1]→ E• ⊗OX Ω[1]

given by

ψ(x, y) = (−1)n+1ϕn+1dx+ (−1)ndϕnx.

We next note that the map p : E• → J1(E•) is a map of complexes of sheaves of K
vector spaces inverting the quasi-isomorphism tot(0→ E•⊗OXΩ→ J1(E•))→ E•.
Therefore, in the category of complexes of sheaves of K vector spaces, α(E•) is
homotopy equivalent to ψ ◦ p = {(−1)n(−�d + d�)}. We note that the latter is a
morphism of complexes of OX -modules. Thus α(E•) = {(−1)n(−�d + d�)} as a
morphism in D+(X).

We recall Kapranov [6, Proposition 1.2.2] which amount to saying that the
Atiyah class of TX which is a morphism in D+(X) from TX [−1]⊗TX[−1]→ TX [−1]
equips TX [−1] with the structure of a Lie algebra in D+(X).

Let β be as in Corollary 3, Sec. 4. By Corollary 3 of Sec. 4, β : TX [−1] →
L(D1

poly(X)) is a quasi-isomorphism provided that the right-hand side is equipped
with the Hochschild co-boundary as differential. Thus, in D+(X), TX [−1] is iden-
tified with L(D1

poly(X)) equipped with Hochschild co-boundary. We use this to
realize α(TX) explicitly as a map of complexes from L(D1

poly(X))⊗L(D1
poly(X)) to

L(D1
poly(X)).

Theorem 2. The Atiyah class α(TX) corresponds to the natural Lie bracket in
L(D1

poly(X)) under the quasi-isomorphism β. In other words, the following diagram
commutes in D+(X).

TX [−1]⊗OX TX [−1]
β⊗β−−−−→ L(D1

poly(X))⊗OX L(D1
poly(X))

α(TX )

� �[,]

TX [−1]
β−−−−→ L(D1

poly(X))

Note that all maps in the diagram in Theorem 2 except for α(TX) arise out
of maps in Ch+(OX − mod). The rows in the diagram of Theorem 2 are quasi-
isomorphisms.

Proof. First of all, we note that Dn
poly(X) has a natural connection for any n. To

see this, let U = Spec A be an affine open subscheme of X . If f ∈ Dn
poly(U),

then we can define �f by �Y f(a1, . . . , an) = ∂Y f(a1, . . . , an) ∀ a1, . . . , an ∈
A. It suffices to check this theorem locally. Further, one notes that α(TX) =
α(TX [−1]) = α(L(D1

poly(X))). The second equality is by Corollary 3 of Sec. 4.
Note that if f ∈ Dm

poly(U) and g ∈ Dn
poly(U), then �Y [f, g] = [�Y f, g] + [f,�Y g].

This implies that the connection � on Dn
poly(X) restricts to a connection on
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L(D1
poly(X)) ∩Dn

poly(X). We now make the following calculation.

�Y (d∂I(a1, a2)) = �Y (a1∂Ia2 − ∂I(a1a2) + (∂Ia1)a2)

d(�Y (∂I(a1, a2))) = a1∂Y ∂Ia2 − ∂Y ∂I(a1a2) + (∂Y ∂Ia1)a2

∂Y (a1∂Ia2) = (∂Y a1)(∂Ia2) + a1∂Y ∂Ia2

∂Y ((∂Ia1)a2) = (∂Y ∂Ia1)a2 + (∂Ia1)(∂Y a2).

This tells us that (d�− �d)(∂I ⊗ ∂Y ) = [∂I , ∂Y ].
Now let D1 ∈ Dm

poly(U) and D2 ∈ Dn
poly(U). Suppose that (d�Y − �Y d)D1 =

(−1)m[D1, ∂Y ] and (d�Y − �Y d)D2 = (−1)n[D2, ∂Y ]. Then, by Proposition 2 and
the fact that [D1, D2] = D1 ⊗D2 − (−1)mnD2 ⊗D1,

d[D1, D2] = [dD1, D2] + (−1)m[D1, dD2].

Further,

�Y [D1, D2] = [�YD1, D2] + [D1,�YD2].

Thus,

(d�Y − �Y d)[D1, D2] = [(d�Y − �Y d)D1, D2] + (−1)m[D1, (d�Y − �Y d)D2]

= (−1)m[[D1, ∂Y ], D2] + (−1)m+n[D1, [D2, ∂Y ]]

= (−1)m+n[[D1, D2], ∂Y ]

Thus, (−1)m+n(d�Y − �Y d)[D1, D2] = [[D1, D2], ∂Y ]. Using induction on
the degree of D ∈ L(D1

poly(U)), together with the fact that D1
poly(U) generates

L(D1
poly(U)) as a Lie algebra over A, we see that (−1)|D|(d�Y −�Y d)D = [D, ∂Y ].

This is exactly the desired theorem.

Corollary 1 now follows immediately from Theorems 1 and 2.

7. The Universal Enveloping Algebra of TX [−1] in D+(X)

We would like to understand how Corollary 1 helps in relating the big Chern classes
to the Chern character. This requires Theorem 3, which is proven in this section.
A less tangible consequence of Theorem 3 is the ability to give Corollary 1 an
interpretation along the lines of that given in Sec. 5.2.1 to Theorem 1.

An associative algebra A in D+(X) is an object of D+(X) such that there is a
multiplication morphism µA : A⊗A→ A in D+(X) which is associative i.e.

µA ◦ (µA ⊗ id) = µA ◦ (id⊗ µA) as morphisms in D+(X) from A⊗A⊗A to A.

A Lie algebra L in D+(X) is an object in D+(X) equipped with a morphism[, ]L :
L⊗ L→ L in D+(X) such that

(i) [, ]L = −[, ]L ◦ τ where τ : L⊗ L→ L⊗ L is the swap map.
(ii) [, ]L ◦ (id⊗ [, ]L) = [, ]L ◦ ([, ]L ⊗ id) + [, ]L ◦ (id⊗ [, ]L) ◦ (τ ⊗ id).



June 16, 2008 14:23 WSPC/133-IJM 00485

The Big Chern Classes and the Chern Character 721

Note that any algebra A in D+(X) has a Lie algebra structure with [, ]A =
µA ◦ (id− τ).

By Proposition 2, D•
poly(X) is an algebra in Ch+(OX −mod) and L(D1

poly(X))
is a Lie algebra in Ch+(OX−mod). Since D•

poly(X) and L(D1
poly(X)) are complexes

with bounded below coherent co-homology by Proposition 5 and Corollary 3, they
represent objects in D+(X) denoted again by D•

poly(X) and L(D1
poly(X)) respec-

tively. The algebra structure of D•
poly(X) in Ch+(OX − mod) induces an algebra

structure in D+(X). The Lie algebra structure of L(D1
poly(X)) in Ch+(OX −mod)

induces a Lie algebra structure in D+(X). Corollary 3 of Sec. 4 says that
L(D1

poly(X)) is isomorphic to TX [−1] in D+(X). Theorem 2 says that the Lie alge-
bra structure on L(D1

poly(X)) described in this paragraph coincides with the Lie
algebra structure on TX [−1] induced by α(TX) after identifying L(D1

poly(X)) with
TX [−1] via the quasi-isomorphism β of Corollary 3 of Sec. 4.

Given a Lie algebra L in D+(X), its universal enveloping algebra (if it exists) is
an algebra U(L) in D+(X) together with a morphism i : L→ U(L) of Lie algebras
such that given any morphism f : L→ A of Lie algebras from L to an algebra A in
D+(X), there exists a unique morphism f̄ : U(L)→ A of algebras in D+(X) such
that f = f̂ ◦ i. We now state and prove Theorem 3

Theorem 3. D•
poly(X) is the universal enveloping algebra of TX [−1] in D+(X).

In other words, let A be an associative algebra in D+(X). If f : TX [−1] → A is a
morphism in D+(X) making the following diagram commute in D+(X),

TX [−1]⊗OX TX [−1]
α(TX )−−−−→ TX [−1]

f⊗f
� �f

A⊗OX A
[,]A−−−−→ A

then there exists a unique morphism f̄ : D•
poly(X) → A of algebras in D+(X) so

that the composite f̄ ◦ IHKR = f .

Remark. This theorem should be compared to Lemma 2. The reason why proving
this is harder is that an algebra in D+(X) may be realized as a complex of OX -
modules, but may not be realizable as an algebra in Ch+(OX −mod). For instance,
given an algebra A in D+(X) and a complex F • quasi-isomorphic to A, any map
F • ⊗ F • → F • representing µA may be associative only up to homotopy.

7.1. Proof of Theorem 3

Let β : TX [−1] → L(D1
poly(X)) be as defined in Sec. 4.2. Note that β is a quasi-

isomorphism by Proposition 5, and therefore induces an isomorphism in D+(X).
Moreover, by Theorem 2, β is a morphism of Lie algebras in D+(X). It follows that
we can replace TX [−1] by L(D1

poly(X)). Suppose that A is an associative algebra
in D+(X) and that f : L(D1

poly(X))→ A is a morphism of Lie algebras in D+(X).
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Step 0 (Conventions, notations and some observations).

(1) An inclusion in Ch+(OX−mod) will mean a map of complexes that is injective
term by term.

(2) By convention, L(D1
poly(X)) is equipped with the Hochschild co-boundary.

(3) If M is any object in Ch+(OX −mod), L(M) denotes the free Lie algebra gen-
erated in Ch+(OX−mod) over OX by M . The only differential on L(M) arises
out of the differential on M . T (M) will denote the tensor algebra generated by
M over OX . Again, the only differential on T (M) arises out of the differential
on M .

(4) Sym•(M) will denote the symmetric algebra generated by M over OX in
Ch+(OX − mod). We have a map of complexes J(M) : Sym•(M) → T (M).
Given an open subscheme U = SpecR of X , if m1, . . . ,mk are sections of M |U
of degrees d1, . . . , dk respectively, then

J(M)(m1, . . . ,mk) =
1
k!

∑
σ∈Sk

s(σ)mσ(1) ⊗ · · · ⊗mσ(k)

where s(σ) is the sign (depending on d1, . . . , dk and σ ) such that

m1, . . . ,mk = s(σ)mσ(1), . . . ,mσ(k) ∈ Symk(M).

Also, we have a map of complexes B(M) : Sym•(L(M)) → T (M). If U =
SpecR is an open affine subscheme ofX , and if z1, . . . , zk are sections of L(M)|U
of degrees d1, . . . , dk respectively, then

B(M)(z1, . . . , zk) =
1
k!

∑
σ∈Sk

s(σ)zσ(1) ⊗ · · · ⊗ zσ(k).

Here, the zi’s on the right-hand side are thought of as sections of T (M)|U .
s(σ) is the sign (depending on d1, . . . , dk and σ ) such that

z1, . . . , zk = s(σ)zσ(1), . . . , zσ(k) ∈ Symk(L(M)).

(5) Recall from Lemma 1 that the symmetrization map I : ⊕kSymk ×
(L(D1

poly(X))) → D•
poly(X) is an isomorphism in Ch+(OX − mod). Denote

its inverse by G.
(6) Denote the restriction of I to L(D1

poly(X)) by I1. This is an inclusion in
Ch+(OX −mod).

(7) Denote that natural inclusion from L(D1
poly(X)) to T (L(D1

poly(X))) by I2.
(8) The object in D+(X) represented by an object M in Ch+(OX −mod) will be

denoted by M itself provided it exists.
(9) The Hochschild–Kostant–Rosenberg theorem implies that all objects in

Ch+(OX −mod) mentioned in this proof represent objects in D+(X).

Step 1 (Construction of f̂ : T (L(D1
poly(X))) → A in D+(X)).

We have f⊗k : L(D1
poly(X))⊗k → A⊗k. Since A is an algebra in D+(X), we

have the k fold multiplication µk,A : A⊗k → A in D+(X). We thus get a morphism
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µk,A ◦ f⊗k : L(D1
poly(X))⊗k → A in D+(X). Putting these together we get a

morphism f̂ : T (L(D1
poly(X))) → A in D+(X). By construction, f̂ is an algebra

homomorphism in D+(X) and the composite f̂ ◦ I2 equals f .

Step 2 (Construction of I : D•
poly(X) → T (L(D1

poly(X))).
We have another kind of symmetrization map

J((L(D1
poly(X)))) : Sym•(L(D1

poly(X)))→ T (L(D1
poly(X))).

Consider the composite

J(L(D1
poly(X))) ◦G : D•

poly(X)→ T (L(D1
poly(X))).

Denote it by I. Note that I ◦ I1 = I2.

Step 3 (Construction of f̄ : D•
poly(X) → A in D+(X)).

We define f̄ := f̂◦I. By construction the composite f̄◦I1 = f̂◦I◦I1 = f̂◦I2 = f .
To complete the proof of Theorem 1, we only need to check that f̄ is an algebra

homomorphism in D+(X).

Step 4 (Construction of an algebra homomorphism λ :
T (L(D1

poly(X))) → D•
poly(X) in Ch+(OX − mod)).

Let mk : D•
poly(X)⊗k → D•

poly(X) denote the k-fold product of D•
poly(X).

Consider the composite map

λk : L(D1
poly(X))⊗k I1

⊗k
−−−−→ D•

poly(X)⊗k mk−−−−→ D•
poly(X).

This map is a map in Ch+(OX −mod) as I1 and mk are maps in Ch+(OX −mod).
Putting these together, we obtain a map λ : T (L(D1

poly(X)))→ D•
poly(X). By con-

struction, λ is a morphism of algebras in Ch+(OX−mod). Also, the composite of λk
with the restriction of J(L(D1

poly(X))) to Symk(L(D1
poly(X))) is just the restriction

of the symmetrization map I to Symk(L(D1
poly(X))) Thus, λ◦J(L(D1

poly(X))) = I.
It follows that

λ ◦ I = λ ◦ J(L(D1
poly(X))) ◦G = I ◦G = id.

Step 5 (Uniqueness of f̄).
Suppose that f̄1 : D•

poly(X)→ A and f̄2 : D•
poly(X)→ A are two morphisms of

algebras in D+(X) such that f̄1 ◦ I1 = f̄2 ◦ I1 = f . Then, by the construction of the
map λ : T (L(D1

poly(X)))→ D•
poly(X) in Step 4,

f̄1 ◦ λ = f̄2 ◦ λ = f̂ : T (L(D1
poly(X)))→ A.

It follows from this and the fact (demonstrated in Step 4) λ ◦ I = id that

f̂ ◦ I = f̄1 = f̄1 ◦ λ ◦ I = f̄2 ◦ λ ◦ I = f̄2.

This proves that f̄1 and f̄2 are identical morphisms in D+(X).
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Step 6
We now return to proving that f̄ is a morphism of algebras in D+(X). Prov-

ing this will completely prove Theorem 3. We claim that the following diagram
commutes in Ch+(OX −mod).

D•
poly(X)⊗D•

poly(X) I⊗I−−−−→ T (L(D1
poly(X)))⊗ T (L(D1

poly(X)))

m

� �µT (L(D1
poly(X)))

D•
poly(X) ←−−−−

λ
T (L(D1

poly(X)))

This is immediate from the fact λ ◦ I = id and the fact λ is an algebra homo-
morphism in Ch+(OX −mod). Both these facts were demonstrated in Step 4.

It follows that the following diagram commutes in D+(X).

D•
poly(X)⊗D•

poly(X) I⊗I−−−−→ T (L(D1
poly(X)))⊗ T (L(D1

poly(X)))
f̂⊗f̂−−−−→ A⊗A

m

� µT (L(D1
poly(X)))

� �µA
D•

poly(X) ←−−−−
λ

T (L(D1
poly(X)))

f̂−−−−→ A

The arrows in the square on the left arise out of morphisms in Ch+(OX −mod)
itself.

Now observe that in D+(X),

µA ◦ (f̄ ⊗ f̄) = µA ◦ [(f̂ ◦ I)⊗ (f̂ ◦ I)]

= f̂ ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I)

= f̂ ◦ (id− I ◦ λ) ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I)

+ f̂ ◦ I ◦ λ ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I).

But λ ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I) = m. Thus,

µ ◦ f̄ ⊗ f̄ = f̂ ◦ (id− I ◦ λ) ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I) + f̂ ◦ I ◦m

= f̂ ◦ (id− I ◦ λ) ◦ µT (L(D1
poly(X))) ◦ (I ⊗ I) + f̄ ◦m.

Therefore, to show that f̄ is a homomorphism of algebras in D+(X), it suffices
to show the following proposition.

Proposition 7. The composite

T (L(D1
poly(X))) id−I◦λ−−−−−→ T (L(D1

poly(X)))
f̂−−−−→ A

is 0 in D+(X).

We note that the first arrow id − I ◦ λ is an arrow arising out of a morphism
in Ch+(OX −mod). We break the proof of Proposition 7 into the following easier
propositions.
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Note that any morphism in Ch+(OX −mod) can be thought of as morphism of
graded OX modules. Denote the map B(L(D1

poly(X))) : Sym•(L(L(D1
poly(X))))→

T (L(D1
poly(X))) by B. Note that B is a morphism in Ch+(OX −mod). Denote the

restriction of B to Symk(L(L(D1
poly(X)))) by Bk. In particular, B1 is a map in

Ch+(OX −mod) from L(L(D1
poly(X))) to T (L(D1

poly(X))).

Proposition 8. B1 is a morphism of Lie algebras in Ch+(OX −mod).

Proof. Let B(M)k denote the restriction of B(M) to Symk(L(M)). Then, we claim
that B(M)1 is a morphism of Lie algebras in Ch+(OX −mod). Let U = Spec R be
an open affine subscheme of X and let z1, z2 be sections of L(M)|U of degrees d1, d2

respectively. Then B(M)1[z1, z2] = z1 ⊗ z2 − (−1)d1d2z2 ⊗ z1 and B(M)1(zi) = zi.
This proves the desired proposition.

Recall that we have a natural inclusion of complexes L(D1
poly(X)) →

L(L(D1
poly(X))). This just treats a section of L(D1

poly(X)) as a section of
L(L(D1

poly(X))).

Proposition 9. (i) As a morphism of graded OX modules, λ ◦ B1 maps
L(L(D1

poly(X))) to I1(L(D1
poly(X))). Let π denote G ◦ λ ◦B1.

(ii) π : L(L(D1
poly(X))) → L(D1

poly(X)) is a map of Lie algebras in Ch+(OX −
mod).

(iii) The composite L(D1
poly(X))→ L(L(D1

poly(X))) π→ L(D1
poly(X)) is the identity.

(iv) λ ◦B = I ◦ Sym•(π).

Proof. Note that T (L(D1
poly(X))) and D•

poly(X) are Lie algebras in Ch+(OX −
mod). Their Lie algebra structures are induced by their algebra structures in
Ch+(OX −mod). Since λ : T (L(D1

poly(X)))→ D•
poly(X) is a morphism of algebras

in Ch+(OX −mod), λ is also a morphism of Lie algebras in Ch+(OX −mod). Also,
by its very construction, λ maps I2(L(D1

poly(X))) identically to I1(L(D1
poly(X))).

It follows that λ maps B1(L(L(D1
poly(X)))) to the Lie subalgebra of D•

poly(X)
generated over OX by I1(L(D1

poly(X))) which is I1(L(D1
poly(X))) itself. This

proves (i).
Observe that λ is a Lie algebra homomorphism in Ch+(OX − mod). Fur-

ther, since I1 : L(D1
poly(X)) → I(L(D1

poly(X))) is a morphism of Lie algebras in
Ch+(OX−mod), G : I(L(D1

poly(X)))→ L(D1
poly(X)) is also a morphism of Lie alge-

bras in Ch+(OX−mod). Since B1 is a morphism of Lie algebras in Ch+(OX−mod)
by Proposition 8, (ii) follows.

(iii) is immediate from the construction of λ.
Let U = SpecR be an affine open subscheme of X . Let x1, . . . , xk be homoge-

nous sections of L(L(D1
poly(U))) of degrees d1, . . . , dk respectively. For a permu-

tation σ ∈ Sk let s(σ) be the sign such that x1, . . . , xk = s(σ)xσ(1), . . . , xσ(k) in
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Symk(L(L(D1
poly(U)))). Then,

B(x1, . . . , xk) =
1
k!

∑
σ∈Sk

s(σ)xσ(1) ⊗ · · · ⊗ xσ(k)

λ ◦B(x1, . . . , xk) =
1
k!

∑
σ∈Sk

s(σ)λ(xσ(1))⊗ · · · ⊗ λ(xσ(k)).

But, by the definition of π, if x ∈ L(L(D1
poly(U))), then λ(x) = I1(π(x)). It

follows that λ ◦ B(x1, . . . , xk) is precisely I(π(x1), . . . , π(xk)) in D•
poly(X). This

proves (iv).

Recall that we have the map

J(L(L(D1
poly(X)))) : Sym•(L(L(D1

poly(X))))→ T (L(L(D1
poly(X)))).

Let J(L(L(D1
poly(X))))k denote its restriction to Symk(L(L(D1

poly(X)))). Let
J(L(D1

poly(X)))k denote the restriction of J(L(D1
poly(X))) to Symk(L(D1

poly(X))).
Let π• denote the morphism ⊕kπ⊗k : T (L(L(D1

poly(X))))→ T (L(D1
poly(X))).

Proposition 10. The following diagram commutes in Ch+(OX −mod).

Symk(L(L(D1
poly(X))))

J(L(L(D1
poly(X))))k

−−−−−−−−−−−−−→ T (L(L(D1
poly(X))))�Symk(π)

�π•

Symk(L(D1
poly(X)))

J(L(D1
poly(X)))k

−−−−−−−−−−−→ T (L(D1
poly(X)))

Proof. This is immediate from the definitions of π, J(L(L(D1
poly(X))))k and

J(L(D1
poly(X)))k.

Note that the symmetrization map

B(L(D1
poly(X))) : Sym•(L(L(D1

poly(X))))→ T (L(D1
poly(X)))

is an isomorphism in Ch+(OX − mod). This is proven in a fashion simi-
lar to Lemma 1. Denote the inverse of B(L(D1

poly(X))) by W . Let Z denote
J(L(L(D1

poly(X)))) ◦W . We have the following corollary of Propositions 9 and 10.

Corollary 4. The following diagram commutes in the category of differential
graded OX modules.

T (L(D1
poly(X))) Z−−−−→ T (L(L(D1

poly(X))))�λ �π•

D•
poly(X) I−−−−→ T (L(D1

poly(X)))
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Proof. Observe that Proposition 9(iv) tells us that λ ◦ B = I ◦ Sym•(π). Thus,
G ◦ λ ◦B = Sym•(π). Thus,

J(L(D1
poly(X))) ◦G ◦ λ ◦B ◦W = J(L(D1

poly(X))) ◦ Sym•(π) ◦W.
But I = J(L(D1

poly(X))) ◦ G and B ◦ W = id. Thus, I ◦ λ =
J(L(D1

poly(X))) ◦ Sym•(π) ◦W . By Proposition 10, J(L(D1
poly(X))) ◦ Sym•(π) =

π• ◦ J(L(L(D1
poly(X)))). Thus,

I ◦ λ = π• ◦ J(L(L(D1
poly(X)))) ◦W = π• ◦ Z.

We have the multiplication map µT from T (T (L(D1
poly(X))))

to T (L(D1
poly(X))). This arises from the tensor product in T (L(D1

poly(X))). Let
B : Sym•(L(L(D1

poly(X)))) → T (L(D1
poly(X))) be as in Proposition 9. The

map B1 yields us a map T (B1) : T (L(L(D1
poly(X)))) → T (T (L(D1

poly(X)))) in
Ch+(OX −mod). This is a map of algebras in Ch+(OX −mod) by construction.
Denote the composite µT ◦ T (B1) : T (L(L(D1

poly(X)))) → T (L(D1
poly(X))) by G.

Since µT and T (B1) are morphisms of algebras in Ch+(OX −mod), so is G.

Proposition 11. With G as defined above, G ◦ Z = id.

Proof. First note that G ◦ J(L(L(D1
poly(X)))) = B(L(L(D1

poly(X)))). To see this,
let U = SpecR be an open affine subscheme of X , and let z1, . . . , zk be sections
of L(L(D1

poly(X)))|U of degrees d1, . . . , dk respectively. Then, by the construction
of G, G(z1 ⊗ · · · ⊗ zk) = z1 ⊗ · · · ⊗ zk where the tensor product on the right is
that in T (L(D1

poly(X))) and where the zi’s on the right are treated as sections of
T (L(D1

poly(X)))|U .
Now, G ◦ Z = G ◦ J(L(L(D1

poly(X)))) ◦W = B(L(L(D1
poly(X)))) ◦W = id.

The following corollary is obtained from the above proposition and Corollary 4.

Corollary 5. id− I ◦ λ = (G − π•) ◦ Z.

Note that all the commutative diagrams in Propositions 8–11 and their corol-
laries are diagrams in Ch+(OX −mod). They induce corresponding commutative
diagrams in D+(X).

From Corollary 5, it is clear that to prove Proposition 7, it suffices to prove the
following proposition.

Proposition 12. f̂ ◦ G = f̂ ◦ π• in D+(X).

Proof. We have a natural inclusion of complexes L(L(D1
poly(X)))⊗k →

T (L(L(D1
poly(X)))). Denote the composite of G with this inclusion by Gk. This

is a morphism in Ch+(OX −mod).
To prove this proposition, it suffices to show that f̂◦Gk = f̂◦π⊗k in D+(X). Since

G is a homomorphism of algebras in Ch+(OX −mod), Gk = G⊗k1 . Moreover, f̂ is a
morphism of algebras in D+(X). It is therefore sufficient to show that f̂ ◦G1 = f̂ ◦π.

This is done in Propositions 13 and 14 that follow.
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We recall that if V is a vector space over a field of characteristic 0, Sn acts on
the right on V ⊗n. If σ is a permutation on Sn, σ(v1⊗· · ·⊗vn) = vσ(1)⊗· · ·⊗vσ(n).
This extends to an action of Sn on A⊗n for any complex A of OX modules. The
action descends to an action on B⊗n for any element B of D+(X).

Observation 1. Note that if A is an associative algebra in D+(X), with multipli-
cation µA, the Lie Bracket [, ] : A⊗A→ A is defined as µA ◦ (id− (12)) where (12)
is the swap applied to A⊗2. Let τk ∈ Sn be the k-cycle (n−k+1 n−k+2 , . . . , n).
Let en be the element (id− τn) ◦ · · · ◦ (id− τ2) ∈ KSn. en is a quasi-idempotent, in
the group ring KSn of Sn. If µn,A : A⊗n → A denotes the n-fold multiplication on
A, then µn,A ◦ en : A⊗n → A is the n-fold Lie bracket on A. Note that this is only
a morphism in D+(X).

Denote by Ln the morphism in Ch+(OX − mod) from L(D1
poly(X))⊗n to

L(D1
poly(X)) such that for sections z1, . . . , zn of L(D1

poly(X)) over an affine open
subscheme U of X , Ln(z1 ⊗ · · · ⊗ zn) = [z1, [z2, [. . . , [zn−1, zn]]]].

The following proposition is a direct consequence of the fact that f is a morphism
of Lie algebras in D+(X).

Proposition 13. The following diagram commutes in D+(X).

L(D1
poly(X))⊗n

f⊗n

−−−−→ A⊗n�Ln �µn,A◦en

L(D1
poly(X))

f−−−−→ A

Proof. For n = 2, this is exactly the statement that f is a morphism of Lie
algebras in D+(X). For other n, it is proven by induction on n using the facts that
L2 ◦ (id⊗ Ln−1) = Ln and µn,A ◦ en = (µA ◦ e2) ◦ (id⊗ [µn−1,A ◦ en−1]).

Proposition 14. The following diagram also commutes in Ch+(OX −mod), and
hence in D+(X).

L(L(D1
poly(X))) B1

−−−−→ T (L(D1
poly(X)))�π �⊕n 1

nLn

L(D1
poly(X)) id−−−−→ L(D1

poly(X))

Proof. Let L denote ⊕n 1
nLn. Denote the multiplication on T (L(D1

poly(X))) by
mT . The n-fold multiplication will be denoted by mn,T : T (L(D1

poly(X)))⊗n →
T (L(D1

poly(X))). All these are maps in Ch+(OX −mod).
Let en be as in Observation 1 prior to Proposition 13. It is immediate from

Reutenauer [11, Theorem 8.16] that 1
nen is an idempotent. Moreover, it is a

projection from T (W ) to L(W ) for any W ∈ Ch+(OX − mod). Let z1, . . . , zn
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be sections of L(D1
poly(X)) over an open affine subscheme U of X . Then,

B1([z1, [z2[. . . [zn−1, zn]]]]) = en(z1⊗ · · · ⊗ zn) by the definition of en. On the other
hand, π(B1([z1, [z2[. . . [zn−1, zn]]]])) = [z1, [z2[. . . [zn−1, zn]]]] where the bracket on
the right-hand side is that of L(D1

poly(X)). To verify this proposition, it suffices
to check that Ln ◦ 1

nen = Ln. Let C : B1(L(L(D1
poly(X)))) → L(L(D1

poly(X))) be
the left inverse of B1. Now, Ln(z1 ⊗ · · · ⊗ zn) = π ◦ C ◦ en(z1 ⊗ · · · ⊗ zn). Thus,
Ln ◦ 1

nen = π ◦C ◦ en ◦ 1
nen = π ◦C ◦ en = Ln. This proves the desired proposition.

Proof (Final steps to proving Proposition 7).
Note that f ◦ π = f̂ ◦ π. Now combining Propositions 13 and 14, we see that

f̂ ◦ π equals the following composition of morphisms in D+(X).

L(L(D1
poly(X))) B1

−−−−→ T (L(D1
poly(X)))

⊕nf⊗n

−−−−−→ T (A)
⊕n(µn,A◦en)−−−−−−−−→ A.

Now we can see that if h : B → C is any morphism in D+(X) and σ ∈ Sn then
h⊗n ◦ σ = σ ◦ h⊗n. This is verified by checking the corresponding fact at the level
of complexes of OX modules.

Let µ•,A = ⊕nµn,A : T (A) → A. It follows that f ◦ π is given by the following
composition of morphisms in D+(X).

L(L(D1
poly(X))) B1

−−−−→ T (L(D1
poly(X)))

⊕n 1
n en−−−−−→ T (L(D1

poly(X)))

⊕nf⊗n

−−−−−→ T (A) −−−−→
µ•,A

A.

But ⊕n 1
nen is a projector from T (W ) to L(W ) for any complex of OX modules

W . This is immediate from Reutenauer [11, Theorem 8.16]. It follows that the
composite of the first two maps in the previous composition is just G1. The map
µ•,A ◦⊕nf⊗n is precisely f̂ . This proves that f̂ ◦G1 = f̂ ◦π, thereby finally proving
Proposition 7 and therefore, Theorem 1.

Remark. Taking I ◦ λ essentially amounts to taking brackets among elements
of L(D1

poly(X)). The fact that f̄ when restricted to L(D1
poly(X)) is a Lie algebra

homomorphism implies that f̄ ◦I ◦λ = f̄ in D+(X) which is exactly what we want.
This is the “hand waving” argument for Proposition 7 that is made rigorous by the
proofs of Propositions 8–14.

8. The Chern Character as a Character of a Representation

If E is a vector bundle on X , End(E) concentrated in degree 0 is an algebra in
Ch+(OX − mod). The algebra structure on End(E) is given by the composition
map ◦ : End(E) ⊗ End(E) → End(E). We recall from Kapranov [6] that the
Atiyah class of E endows it with the structure of a module over the Lie alge-
bra TX [−1] in D+(X). In other words, if we identify HomD+(X)(E ⊗ TX [−1], E)
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with HomD+(X)(TX [−1], End(E)), then α(E) : TX [−1]→ End(E) is a morphism of
Lie algebras in D+(X).

The multiplication on End(E) induces a k-fold multiplication ◦k : End(E)⊗k →
End(E). For an element α ∈ HomD+(X)(TX [−1], End(E)), let α◦k denote the
composite

T⊗k
X [−k] α⊗k

−−−−→ End(E)⊗k ◦k−−−−→ End(E)

which is an element of HomD+(X)(T
⊗k
X [−k], End(E)). Denote α(E)◦k by t̃k(E).

Let p : ∧kTX [−k] → T⊗k
X [−k] be the morphism of complexes such that if

v1, . . . , vk are sections of TX over an open affine subscheme U of X , then

p(v1 ∧ · · · ∧ vk) =
1
k!

∑
σ∈Sk

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k).

Then, α(E)◦k ◦ p ∈ HomD+(X)(∧kTX [−k], End(E)). Denote α(E)◦k ◦ p by ˜chk(E).
Note that we have a map of OX -modules tr : End(E) → OX . This is a map in

Ch+(OX − mod) if End(E) and OX are thought of as complexes concentrated in
degree 0. Then, tr ◦ t̃k(E) is an element in HomD+(X)(T

⊗k
X [−k],OX). Denote it by

tk(E). Similarly, tr ◦ chk(E) is an element of HomD+(X)(∧kTX [−k],OX). Denote it
by chk(E). The isomorphism of HomD+(X)(∧kTX [−k],OX) with Hk(X,∧kΩ) maps
chk(E) to the degree k component of the Chern character of E.

Let I1HKR : TX [−1]→ D•
poly(X) denote the composite of IHKR with the inclusion

of TX [−1] in ⊕k ∧k TX [−k] as a direct summand. Since α(E) : TX [−1]→ End(E)
is a morphism of Lie algebras in D+(X), Theorem 3 implies that there exists a
morphism θE : D•

poly(X)→ End(E) of algebras in D+(X) such that θE◦I1HKR = αE .
Let ϕE := tr ◦ θE : D•

poly(X)→ OX .
Let J : ⊕kT⊗k

X [−k] → D•
poly(X) be the morphism of complexes such that if

v1, . . . , vk are sections of TX over an open affine subscheme U of X , then

J(v1 ⊗ · · · ⊗ vk) = v1 ⊗ · · · ⊗ vk ∈ Dn
poly(U).

We now have the following theorem.

Theorem 4. (i) ˜tk(E) = θE ◦ J,

(ii) ˜chk(E) = θE ◦ IHKR,
(iii) ⊕ntn(E) = ϕE ◦ J,
(iv) ch(E) = ϕE ◦ IHKR.

Proof. Let Jn denote the composite of J with the inclusion of T⊗n
X [−n] in

⊕kT⊗k
X [−k] as a direct summand. Then, by the definition of J, Jn = I1HKR

⊗n
.

Further, θE is a morphism of algebras in D+(X) and θE ◦ I1HKR = α(E). It follows
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that the following diagram commutes in D+(X).

TX [−1]⊗n Jn−−−−→ D•
poly(X)

id

� �θE
TX [−1])⊗n

α(E)◦n−−−−−→ End(E)

Also, the following diagram commutes in D+(X) by the definitions of IHKR
and J.

∧nTX [−n]
p−−−−→ TX [−1]⊗n

IHKR

� �Jn

D•
poly(X) id←−−−− D•

poly(X))

It follows that θE ◦ J = ⊕kα(E)◦k ◦ id.
Thus, ϕE ◦ J = ⊕ktr ◦ α(E)◦k) = ⊕ktk(E).
This proves (i) and (iii). For (ii) and (iv), we use the fact J ◦ p = IHKR to see

that θE ◦ J ◦ p = ⊕kα(E)◦k ◦ id ◦ p. Composing both sides of this with the trace
map from End(E) to OX , we see that ϕE ◦ IHKR = tr ◦ ⊕kα(E)◦k ◦ p. This proves
(ii) and (iv).

In the classical situation, if g is an ordinary Lie algebra over a field of charac-
teristic 0 and E is a finite-dimensional representation of g, we have a Lie algebra
homomorphism θE : g → End(E). This induces a map Ug → End(E) of algebras
where Ug is the universal enveloping algebra of E. One has the trace End → K.
One can therefore compose these to get a map ϕE : Ug → K. This is the char-
acter of the representation E of g. The analogy with the Chern character is now
clear. By Kapranov [6] any vector bundle E is a representation of the Lie algebra
TX [−1] in D+(X). By Theorem 4(iv), the Chern character of the vector bundle
is the character in the Representation theoretic sense of the representation E of
TX [−1].

Theorem 4 also enables us to prove some properties of the big Chern classes
shown by Ramadoss [8] in a more general framework. In this section, we shall
reprove the fact that the big Chern classes commute with the Adams operations.
The new proof would make the parallel of this fact with the Representation theoretic
identity χψpV (g) = χV (gp) transparent.

For this, we need a digression on Adams operations in commutative Hopf alge-
bras. LetH be a commutative Hopf algebra, with multiplication µ and comultiplica-
tion ∆. Let µk and ∆k denote the k fold multiplication and k fold comultiplication
respectively. Then, the maps ψk : H → H are ring homomorphisms. Moreover,
ψp ◦ ψq = ψpq. These maps can therefore be thought of as Adams operations. If
H is noncommutative but is cocommutative and primitively generated, then these
maps are not ring homomorphisms though they satisfy ψp ◦ ψq = ψpq.
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Coming back to the classical picture, recall that the character of a representation
E of a Lie algebra g is a K linear map ϕE : U(g) → K. Let us restrict ϕE to
elements of Ug that are of the form exp(tv), t ∈ R, v ∈ g, v fixed. This yields
a character (in the usual “character of a representation of a group” sense) of the
representation E of the one parameter group exp(tv) ⊂ Ug. In this case we denote
the character ϕE restricted to the one parameter group by χE to keep notation more
standard.

From the fact that χψpE(g) = χE(gp) it follows that χψpEexp(tv) = χEexp(ptv).
If ∗ denotes the multiplication in Ug and vk := v ∗ · · · ∗ v (k times), then
χψpE

∑
k

1
k! t

kvk =
∑

k
1
k! t

kpkvk. Note that Ug is a co-commutative Hopf algebra
with ∆p(v) = v ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ v ∈ Ug⊗p for v ∈ IPBW (g). Since
∆p is an algebra homomorphism, it follows that

∆p(vk) =
∑

{(k1,...,kp)|ki≥0 ∀ iand
P
ki=k}

vk1 ⊗ · · · ⊗ vkp ∈ Ug⊗p.

Thus, µp ◦∆p(vk) = pkvk. Since {IPBW (vk)|v ∈ g, k ≥ 0} spans Ug, the following
diagram commutes.

Ug
ψp−−−−→ Ug

id

� �ϕE
Ug

ϕψpE−−−−→ K

The commuting of this diagram is equivalent to the fact that χψpE(g) = χE(gp).
We will now prove the same in D+(X) for the Lie algebra TX [−1]. Recall, from
Proposition 2 that D•

poly(X) is a Hopf algebra in Ch+(OX −mod). It is therefore a
Hopf algebra in D+(X) with all operations induced by the corresponding operations
in Ch+(OX −mod). It is co-commutative but non-commutative.

Proposition 15. The following diagram commutes in D+(X).

D•
poly(X)

ψp−−−−→ D•
poly(X)

ϕψpE

� �ϕE
OX id−−−−→ OX

This result explains why the big Chern classes commute with Adams operations
[8] without recourse to hands on computation as was done in [8].

Proof. Let IkHKR denote the composite of IHKR with the inclusion of ∧kTX [−k]
into ⊕i ∧i TX [−i] as a direct summand. Let U be an affine open subscheme of
X and let v1, . . . , vk be sections of TX |U . If (k1, . . . , kp) is a p-tuple of nonnegative
integers such that

∑
i ki = k, define a (k1, . . . , kp)-multi-shuffle to be a permutation
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σ of {1, . . . , k} such that σ(1) < · · · < σ(k1), σ(k1 + 1) < · · · < σ(k1 + k2), . . . ,
σ(k1 + · · ·+ kp−1 + 1) < · · · < σ(k).

Then

∆p(v1 ⊗ · · · ⊗ vk) =
∑

{(k1,...,kp)|
P
i ki=k}

∑
σ a (k1,...,kp)-shuffle

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k1)

⊗
· · ·
⊗

vσ(k1+···+kp−1+1)

⊗ · · · ⊗ vσ(k).

We follow the convention that if ki = 0, then vσ(k1+···+ki−1+1) ⊗ · · · ⊗
vσ(k1+···+ki) = 1.

It follows that if mp denotes the p-fold multiplication on D•
poly(X), then

mp ◦∆p(v1 ⊗ · · · ⊗ vk) =
∑

{(k1,...,kp)|
P
i ki=k}

∑
σ a (k1,...,kp)-shuffle

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k).

Thus,

mp ◦∆p

(∑
τ∈Sk

sgn(τ)vτ(1) ⊗ · · · ⊗ vτ(k)

)

=
∑
τ∈Sk

∑
{(k1,...,kp)|

P
i ki=k}

∑
σ a (k1,...,kp)-shuffle

sgn(τ)sgn(σ)vσ(τ(1)) ⊗ · · · ⊗ vσ(τ(k)).

Since there are pk (k1, . . . , kp)-shuffles such that
∑

i ki = k,∑
τ∈Sk

∑
{(k1,...,kp)|

P
i ki=k}

∑
σ a (k1,...,kp)-shuffle

sgn(τ)sgn(σ)vσ(τ(1)) ⊗ · · · ⊗ vσ(τ(k))

= pk
∑
τ∈Sk

sgn(τ)vτ(1) ⊗ · · · ⊗ vτ(k).

From the fact that IHKR(v1 ∧ · · · ∧ vk) = 1
k!

∑
τ∈Sk sgn(τ)vτ(1) ⊗ · · · ⊗ vτ(k) and

the fact that mp ◦∆p = ψp, it follows that ψp ◦ IkHKR = pkIkHKR.
Now, ϕE ◦ IkHKR = chk(E) by Theorem 4(iv). Thus

ϕE ◦ ψp ◦ IkHKR = pkchk(E) = chk(ψpE) = ϕψpE ◦ IkHKR.

This together with the facts ⊕kIkHKR = IHKR and IHKR is a quasi-isomorphism and
therefore, an isomorphism in D+(X) prove the desired proposition.
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The following corollary is now immediate.

Corollary 6. The following diagram commutes.

⊕kT⊗k
X [−k] ψp−−−−→ T⊗k

X [−k]�⊕ktk(ψpE) ⊕ktk(E)

�
OX

id−−−−→ OX
This is the statement that the big Chern classes commute with Adams

operations.

9. A Formula for the Big Chern Classes

This section proves a formula for the big Chern classes in terms of the components
of the Chern character for vector bundles over an arbitrary smooth scheme over a
field of characteristic 0. The existence of such a formula was proven in my thesis [8]
for smooth projective varieties using the existence of an ample line bundle together
with combinatorial arguments. The method used here is very different from that
of [8]. It is also more general, and works for vector bundles over smooth complex
manifolds as well.

9.1. µ ◦ ω
1−e−ω as an element in the PROP ENDT [−1]

9.1.1. A proposition

We note that there is a PROP ENDT [−1] where ENDT [−1](n,m) :=
HomD+(X)(T

⊗n
X [−n], T⊗m

X [−m]). Let ϕ ∈ ENDT [−1](n,m) and ζ ∈ ENDT [−1](n, p).
Clearly, we have a composition � : ENDT [−1](m, p)⊗ ENDT [−1](n,m) which takes
ζ⊗ϕ to ζ ◦ϕ. A permutation σ of Sn gives rise to two elements of ENDT [−1](n, n) :
l(σ) is induced at the level of complexes by the map v1⊗· · ·⊗vn � sgn(σ)vσ−1(1)⊗
· · · ⊗ vσ−1(n) and r(σ) is induced by v1 ⊗ · · · ⊗ vn � sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n) for
sections v1, . . . , vn of TX over an open affine subscheme U of X . If σ ∈ Sn and
τ ∈ Sm then σ(ϕ) := ϕ ◦ l(σ) and (ϕ)τ := r(τ) ◦ ϕ.

We also have a juxtaposition map

× : ENDT [−1](n,m)⊗ ENDT [−1](n′,m′)→ ENDT [−1](n+ n′,m+m′).

If η ∈ ENDT [−1](n+ n′,m+m′), then ϕ ∗ η := ϕ⊗ η.
Let ΠLIE denote the PROP generated by the Lie operad.
We recall from [6, Theorem 3.5.1] that there is a morphism of PROPs

Υ : ΠLIE→ ENDT [−1]

so that

[x1, x2] ∈ ΠLIE(2, 1)→ αTX ∈ ENDT [−1](2, 1) := HomD+(X)(TX [−1]⊗2, TX [−1]).



June 16, 2008 14:23 WSPC/133-IJM 00485

The Big Chern Classes and the Chern Character 735

We note that Theorem 2 tells us that the bracket [, ] on L(D1
poly(X)) is really

αTX ∈ ENDT [−1](2, 1) after identifying L(D1
poly(X)) with TX [−1] in D+(X) via the

map β described in Corollary 3, Sec. 4. Let ω be as in Theorem 1. We now want to
look at ω as an element of ⊕1≤m≤nENDT [−1](n,m).

Let {zi}, y, {di}, d be as in the proof of Theorem 1. Let ω̂ : T (L(D1
poly(X))) ⊗

L(D1
poly(X))→ T (L(D1

poly(X)))⊗ L(D1
poly(X)) be the map

z1 ⊗ · · · ⊗ zk ⊗ y �
∑
i

(−1)di(di+1+···+dk)z1 ⊗ · · · ẑi · · · ⊗ zk ⊗ [zi, y].

Let µ̂(z1 ⊗ · · · ⊗ zk ⊗ y) = 1
k

∑
i (−1)d(di+1+···+dk)z1⊗ · · · ⊗ zi ⊗ y⊗ zi+1 ⊗ · · · ⊗ zk.

Recall the definition of the map J(L(D1
poly(X))) : Sym•(L(D1

poly(X))) →
T (L(D1

poly(X))) ⊗ L(D1
poly(X)) from Sec. 7.1(4). Unlike Sec. 7, we will denote

J(L(D1
poly(X))) by B to avoid confusing it with J : ⊕nT⊗n

X [−n]→ D•
poly(X).

Proposition 16. The following diagrams commute in Ch+(OX−mod), and hence
in D+(X).

T (L(D1
poly(X)))⊗ L(D1

poly(X)) ω̂−−−−→ T (L(D1
poly(X)))⊗ L(D1

poly(X))�B⊗id

�B⊗id

Sym•(L(D1
poly(X)))⊗ L(D1

poly(X)) ω−−−−→ Sym•(L(D1
poly(X)))⊗ L(D1

poly(X)).

T (L(D1
poly(X)))⊗ L(D1

poly(X))
µ̂−−−−→ T (L(D1

poly(X)))�B⊗id B

�
Sym•(L(D1

poly(X)))⊗ L(D1
poly(X))

µ−−−−→ Sym•(L(D1
poly(X))).

Proof. Since z1, . . . , zk = z1, . . . , ẑj, . . . , zkzj up to a sign, the coefficient of [zk, y]
in ω̂ ◦ (B⊗ id)(z1, . . . , zk) will be equal to the coefficient of [zj , y] in ω̂ ◦ (B⊗ id) up
to the same sign. The same observation holds with (B ⊗ id) ◦ ω(z1, . . . , zk) instead
of ω̂ ◦ (B ⊗ id). We thus, need to compare the coefficient of [zk, y] in ω̂ ◦ (B ⊗
id)(z1, . . . , zk) and (B ⊗ id) ◦ ω(z1, . . . , zk).

In the second map, the coefficient of [zk, y] is simply B(z1, . . . , zk−1). For a
permutation σ ∈ Sk, let s(σ) be the sign such that z1, . . . , zk = s(σ)zσ(1), . . . , zσ(k).
Then

B(z1, . . . , zk) =
1
k!

∑
σ∈Sk

s(σ)zσ(1) ⊗ · · · ⊗ zσ(k).

Let τ ∈ Sk−1 let τi be the permutation in Sk such that τi(j) = τ(j) for j ≤ i− 1,
τi(i) = k and τi(j) = τ(j − 1) for j > i. Then s(τi) = (−1)dk(dτ(i+1)+···+dτ(k−1)

)
sτ .
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Thus, the coefficient of [zk, y] in ω̂ ◦ (B ⊗ id) is

1
k!

∑
τ∈Sk−1

∑
i

(−1)dk(dτ(i+1)+···+dτ(k−1)
)
s(τi)zτ(1) ⊗ · · · ⊗ zτ(k−1)

=
1
k!

∑
τ∈Sk−1

∑
i

s(τ)zτ(1) ⊗ · · · ⊗ zτ(k−1)

=
1

(k − 1)!

∑
τ∈Sk−1

s(τ)zτ(1) ⊗ · · · ⊗ zτ(k−1).

This is just B(z1, . . . , zk−1).
This shows that the first square commutes. The commuting of the second square

is checked by a similar easier calculation.

9.1.2. ω̂ as an element in ENDT [−1]

Let σk,n be the permutation of {1, . . . , n} such that σk,n(n) = k and σk,n(j) = j if
j < k and σk,n(j) = j + 1 otherwise. The map σ � l(σ) gives us a map from KSn
to Π(n, n) for any PROP Π.

The map ω̂ : T (L(D1
poly(X)))⊗L(D1

poly(X))→ T (L(D1
poly(X)))⊗L(D1

poly(X))
is clearly the action of the following element of ⊕n,mENDT [−1](n,m)

ω̂ :

∑
r≥1

id×r−1 ×Υ([x1, x2])

 ◦∑
n

k=n∑
k=1

l(σ−1
k,n) ∈ ⊕1≤m<nENDT [−1](n,m).

Note that ω̂ = Υ(ζ) where ζ ∈ ⊕1≤m<nΠLIE(n,m) is given by∑
r≥1

id×r−1 ×[x1, x2]

 ◦∑
n

k=n∑
k=1

l(σ−1
k,n).

By convention, if p 
= n then

◦ : ENDT [−1](p, q)⊗ ENDT [−1](m,n)→ ⊕ENDT [−1](m,n) = 0.

With this convention, we can think of ζ◦k ∈ ⊕1≤m<nΠLIE(n,m) and ω̂k ∈
⊕1≤m<nENDT [−1](n,m). Denote ζ◦k by ζk. Clearly, ω̂k = Υ(ζk). This enables us
to look at any power series in ω̂ as an element of⊕1≤m<nENDT [−1](n,m). Similarly,
any power series in ζ can be seen as an element in ⊕1≤m<nΠLIE(n,m).

We also note that µ̂ = ⊕n 1
n

∑
k l(σk,n) ∈ ⊕mENDT [−1](m,m).

Recalling once again that L(D1
poly(X)) = TX [−1] as Lie algebras in D+(X), we

see that the map µ̂ ◦ ω̂
1−e−ω̂ : T (L(D1

poly(X)))⊗L(D1
poly(X))→ T (L(D1

poly(X))) is
just the action of the element

Θ := µ̂ ◦ ω̂

1− e−ω̂ ∈ ⊕1≤m<nENDT [−1](n,m).
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Note that Θ = Υ(Θ̂) where

Θ̂ := µ̂ ◦ ζ

1− e−ζ ∈ ⊕1≤m<nΠLIE(n,m).

Let p : ⊕i ∧i TX [−i]→ T (TX [−1]) be as in Sec. 8. Since L(D1
poly(X)) = TX [−1]

in D+(X), we get the following corollary of Proposition 16.

Corollary 7. The following diagram commutes in D+(X).

T (TX [−1])⊗ TX [−1] Θ−−−−→ T (TX [−1])�p⊗id p

�
⊕i ∧i TX [−i]⊗ TX [−1]

µ◦ ω̄

1−e−ω̄−−−−−−→ ⊕i ∧i TX [−i].

9.2. A return to Theorem 1

Corollary 1 can be rephrased to say that the following diagram commutes in D+(X).

D•
poly(X)⊗D•

poly(X) m−−−−→ D•
poly(X)�IHKR⊗IHKR IHKR

�
⊕i ∧i TX [−i]⊗ TX [−1]

µ◦ ω̄
1−e−ω̄−−−−−−→ ⊕i ∧i TX [−i].

Let mk denote the k-fold multiplication on D•
poly(X). It follows from the above

commutative diagram that the following diagram commutes for all k.

D•
poly(X)⊗D•

poly(X) m−−−−→ D•
poly(X)�IHKR⊗(mk◦I⊗kHKR) IHKR

�
⊕i ∧i TX [−i]⊗ T⊗k

X [−k]
(µ◦ ω̄

1−e−ω̄ ⊗idk−1)◦···◦(µ◦ ω̄

1−e−ω̄ )

−−−−−−−−−−−−−−−−−−−−−−→ ⊕i ∧i TX [−i].

The following diagram commutes in D+(X) since it does so in Ch+(OX−mod).

D•
poly(X)

1⊗(µ◦I⊗kHKR)−−−−−−−−→ D•
poly(X)⊗D•

poly(X)�mk◦I⊗kHKR IHKR⊗(mk◦I⊗kHKR)

�
T⊗k
X [−k] 1⊗id−−−−→ ⊕i ∧i TX [−i]⊗ T⊗k

X [−k].
Combining this diagram with the previous one we get the following corollary.

Corollary 8. The following diagram commutes in D+(X) for all k.

D•
poly(X) id−−−−→ D•

poly(X)�(mk◦I⊗kHKR) IHKR

�
T⊗k
X [−k]

(µ◦ ω̄

1−e−ω̄
⊗idk−1)◦···◦(µ◦ ω̄

1−e−ω̄
)◦(1⊗id)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⊕i ∧i TX [−i].
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By Corollary 7, the following diagram commutes in D+(X).

T (TX [−1])⊗ T⊗k
X [−k] (Θ×id×k−1)◦···◦Θ−−−−−−−−−−−−→ T (TX [−1])�p⊗id p

�
⊕i ∧i TX [−i]⊗ T⊗k

X [−k]
(µ◦ ω̄

1−e−ω̄
⊗idk−1)◦···◦(µ◦ ω̄

1−e−ω̄
)◦(1⊗id)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⊕i ∧i TX [−i].

Further, the following diagram commutes in D+(X).

T⊗k
X [−k] 1⊗id−−−−→ T (TX [−1])⊗ T⊗k

X [−k]�id

�p⊗id

T⊗k
X [−k] 1⊗id−−−−→ ⊕i ∧i TX [−i]⊗ T⊗k

X [−k].

Note that the upper morphism in the above diagram just expresses T⊗k
X [−k] as

a summand of T (TX [−1]) ⊗ T⊗k
X [−k]. We can therefore conclude from the above

diagram and the one before that

Corollary 9. The following diagram commutes in D+(X).

T⊗k
X [−k] (Θ×id×k−1)◦···◦Θ−−−−−−−−−−−−→ T (TX [−1])

id

� γ

�
T⊗k
X [−k]

(µ◦ ω̄

1−e−ω̄
⊗idk−1)◦···◦(µ◦ ω̄

1−e−ω̄
)◦(1⊗id)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⊕i ∧i TX [−i].
Let

Ψk := (Θ× id×k−1) ◦ · · · ◦Θ ∈ ⊕m≤nENDT [−1](n,m).

Note that Ψk = Υ(Ψ̂k) where

Ψ̂k := (Θ̂× id×k−1) ◦ · · · ◦ Θ̂ ∈ ⊕m≤nΠLIE(n,m).

Let Ψkl denote the component of Ψ in ENDT [−1](k, l). Let π : T (TX[−1])→ ⊕i ∧i
TX [−i] be the standard projection.

Theorem 5. Let X be a smooth scheme over a field of characteristic 0. Let E be
a vector bundle on X. Then,

(i) t̃k(E) = ˜chk(E) ◦ π +
∑
l<k

˜chl(E) ◦ π ◦Ψkl,

(ii) tk(E) = chk(E) ◦ π +
∑
l<k chl(E) ◦ π ◦Ψkl.

Proof. Note that π ◦ p = id. By this observation and Corollary 9,

p ◦Ψ =
(
µ ◦ ω̄

1− e−ω̄ ⊗ idk−1

)
◦ · · · ◦

(
µ ◦ ω̄

1− e−ω̄

)
◦ (1⊗ id) : T⊗k

X [−k]

→ ⊕i ∧i TX [−i]

in D+(X).
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Let J : ⊕kT⊗k
X [−k] → D•

poly(X) and Jk be as in Theorem 4. We note that
mk ◦ I⊗kHKR = Jk. We also recall that for any vector bundle E, we have a morphism
θE : D•

poly(X)→ End(E) in D+(X) so that θE ◦ Jk = t̃k(E) and θE ◦ IHKR = c̃h(E)
by Theorem 4. By these observations and Corollary 8,

t̃k(E) = c̃h(E) ◦ π ◦Ψk.

Note that as Ψk ∈ ⊕m≤nENDT [−1](n,m), the contribution of chl(E) ◦ π ◦ Ψkl

to tk(E) vanishes when l > k. It only remains to show that π ◦Ψkk = π.
Note that Θ = µ̂ ◦

∑
k ckω̂

k for some constants ck. Also note that
ω̂ ∈ ⊕m<nENDT [−1](n,m). From the observation that composing an ele-
ment of ⊕m≤nENDT [−1](n,m) with one of ⊕m<nENDT [−1](n,m) gives an
element of ⊕m<nENDT [−1](n,m), it follows that the only component of
Θ in ⊕mENDT [−1](m,m) is µ̂. It follows that the component of Ψk in
⊕mENDT [−1](m,m) is (µ̂× id×k−1) ◦ · · · ◦ µ̂. This map applied to T⊗k

X [−k] is just
the symmetrization map from T⊗k

X [−k] to itself. It follows that the contribution of
˜chk(E) ◦ π ◦Ψkk to t̃k(E) is precisely c̃hk(E) ◦ π = c̃hk(E). This proves (i).

(ii) follows immediately from (i) and from the facts that if tr : End(E) → OX
is the trace map, tk(E) = tr ◦ t̃k(E) and chk(E) = tr ◦ c̃hk(E).

Remark. This theorem gives a formula for the Big Chern classes in terms of the
components of the Chern character for arbitrary smooth schemes. The same proof
will go through for complex manifolds as well. This generalizes a similar, more
vaguely stated formula tk in terms of chl for l ≤ k that I obtained in my theses
for vector bundles over smooth projective varieties by some combinatorial methods
[8]. The method there makes it difficult to see the explicit formula for Ψkl. It also
requires the existence of an ample line bundle on the variety for which we are
deducing this formula. Even in the smooth projective case, it is difficult to see
Theorem 5(i) using the methods of [8].

9.3. Proper subfunctors of the Hodge functors Hq(X, Ωp), p,q ≥ 2

The formula for tk in terms of chl, l ≤ k also easily gives us a method for find-
ing an increasing chain of proper contravariant subfunctors of the Hodge functors
Hq(X,Ωp) for smooth schemes over a field of characteristic 0. We note that

Ψkl ∈ HomD+(X)(T
⊗k
X [−k], T⊗l

X [−l]) = HomD+(X)(Ω
⊗l[l],Ω⊗k[k]).

Further, π : T⊗l
X [−l] → ∧lTX [−l] is identified with γ · k! : ∧lΩX [l] → Ω⊗l[l] where

γ is the symmetrization map. Henceforth, in this subsection, we think of chl(E)
and tl(E) as elements in HomD+(X)(OX ,∧lΩX [l]) and HomD+(X)(OX , T⊗l

X [l])
respectively.

With this convention, the first formula in Theorem 4 can be rewritten as

tk(E) = γ ◦ k!chk(E) +
∑
l<k

Ψkl ◦ γ ◦ l!chl(E).
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The second formula in Theorem 4 may be rewritten in an identical fashion as well,
though that does not concern us now.

In this picture, Ψkl ◦ γ yields a map from Hl(X,Ωl) to Hk(X,Ω⊗k). Denote this
map by Dkl. Applying Theorem 4 to ψpE, we get

tk(ψpE) = pkk!chk(E) +
∑
l<k

plDkl(chl(E)) ∀ p ≥ 1.

On the other hand,

tk(ψpE) =
∑
l≤k

pltk(ch−1(chl(E))).

It follows that Dkl(chl(E)) = tk(ch−1(chl(E))). It was shown in [8] that if X =
G(r, n) a Grassmannian of r-dimensional quotient spaces of an n-dimensional vector
space over a field of characteristic 0, and if n is large enough, and if E = Q, the
canonical quotient bundle of X , then tk(ch−1(chl(E))) 
= 0 if l ≥ 2. Therefore,
the operator Dkl does not kill Hl,l in general. On the other hand, the Atiyah class
α(TX) = 0 is X is an Abelian variety (a torus, for example). In such a case Dkl = 0
if k 
= l.

Therefore, if X = G(r, n) × T where T is a torus, then ch−1(chl(p∗1Q)) is not
in the kernel of Dkl. On the other hand, Dkl(p∗2Y ) = 0 ∀ Y ∈ Hl,l(T ). We thus see
that Hl,l

k := kerDkl : Hl,l → Hk(X,Ω⊗k) is a proper subfunctor of Hl,l (as a theory)
for all l ≥ 2.

Given our current convention, in which we think of Ψkl as an element of
HomD+(X)(Ω⊗l[l],Ω⊗k[k]). If p > q, (Ψkq ⊗ id⊗p−q) ◦ γ yields a map from Hp,q

to Hk(X,Ω⊗k). Denote this morphism by Dkq. If p < q, Dkp will denote the
map yielded by the element Ψkp ◦ γ ∈ HomD+(X)(∧pΩX [p],Ω⊗k[k]) from Hp,q to
Hk−p+q(X,Ω⊗k).

We see that Hp,q
k , given by ker(Dkq) : Hp,q → Hk(X,Ω⊗k+p−q) if p > q and

ker(Dkp) : Hp,q → Hk+q−p(X,Ω⊗k) otherwise, is a proper subfunctor (as a theory)
of Hp,q. To see this, again consider the case when X = G(r, n) × T as before, T a
suitable torus. If p > q, and αq = ch−1chq, then

Dkq(αq(p∗1Q) ∪ p∗2Y ) = (Dkq(chq(p∗1Q))) ∪ p∗2Y = tk(αqQ) ∪ p∗2Y 
= 0

where Y is a nonzero element of Hp−q,0(T ). On the other hand, if Z ∈ Hp,q(T )
then Dkq((p∗2Z)) = 0. This shows that Hp,q

k is a proper subfunctor of Hp,q if p > q.
If p < q note that if Y ∈ H0,q−p(T ) is nonzero, then Dkp((αp(p∗1Q) ∪ p∗2Y )) =
(Dkp(αp(p∗1Q))) ∪ p∗2Y = tk(αp(p∗1Q)) ∪ p∗2Y 
= 0 and that if Z ∈ Hp,q(T ), then
Dkp(p∗2Z) = 0. This proves that Hp,q

k is a proper subfunctor of Hp,q for all k > q

where p, q ≥ 2.

Appendix

This appendix is meant to collect some facts about graded free Lie algebras used
in Lemma 1 and Theorem 1. Proposition 17 is standard. Since I have not seen
Theorem 6 in the literature, I have included it here as a theorem.
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Let V be a vector space over a field K of characteristic 0. Let T (V ) denote the
(graded) tensor algebra generated over K by V in degree 1. Let L(V ) be the free
Lie algebra generated over K by V in degree 1.

Let IV : Sym•(L(V ))→ T (V ) and ωV : Sym•(L(V ))⊗ L(V )→ Sym•(L(V ))⊗
L(V ) be as in Sec. 5. Then,

Proposition 17. IV is an isomorphism of graded K-vector spaces.

Proof. This is a form of the PBW theorem for L(V ) proven in Bahturin [17]. By
Bakhturin [17, Theorem 2.10], T (V ) is the universal enveloping algebra of L(V ). Let
L(V )+ denote the subspace of L(V ) spanned by elements of even degree. Let L(V )−
denote the subspace of L(V ) spanned by elements of odd degree. Let z1, z2, . . . ,
be a homogenous ordered basis of L(V ). We recall from the PBW theorem ([17,
Theorem 2.2]) that the elements zii ⊗ · · · ⊗ zin such that ij ≤ ij+1 for all j and
zij 
= zij+1 if zij ∈ L(V )− form a basis of T (V ). Note that the elements zi1 , . . . , zin
such that ij ≤ ij+1 for all j and zij 
= zij+1 if zij ∈ L(V )− form a basis of
Sym•(L(V )).

For a multi-set S = {i1, . . . , in} such that ij ≤ ij+1 for all j and ij 
= ij+1 if
zij ∈ L(V )−, let zS denote the element zii ⊗ · · · ⊗ zin of T (V ). Let π(zS) denote
the element zi1 , . . . , zin ∈ Sym•(L(V )). The cardinality |S| of this multi-set is n.
Then, let GV : T (V )→ Sym•(L(V )) be the map such that

GV

 ∑
|S|≤n,aS �=0 for some S such that |S|=n

aSzS

 =
∑
|S|=n

asπ(zS).

GV is a vector space isomorphism by the PBW theorem. Clearly, GV ◦ IV (π(zS)) =
π(zS) by [17, proof of Theorem 2.2]. Since the π(zS) form a basis of Sym•(L(V )),
GV ◦ IV = id. This proves that IV is a K-vector space isomorphism.

Theorem 6. The following diagram commutes in the category of graded K vector
spaces.

T (V )⊗ L(V ) mV−−−−→ T (V )�IV ⊗id IV

�
Sym•(L(V ))⊗ L(V )

µ◦ ωV

1−e−ωV−−−−−−−→ Sym•(L(V ))

Proof. Let T (L(V )) denote the tensor algebra generated over K by L(V ). Let
ω̂V : T (L(V ))

⊗
L(V )→ T (L(V ))⊗ L(V ) be the map

z1 ⊗ · · · ⊗ zk
⊗

y �
∑
i

(−1)di(di+1+···+dk)z1 ⊗ · · · î · · · ⊗ zk
⊗

[zi, y]
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for homogenous elements z1, . . . , zk, of L(V ) of degrees d1, . . . , dk, d respectively.
Let µ̂ : T (L(V ))

⊗
L(V )→ T (L(V )) be the map such that

z1⊗· · ·⊗zk−1

⊗
zk �

1
k

i=k∑
i=1

(−1)dk(di+···+dk−1)z1⊗· · ·⊗zi−1⊗zk⊗zi⊗· · ·⊗zk−1.

For a permutation σ of Sk, let s(σ) be the sign such that z1, . . . , zk =
s(σ)zσ(1), . . . , zσ(k). Let JV : Sym•(L(V )) → T (L(V )) be the symmetrization map
z1, . . . , zk �

∑
σ∈Sk s(σ)zσ(1) ⊗ · · · ⊗ zσ(k). Then the following diagram commutes.

Step 1
(An analog of Proposition 16)

T (L(V ))⊗ L(V )
µ̂◦ ω̂V

1−eω̂V−−−−−−→ T (L(V ))

JV ⊗id

� �JV
Sym•(L(V ))

µ◦ ωV

1−e−ωV−−−−−−−→ Sym•(L(V ))

This follows immediately from the fact that the following two diagrams
commute.

T (L(V ))⊗ L(V ) ω̂V−−−−→ T (L(V ))⊗ L(V )�JV ⊗id JV⊗id

�
Sym•(L(V ))⊗ L(V ) ωV−−−−→ Sym•(L(V ))⊗ L(V )

T (L(V ))⊗ L(V )
µ̂−−−−→ T (L(V ))�JV⊗id JV

�
Sym•(L(V ))⊗ L(V )

µ−−−−→ Sym•(L(V ))

The proof that the above two diagrams commute is word for word identical to
that of Proposition 16 (Sec. 9) with L(V ) replacing L(D1

poly(X)), T (L(V )) replacing
T (L(D1

poly(X))) and JV replacing B.

Step 2
(Reduction to a combinatorial question)
The natural inclusion from L(V ) to T (V ) induces a map of graded algebras

ϕ : T (L(V ))→ T (V ) such that ϕ ◦ JV = IV . It follows from this that if m denotes
the multiplication in T (L(V )), we only need to prove the following assertion

m ◦ (JV ⊗ id) = µ̂ ◦ ω̂V
1− eω̂V .

Let z1, . . . , zk, zk+1 be homogenous elements of L(V ) of degrees d1, . . . , dk
respectively. Note that m ◦ (JV ⊗ id)(z1, . . . , zk ⊗ zk+1) and µ̂ ◦ ω̂V

1−eω̂V (z1, . . . , zk ⊗
zk+1) are in the K-span of {zσ(1) ⊗ · · · ⊗ zσ(k+1)|σ ∈ Sk+1}. Denote this subspace
of T (L(V )) by W .
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Note that Sk+1 has a right action on W such that for a permutation τ ∈ Sk+1,

τ(zσ(1) ⊗ · · · ⊗ zσ(k+1)) = s(τ, σ)zσ(τ(1)) ⊗ · · · ⊗ zσ(τ(k+1))

where s(τ, σ) is the sign such that zσ(1), . . . , zσ(k+1) = s(τ, σ)zσ(τ(1)), . . . , zσ(τ(k+1))

in Symk+1(L(V )).
Let σ(i, l, k + 1) be the permutation in Sk+1 such that σ(i, l, k + 1)(j) = j for

j ≤ i−1. σ(i, l, k+1)(i−1+k) = n− l+k for 1 ≤ k ≤ l and σ(i, l, k+1)(j) = j− l
for j ≥ i + l. Let ν(i, l, k + 1) denote the inverse of σ(i, l, k + 1) in Sk+1. Let τl
denote the l-cycle (k − l + 2 k − l+ 1, . . . , k + 1).

Observation 1.
Identifying T (L(V ))⊗ L(V ) as a direct summand of ⊕kL(V )⊗k+1 of T (L(V )),

we have by a direct computation that

µ̂ ◦ ω̂jV =

(
i=k+1−j∑
i=1

σ(i, j + 1, k + 1)

)
◦ (id− τj+1) ◦

(
i=k+2−j∑
i=1

ν(i, j, k + 1)

)

◦ · · · ◦
(
i=k∑
i=1

σ(i, 2, k + 1)

)
◦ (id− τ2) ◦

(
i=k+1∑
i=1

ν(i, 1, k + 1)

)
on W .

Note that µ̂ ◦ ω̂V
1−eω̂V =

∑
j cjµ̂ ◦ ω̂

j
V where y

1−e−y =
∑
j cjy

j . The above formula
thus enables us to express µ̂ ◦ ω̂V

1−eω̂V as the action of an explicit element in the
group ring of Sk+1 on W .

Observation 2.
On the other hand,

m ◦ (JV ⊗ id)(z1, . . . , zk ⊗ zk+1) =
∑
ϕ∈Sk

1
k!
s(ϕ)zϕ(1) ⊗ · · · ⊗ zϕ(k) ⊗ zk+1.

Let ι : Sk → Sk+1 be the homomorphism fixing k + 1. It follows from both
observations that we need to prove the following identity in KSk+1 for all k.

∑
ϕ∈Sk

ι(ϕ) =

(
i=k+1−j∑
i=1

σ(i, j + 1, k + 1)

)
◦ (id− τj+1)

◦
(
i=k+2−j∑
i=1

ν(i, j, k + 1)

)
◦ · · · ◦

(
i=k∑
i=1

σ(i, 2, k + 1)

)

◦ (id− τ2) ◦
(
i=k+1∑
i=1

ν(i, 1, k + 1)

)
◦
∑
ϕ∈Sk

ι(ϕ).

Call this identity (***).
This finishes step 2.
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Step 3
(Proving the combinatorial identity (***))
Let W (different from W) be an infinite-dimensional vector space over K con-

centrated in degree 0. Let L(W ) and T (W ) be the free Lie algebra generated
over K by W and the tensor algebra generated over K by W respectively. Let
IW : Sym•(L(W ))→ T (W ) be the symmetrization map such that IW (z1, . . . , zk) =∑

σ∈Sk zσ(1)⊗ · · · ⊗ zσ(k) for all z1, . . . , zk ∈ L(W ). Let µ denote the multiplication
on Sym•(L(W )) and let ωW : Sym•(L(W )) ⊗ L(W ) → Sym•(L(W )) ⊗ L(W ) be
the map such that

ωW (z1, . . . , zk ⊗ y) =
∑
i

z1, . . . , î, . . . , zk ⊗ [zi, y].

It follows from Reutenauer [11, Chap. 3] that the following diagram commutes
in the category of K-vector spaces.

T (W )⊗ L(W ) m−−−−→ T (W )�IW⊗id IW

�
Sym•(L(W ))⊗ L(W )

µ◦ ωW

1−e−ωW−−−−−−−→ Sym•(L(W ))

Now, if z1, . . . , zk+1 are linearly independent elements of L(W ) and ifW denotes
the K-span of {zσ(1) ⊗ · · · ⊗ zσ(k)|σ ∈ Sk+1}, then Sk+1 has a right action on W
such that τ(zσ(1) ⊗ · · · ⊗ zσ(k)) = zσ(τ(1)) ⊗ · · · ⊗ zσ(τ(k)). Further, two elements α
and β in KSk are equal if and only if α(z1 ⊗ · · · ⊗ zn) = β(z1 ⊗ · · · ⊗ zn) in W . Let
ι : Sk → Sk+1 be as in the previous step. The identity (***) of Step 2 follows from
this set up once we note that

m ◦ (IW ⊗ id)(z1, . . . , zk ⊗ zk+1) =
∑
ϕ∈Sk

ι(ϕ)(z1 ⊗ · · · ⊗ zk+1)

and

IW ◦
(
µ ◦ ωW

1− e−ωW

)
(z1, . . . , zk ⊗ zk+1)

=

(
i=k+1−j∑
i=1

σ(i, j + 1, k + 1)

)
◦ (id− τj+1) ◦

(
i=k+2−j∑
i=1

ν(i, j, k + 1)

)

◦ · · · ◦
(
i=k∑
i=1

σ(i, 2, k + 1)

)
◦ (id− τ2) ◦

(
i=k+1∑
i=1

ν(i, 1, k + 1)

)

◦
∑
ϕ∈Sk

ι(ϕ)(z1 ⊗ · · · ⊗ zk+1).

The second of these two identities requires some work. Let T (L(W )) be the
tensor algebra of L(W ). Let ω̂W : T (L(W ))⊗L(W )→ T (L(W ))⊗L(W ) be the map
z1⊗· · ·⊗zk

⊗
y �

∑
i z1⊗· · · î · · ·⊗zk⊗ [zi, y]. Further, let µ̂ : T (L(W ))⊗L(W )→

T (L(W )) be the map such that µ̂(z1⊗ · · · ⊗ zk−1

⊗
zk) = 1

k

∑i=k
i=1 z1⊗ · · · ⊗ zi−1⊗
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zk⊗ zi⊗· · ·⊗ zk−1. Further, let J(W ) : Sym•(L(W ))→ T (L(W )) be the map such
that z1, . . . , zk �

∑
σ∈Sk zσ(1) ⊗ · · · ⊗ zσ(k).

The following diagrams commute.

T (L(W ))⊗ L(W ) ω̂W−−−−→ T (L(W ))⊗ L(W )�JW⊗id JW⊗id

�
Sym•(L(W ))⊗ L(W ) ωW−−−−→ Sym•(L(W ))⊗ L(W )

T (L(W ))⊗ L(W )
µ̂−−−−→ T (L(W ))�JW⊗id JW

�
Sym•(L(W ))⊗ L(W )

µ−−−−→ Sym•(L(W )).
From these, we see that the following diagram commutes.

T (L(W ))⊗ L(W )
µ̂◦ ω̂W

1−eω̂W−−−−−−→ T (L(W ))

JW⊗id

� �JW
Sym•(L(W ))

µ◦ ωW

1−e−ωW−−−−−−−→ Sym•(L(W )).
Now, a direct computation shows us that(
µ̂ ◦ ω̂W

1− eω̂W

)
◦ (JW ⊗ id)(z1 ⊗ · · · ⊗ zk

⊗
zk+1)

=

(
i=k+1−j∑
i=1

σ(i, j + 1, k + 1)

)
◦ (id− τj+1) ◦

(
i=k+2−j∑
i=1

ν(i, j, k + 1)

)

◦ · · · ◦
(
i=k∑
i=1

σ(i, 2, k + 1)

)
◦ (id− τ2) ◦

(
i=k+1∑
i=1

ν(i, 1, k + 1)

)

◦
∑
ϕ∈Sk

ι(ϕ)(z1 ⊗ · · · ⊗ zk+1).

Thus,

IW ◦
(
µ ◦ ωW

1− e−ωW

)
(z1, . . . , zk ⊗ zk+1)

=

(
i=k+1−j∑
i=1

σ(i, j + 1, k + 1)

)
◦ (id− τj+1) ◦

(
i=k+2−j∑
i=1

ν(i, j, k + 1)

)

◦ · · · ◦
(
i=k∑
i=1

σ(i, 2, k + 1)

)
◦ (id− τ2) ◦

(
i=k+1∑
i=1

ν(i, 1, k + 1)

)

◦
∑
ϕ∈Sk

ι(ϕ)(z1 ⊗ · · · ⊗ zk+1).

Thereby proving Theorem 5.
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