
ar
X

iv
:0

80
8.

32
65

v1
  [

m
at

h.
A

G
] 

 2
4 

A
ug

 2
00

8 A generalized Hirzebruch Riemann-Roch theorem.
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Abstract

This short note proves a generalization of the Hirzebruch Riemann-
Roch theorem equivalent to the Cardy condition described in [1]. This
is done using an earlier result [4] that explicitly describes what the
Mukai pairing in [1] descends to in Hodge cohomology via the Hochschild-
Kostant-Rosenberg map twisted by the root Todd genus.

1 Statement of the generalized Riemann-Roch the-

orem.

Let X be a smooth proper scheme of dimension n over a field K of character-
istic 0. Let E and F be elements of the bounded derived category Db

coh(X)
of coherent OX -modules on X. Let v and w be elements of EndDb

coh
(X)(E)

and EndDb

coh
(X)(F) respectively. Let Tv,w denote the endomorphism

a 7→ w ◦ a ◦ v

of RHomX(E ,F). Let at(E) ∈ HomDb

coh
(X)(E , E ⊗ Ω[1]) denote the Atiyah

class of E . Let chv(E) denote the ”twisted” Chern character

TrE(exp(at(E)) ◦ v) ∈ HomDb

coh
(X)(OX ,⊕iΩ

i
X [i]) ≃ ⊕iH

i(X,Ωi
X) .

Note that if v = idE then chv(E) = ch(E), the Chern character of E . Let
K be the involution on ⊕p,qH

q(X,Ωp) that acts on the summand Hq(X,Ωp)
by multiplication with (−1)q. If x in an element of ⊕p,qH

q(X,Ωp), we shall
denote K(x) by x∗. For any endomorphism T of RHomX(E ,F), str(T) shall
denote the alternated trace of T. If f : X → Y is a morphism of smooth
proper schemes, f∗,f

∗ etc shall denote the corresponding derived functors
unless explicitly mentioned otherwise.

∫
X

shall denote the linear functional
on ⊕p,qH

q(X,Ωp) that coincides with the Serre duality trace on Hn(X,Ωn
X)
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and vanishes on all other direct summands. We have the following general-
ization of the Hirzebruch Riemann-Roch theorem.

Explicit Cardy condition.

str(Tv,w) =

∫
X

chv(E)∗chw(F)td(X) .

Remark 1: Note that when v = idE and when w = idF the above statement
amounts to the Hirzebruch Riemann-Roch theorem

χ(E ,F) =

∫
X

ch(E)∗ch(F)td(X) .

Remark 2: The proof of the above theorem will also enable us to see that
the above theorem is in fact equivalent to the Cardy condition in [1] (see
Theorem 7.9 of [1]). The more classical (compared to Theorem 7.9 of [1])
statement of the Cardy condition given here would be useful for those inter-
ested in an explicit version of the Cardy condition for computational pur-
poses. Such computations are related to understanding string propagation
between D-Branes with twisted boundary conditions in the situation where
X is Calabi-Yau and the category of D-Branes is equivalent to Db

coh(X). An
analogous computation in a different set-up seems to have been discussed at
least implicitly in [5].
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2 The Mukai pairing and the Cardy condition.

Let ∆ : X → X × X be the diagonal embedding. Let ∆! denote the left
adjoint of ∆∗. Recall that the i-th Hochschild homology HHi(X) is the
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space Homi
Db

coh
(X×X)

(∆!OX ,∆∗OX). In his paper [1], Caldararu defined a

(nondegenerate) Mukai pairing

〈 , 〉M : HHi(X) ⊗ HH−i(X) → K ∀ i .

In [1], we have a map

ιH : HomDb

coh
(X)(H,H) → HH0(X) = HomDb

coh
(X×X)(∆!OX ,∆∗OX)

for any H ∈ Db
coh(X). Also, ∆!OX ≃ ∆∗S

−1
X where SX is the shifted line

bundle tensoring with which yields the Serre duality functor on Db
coh(X).

Let ν ∈ HomDb

coh
(X×X)(∆∗OX ,∆∗SX). For any smooth proper scheme Y

and any V ∈ Db
coh(Y ), let TrY : HomDb

coh
(Y )(V, SY ⊗ V) → K denote the

Serre duality trace. If u ∈ HomDb

coh
(X)(H,H), then

Proposition 1. (see the definition of ιH in Section 6.3 of [1])

TrX×X(ν ◦ ιH(u)) = TrX(π2∗(π
∗
1H⊗ ν) ◦ u) .

The following statement of the Cardy condition appears as Theorem 7.9 in
[1]. Let E ,F ,v,w be as in the previous subsection.

Theorem 1.

str(Tv,w) = 〈ιE (v), ιF (w)〉M .

Recall that the Adjunction ∆! ⊣ ∆∗ identifies Homi
Db

coh
(X×X)

(∆!OX ,∆∗OX)

with Homi
Db

coh
(X)

(OX ,∆∗∆∗OX). Therefore, the Hochschild-Kostant-Rosenberg
map

IHKR : ∆∗∆∗OX → ⊕jΩ
j[j]

induces maps
IHKR : HHi(X) → ⊕jH

j−i(X,Ωj
X) .

The following theorem appears implicitly in Markarian’s work [3] and in the
form stated below in an earlier paper of this author [4]. Let x ∈ HHi(X)
and let y ∈ HH−i(X). Then,

Theorem 2.

〈x, y〉M =

∫
X

IHKR(x)∗IHKR(y)td(X) .

In order to prove the explicit Cardy condition, we therefore need to prove
the following proposition.
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Proposition 2.

IHKR(ιE (v)) = chv(E) .

Note that setting x = ιE (v) and y = ιF (w) in Theorem 2 ,applying Theorem
1 and using the fact that IHKR(x) = chv(E) and that IHKR(y) = chw(F)
by Proposition 2, we obtain the explicit Cardy condition. We now prove
Proposition 2 below.

Proof. This proof is a straightforward modification of the proof of Theorem
4.5 in [2]. Remember that if A,H,J ∈ Db

coh(X), there is a trace map (see
Section 2.4 of [1])

TrA : HomDb

coh
(X)(A⊗H,A⊗ J ) → HomDb

coh
(X)(H,J ) .

For any θ ∈ HomDb

coh
(X)(H,J ), we will abuse notation and denote the map

idA ⊗ θ ∈ HomDb

coh
(X)(A⊗H,A⊗ J ) by A⊗ θ.

Recall that the Adjunction ∆! ⊣ ∆∗ identifies HomDb

coh
(X×X)(∆!OX ,∆∗OX)

with HomDb

coh
(X)(OX ,∆∗∆∗OX). Let ĉhv(E) denote the image of ιE (v) un-

der this identification. The desired proposition states that the image of
ĉhv(E) under IHKR is chv(E). Let ν be an arbitrary element of
HomDb

coh
(X)(∆

∗∆∗OX , SX). This corresponds to the element

ν̄ = ∆∗ν ◦ η ∈ HomDb

coh
(X×X)(∆∗OX ,∆∗SX)

where η is the unit of the adjunction ∆∗ ⊣ ∆∗ applied to ∆∗OX .

Note that

TrX(ν◦ĉhv(E)) = TrX×X(ν̄◦ιE (v))( see the proof of Proposition 1 of [4] for instance)

= TrX(π2∗(π
∗
1E ⊗ ν̄) ◦ v) ( by Proposition 1 )

= TrX(π2∗(π
∗
1E ⊗ (∆∗ν ◦ η)) ◦ v) = TrX(π2∗((π

∗
1E ⊗ ∆∗ν) ◦ (π∗

1E ⊗ η)) ◦ v)

= TrX((E ⊗ ν) ◦ (π2∗(π
∗
1E ⊗ η)) ◦ v)

= TrX(ν ◦ TrE (π2∗(π
∗
1E ⊗ η) ◦ v))( by Lemma 2.4 of [1]).

By the non-degeneracy of the Serre duality pairing, it follows that

ĉhv(E) = TrE(π2∗(π
∗
1E ⊗ η) ◦ v) .
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Hence,
IHKR(ĉhv(E)) = IHKR(TrE(π2∗(π

∗
1E ⊗ η) ◦ v)

= TrE(π2∗(π
∗
1E ⊗ ∆∗IHKR ◦ η) ◦ v) .

By Proposition 4.4 of [2],

∆∗IHKR ◦ η = exp(α)

where α : ∆∗OX → ∆∗ΩX [1] is the universal Atiyah class. It follows that

TrE(π2∗(π
∗
1E ⊗ ∆∗IHKR ◦ η) ◦ v) = chv(E) .
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