
Computing with functions in two

dimensions

Alex Townsend

St John’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity Term 2014

Abstract

New numerical methods are proposed for computing with smooth scalar
and vector valued functions of two variables defined on rectangular do-
mains. Functions are approximated to essentially machine precision by
an iterative variant of Gaussian elimination that constructs near-optimal
low rank approximations. Operations such as integration, differentiation,
and function evaluation are particularly efficient. Explicit convergence
rates are shown for the singular values of differentiable and separately an-
alytic functions, and examples are given to demonstrate some paradoxical
features of low rank approximation theory.

Analogues of QR, LU, and Cholesky factorizations are introduced for ma-
trices that are continuous in one or both directions, deriving a continuous
linear algebra. New notions of triangular structures are proposed and the
convergence of the infinite series associated with these factorizations is
proved under certain smoothness assumptions.

A robust numerical bivariate rootfinder is developed for computing the
common zeros of two smooth functions via a resultant method. Using
several specialized techniques the algorithm can accurately find the simple
common zeros of two functions with polynomial approximants of high
degree (≥ 1,000).

Lastly, low rank ideas are extended to linear partial differential equations
(PDEs) with variable coefficients defined on rectangles. When these ideas
are used in conjunction with a new one-dimensional spectral method the
resulting solver is spectrally accurate and efficient, requiring O(n2) op-
erations for rank 1 partial differential operators, O(n3) for rank 2, and
O(n4) for rank ≥ 3 to compute an n × n matrix of bivariate Chebyshev
expansion coefficients for the PDE solution.

The algorithms in this thesis are realized in a software package called
Chebfun2, which is an integrated two-dimensional component of Chebfun.

Acknowledgements

My graduate experience could have been very different if it was not for a
few key individuals. I wish to thank them now.

I started my academic life with a different supervisor and research topic.
One year into my graduate studies my plans needed to change and in
a remarkable sequence of events Professor Trefethen adopted me as his
DPhil student just 29 hours before attending his own wedding! This
exemplifies the dedication that Professor Trefethen has to his students
and to academia. He is a fantastic mentor for young mathematicians, and
I have and will continue to benefit from his advice. Professor Trefethen’s
suggestion to write research memoranda is the piece of advice that has
had the biggest impact on my research life. Trefethen has also read many
drafts of this thesis and his suggestions have been greatly appreciated.

I have shared, discussed, and exchanged many ideas with my collabora-
tors: Nick Hale, Sheehan Olver, Yuji Nakatsukasa, and Vanni Noferini.
Though many of these ideas do not appear in this thesis, the hours of
discussion and email exchanges have shaped me as a researcher. It has
been a pleasure working with and learning from these future stars.

My fiancé has supported me throughout and has listened to many of
my practice presentations. As an expert in developmental biology her
mathematical intuition is astonishing. There are few like her. I also wish
to thank my parents for kindling my early love of mathematics. Before
my math questions became too difficult my Dad would spend Sunday
mornings answering them. I hope they consider this thesis a small return
on their personal and financial investment.

Finally, I would like to thank Anthony Austin and Hrothgar for reading
through the thesis and making many useful suggestions.

Contents

1 Introduction 1
1.1 Chebyshev polynomials . 2
1.2 Chebyshev interpolants and projections 3
1.3 Convergence results for Chebyshev approximation 4
1.4 Why Chebyshev polynomials? . 6
1.5 Ultraspherical polynomials . 7
1.6 Chebfun . 8
1.7 Quasimatrices . 9
1.8 Low rank function approximation . 11
1.9 Approximation theory for bivariate functions 13

2 An extension of Chebyshev technology to two dimensions 15
2.1 Gaussian elimination for functions . 16

2.1.1 Algorithmic details . 18
2.1.2 Near-optimality of Gaussian elimination for functions 21
2.1.3 Related literature . 22

2.2 Quadrature and other tensor product operations 25
2.2.1 Partial differentiation . 27
2.2.2 Function evaluation . 27
2.2.3 Computation of Chebyshev coefficients 28

2.3 Other fundamental operations . 28
2.3.1 Composition operations . 28
2.3.2 Basic arithmetic operations 29

2.4 Vector calculus operations . 30
2.4.1 Algebraic operations . 31
2.4.2 Differential operations . 31
2.4.3 Phase portraits . 32

iii

2.4.4 Green’s Theorem . 33
2.5 Computing with surfaces embedded in R3 34

3 Low rank approximation theory 37
3.1 The rank of a bivariate polynomial 37
3.2 The numerical rank and degree of a function 38
3.3 Numerically low rank functions . 39
3.4 Results derived from 1D approximation theory 40
3.5 Numerically low rank functions in the wild 42
3.6 A mixed Sobolev space containing low rank functions 43
3.7 Three examples . 44

3.7.1 The symmetric Cauchy function 45
3.7.2 A sum of Gaussian bumps . 47
3.7.3 A 2D Fourier-like function . 48

3.8 The singular value decomposition of a function 51
3.9 Characterizations of the singular values 52
3.10 Best low rank function approximation 53

4 Continuous analogues of matrix factorizations 56
4.1 Matrices, quasimatrices, and cmatrices 56
4.2 Matrix factorizations as rank one sums 57
4.3 The role of pivoting in continuous linear algebra 59
4.4 Psychologically triangular matrices and quasimatrices 60
4.5 The SVD of a quasimatrix . 61
4.6 The QR factorization of a quasimatrix 63
4.7 The LU factorization of a quasimatrix 64
4.8 The SVD of a cmatrix . 66
4.9 The QR factorization of a cmatrix . 68
4.10 The LU factorization of a cmatrix . 72
4.11 The Cholesky factorization of a cmatrix 75

4.11.1 Test for nonnegative definite functions 78
4.12 More on continuous linear algebra . 80

iv

5 Bivariate rootfinding 82
5.1 A special case . 83
5.2 Algorithmic overview . 84
5.3 Polynomialization . 85

5.3.1 The maximum number of solutions 86
5.4 Existing bivariate rootfinding algorithms 87

5.4.1 Resultant methods . 87
5.4.2 Contouring algorithms . 88
5.4.3 Other numerical methods . 89

5.5 Recursive subdivision of the domain 90
5.6 A resultant method with Bézout resultants 93

5.6.1 Bézout resultants for finding common roots 94
5.6.2 Bézout resultants for bivariate rootfinding 95

5.7 Employing a 1D rootfinder . 98
5.8 Further implementation details . 99

5.8.1 Regularization . 99
5.8.2 Local refinement . 100
5.8.3 Solutions near the boundary of the domain 101

5.9 Dynamic range . 101
5.10 Numerical examples . 102

5.10.1 Example 1 (Coordinate alignment) 102
5.10.2 Example 2 (Face and apple) 102
5.10.3 Example 3 (Devil’s example) 103
5.10.4 Example 4 (Hadamard) . 104
5.10.5 Example 5 (Airy and Bessel functions) 105
5.10.6 Example 6 (A SIAM 100-Dollar, 100-Digit Challenge problem) 105

6 The automatic solution of linear partial differential equations 107
6.1 Low rank representations of partial differential operators 108
6.2 Determining the rank of a partial differential operator 109
6.3 The ultraspherical spectral method for ordinary differential equations 112

6.3.1 Multiplication matrices . 115
6.3.2 Fast linear algebra for almost banded matrices 118

6.4 Discretization of partial differential operators in low rank form 120
6.5 Solving matrix equations with linear constraints 122

6.5.1 Solving the matrix equation 124

v

6.5.2 Solving subproblems . 125
6.6 Numerical examples . 126

Conclusions 130

A Explicit Chebyshev expansions 133

B The Gagliardo–Nirenberg interpolation inequality 136

C The construction of Chebyshev Bézout resultant matrices 138

Bibliography 139

vi

Chapter 1

Introduction

This thesis develops a powerful collection of numerical algorithms for computing with
scalar and vector valued functions of two variables defined on rectangles, as well as
an armory of theoretical tools for understanding them. Every chapter (excluding this
one) contains new contributions to numerical analysis and scientific computing.

Chapter 2 develops the observation that established one-dimensional (1D) algo-
rithms can be exploited in two-dimensional (2D) computations with functions, and
while this observation is not strictly new it has not been realized with such generality
and practicality. At the heart of this is an algorithm based on an iterative variant of
Gaussian elimination on functions for constructing low rank function approximations.
This algorithm forms the core of a software package for computing with 2D functions
called Chebfun2.

Chapter 3 investigates the theory underlying low rank function approximation. We
relate the smoothness of a function to the decay rate of its singular values. We go on
to define a set of functions that are particularly amenable to low rank approximation
and give three examples that reveal the subtle nature of this set. The first example is
important in its own right as we prove that a continuous analogue of the Hilbert matrix
is numerically of low rank. Finally, we investigate the properties of the singular value
decomposition for functions and give three characterizations of the singular values.

Chapter 4 extends standard concepts in numerical linear algebra related to matrix
factorizations to functions. In particular, we address SVD, QR, LU, and Cholesky
factorizations in turn and ask for each: “What is the analogue for functions?” In the
process of answering such questions we define what “triangular” means in this context
and determine which algorithms are meaningful for functions. New questions arise

1

related to compactness and convergence of infinite series that we duly address. These
factorizations are useful for revealing certain properties of functions; for instance, the
Cholesky factorization of a function can be used as a numerical test for nonnegative
definiteness.

Chapter 5 develops a numerical algorithm for the challenging 2D rootfinding prob-
lem. We describe a robust algorithm based on a resultant method with Bézout re-
sultant matrices, employing various techniques such as subdivision, local refinement,
and regularization. This algorithm is a 2D analogue of a 1D rootfinder based on the
eigenvalues of a colleague matrix. We believe this chapter develops one of the most
powerful global bivariate rootfinders currently available.

In Chapter 6, we solve partial differential equations (PDEs) defined on rectangles
by extending the concept of low rank approximation to partial differential operators.
This allows us to automatically solve many PDEs via the solution of a generalized
Sylvester matrix equation. Taking advantage of a sparse and well-conditioned 1D
spectral method, we develop a PDE solver that is much more accurate and has a
lower complexity than standard spectral methods.

Chebyshev polynomials take center stage in our work, making all our algorithms
and theorems ready for practical application. In one dimension there is a vast collec-
tion of practical algorithms and theorems based on Chebyshev polynomials, and in
this thesis we extend many of them to two dimensions.

1.1 Chebyshev polynomials

Chebyshev polynomials are an important family of orthogonal polynomials in numer-
ical analysis and scientific computing [52, 104, 128, 159]. For j ≥ 0 the Chebyshev
polynomial of degree j is denoted by Tj(x) and is given by:

Tj(x) = cos(j cos−1 x), x ∈ [−1, 1].

2

Chebyshev polynomials are orthogonal with respect to a weighted inner product, i.e.,

ˆ 1

−1

Ti(x)Tj(x)√
1− x2

dx =

π, i = j = 0,

π/2, i = j ≥ 1,

0, i 6= j,

and as a consequence [122, Sec. 11.4] satisfy a 3-term recurrence relation [114, 18.9(i)],

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1,

with T1(x) = x and T0(x) = 1. Chebyshev polynomials are a practical basis for
representing polynomials on intervals and lead to a collection of numerical algorithms
for computing with functions of one real variable (see Section 1.6).

1.2 Chebyshev interpolants and projections

Let n be a positive integer and let
{
xchebj

}
0≤j≤n

be the set of n+1 Chebyshev points,
which are defined as

xchebj = cos

(
(n− j)π

n

)
, 0 ≤ j ≤ n. (1.1)

Given a set of data {fj}0≤j≤n, there is a unique polynomial pinterpn of degree at most n
such that pinterpn (xchebj) = fj for 0 ≤ j ≤ n. The polynomial pinterpn is referred to as the
Chebyshev interpolant of f of degree n. If {fj}0≤j≤n are data from a continuous func-
tion f : [−1, 1] → C with f(xchebj) = fj for 0 ≤ j ≤ n, then [159, Thm. 15.1 and 15.2]

∥∥f − pinterpn

∥∥
∞ ≤

(
2 +

2

π
log(n+ 1)

)∥∥f − pbestn

∥∥
∞ , (1.2)

where pbestn is the best minimax polynomial approximant to f of degree at most
n, and ‖ · ‖∞ is the L∞([−1, 1]) norm. Chebyshev interpolation is quasi-optimal
for polynomial approximation since

∥∥f − pinterpn

∥∥
∞ is at most O(log n) times larger

than
∥∥f − pbestn

∥∥
∞. In fact, asymptotically, one cannot do better with polynomial

3

interpolation since for any set of n+1 points on [−1, 1] there is a continuous function
f such that

∥∥f − pinterpn

∥∥
∞ ≥ (1.52125 + 2

π
log(n+ 1))‖f − pbestn ‖∞ [29].

The polynomial interpolant, pinterpn , can be represented as a Chebyshev series,

pinterpn (x) =
n∑

j=0

cjTj(x). (1.3)

The coefficients c0, . . . , cn can be numerically computed from the data f0, . . . , fn in
O(n log n) operations by the discrete Chebyshev transform, which is equivalent to the
DCT-I (type-I discrete cosine transform) [57].

Another polynomial approximant to f is the Chebyshev projection, pprojn , which is
defined by truncating the Chebyshev series of f after n + 1 terms. If f is Lipschitz
continuous, then it has an absolutely and uniformly convergent Chebyshev series [159,
Thm. 3.1] given by f(x) =

∑∞
j=0 ajTj(x), where the coefficients {aj}j≥0 are defined

by the integrals

a0 =
1

π

ˆ 1

−1

f(x)T0(x)√
1− x2

dx, aj =
2

π

ˆ 1

−1

f(x)Tj(x)√
1− x2

dx, j ≥ 1. (1.4)

The Chebyshev expansion for f can be truncated to construct pprojn as follows:

pprojn (x) =
n∑

j=0

ajTj(x). (1.5)

The approximation errors ‖f − pprojn ‖∞ and ‖f − pinterpn ‖∞ usually decay at the
same asymptotic rate since the coefficients {cj}j≥0 in (1.3) are related to {aj}j≥0

in (1.5) by an aliasing formula [159, Thm. 4.2].
As a general rule, Chebyshev projections tend to be more convenient for theoretical

work, while Chebyshev interpolants are often faster to compute in practice.

1.3 Convergence results for Chebyshev approxima-
tion

The main convergence results for Chebyshev approximation can be summarized
by the following two statements:

4

1. If f is ν times continuously differentiable (and the ν derivative is of bounded
total variation), then ‖f − pn‖∞ = O(n−ν).

2. If f is analytic on [−1, 1] then ‖f − pn‖∞ = O (ρ−n), for some ρ > 1.

Here, pn can be the Chebyshev interpolant of f or its Chebyshev projection.
For the first statement we introduce the concept of bounded total variation. A

function f : [−1, 1] → C is of bounded total variation Vf <∞ if

Vf =

ˆ 1

−1

|f ′(x)|dx <∞,

where the integral is defined in a distributional sense if necessary (for more details
see [24, Sec. 5.2] and [159, Chap. 7]).

Theorem 1.1 (Convergence for differentiable functions). For an integer ν ≥ 1, let f
and its derivatives through f (ν−1) be absolutely continuous on [−1, 1] and suppose the
νth derivative f (ν) is of bounded total variation Vf . Then, for n > ν,

∥∥f − pinterpn

∥∥
∞ ≤ 4Vf

πν(n− ν)ν
,

∥∥f − pprojn

∥∥
∞ ≤ 2Vf

πν(n− ν)ν
.

Proof. See [159, Theorem 7.2].

For the second statement we introduce the concept of a Bernstein ellipse, as is
common usage in approximation theory [159]. (We abuse terminology slightly by
using the word “ellipse” to denote a certain region bounded by an ellipse.) The
Bernstein ellipse Eρ with ρ > 1 is the open region in the complex plane bounded by
the ellipse with foci ±1 and semiminor and semimajor axis lengths summing to ρ.
Figure 1.1 shows Eρ for ρ = 1.2, 1.4, 1.6, 1.8, 2.0.

Theorem 1.2 (Convergence for analytic functions). Let a function f be analytic on
[−1, 1] and analytically continuable to the open Bernstein ellipse Eρ, where it satisfies
|f | ≤M <∞. Then, for n ≥ 0,

∥∥f − pinterpn

∥∥
∞ ≤ 4Mρ−n

ρ− 1
,

∥∥f − pprojn

∥∥
∞ ≤ 2Mρ−n

ρ− 1
.

5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.2

1.4

1.4

1.6

1.6

1.8

1.8

2.0

2.0

Im

Re

Figure 1.1: Bernstein ellipses Eρ in the complex plane for ρ = 1.2, 1.4, 1.6, 1.8, 2.0.
If f : [−1, 1] → C is analytic on [−1, 1] and analytically continuable to a bounded
function in Eρ, then ‖f − pinterpn ‖∞ = O (ρ−n) and ‖f − pprojn ‖∞ = O (ρ−n).

Proof. See [159, Theorem 8.2].

Theorem 1.1 and Theorem 1.2 suggest that pinterpn and pprojn have essentially the same
asymptotic approximation power. Analogous convergence results hold for Laurent
and Fourier series (cf. [162, (2.18)]).

1.4 Why Chebyshev polynomials?

Chebyshev polynomials are intimately connected with the Fourier and Laurent bases.
If x ∈ [−1, 1], θ = cos−1 x, and z = eiθ, then we have Tj(x) = Re

(
eijθ
)
= (zj + z−j)/2

for j ≥ 0. Therefore, we have the following relations:

∞∑
j=0

αjTj(x)︸ ︷︷ ︸
Chebyshev

=
∞∑
j=0

αjRe
(
eijθ
)

︸ ︷︷ ︸
even Fourier

= α0 +
∞∑

j=−∞,j 6=0

α|j|

2
zj︸ ︷︷ ︸

palindromic Laurent

, (1.6)

where the series are assumed to converge uniformly and absolutely.
As summarized in Table 1.1, a Chebyshev expansion of a function on [−1, 1] can

be viewed as a Fourier series of an even function on [−π, π]. This in turn can be
seen as a palindromic Laurent expansion on the unit circle of a function satisfying
f(z) = f(z), where z denotes the complex conjugate of z. Just as the Fourier basis
is a natural one for representing periodic functions, Chebyshev polynomials are a
natural basis for functions on [−1, 1].

6

Series Assumptions Setting Interpolation points

Chebyshev none x ∈ [−1, 1] Chebyshev
Fourier f(θ) = f(−θ) θ ∈ [−π, π] equispaced
Laurent f(z) = f(z) z ∈ unit circle roots of unity

Table 1.1: Fourier, Chebyshev, and Laurent series are closely related. Each rep-
resentation can be converted to the other by a change of variables, and under the
same transformation, Chebyshev points, equispaced points, and roots of unity are
connected.

One reason the connections in (1.6) are important is they allow the discrete Cheby-
shev transform, which converts n + 1 values at Chebyshev points to the Chebyshev
coefficients of pinterpn in (1.3), to be computed via the fast Fourier transform (FFT) [57].

1.5 Ultraspherical polynomials

The set of Chebyshev polynomials {Tj}j≥0 are a limiting case of the set of ultraspheri-
cal (or Gegenbauer) polynomials [146, Chap. IV]. For a fixed λ > 0 the ultraspherical
polynomials, denoted by C

(λ)
j for j ≥ 0, are orthogonal on [−1, 1] with respect to

the weight function (1 − x2)λ−1/2. They satisfy Tj(x) = limλ→0+
j
2λ
C

(λ)
j (x) and the

following 3-term recurrence relation [114, (18.9.1)]:

C
(λ)
j+1(x) =

2(j + λ)

j + 1
xC

(λ)
j (x)− j + 2λ− 1

j + 1
C

(λ)
j−1(x), j ≥ 1, (1.7)

where C(λ)
1 = 2λx and C(λ)

0 = 1.
Ultraspherical polynomials are of interest because of the following relations for

n ≥ 0 [114, (18.9.19) and (18.9.21)]:

dkTn
dxk

=

2k−1n(k − 1)!C

(k)
n−k, n ≥ k,

0, 0 ≤ n ≤ k − 1,

(1.8)

which means that first, second, and higher order spectral Chebyshev differentiation
matrices can be represented by sparse operators. Using (1.8), together with other
simple relations, one can construct an efficient spectral method for partial differential
equations (see Chapter 6).

7

Chebfun command Operation Algorithm

feval evaluation Clenshaw’s algorithm [37]
chebpoly coefficients DCT-I transform [57]

sum integration Clenshaw–Curtis quadrature [38, 164]
diff differentiation recurrence relation [104, p. 34]
roots rootfinding eigenvalues of colleague matrix [27, 63]
max maximization roots of the derivative
qr QR factorization Householder triangularization [157]

Table 1.2: A selection of Chebfun commands, their corresponding operations, and un-
derlying algorithms. In addition to the references cited, these algorithms are discussed
in [159].

1.6 Chebfun

Chebfun is a software system written in object-oriented MATLAB that is based on
Chebyshev interpolation and related technology for computing with continuous and
piecewise continuous functions of one real variable.

Chebfun approximates a globally smooth function f : [−1, 1] → C by an inter-
polant of degree n, where n is selected adaptively. The function f is sampled on
progressively finer Chebyshev grids of size 9, 17, 33, 65, . . . , and so on, until the high
degree Chebyshev coefficients of pinterpn in (1.3) fall below machine precision relative
to ‖f‖∞ [9]. The numerically insignificant trailing coefficients are truncated to leave
a polynomial that accurately approximates f . For example, Chebfun approximates
ex on [−1, 1] by a polynomial of degree 14 and during the construction process an
interpolant at 17 Chebyshev points is formed before 2 negligible trailing coefficients
are discarded.

Once a function has been represented by Chebfun the resulting object is called a
chebfun, in lower case letters. About 200 operations can be performed on a chebfun
f, such as f(x) (evaluates f at a point), sum(f) (integrates f over its domain), and
roots(f) (computes the roots of f). Many of the commands in MATLAB for vectors
have been overloaded, in the object-oriented sense of the term, for chebfuns with a
new continuous meaning [9]. (By default a chebfun is the continuous analogue of
a column vector.) For instance, if v is a vector in MATLAB and f is a chebfun,
then max(v) returns the maximum entry of v, whereas max(f) returns the global
maximum of f on its domain. Table 1.2 summarizes a small selection of Chebfun
commands and their underlying algorithms.

8

Chebfun aims to compute operations to within approximately unit roundoff mul-
tiplied by the condition number of the problem, though this is not guaranteed for all
operations. For example, the condition number of evaluating a differentiable func-
tion f at x is xf ′(x)/f(x) and ideally, one could find an integer, n, such that the
polynomial interpolant pinterpn on [−1, 1] satisfies

∥∥f − pinterpn

∥∥
∞ ≤

(
2 +

2

π
log(n+ 1)

)
‖f ′‖∞
‖f‖∞

u,

where u is unit machine roundoff and the extra O(log n) factor comes from interpo-
lation (see (1.2)). In practice, Chebfun overestimates the condition number and in
this case 2 + 2

π
log(n + 1) is replaced by n2/3, which relaxes the error bound slightly

to ensure the adaptive procedure for selecting n is more robust.
Chebfun follows a floating-point paradigm where the result of every arithmetic

operation is rounded to a nearby function [156]. That is, after each operation negligi-
ble trailing coefficients in a Chebyshev expansion are removed, leading to a chebfun
of approximately minimal degree that represents the result to machine precision. For
example, the final chebfun obtained from pointwise multiplication is often of much
lower degree than one would expect in exact arithmetic. Chebfun is a collection of
stable algorithms designed so that the errors incurred by rounding in this way do not
accumulate. In addition, rounding prevents the combinatorial explosion of complexity
that can sometimes be seen in symbolic computations [120].

Aside from mathematics, Chebfun is about people and my good friends. At any
one time, there are about ten researchers that work on the project and make up the
so-called Chebfun team. Over the years there have been significant contributions from
many individuals and Table 1.3 gives a selection.

1.7 Quasimatrices

An [a, b]×n column quasimatrix A is a matrix with n columns, where each column is
a function of one variable defined on an interval [a, b] ⊂ R [9, 42, 140]. Quasimatrices
can be seen as a continuous analogue of tall-skinny matrices, where the rows are
indexed by a continuous, rather than discrete, variable. Motivated by this, we use
the following notation for column and row indexing quasimatrices:

A(y0, :) = [c1(y0) | · · · | cn(y0)] ∈ C1×n, A(:, j) = cj, 1 ≤ j ≤ n

9

Member Significant contribution References

Zachary Battles Original developer [9]
Ásgeir Birkisson Nonlinear ODEs [23]
Toby Driscoll Main Professor (2006–present) [46]
Pedro Gonnet Padé approximation [62]
Stefan Güttel Padé approximation [62]

Nick Hale Project director (2010–2013) [74, 75]
Mohsin Javed Delta functions [88]
Georges Klein Floater–Hormann interpolation [92]

Ricardo Pachón Best approximations [118]
Rodrigo Platte Piecewise functions [117]

Mark Richardson Functions with singularities [126]
Nick Trefethen Lead Professor (2002–present) [159]
Joris Van Deun CF approximation [163]

Kuan Xu Chebyshev interpolants at 1st kind points –

Table 1.3: A selection of past and present members of the Chebfun team that have
made significant contributions to the project. This table does not include contribu-
tions to the musical entertainment at parties.

where y0 ∈ [a, b] and c1, . . . , cn are the columns of A (functions defined on [a, b]).
An n × [a, b] row quasimatrix has n rows, where each row is a function defined

on [a, b] ⊂ R. The transpose, denoted by AT , and conjugate transpose, denoted by
A∗, of a row quasimatrix is a column quasimatrix. The term quasimatrix is used
to refer to a column or row quasimatrix and for convenience we do not indicate the
orientation if it is clear from the context.

Quasimatrices can be constructed in Chebfun by horizontally concatenating cheb-
funs together. From here, one can extend standard matrix notions such as condition
number, null space, QR factorization, and singular value decomposition (SVD) to
quasimatrices [9, 157]. If A is a quasimatrix in Chebfun, then cond(A), null(A),
qr(A), and svd(A) are continuous analogues of the corresponding MATLAB com-
mands for matrices. For instance, Figure 1.2 outlines the algorithm for computing
the SVD of a quasimatrix. Further details are given in Chapter 4.

Mathematically, a quasimatrix can have infinitely many columns (n = ∞) and
these are used in Chapter 4 to describe the SVD, QR, LU, and Cholesky factorizations
of bivariate functions. An ∞× [a, b] quasimatrix is infinite in both columns and rows,
but not square as it has uncountably many rows and only countably many columns.

10

Algorithm: Singular value decomposition of a quasimatrix

Input: An [a, b]× n quasimatrix, A.
Output: A = UΣV ∗, where U is an [a, b]× n quasimatrix with orthonormal

columns, Σ is an n× n diagonal matrix, and V is a unitary matrix.

1. Compute A = QR (QR of a quasimatrix)
2. Compute R = UΣV ∗ (SVD of a matrix)
3. Construct U = QU (quasimatrix-matrix product)

Figure 1.2: Pseudocode for computing the SVD of a quasimatrix [9]. The QR factor-
ization of a quasimatrix is described in [157].

1.8 Low rank function approximation

If A ∈ Cm×n is a matrix, then the first k singular values and vectors of the SVD
can be used to construct a best rank k approximation to A in any unitarily invariant
matrix norm [109]. For instance, by the Eckart–Young1 Theorem [47], if A = UΣV ∗,
where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, and Σ ∈ Rm×n is a diagonal
matrix with diagonal entries σ1 ≥ · · · ≥ σmin(m,n) ≥ 0, then for k ≥ 1 we have

Ak =
k∑

j=1

σjujv
∗
j ,

inf
Bk

‖A−Bk‖22 = ‖A− Ak‖22 = σk+1(A)
2,

inf
Bk

‖A−Bk‖2F = ‖A− Ak‖2F =

min(m,n)∑
j=k+1

σj(A)
2,

where uj and vj are the jth columns of U and V , respectively, the infima are taken
over m × n matrices of rank at most k, ‖ · ‖2 is the matrix 2-norm, and ‖ · ‖F is the
matrix Frobenius norm.

Analogously, an L2-integrable function of two variables f : [a, b]× [c, d] → C can
be approximated by low rank functions. A nonzero function is called a rank 1 function
if it is the product of a function in x and a function in y, i.e., f(x, y) = g(y)h(x).
(Rank 1 functions are also called separable functions [11].) A function is of rank at
most k if it is the sum of k rank 1 functions. Mathematically, most functions, such

1In fact, it was Schmidt who first proved the Eckart–Young Theorem about 29 years before Eckart
and Young did [130, 139].

11

as cos(xy), are of infinite rank but numerically they can often be approximated on a
bounded domain to machine precision by functions of small finite rank. For example,
cos(xy) can be globally approximated to 16 digits on [−1, 1]2 by a function of rank 6.
This observation lies at the heart of Chapter 2.

If f : [a, b]× [c, d] → C is an L2-integrable function, then it has an SVD that can
be expressed as an infinite series

f(x, y) =
∞∑
j=1

σjuj(y)vj(x), (1.9)

where σ1 ≥ σ2 ≥ · · · ≥ 0 and {uj}j≥1 and {vj}j≥1 are orthonormal sets of functions in
the L2 inner product [130]. In (1.9) the series converges to f in the L2-norm and the
equality sign should be understood to signify convergence in that sense [130]. Extra
smoothness assumptions on f are required to guarantee that the series converges
absolutely and uniformly to f (see Theorem 3.3).

A best rank k approximant to f in the L2-norm can be constructed by truncating
the infinite series in (1.9) after k terms,

fk(x, y) =
k∑

j=1

σjuj(y)vj(x),

inf
gk

‖f − gk‖2L2 = ‖f − fk‖2L2 =
∞∑

j=k+1

σ2
j ,

(1.10)

where the infimum is taken over L2-integrable functions of rank k [130, 139, 166].
The smoother the function the faster ‖f − fk‖2L2 decays to zero as k → ∞, and as
we show in Theorem 3.1 and Theorem 3.2, differentiable and analytic functions have
algebraically and geometrically accurate low rank approximants, respectively.

In practice the computation of the SVD of a function is expensive and instead in
Chapter 2 we use an iterative variant of Gaussian elimination with complete pivot-
ing to construct near-optimal low rank approximants. In Chapter 4 these ideas are
extended further to continuous analogues of matrix factorizations.

12

1.9 Approximation theory for bivariate functions

In one variable a continuous real-valued function defined on a interval has a best
minimax polynomial approximation [122, Thm. 1.2] that is unique [122, Thm. 7.6]
and satisfies an equioscillation property [122, Thm. 7.2]. In two variables a continuous
function f : [a, b] × [c, d] → R also has a best minimax polynomial approximation,
but it is not guaranteed to be unique.

Theorem 1.3 (Minimax approximation in two variables). Let f : [a, b]× [c, d] → R
be a continuous function and let m and n be integers. Then, there exists a bivariate
polynomial pbestm,n of degree at most m in x and at most n in y such that

∥∥f − pbestm,n

∥∥
∞ = inf

p∈Pm,n

‖f − p‖∞ ,

where Pm,n denotes the set of bivariate polynomials of degree at most m in x and at
most n in y. In contrast to the situation in one variable, pbestm,n need not be unique.

Proof. Existence follows from a continuity and compactness argument [122, Thm. 1.2].
Nonuniqueness is a direct consequence of Haar’s Theorem [71, 100]. Further discussion
is given in [125, 127].

The definition of pprojn can also be extended for bivariate functions that are suffi-
ciently smooth.

Theorem 1.4 (Uniform convergence of bivariate Chebyshev expansions). Let f :

[−1, 1]2 → C be a continuous function of bounded variation (see [104, Def. 5.2] for a
definition of bounded variation for bivariate functions) with one of its partial deriva-
tives existing and bounded in [−1, 1]2. Then f has a bivariate Chebyshev expansion,

f(x, y) =
∞∑
i=0

∞∑
j=0

aijTi(y)Tj(x), (1.11)

where the series converges uniformly to f .

Proof. See [104, Thm. 5.9].

This means that bivariate Chebyshev projections pprojm,n of degree m in x and degree
n in y can be defined for functions satisfying the assumptions of Theorem 1.4 by

13

truncating the series in (1.11), i.e.,

pprojm,n(x, y) =
n∑

i=0

m∑
j=0

aijTi(y)Tj(x). (1.12)

Once a Chebyshev projection of a bivariate function has been computed, one can
construct a low rank approximation by taking the SVD of the (n + 1) × (m + 1)

matrix of coefficients in (1.12). However, the main challenge is to construct a low
rank approximation to a bivariate function in a computational cost that depends only
linearly on max(m,n). In the next chapter we will present an algorithm based on
Gaussian elimination that achieves this.

14

Chapter 2

An extension of Chebyshev
technology to two dimensions*

Chebyshev technology is a well-established tool for computing with functions of
one real variable, and in this chapter we describe how these ideas can be extended
to two dimensions for scalar and vector valued functions. These types of functions
represent scalar functions, vector fields, and surfaces embedded in R3, and we focus
on the situation in which the underlying function is globally smooth and aim for
spectrally accurate algorithms. The diverse set of 2D operations that we would like
to perform range from integration to vector calculus operations to global optimization.

A compelling paradigm for computing with continuous functions on bounded do-
mains, and the one that we use in this thesis, is to replace them by polynomial approx-
imants (or “proxies”) of sufficiently high degree so that the approximation is accurate
to machine precision relative to the absolute maximum of the function [28, 161].
Often, operations on functions can then be efficiently calculated, up to an error of
machine precision, by numerically computing with a polynomial approximant. Here,
we use low rank approximants, i.e., sums of functions of the form g(y)h(x), where the
functions of one variable are polynomials that are represented by Chebyshev expan-
sions (see Section 1.2).

Our low rank approximations are efficiently constructed by an iterative variant of
Gaussian elimination (GE) with complete pivoting on functions [151]. This involves
applying GE to functions rather than matrices and adaptively terminating the number
of pivoting steps. To decide if GE has resolved a function we use a mix of 1D and

*This chapter is based on a paper with Nick Trefethen [152]. Trefethen proposed that we work
with Geddes–Newton approximations, which were quickly realized to be related to low rank approx-
imations. I developed the algorithms, the Chebfun2 codes, and was the lead author in writing the
paper [152].

15

2D resolution tests (see Section 2.1). An approximant that has been formed by this
algorithm is called a chebfun2, which is a 2D analogue of a chebfun (see Section 1.6).

Our extension of Chebyshev technology to two dimensions is realized in a software
package called Chebfun2 that is publicly available as part of Chebfun [152, 161].
Once a function has been approximated by Chebfun2 there are about 150 possible
operations that can be performed with it; a selection is described in this thesis.

Throughout this chapter we restrict our attention to scalar and vector valued
functions defined on the unit square, i.e. [−1, 1]2, unless stated otherwise. The
algorithms and software permit easy treatment of general rectangular domains.

2.1 Gaussian elimination for functions

We start by describing how a chebfun2 approximant is constructed.
Given a continuous function f : [−1, 1]2 → C, an optimal rank k approximant in

the L2-norm is given by the first k terms of the SVD (see Section 1.8). Alternatively,
an algorithm mathematically equivalent to k steps of GE with complete pivoting can
be used to construct a near-optimal rank k approximant. In this section we describe
a continuous idealization of GE and later detail how it can be made practical (see
Section 2.1.1).

First, we define e0 = f and find (x1, y1) ∈ [−1, 1]2 such that1 |e0(x1, y1)| =

max(|e0(x, y)|). Then, we construct the rank 1 function

f1(x, y) =
e0(x1, y)e0(x, y1)

e0(x1, y1)
= d1c1(y)r1(x),

where d1 = 1/e0(x1, y1), c1(y) = e0(x1, y), and r1(x) = e0(x, y1), which coincides with
f along the two lines y = y1 and x = x1. We calculate the residual e1 = f − f1 and
repeat the same procedure to form the rank 2 function

f2(x, y) = f1(x, y) +
e1(x2, y)e1(x, y2)

e1(x2, y2)
= f1(x, y) + d2c2(y)r2(x),

where (x2, y2) ∈ [−1, 1]2 is such that |e1(x2, y2)| = max(|e1(x, y)|). The function f2

coincides with f along the lines x = x1, x = x2, y = y1, and y = y2. We continue
constructing successive approximations f1, f2, . . . , fk, where fk coincides with f along

1In practice we estimate the global absolute maximum by taking the discrete absolute maximum
from a sample grid (see Section 2.1.1).

16

Algorithm: GE with complete pivoting on functions

Input: A function f = f(x, y) on [−1, 1]2 and a tolerance tol.
Output: A low rank approximation fk(x, y) such that ‖f − fk‖∞ ≤ tol.

e0(x, y) = f(x, y), f0(x, y) = 0, k = 1

while ‖ek‖∞ > tol

Find (xk, yk) s.t. |ek−1(xk, yk)| = max(|ek−1(x, y)|), (x, y) ∈ [−1, 1]2

ek(x, y) = ek−1(x, y)− ek−1(xk, y)ek−1(x, yk)/ek−1(xk, yk)

fk(x, y) = fk−1(x, y) + ek−1(xk, y)ek−1(x, yk)/ek−1(xk, yk)

k = k + 1

end

Figure 2.1: Iterative GE with complete pivoting on functions of two variables. The
first k steps can be used to construct a rank k approximation to f . In practice, this
continuous idealization must be discretized.

2k lines, until ‖ek‖∞ = ‖f − fk‖∞ falls below machine precision relative to ‖f‖∞.
Figure 2.1 gives the pseudocode for this algorithm, which is a continuous analogue of
matrix GE (cf. [160, Alg. 20.1]).

Despite the many similarities between GE for matrices and for functions, there are
also notable differences: (1) The pivoting is done implicitly as the individual columns
and rows of a function are not physically permuted, whereas for matrices the pivoting
is usually described as a permutation; (2) The canonical pivoting strategy we use is
complete pivoting, not partial pivoting; and (3) The underlying LU factorization is no
longer just a factorization of a matrix. Further discussion related to these differences
is given in Chapter 4.

After k steps of GE we have constructed k successive approximations f1, . . . , fk.
We call (x1, y1), . . . , (xk, yk) the pivot locations and d1, . . . , dk the pivot values. We
also refer to the functions c1(y), . . . , ck(y) and r1(x), . . . , rk(x) as the pivot columns
and pivot rows, respectively.

The kth successive approximant, fk, coincides with f along k pairs of lines that
cross at the pivots selected by GE, as we prove in the next theorem. The theorem
and proof appears in [11] and is a continuous analogue of [141, (1.12)].

Theorem 2.1 (Cross approximation of GE). Let f : [−1, 1]2 → C be a continuous
function and fk the rank k approximant of f computed by k steps of GE that pivoted
at (x1, y1), . . . , (xk, yk) ∈ [−1, 1]2. Then, fk coincides with f along the 2k lines x =

x1, . . . , x = xk and y = y1, . . . , y = yk.

17

Proof. After the first step the error e1(x, y) satisfies

e1(x, y) = f(x, y)− f1(x, y) = f(x, y)− f(x1, y)f(x, y1)

f(x1, y1)
.

Substituting x = x1 gives e1(x1, y) = 0 and substituting y = y1 gives e1(x, y1) = 0.
Hence, f1 coincides with f along x = x1 and y = y1.

Suppose that fk−1 coincides with f along the lines x = xj and y = yj for 1 ≤ j ≤
k − 1. After k steps we have

ek(x, y) = f(x, y)− fk(x, y) = ek−1(x, y)−
ek−1(xk, y)ek−1(x, yk)

ek−1(xk, yk)
.

Substituting x = xk gives ek(xk, y) = 0 and substituting y = yk gives ek(x, yk) = 0.
Moreover, since ek−1(xj, y) = ek−1(x, yj) = 0 for 1 ≤ j ≤ k − 1 we have ek(xj, y) =
ek−1(xj, y) and ek(x, yj) = ek−1(x, yj) for 1 ≤ j ≤ k − 1 and hence, fk coincides with
f along 2k lines. The result follows by induction on k.

Theorem 2.1 implies that GE on functions exactly reproduces functions that are
polynomial in the x- or y-variable. For instance, if f is a polynomial of degree m in x,
then fm+1 coincides with f at m+1 points in the x-variable (for every y) and is itself
a polynomial of degree ≤ m (for every y); hence fm+1 = f . In particular, a bivariate
polynomial of degree m in x and n in y is exactly reproduced after min(m,n)+ 1 GE
steps.

One may wonder if the sequence of low rank approximants f1, f2, . . . constructed
by GE with complete pivoting converges uniformly to f , and in Theorem 4.6 we show
that the sequence does converge in that sense under certain assumptions on f .

2.1.1 Algorithmic details

So far we have described GE at a continuous level, but to derive a practical scheme
we must work with a discretized version of the algorithm in Figure 2.1. This comes
in two stages, with the first designed to find candidate pivot locations and the second
to ensure that the pivot columns and rows are resolved.

18

rank 33rank 5 rank 65rank 5 rank 65 rank 33

Figure 2.2: Contour plots for three functions on [−1, 1]2 with the pivot locations
from stage 1 marked by black dots: (left) cos(10(x2 + y)) + sin(10(x+ y2)); (center)
Ai(5(x+ y2))Ai(−5(x2 + y2)); and (right) 1/(1 + 100(1

2
− x2 − y2)2).

Stage 1: Finding candidate pivot locations

First, we sample f on a 9 × 9 Chebyshev tensor product grid2 and perform at most
3 steps of GE. If we find that the sampled matrix can be approximated to machine
precision by a rank 1, 2, or 3 matrix, then we move on to stage 2; otherwise, we
sample on a 17 × 17 Chebyshev tensor product grid and perform at most 5 steps of
matrix GE with complete pivoting. We proceed to stage 2 if a matrix of rank 5, or
less, is sufficient. We continue sampling on nested Chebyshev grids of size 9, 17, 33,
65, and so on, until we discover that the sampled matrix can be approximated to
machine precision by a matrix of rank 3, 5, 9, 17, and so on.

Thus, stage 1 approximates a (2j+2 + 1)× (2j+2 + 1) matrix by a matrix of rank
at most 2j + 1 for j ≥ 1. Generically, if f : [−1, 1]2 → C can be approximated
to relative machine precision by a rank k function, then stage 1 samples f on a
(2j+2 + 1) × (2j+2 + 1) tensor product grid, where j = min(dlog2(k − 1)e, 1), and k

steps of GE are required. Since

2dlog2(k−1)e+2 + 1 ≤ 8k + 1 = O(k),

stage 1 requires O (k3) operations. We store the pivot locations used in the k success-
ful steps of GE and go to stage 2. Figure 2.2 shows contour plots of three functions
with the pivot locations selected by stage 1.

2An n × n Chebyshev tensor product grid is the set of points {(xcheb
i , xcheb

j)}0≤i,j≤n−1, where
{xcheb

j }0≤j≤n−1 is the set of n Chebyshev points on [−1, 1] (see (1.1)).

19

Stage 2: Resolving the pivot columns and rows

Stage 1 has determined a candidate set of pivot locations required to approximate
f , and stage 2 is designed to ensure that the associated pivot columns and rows
are sufficiently sampled. For instance, f(x, y) = x cos(100y) is a rank 1 function,
so stage 1 completes after sampling on a 9 × 9 Chebyshev tensor product grid even
though a Chebyshev interpolant of degree 147 is required to resolve the oscillations
in the y-direction. For efficiency in this stage we only sample f on a k-skeleton of
a tensor product grid, i.e., a subset consisting of k columns and rows of the grid,
and perform GE on that skeleton. For example, Figure 2.3 shows the 4-skeleton used
when approximating Franke’s function [53],

f(x, y) =
3

4
e−((9x−2)2+(9y−2)2)/4 +

3

4
e−((9x+1)2/49−(9y+1)/10)

+
1

2
e−((9x−7)2+(9y−3)2)/4 − 1

5
e−((9x−4)2+(9y−7)2).

(2.1)

After k steps of GE on the skeleton we have sampled the pivot columns and rows at
Chebyshev points. Following the procedure used by Chebfun, we convert each pivot
column and row to Chebyshev coefficients using the discrete Chebyshev transform to
ensure that the coefficients decay to relative machine precision. Figure 2.3 shows the
Chebyshev coefficients for the pivot columns used to approximate (2.1). For instance,
if the pivot columns are not resolved with 33 points, then we sample f at 65 points
along each column and repeat k steps of GE. We continue increasing the sampling
along columns and rows until we have resolved them. Since the sets of 9, 17, 33, . . . ,
Chebyshev points are nested, we always pivot at the same locations as determined in
stage 1. If the pivot columns require degree m − 1 Chebyshev interpolants and the
pivot rows require degree n− 1 Chebyshev interpolants, then this stage samples f at,
at most,

k
(
2dlog2(m)e + 2dlog2(n)e

)
≤ 2k(m+ n)

points. We then perform k steps of GE on the selected rows and columns, requiring
O (k2(m+ n)) operations.

Once the GE algorithm has terminated we have approximated f by a sum of
rank 1 functions,

f(x, y) ≈
k∑

j=1

djcj(y)rj(x) = CDRT , (2.2)

20

0 10 20 30 40 50 60 70 80 90
10

−20

10
−15

10
−10

10
−5

10
0

Coefficients of column slices

Column slice 1
Column slice 2
Column slice 3
Column slice 4

Figure 2.3: Left: The skeleton used in stage 2 of the construction algorithm for
approximating Franke’s function (2.1). Stage 2 only samples f on the skeleton, i.e.,
along the black lines. Right: The Chebyshev coefficients of the four pivot columns.
The coefficients decay to machine precision, indicating that the pivot columns have
been sufficiently sampled.

where D = diag (d1, . . . , dk), and C = [c1(y) | · · · | ck(y)] and R = [r1(x) | · · · | rk(x)]
are [−1, 1]× k quasimatrices (see Section 1.7). The representation in (2.2) highlights
how GE decouples the x and y variables, making it useful for computing some 2D
operations using 1D algorithms (see Section 2.2). Given a function f defined on a
bounded rectangular domain we call the approximation in (2.2) a chebfun2 approxi-
mant to f .

Here, we have decided to approximate each column of C by polynomial approxi-
mants of the same degree and likewise, the columns of R are approximated by poly-
nomials of the same degree. This means that subsequent operations of f can be
implemented in a vectorized manner for greater efficiency.

Since in practice we do not use complete pivoting in GE, but instead pick absolute
maxima from a sampled grid, one may wonder if this causes convergence or numerical
stability issues for our GE algorithm. We observe that it does not and that the
algorithm is not sensitive to such small perturbations in the pivot locations; however,
we do not currently have a complete stability analysis. We expect that such an
analysis is challenging and requires some significantly new ideas.

2.1.2 Near-optimality of Gaussian elimination for functions

We usually observe that GE with complete pivoting computes near-optimal low rank
approximants to smooth functions, while being far more efficient than the optimal

21

0 5 10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Rank of approximant

R
el

at
iv

e
er

ro
r

in
 L

2

SVD

GE

γ = 10
γ = 1

γ = 100

0 50 100 150 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Rank of approximant

R
el

at
iv

e
er

ro
r

in
 L

2

SVD

GE

φ
3,1

 ∈ C2

φ
3,3

 ∈ C6

φ
3,0

 ∈ C0

Figure 2.4: A comparison of SVD and GE algorithms shows the near-optimality of
the latter for constructing low rank approximations to smooth bivariate functions.
Left: 2D Runge functions. Right: Wendland’s radial basis functions.

ones computed with the SVD. Here, we compare the L2 errors of optimal low rank
approximants with those constructed by our GE algorithm. In Figure 2.4 (left) we
consider the 2D Runge functions given by

f(x, y) =
1

1 + γ (x2 + y2)2
, γ = 1, 10, 100,

which are analytic in both variables, and (right) we consider Wendland’s radial basis
functions [165],

φ3,s(|x− y|) = φ3,s(r) =

(1− r)2+, s = 0,

(1− r)4+ (4r + 1) , s = 1,

(1− r)8+ (32r3 + 25r2 + 8r + 1) , s = 3,

which have 2s continuous derivatives in both variables. Here, (x)+ equals x if x ≥ 0

and equals 0, otherwise. Theorem 3.1 and 3.2 explain the decay rates for the L2 errors
of the best low rank approximants.

2.1.3 Related literature

Ideas related to GE for functions have been developed by various authors under vari-
ous names, though the connection with GE is usually not mentioned. We now briefly

22

summarize some of the ideas of pseudoskeleton approximation [66], Adaptive Cross
Approximation (ACA) [12], interpolative decompositions [76], and Geddes–Newton
series [31]. The moral of the story is that iterative GE has been independently dis-
covered many times as a tool for low rank approximation, often under different names
and guises.

2.1.3.1 Pseudoskeletons and Adaptive Cross Approximation

Pseudoskeletons approximate a matrix A ∈ Cm×n by a matrix of low rank by com-
puting the CUR decomposition3 A ≈ CUR, where C ∈ Cm×k and R ∈ Ck×n are
subsets of the columns and rows of A, respectively, and U ∈ Ck×k [66]. Selecting good
columns and rows of A is of paramount importance, and this can be achieved via
maximizing volumes [64], randomized techniques [45, 99], or ACA. ACA constructs
a skeleton approximation with columns and rows selected adaptively [11]. The selec-
tion of a column and row corresponds to choosing a pivot location in GE, where the
pivoting entry is the element belonging to both the column and row. If the first k
columns and rows are selected, then for A11 ∈ Ck×k,

(
A11 A12

A21 A22

)
−
(
A11

A21

)
A−1

11

(
A11 A12

)
=

(
0 0
0 S

)
, (2.3)

where S = A22 −A21A
−1
11 A12 is the Schur complement of A22 in A. The relation (2.3)

is found in [12, p. 128] and when compared with [141, Thm. 1.4], it is apparent that
ACA and GE are mathematically equivalent. This connection remains even when
the columns and rows are adaptively selected [141, Theorem 1.8]. The continuous
analogue of GE with complete pivoting is equivalent to the continuous analogue of
ACA with adaptive column and row selection via complete pivoting. Bebendorf has
used ACA to approximate bivariate functions [11] and has extended the scheme to
the approximation of multivariate functions [13]. A comparison of approximation
schemes that construct low rank approximations to functions is given in [15] and the
connection to Gaussian elimination was explicitly given in [12, p. 147].

Theoretically, the analysis of ACA is most advanced for maximum volume pivot-
ing, i.e., picking the pivoting locations to maximize the modulus of the determinant

3The pseudoskeleton literature writes A ≈ CGR. More recently, it has become popular to follow
the nomenclature of [45] and replace G by U .

23

of a certain matrix. Under this pivoting strategy, it has been shown that [65]

‖A− Ak‖max ≤ (k + 1)σk+1(A),

where Ak is the rank k approximant of A after k steps of GE with maximum volume
pivoting, ‖ · ‖max is the maximum absolute entry matrix norm, and σk+1(A) is the
(k + 1)st singular value of A. Generally, maximum volme pivoting is not used in
applications because it is computationally expensive. For error analysis of ACA under
different pivoting strategies, see [12, 131].

In practice, pseudoskeleton approximation and ACA are used to construct low
rank matrices that are derived by sampling kernels from boundary integral equa-
tions [12], and these ideas have been used by Hackbusch and others for efficiently
representing matrices with hierarchical low rank [72, 73].

2.1.3.2 Interpolative decompositions

Given a matrix A ∈ Cm×n, an interpolative decomposition of A is an approximate
factorization A ≈ A(:, J)X, where J = {j1, . . . , jk} is a k-subset of the columns of A
and X ∈ Ck×n is a matrix such that X(:, J) = Ik. Here, the notation A(:, J) denotes
the m × k matrix obtained by horizontally concatenating the j1, . . . , jk columns of
A. It is usually assumed that the columns of A are selected in such a way that the
entries of X are bounded by 2 [36, 102]. It is called an interpolative decomposition
because A(:, J)X interpolates (coincides with) A along k columns.

More generally, a two-sided interpolative decomposition of A is an approximate
factorization A ≈ WA(J ′, J)X, where J ′ and J are k-subsets of the rows and columns
of A, respectively, such that W (:, J ′) = Ik and X(:, J) = Ik. Again, the matrices
X ∈ Ck×n and W ∈ Cm×k are usually required to have entries bounded by 2.

Two-sided interpolative decompositions can be written as pseudoskeleton approx-
imations, since

WA(J ′, J)X = (WA(J ′, J))A(J ′, J)−1 (A(J ′, J)X) = CUR,

where C = A(:, J), U = A(J ′, J)−1, and R = A(J ′, :). A major difference is how the
rows and columns of A are selected, i.e., the pivoting strategy in GE. Interpolative
decompositions are often based on randomized algorithms [76, 103], whereas pseu-
doskeletons are, at least in principle, based on maximizing a certain determinant.

24

2.1.3.3 Geddes–Newton series

Though clearly a related idea, the theoretical framework for Geddes–Newton series
was developed independently of the other methods discussed above [35]. For a func-
tion f and a splitting point (a, b) ∈ [−1, 1] such that f(a, b) 6= 0, the splitting operator
Υ(a,b) is defined as

Υ(a,b)f(x, y) =
f(x, b)f(a, y)

f(a, b)
.

The splitting operator is now applied to the function,

f(x, y)−Υ(a,b)f(x, y) = f(x, y)− f(x, b)f(a, y)

f(a, b)
,

which is mathematically equivalent to one step of GE on f with the splitting point
as the pivot location. This is then applied iteratively, and when repeated k times is
equivalent to applying k steps of GE on f .

The main application of Geddes–Newton series so far is given in [31], where the
authors use them to derive an algorithm for the quadrature of symmetric functions.
Their integration algorithm first maps a function to one defined on [0, 1]2 and then
decomposes it into symmetric and anti-symmetric parts, ignoring the anti-symmetric
part since it integrates to zero. The authors employ a very specialized pivoting
strategy designed to preserve symmetry in contrast to our complete pivoting strategy,
which we have found to be more robust.

2.2 Quadrature and other tensor product operations

In addition to approximating functions of two variables we would like to evaluate,
integrate, and differentiate them. The GE algorithm on functions described in Sec-
tion 2.1 allows us to construct the approximation

f(x, y) ≈
k∑

j=1

djcj(y)rj(x), (2.4)

where c1, . . . , ck and r1, . . . , rk are Chebyshev interpolants of degree m and n, respec-
tively. The approximant in (2.4) is an example of a separable model, in the sense
that the x and y variables have been decoupled. This allows us to take advantage

25

of established 1D Chebyshev technology to carry out substantial computations much
faster than one might expect.

For example, consider the computation of the definite double integral of f(x, y)
that can be computed by the sum2 command in Chebfun2. From (2.4), we have

ˆ 1

−1

ˆ 1

−1

f(x, y)dxdy ≈
k∑

j=1

dj

(ˆ 1

−1

cj(y)dy

)(ˆ 1

−1

rj(x)dx

)
,

which has reduced the 2D integral of f to a sum of 2k 1D integrals. These 1D
integrals can be evaluated by calling the sum command in Chebfun, which utilizes
Clenshaw–Curtis quadrature [38]. That is,

ˆ 1

−1

rj(x)dx = a j
0 +

bn/2c∑
s=1

2a j
2s

1− 4s2
, 1 ≤ j ≤ k,

where a j
s is the sth Chebyshev expansion coefficient of rj (see (1.4)). In practice, the

operation is even more efficient because the pivot rows r1, . . . , rk are all of the same
polynomial degree and thus, Clenshaw–Curtis quadrature can be implemented in a
vectorized fashion.

This idea extends to any tensor product operation.

Definition 2.1. A tensor product operator L is a linear operator on functions of two
variables with the property that if f(x, y) = g(y)h(x) then L(f) = Ly(g)Lx(h), for
some operators Ly and Lx. Thus, if f is of rank k then

L

(
k∑

j=1

djcj(y)rj(x)

)
=

k∑
j=1

djLy(cj)Lx(rj).

A tensor product operation can be achieved with O(k) calls to well-established 1D
Chebyshev algorithms since Ly and Lx act on functions of one variable. Four impor-
tant examples of tensor product operations are integration (described above), differ-
entiation, evaluation, and the computation of bivariate Chebyshev coefficients.

Tensor product operations represent the ideal situation where well-established
Chebyshev technology can be exploited for computing in two dimensions. Table 2.1
shows a selection of Chebfun2 commands that rely on tensor product operations.

26

Chebfun2 command Operation

sum, sum2 integration
cumsum, cumsum2 cumulative integration
prod, cumprod product integration

norm L2-norm
diff partial differentiation

chebpoly2 2D discrete Chebyshev transform
f(x,y) evaluation

plot, surf, contour plotting
flipud, fliplr reverse direction of coordinates
mean2, std2 mean, standard deviation

Table 2.1: A selection of scalar Chebfun2 commands that rely on tensor product
operations. In each case the result is computed with greater speed than one might
expect because the algorithms take advantage of the underlying low rank structure.

2.2.1 Partial differentiation

Partial differentiation is a tensor product operator since it is linear and for N ≥ 0,

∂N

∂yN

(
k∑

j=1

djcj(y)rj(x)

)
=

k∑
j=1

dj
∂Ncj
∂yN

(y)rj(x),

with a similar relation for partial differentiation in x. Therefore, derivatives of f
can be computed by differentiating its pivot columns or rows using a recurrence rela-
tion [104, p. 34]. The fact that differentiation and integration can be done efficiently
means that low rank technology is a powerful tool for vector calculus (see Section 2.4).

2.2.2 Function evaluation

Evaluation is a tensor product operation since it is linear and trivially satisfies Def-
inition 2.1. Therefore, point evaluation of a rank k chebfun2 approximant can be
carried out by evaluating 2k univariate Chebyshev expansion using Clenshaw’s algo-
rithm [37]. Evaluation is even more efficient since the pivot columns and rows are
of the same polynomial degree and Clenshaw’s algorithm can be implemented in a
vectorized fashion.

27

2.2.3 Computation of Chebyshev coefficients

If f is a chebfun, then chebpoly(f) in Chebfun returns a column vector of the
Chebyshev coefficients of f. Analogously, if f is a chebfun2, then chebpoly2(f)

returns the matrix of bivariate Chebyshev coefficients of f and this matrix can be
computed efficiently.

The computation of bivariate Chebyshev coefficients is a tensor product operation
since

chebpoly2

(
k∑

j=1

djcj(y)rj(x)

)
=

k∑
j=1

djchebpoly(cj)chebpoly(rj)T ,

and thus the matrix of coefficients in low rank form can be computed in O(k(m logm+

n log n)) operations, where the chebpoly command is computed by the discrete
Chebyshev transform.

The inverse of this operation is function evaluation on a Chebyshev tensor product
grid. This is also a tensor product operation, where the 1D pivot columns and rows
are evaluated using the inverse discrete Chebyshev transform [57].

2.3 Other fundamental operations

Some operations, such as function composition and basic arithmetic operations are
not tensor product operations. For these operations it is more challenging to exploit
the low rank structure of a chebfun2 approximant.

2.3.1 Composition operations

Function composition operations apply one function pointwise to another to produce
a third, and these are generally not tensor product operations. For instance, if f is a
chebfun2, then we may want an approximant for cos(f), exp(f), or f.^2, represent-
ing the cosine, exponential, and pointwise square of a function. For such operations
we use the GE algorithm, with the resulting function approximated without knowl-
edge of the underlying low rank representation of f. That is, we exploit the fact
that we can evaluate the function composition pointwise and proceed to use the GE
algorithm to construct a new chebfun2 approximation of the resulting function. It
is possible that the underlying structure of f could somehow be exploited to slightly

28

improve the efficiency of composition operations. We do not consider this any further
here.

2.3.2 Basic arithmetic operations

Basic arithmetic operations are another way in which new functions can be con-
structed from existing ones, and are generally not tensor product operations. For
example, if f and g are chebfun2 objects, then f+g, f.*g, and f./g represent binary
addition, pointwise multiplication, and pointwise division. For pointwise multiplica-
tion and division we approximate the resulting function by using the GE algorithm
in the same way as for composition operations. For pointwise division an additional
test is required to check that the denominator has no roots.

Table 2.2 gives a selection of composition and basic arithmetic operations that
use the GE algorithm without exploiting the underlying low rank representation.

Absent from the table is binary addition, for which we know how to exploit the low
rank structure and find it more efficient to do so. In principle, binary addition f + g

requires no computation, only memory manipulation, since the pivot columns and
rows of f and g could just be concatenated together; however, operations in Chebfun
aim to approximate the final result with as few degrees of freedom as possible by
removing negligible quantities that fall below machine precision. For binary addition
the mechanics of this compression step are special.

More precisely, if f and g are represented as f = CfDfRT
f and g = CgDgRT

g , then
h = f + g can be written as

h =
[
Cf Cg

](Df 0
0 Dg

)[
RT

f

RT
g

]
. (2.5)

This suggests that the rank of h is the sum of the ranks of f and g, but usually it
can be approximated by a function of much lower rank. To compress (2.5) we first
compute the QR factorizations of the two quasimatrices (see Section 1.7),

[
Cf Cg

]
= QLRL,

[
Rf Rg

]
= QRRR,

29

Chebfun2 command Operation

.*, ./ multiplication, division
cos, sin, tan trigonometric functions

cosh, sinh, tanh hyperbolic functions
exp exponential

power integer powers

Table 2.2: A selection of composition and basic arithmetic operations in Chebfun2.
In each case we use the GE algorithm to construct a chebfun2 approximant of the
result that is accurate to relative machine precision.

and obtain the representation

h = QL

(
RL

(
Df 0
0 Dg

)
RT

R

)
︸ ︷︷ ︸

=B

QT
R.

Next, we compute the matrix SVD, B = UΣV ∗, so that

h = (QLU) Σ
(
V ∗QT

R

)
.

This is an approximate SVD for h and can be compressed by removing any negligible
diagonal entries in Σ and the corresponding functions in QLU and V ∗QT

R. A discrete
analogue of this algorithm for the addition of low rank matrices is described in [12,
p. 17] and [14].

In principle, it is possible to derive similar compression algorithms for composition
operations; however, it is only beneficial to do so when the upper bound on the rank
of the resulting function is small.

2.4 Vector calculus operations

We can also represent vector valued functions defined on rectangles. Our convention
is to use a lower case letter for a scalar function, f , and a capital letter for a vector
function, F = (f1, f2)

T . We call an approximant to a vector valued function with two
(or three) components a chebfun2v4. In this section we assume F has two components

4There is a object-oriented class called chebfun2v in Chebfun that represents vector-valued func-
tions [161].

30

(for three components, see Section 2.5).
No new complications arise for vector valued functions since each component is

represented as an independent scalar function approximated by a chebfun2. However,
the operations that can be implemented are potentially very useful for applications.
Many of the vector calculus operations on a chebfun2v rely on tensor product oper-
ations on its chebfun2 components, which in turn rely on 1D calculations with pivot
columns and rows represented by chebfuns.

2.4.1 Algebraic operations

The basic non-differential operations of vector calculus are scalar multiplication fG,
vector addition F +G, dot product F ·G, and cross product F ×G. We explain these
operations in turn.

Scalar multiplication is the product of a scalar function with a vector function
and algorithmically, it is achieved by two scalar function multiplications, one for each
component.

Vector addition of two chebfun2v objects yields another chebfun2v and is com-
puted by adding the two scalar components together using the compression algorithm
described in Section 2.3.

The dot product takes two vector functions and returns a scalar function. Alge-
braically, it is an inner product, i.e., the sum of the products of the two components,
and is computed directly from its definition. If the dot product of F and G is zero at
(x0, y0), then the vectors F and G are orthogonal at (x0, y0).

The cross product is well-known as an operation on vector functions with three
components, and it can also be defined when there are only two,

F ×G = f1g2 − f2g1, F =

(
f1
f2

)
, G =

(
g1
g2

)
.

Here, the cross product is a scalar function, which can be represented by a chebfun2.
Algorithmically, we compute it directly from the relation F ×G = f1g2 − f2g1.

2.4.2 Differential operations

Vector calculus also involves various differential operators such as the gradient ∇f ,
curl ∇× F , divergence ∇ · F , and Laplacian ∇2f .

31

Command Operation

+, - addition, subtraction
dot dot product

cross cross product
gradient gradient

curl curl
divergence divergence
laplacian Laplacian
quiver phase portrait

Table 2.3: Vector calculus commands in Chebfun2. In most cases the result is com-
puted with greater speed than one might expect because of the exploitation of the
componentwise low rank structure (see Section 2.2).

The gradient of a chebfun2 is a chebfun2v representing ∇f = (∂f/∂x, ∂f/∂y)T ,
which is a vector that points in the direction of steepest ascent.

The curl of a vector function with two components is a scalar function defined by

∇× F =
∂f2
∂x

− ∂f1
∂y

, F =

(
f1
f2

)
.

If F is a vector valued function describing a velocity field of a fluid, then (∇× F)/2

is a scalar function equal to the angular speed of a particle in the flow. A particle
moving in a gradient field has zero angular speed and hence, ∇× (∇f) = 0.

The divergence of a vector function is defined as

div(F) =
∂f1
∂x

+
∂f2
∂y

, F =

(
f1
f2

)
.

Divergence measures a vector field’s distribution of sources or sinks. The Laplacian
is closely related and is the divergence of the gradient, ∇2f = ∇ · (∇f).

Table 2.3 summarizes the vector calculus commands available in Chebfun2.

2.4.3 Phase portraits

Aside from vector calculus operations, a vector valued function F can be visualized
by a phase portrait.

A phase portrait of a vector field F is a graphical representation of a system of

32

−4 −2 0 2 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.5: Phase portraits and example trajectories for the nonlinear pendulum (left)
and the Duffing oscillator (right). Trajectories in the phase portraits (red lines) are
computed using the ode45 command in Chebfun2.

trajectories for the autonomous dynamical system dx/dt = f1(x, y), dy/dt = f2(x, y),
where f1 and f2 are the components of F and each curve represents a different initial
condition. In Chebfun2 these phase portraits can be plotted by the quiver command
for the underlying vector field and the ode45 command computes a representative
trajectory when an initial condition is supplied (see Figure 2.5).

If F is a chebfun2v, then ode45(F,tspan,y0) solves the autonomous system
dx/dt = f1(x, y), dy/dt = f2(x, y) with the prescribed time interval, tspan, and
initial conditions, y0. This command returns a complex-valued chebfun encoding the
trajectory in the form x(t) + iy(t).

For example, Figure 2.5 (left) shows the phase portrait for the dynamical system
ẋ = y, ẏ = − sin(x)/4 representing a nonlinear pendulum, together with some sample
trajectories, and Figure 2.5 (right) shows a trajectory in a phase portrait for the
Duffing oscillator

ẋ = y, ẏ = 4
100
y − 3

4
x+ x3,

where the time interval is [0, 50] and the initial condition is x(0) = 0, y(0) = 1
2
.

2.4.4 Green’s Theorem

Green’s Theorem expresses a double integral over a connected domain D ⊂ R2 with
a simple piecewise smooth boundary as a line integral along its boundary, C, which
is positively oriented. If F is a vector valued function with components that have

33

continuous partial derivatives, then by Green’s Theorem [105, p. 96]

¨
D

∇ · Fdxdy =

˛
C

F · n̂ dC, (2.6)

where n̂ is the outward pointing unit normal vector on the boundary. Therefore,
to integrate any scalar function f over a region enclosed by a smooth closed curve
we can construct a vector function F satisfying f = ∇ · F , and then calculate a line
integral instead. Green’s Theorem is thus another convenient tool for computing a 2D
quantity with 1D technology. The integral2(f,c) command in Chebfun2 employs
this algorithm, where the boundary of D is encoded as a complex-valued chebfun, c.

Figure 2.6 (left) shows a complex-valued chebfun in the shape of a heart defined
by −16 sin(t)3 + i(13 cos(t) − 5 cos(2t) − 2 cos(3t) − cos(4t)) on t ∈ [0, 2π]. The
integral2(f,c) command in Chebfun2 computes the volume between the surface of
z = f(x, y) = cos(x) + y/100 and z = 0 over the heart as 10.312461561235859.

2.5 Computing with surfaces embedded in R3*

Chebfun2 can also represent vector functions with three components, and these
types of functions are useful for computing with parametrically defined surfaces (pro-
vided the parameters are defined on a rectangular domain). For example, the torus
can be defined as

F (θ, φ) =

(R + r cosφ) cos θ
(R + r cosφ) sin θ

r sinφ

 , (θ, φ) ∈ [0, 2π]2,

where R is the distance from the center of the tube to the center of the torus and r

is the radius of the tube.
Some parametrically defined surfaces can be created by rotating a curve around an

axis. If f is a function of one variable defined on [−1, 1], then F (u, v) = (f(u) cos(v), f(u) sin(v), u)T

with (u, v) ∈ [−1, 1]× [0, 2π] is the surface of revolution obtained by rotating f about
the z-axis. If f is a chebfun, then the cylinder command in Chebfun returns a cheb-
fun2v that represents the corresponding surface of revolution obtained by rotating f

about the z-axis.
*The idea of using chebfun2v objects to represent parametric surfaces in Chebfun2 is due to

Rodrigo Platte.

34

All the vector calculus operations described for vector functions of two compo-
nents can be considered when there are three components, with similar underlying
algorithms. Since the vector functions are constant in the third z-variable, standard
vector calculus relations can usually be simplified, for example,

∇× F =

 ∂f3/∂y
−∂f3/∂x

∂f2/∂x− ∂f1/∂y

 , F (x, y) =

f1f2
f3

 .

One potentially useful quantity of a surface is its normal vector, which is the cross
product of the partial derivatives of its parameterization, i.e.,

normal(F) =
∂F

∂x
× ∂F

∂y
. (2.7)

This vector can be scaled to have length 1, making it a unit normal vector. When
F represents a surface, the normal vector to F is equal to the cross product of the
tangential surface vectors. A challenging algorithmic issue is how to ensure that the
normal vector is outward pointing, and currently the normal command in Chebfun2
returns a chebfun2v representing the normal vector that can have an inward or out-
ward orientation [161].

Given a smooth vector function F representing a parametric surface that encloses
a compact region V ⊂ R3, the volume of V can be expressed as a 3D integral, i.e.,˝

V
dxdydz. The divergence theorem [105, Sec. 5.1] can be employed to express the

volume integral as the following surface integral:

˚
V

dxdydz =

˚
V

(∇ ·G) dxdydz =
‹

F

(G · n̂) dF,

where G is any continuously differentiable vector field in V with ∇·G = 1 and n̂ is the
unit normal vector to F . We usually pick G = (x, y, z)/3 as this treats each variable
equally. Further, suppose that F = F (θ, ψ). Then since dF = |∂F/∂x×∂F/∂y|dθdψ
we have

‹
F

(G · n̂) dF =

¨
F

G ·
∂F
∂x

× ∂F
∂y∣∣∣∂F∂x × ∂F
∂y

∣∣∣
 ∣∣∣∣∂F∂x × ∂F

∂y

∣∣∣∣ dθdψ =

¨
F

(G · n) dθdψ,

where n is the unnormalized normal vector to F equal to the cross product of the

35

Figure 2.6: Left: Heart-shaped domain and the normal vector to the boundary,
which can be used to integrate functions defined on the heart via Green’s Theo-
rem (see (2.6)). Right: Heart-shaped surface and the normal vector to the surface,
which can be used to integrate functions defined inside the heart via the divergence
theorem.

tangential surface vectors. The last integral can be used in practice even when the
normal vector determined by (2.7) has zero length somewhere on the surface. This is
important, for instance, when working with the sphere defined parametrically since
by the Hairy Ball Theorem [108] there is no nonvanishing continuous tangent vector
field on a sphere. Hence, regardless of the parameterization of the sphere the resulting
normal vector computed by (2.7) has at least one point of zero length.

Figure 2.6 (right) shows a chebfun2v with three components representing a heart-
shaped surface, which is parametrically defined as

F (θ, φ) =

 sin(πφ) cos(θ/2)
0.7 sin(πφ) sin(θ/2)

(φ− 1)(−49 + 50φ+ 30φ cos(θ) + cos(2θ))/(cos(θ)2 − 25)

 ,

where (θ, φ) ∈ [0, 1] × [0, 4π]. The volume of F can be calculated by picking G so
that ∇ · G = 1, computing the normal vector to F using the cross product in (2.7),
and then integrating the dot product of G with the surface normal vector. Chebfun2
computes the volume of the heart-shaped surface as 2.199114857512854.

36

Chapter 3

Low rank approximation theory

In this chapter we are interested in the theory of low rank function approximation.
How fast does inffk ‖f − fk‖∞ decay to 0, where the infimum is taken over bounded
rank k functions? What sort of functions are numerically of low rank? We discuss
these questions and investigate some properties of the SVD of a function.

Throughout this chapter we consider continuous functions defined on [−1, 1]2, but
the discussion is analogous for any bounded rectangular domain [a, b]× [c, d] ⊂ R2.

3.1 The rank of a bivariate polynomial

Let pm,n be a bivariate polynomial of degree (m,n), i.e., of degree m in x and degree
n in y. Expressing pm,n in the tensor product monomial basis,

pm,n(x, y) =
m∑
j=0

n∑
i=0

αijy
ixj =

m∑
j=0

(
n∑

i=0

αijy
i

)
xj, αij ∈ C, (3.1)

we see that pm,n is a sum of m+ 1 functions of rank 1 and hence, is of rank at most
m + 1. Similarly, by interchanging the summation in (3.1), we find that pm,n is of
rank at most n+1. We conclude that the rank of pm,n is at most min(m,n)+1. That
is,

rank(pm,n) ≤ min(m,n) + 1, pm,n ∈ Pm,n, (3.2)

where Pm,n is the set of bivariate polynomials of degree (m,n). Therefore, a best
rank k approximation to pm,n is exact for k ≥ min(m,n) + 1.

37

Conversely, m and n are not bounded by any function of k. For example, consider
the rank 1 function xmyn where m and n are arbitrarily large.

3.2 The numerical rank and degree of a function

Inequality (3.2) can be extended to functions that are mathematically of infinite rank,
but numerically of finite rank. Given a tolerance ε > 0, we say that a function f has
a numerical rank of kε if

kε = inf

{
k ∈ N : inf

fk
‖f − fk‖∞ ≤ ε ‖f‖∞

}
,

where the inner infimum is taken over bounded rank k functions. By the Stone–
Weierstrass Theorem [143], if f is continuous then it can be arbitrarily approximated
by bivariate polynomials and hence, kε is well-defined for any ε > 0.

For ε > 0, we say that a function f has a numerical degree of (mε, nε) if

mε = inf
{
m ∈ N : lim

n→∞

∥∥f − pbestm,n

∥∥
∞ ≤ ε‖f‖∞

}
,

nε = inf
{
n ∈ N : lim

m→∞

∥∥f − pbestm,n

∥∥
∞ ≤ ε‖f‖∞

}
,

where pbestm,n is a best minimax polynomial approximant to f of degree at most (m,n)
(see Theorem 1.3). By the Stone–Weierstrass Theorem again, the numerical degree
of a continuous function is well-defined for any ε > 0.

Now, fix ε > 0 and suppose that f has numerical degree (mε, nε). The polynomial
pbestmε,n is of rank at most mε + 1 for all n and hence

inf
fmε+1

‖f − fmε+1‖∞ ≤ lim
n→∞

‖f − pbestmε,n‖∞ ≤ ε‖f‖∞,

or equivalently, kε ≤ mε + 1. Similarly, we find that kε ≤ nε + 1, and we conclude
kε ≤ min(mε, nε) + 1 (cf. (3.2)).

Conversely, mε and nε are not bounded by any function of kε, as the example
xmyn again shows.

38

3.3 Numerically low rank functions

Let 0 < ε ≤ 1/4 and f : [−1, 1]2 → C be a continuous function with numerical rank
kε and numerical degree (mε, nε). Then, by definition, there exists a bounded rank
kε function fkε so that ‖f − fkε‖∞ ≤ 2ε‖f‖∞ and for sufficiently large m and n we
have ‖f − pbestmε,n‖∞ ≤ ε‖f‖∞ and ‖f − pbestm,nε

‖∞ ≤ ε‖f‖∞. Though it is not immediate
it turns out that fkε itself has a numerical degree that is close to (mε, nε) since

∥∥fkε − pbestmε,n

∥∥
∞ ≤ ‖f − fkε‖∞ +

∥∥f − pbestmε,n

∥∥
∞ ≤ 3ε‖f‖∞ ≤ 6ε‖fkε‖∞,

where the last inequality comes from the reverse triangle inequality,

‖fkε‖∞ ≥ ‖f‖∞ − ‖f − fkε‖∞ ≥ (1− 2ε)‖f‖∞ ≥ 1

2
‖f‖∞.

A similar argument shows that
∥∥fkε − pbestm,nε

∥∥
∞ ≤ 6ε‖fkε‖∞. Thus, we expect that fkε

can be numerically approximated by kε rank 1 sums, each one involving a polynomial
in x and y of degree at most mε and nε, respectively. Therefore, roughly, kε (mε + nε)

parameters are required to store a low rank approximation to f that has an accuracy
of ε‖f‖∞.

In comparison, if pbestmε,nε
is stored as a polynomial of full rank, without taking

account of any low rank structure, then about mεnε parameters are required. We say
that a function is numerically of low rank if it is more efficient to store the low rank
approximation. (The following definition was motivated by an analogue for low rank
matrices in [12, Def. 1.3].)

Definition 3.1. For a fixed ε > 0 a continuous function f : [−1, 1]2 → C is numeri-
cally of low rank if kε (mε + nε) < mεnε. If kε ≈ min(mε, nε) then f is numerically of
full rank.

If mε = nε, as is the case when f(x, y) = f(y, x), then f is numerically of low rank
when nε/kε > 2 and numerically of full rank when nε/kε ≈ 1.

Unfortunately, it is usually theoretically very difficult to determine mε and nε pre-
cisely due to their connection with best minimax polynomial approximation. Instead,
when considering examples we use the near-optimality property of Chebyshev approx-
imation and calculate mcheb

ε and ncheb
ε , which are the numerical degrees required by

39

polynomial approximants constructed by Chebyshev projections. That is,

mcheb
ε = inf

{
m ∈ N : lim

n→∞

∥∥f − pprojm,n

∥∥
∞ ≤ ε‖f‖∞

}
,

ncheb
ε = inf

{
n ∈ N : lim

m→∞

∥∥f − pprojm,n

∥∥
∞ ≤ ε‖f‖∞

}
,

where pprojm,n is the degree (m,n) Chebyshev projection of f formed by truncating the
bivariate Chebyshev expansion of f (see Theorem 1.4). for us, mcheb

ε and ncheb
ε are

more important than mε and nε since kε(m
cheb
ε + ncheb

ε) is roughly the number of
parameters required to store a chebfun2 approximant of f , where by default ε = 2−52.

3.4 Results derived from 1D approximation theory

Let k ≥ 1 be an integer, f : [−1, 1]2 → C be a continuous function, and let fy :

[−1, 1] → C be defined as fy(x) = f(x, y) for each y ∈ [−1, 1]. The convergence
results in this section can be summarized by the following two statements:

1. If fy is ν times continuously differentiable (and the ν derivative is of bounded
variation) uniformly in y, then inffk ‖f − fk‖∞ = O(k−ν).

2. If fy is analytic on [−1, 1] uniformly in y, then inffk ‖f − fk‖∞ = O(ρ−k) for
some ρ > 1.

Here, the infima are taken over bounded rank k functions and the same statements
hold for the singular values σk of f . These convergence results are derived from the 1D
convergence results in Theorem 1.1 and 1.2 using the inequalities inffk−1

‖f−fk−1‖∞ ≤
limn→∞

∥∥f − pbestk−2,n

∥∥
∞ and

σk ≤ 2 lim
n→∞

∥∥f − pbestk−2,n

∥∥
∞ ≤ 2 sup

y

∥∥∥fy − pprojk−2(fy)
∥∥∥
∞
, k ≥ 2, (3.3)

where pprojk−2(fy) is the degree k − 2 Chebyshev projection of fy (see Section 1.2).

Theorem 3.1 (Convergence for differentiable functions). Let f : [−1, 1]2 → C be a
continuous function, ν ≥ 1 an integer, and Vf <∞ a constant. Suppose the functions
fy(x) = f(x, y) satisfy the assumptions of Theorem 1.1 with total variation Vf < ∞,

40

uniformly in y. Then for k > ν + 2 we have

inf
fk

‖f − fk‖∞ ≤ 2Vf
πν(k − ν − 1)ν

= O(k−ν), σk ≤
4Vf

πν(k − ν − 2)ν
= O(k−ν),

where the infimum is taken over bounded rank k functions.

Proof. For each y ∈ [−1, 1], fy(x) satisfies the assumptions in Theorem 1.1 so for
k > ν + 1 we have

f(x, y) = fy(x) =
∞∑
j=0

aj(y)Tj(x),

∥∥∥∥∥fy −
k−1∑
j=0

aj(y)Tj

∥∥∥∥∥
∞

≤ 2Vf
πν(k − ν − 1)ν

.

Moreover, since this holds uniformly in y we have

inf
fk

‖f − fk‖∞ ≤ sup
y∈[−1,1]

∥∥∥∥∥fy −
k−1∑
j=0

aj(y)Tj

∥∥∥∥∥
∞

≤ 2Vf
πν(k − ν − 1)ν

,

which proves the first inequality. For the second we have by (1.10)

σk ≤

(
∞∑
j=k

σ2
j

)1/2

≤ 2 sup
y∈[−1,1]

∥∥∥∥∥fy −
k−2∑
j=0

aj(y)Tj

∥∥∥∥∥
∞

≤ 4Vf
πν(k − ν − 2)ν

.

The same conclusion holds in Theorem 3.1 when the roles of x and y are swapped.
Therefore, if f(x, y) satisfies the assumptions of Theorem 3.1 in one of its variables,
then σk and inffk ‖f − fk‖∞ decay like O(k−ν). Related results appear in [39, 40]
under a Hölder continuity condition, in [50, 123, 124] for positive definite kernels, and
in [82, 166] for the decay of eigenvalues rather than singular values.

An analogous theorem holds when fy is analytic on [−1, 1].

Theorem 3.2 (Convergence for analytic functions). Let f : [−1, 1]2 → C be a con-
tinuous function, M < ∞ a constant, and Eρ an open Bernstein ellipse. Suppose
the functions fy(x) = f(x, y) satisfy the assumptions of Theorem 1.2 with M and Eρ,
uniformly in y. Then for k ≥ 2 we have

inf
fk

‖f − fk‖∞ ≤ 2Mρ−k+1

ρ− 1
= O(ρ−k), σk ≤

4Mρ−k+2

ρ− 1
= O(ρ−k),

41

where the infimum is taken over bounded rank k functions.

Proof. Use the same reasoning as in the proof of Theorem 3.1, but with the 1D
convergence results from Theorem 1.2.

The same conclusion holds in Theorem 3.2 when the roles of x and y are swapped
and therefore, if f(x, y) is a function that is analytic in [−1, 1] in at least one of its
variables, then σk and inffk ‖f − fk‖∞ decay geometrically. A closely related proof
shows that the eigenvalues of symmetric analytic kernels decay geometrically [94].

Theorems 3.1 and 3.2 relate the smoothness of a function of two variables to the
decay of inffk ‖f − fk‖∞, and are near-optimal in the sense that one can not hope
for a better asymptotic rate of convergence with the same assumptions. However,
Theorems 3.1 and 3.2 do not guarantee that a function is numerically of low rank,
since the same reasoning can be used to bound the numerical degree (see the sequences
of inequalities in (3.3)).

3.5 Numerically low rank functions in the wild

After substantial experience, one can predict with reasonable success whether or not
a given function is numerically of low rank. The easiest ones to spot are functions
already written as sums of rank 1 functions, such as

1 + xy2 + x2y2, cos(x) sin(y) + e10xe10y, |x|Ai(10y),

though care is required since according to our definition the first is not numerically
of low rank (the polynomial degree is also small1). Other simple examples are powers
and exponentials,

(2x+ 3y)4, ex
2+y2 , log(x+ y),

which can easily be expressed in low rank form (again, for the same reason, the
first is not numerically of low rank). Compositions of trigonometric and exponential
functions such as cos(10(x+ y)) and esin(10(x2+y2)) are also usually of low rank due to
trigonometric identities. These examples can often be combined to build and spot
more complicated functions that are numerically of low rank. This is an ad hoc
process.

1For any ε > 0, the numerical rank of 1 + xy2 + x2y2 is 2, the numerical degree is (2, 2), and
8 = kε(mε + nε) > mεnε = 4 (see Definition 3.1).

42

Low rank functions do not necessarily have all their “action” aligned with the coor-
dinate axes (see Section 3.7.1 for an example) and can be highly non-smooth. There-
fore, predicting if a function is numerically of low rank without involved calculations
is full of potential pitfalls. Often, the only assured way is to numerically approximate
the function to determine kε, mε, and nε and verify that kε(mε + nε) < mεnε.

3.6 A mixed Sobolev space containing low rank func-
tions

For any ε > 0, the set of functions that are numerically of low rank is not a vector
space since it is not closed under addition, but here we exhibit a vector space that
contains many good candidates. If a function is somewhat aligned along a coordinate
axis, then it is often of low rank and these conditions can be partially captured by a
mixed Sobolev space. We define the mixed Sobolev space Ht

mix = Ht
mix([−1, 1]2) for

t > 1 by

Ht
mix =

{
f(x, y) =

∞∑
i,j=0

aijTi(y)Tj(x) : ‖f‖Ht
mix

=
∞∑

i,j=0

(1 + i)t(1 + j)t|aij| <∞

}
,

which imposes the condition that the matrix of bivariate Chebyshev coefficients, A =

(aij), has diagonal entries that have an algebraic decay of O(n−2t), while the individual
columns and rows have entries that decay at half that order. The space Ht

mix is
important in hyperbolic cross approximation and is usually stated in terms of the
Fourier basis rather than the Chebyshev basis [136].

Let f ∈ Ht
mix and suppose that f(x, y) =

∑∞
i,j=0 aijTi(y)Tj(x) is the Chebyshev

expansion of f . Then, the approximation power of the hyperbolic cross approximant

pId =
∑

(i,j)∈Id

aijTi(y)Tj(x), Id = {(i, j) ∈ N2 : (1 + i)(1 + j) ≤ 1 + d}, d > 0,

is the same as pprojd,d , where pprojd,d is the degree (d, d) Chebyshev projection of f .
Lemma 3.1. Let t > 1 and f ∈ Ht

mix. For any d > 0 we have

∥∥∥f − pprojd,d

∥∥∥
∞

≤ (1 + d)−t‖f‖Ht
mix
, ‖f − pId‖∞ ≤ (1 + d)−t‖f‖Ht

mix
.

43

Proof. Let f(x, y) =
∑∞

i,j=0 aijTi(y)Tj(x), I ⊂ N2 an indexing set, and define pI =∑
(i,j)∈I aijTi(y)Tj(x). Since ‖Ti‖∞ ≤ 1 we have,

‖f − pI‖∞ ≤
∑

(i,j)6∈I

|aij| ≤ max
(i,j)6∈I

(
1

(1 + i)t(1 + j)t

) ∑
(i,j)6∈I

(1 + i)t(1 + j)t|aij|

 .

If I = {0, . . . , d}2 then pI = pprojd,d and ‖f − pprojd,d ‖∞ ≤ (1+ d)−t‖f‖Ht
mix

. If I = Id then
for (i, j) ∈ Id we have (1+ i)(1+j) ≤ 1+d and hence, ‖f−pId‖∞ ≤ (1+d)−t‖f‖Ht

mix
.

If f ∈ Ht
mix then it is usually more efficient to use hyperbolic cross approximation

than Chebyshev projection since |Id| = O(d log d). Similar approximation results
exist with the Fourier basis in the sparse grid literature, which usually focus on high
dimensions and overcoming the curse of dimensionality [93]. Here, in two dimensions,
we note that the approximant pId is usually of low rank.

Lemma 3.2. Let d ≥ 17. A bivariate polynomial pId of exact degree (d, d) with
nonzero Chebyshev coefficients in Id is of low rank.

Proof. Let k denote the rank of pId . Then k is equal to the rank of its matrix of
bivariate Chebyshev coefficients. This matrix has at most (d+1)1/2 nonzero columns
and rows and hence, is of rank at most 2(d+1)1/2. Since d ≥ 17 we have 4(d+1)1/2 < d

and hence,
2kd ≤ 4(d+ 1)1/2d < d2.

We conclude that pId is of low rank (see Definition 3.1).

Therefore, functions in Ht
mix with t > 1 are well-approximated by low rank poly-

nomials and are candidates for being numerically of low rank themselves. In many
ways low rank technology is applicable to a larger range of functions than hyper-
bolic cross approximation, but is more challenging to extend to higher dimensions. A
comparison of low rank approximation and hyperbolic cross approximation is given
in [69].

3.7 Three examples

The examples given in Section 3.5 do not capture the rich variety of functions that
are numerically of low rank. Here, we give three examples to learn more. The first

44

b/a kε ncheb
ε ncheb

ε /kε

1.1 4 8 2.0
10 12 36 3.0
100 18 110 6.1
1000 25 334 13.4

b/a� 1 O(log(b/a) log(ε−1)) O(
√
b/a log(ε−1)) O(

√
b/a/ log(b/a))

Table 3.1: Numerical rank and degree of the symmetric Cauchy function on [a, b]2

with ε = 2−52. Despite this function having no obvious low rank structure we find
that kε = O(log(b/a) log(ε−1)) and ncheb

ε = O(
√
b/a log(ε−1)) for b/a� 1.

shows that numerically low rank functions do not necessarily have any obvious low
rank structure, the second gives a sum of N linearly independent rank 1 functions
that is numerically of rank much less than N , and the last is a full rank function that
appears to be of lower rank. These examples are slightly paradoxical and serve as a
warning.

3.7.1 The symmetric Cauchy function

The symmetric Cauchy function or Cauchy kernel is defined as

f(x, y) =
1

x+ y
, (x, y) ∈ [a, b]2, 0 < a < b, (3.4)

and since f is symmetric we proceed to show that it is numerically of very low rank,
i.e., ncheb

ε /kε � 1 (see Section 3.3), when b/a is large.
A hint that (3.4) is numerically of low rank comes from taking [a, b] = [1/2, n−1/2]

and evaluating the Cauchy function at n equally spaced points. The resulting matrix
of samples is the notoriously ill-conditioned n × n Hilbert matrix [16]. Table 3.1
confirms that the function is numerically of low rank when b/a ≥ 1.1.

To determine ncheb
ε we note that the numerical degree of f(x, y) is more than the

numerical degree of f(x, a) = 1/(x + a) on x ∈ [a, b]. The Chebyshev projection of
1/(x+ a) on [a, b] can be explicitly calculated by first transplanting onto [−1, 1] and
applying Lemma A.1. We obtain

1
b−a
2
(x+ 1) + 2a

=
∞∑
j=0

′ 4/(b− a)(−1)jTj(x)√
A2 − 1

(
A+

√
A2 − 1

)j , A =
b+ 3a

b− a
,

45

where the prime indicates that the first term of the summation is halved. Since the
coefficients decay geometrically, ncheb

ε can be estimated by solving |αj| ≤ ε/2a for j.
Thus, we have

ncheb
ε ≈

⌈
log
(

8aε−1
√
A2−1(b−a)

)
log
(
A+

√
A2 − 1

)⌉,
which is numerically observed to be satisfied as an equality. Letting r = b/a we have

ncheb
ε ≈

⌈
log
(

8ε−1
√
B2−1(r−1)

)
log
(
B +

√
B2 − 1

)⌉, B =
r + 3

r − 1
,

showing that the numerical degree of f only depends on b/a. Furthermore, for b/a� 1

we have
ncheb
ε = O

(√
b/a log

(
ε−1
))
.

For the numerical rank, kε, we have the following result:

Lemma 3.3. Let 0 < ε < 1 and f(x, y) = 1/(x + y) on [a, b]2. Then there exists a
function g : [a, b]2 → R of rank kε such that

‖f − g‖∞ ≤ ε ‖f‖∞ , kε = O
(
log (b/a) log

(
ε−1
))
.

Proof. See Lemma 1 of [68], which proves the rank of the symmetric Cauchy matrix
(discrete analogue of this lemma). The proof of Lemma 1 in [68] relies on [68, eq. 16],
which is exactly the statement here.

This shows that the symmetric Cauchy function is numerically of low rank for
b/a� 1 since ncheb

ε /kε = O(
√
b/a/ log(b/a)). In practice, as shown in Table 3.1, the

symmetric Cauchy function is numerically of low rank when b/a > 1.1.
The function 1/(x+ y) on [a, b]2 is an example of a low rank function without any

obvious low rank structure or alignment with the coordinate axes.

46

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.5

1

1.5

2

2.5

0 50 100 150

10
−15

10
−10

10
−5

10
0

Index

N
or

m
al

iz
ed

 s
in

gu
la

r
va

lu
es

γ = 10
γ = 100
γ = 1000

Figure 3.1: Left: Three hundred arbitrarily centered Gaussian bump functions added
together, as in (3.5), with γ = 1000. Right: Super-geometric decay of the normalized
singular values (the first singular value is scaled to be 1) for γ = 10, 100, 1000. Math-
ematically, (3.5) with N = 300 is of rank 300, but it can be approximated to machine
precision by functions of rank 21, 59, and 176, respectively.

3.7.2 A sum of Gaussian bumps

For the second example, consider adding N Gaussian bumps together, centered at
arbitrary locations (x1, y1), . . . , (xN , yN) in [−1, 1]2,

f(x, y) =
N∑
j=1

e−γ((x−xj)
2+(y−yj)

2), (3.5)

where γ > 0 is a positive real parameter. A Gaussian bump is a rank 1 function
and hence, mathematically, f is usually of rank N ; however, when N is large the
numerical rank of f is observed to be much smaller. In Figure 3.1 (left) we display a
contour plot for the case γ = 1000 and N = 300 and (right) we show that the singular
values of f decay super-geometrically for γ = 10, 100, 1000.

The numerical degree of f is approximately equal to the maximum numerical
degree of its individual terms in (3.5), and thus ncheb

ε is approximately equal to the
numerical degree of e−γx2 . The Chebyshev expansion of e−γx2 can be calculated
explicitly, and by Lemma A.2 we have

e−γx2

=
∞∑
j=0

′
(−1)j

2Ij(γ/2)

eγ/2
T2j(x),

where Ij(z) is the modified Bessel function of the first kind with parameter j and

47

γ kε ncheb
ε ncheb

ε /kε

10 21 49 2.3
100 59 123 2.1
1000 176 371 2.1
10000 523 1151 2.2

γ � 1 O(γ1/2) O(γ1/2) ≈ 2

Table 3.2: Numerical rank and degree of a sum of 1000 Gaussian bumps. The nu-
merical rank and degree are observed to grow like O(γ1/2).

the prime indicates that the first term is halved. To find the leading term of ncheb
ε

as γ → ∞ we solve 2Ij(γ/2)e
−γ/2 ∼ ε for j by replacing Ij(γ/2) with the asymptotic

formula in [1, (9.7.1)], obtaining

2
√
πγ

(
1− 4j2 − 1

4γ

)
∼ ε, γ � 1.

After rearranging the above expression we conclude that j2 ∼ γ −
√
πεγ3/2/2, or

equivalently, j ∼ γ1/2 −
√
πεγ/4. Therefore, ncheb

ε of (3.5) satisfies

ncheb
ε ∼ 2γ1/2 −

√
πεγ/2,

which is in agreement with the numerical observations in Table 3.2.
For the numerical rank, kε, we note that kε ≤ nε + 1 (see Section 3.2) and hence,

kε = O(γ1/2). Therefore, despite the fact that the N rank 1 terms in (3.5) are usually
linearly independent, the numerical rank of (3.5) is less than N for any ε > 0 when
N � γ1/2.

3.7.3 A 2D Fourier-like function

For the final example, we consider the function f(x, y) = eiMπxy defined on [−1, 1]2,
where M ≥ 1 is a real parameter. This is an example that is of full numerical rank,
i.e., nε/kε ≈ 1, but we observe that ncheb

ε /kε ≈ π/2.
First, we determine the (Chebyshev) numerical degree, ncheb

ε , of eiMπxy. By

48

Lemma A.3 the bivariate Chebyshev expansion of f is

eiMπxy =
∞∑
p=0

′
∞∑
q=0

′
apqTp(y)Tq(y),

apq =

4iqJ(q+p)/2(Mπ/2)J(q−p)/2(Mπ/2), mod(|p− q|, 2) = 0,

0, otherwise,

where the primes indicate that the first terms are halved and Jν(z) is the Bessel
function with parameter ν. The Bessel function Jν(z) oscillates when z > ν and
rapidly decays to 0 when z < ν and hence, the coefficients apq rapidly decay to zero
when (p+ q)/2 > Mπ/2 or (p− q)/2 > Mπ/2. We conclude that for M � 1 we have
ncheb
ε ∼Mπ.

For the numerical rank, kε, we have the following lemma.

Lemma 3.4. Let ε > 0. The function eiMπxy has a numerical rank kε satisfy-
ing kε/2M → c for a constant c ≤ 1 as M → ∞.

Proof. Let pbestk−1 and qbestk−1 be the best minimax polynomial approximations of degree
k−1 to cos(Mπt) and sin(Mπt) on [−1, 1], respectively, and define sk−1 = pbestk−1+iqbestk−1.
Note that sk−1(xy) is of rank at most k so that

inf
fk

∥∥eiMπxy − fk
∥∥
∞ ≤

∥∥eiMπxy − sk(xy)
∥∥
∞ =

∥∥eiMπt − sk(t)
∥∥
∞ ,

where the infimum is taken over bounded rank k functions. Moreover, since (x, y) ∈
[−1, 1]2 implies that t = xy ∈ [−1, 1] we have ‖eiMπxy − sk(xy)‖∞ = ‖eiMπt− sk(t)‖∞.
Furthermore, we have eiMπt = cos(Mπt) + i sin(Mπt) and so

∥∥eiMπt − sk(t)
∥∥
∞ ≤

∥∥cos(Mπt)− pbestk (t)
∥∥
∞ +

∥∥sin(Mπt)− qbestk (t)
∥∥
∞ .

By the equioscillation theorem [122, Thm. 7.4] pbestk = 0 for k ≤ 2bMc − 1 since
cos(Mπt) equioscillates 2bMc+ 1 times in [−1, 1]. Similarly, sin(Mπt) equioscillates
2bMc times in [−1, 1] and hence, qbestk = 0 for k ≤ 2bMc−2. However, for k > 2bMc−
1, ‖ cos(Mπt)− pbestk (t)‖∞ and ‖ sin(Mπt)− qbestk (t)‖∞ decay super-geometrically to
zero as k → ∞ and hence, the numerical rank of eiMπxy satisfies kε/2M → c for a
constant c ≤ 1 as M → ∞.

49

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

Index

S
in

gu
la

r
va

lu
es

M = 1
M = 5
M = 10

k = 8 k = 18

0 50 100 150 200 250 300
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M

n
ch

e
b

ε
/k

ε

π/2

Figure 3.2: Left: The initial decay of the singular values of eiMπxy. For k ≤ 2bMc− 2
there is no decay of the singular values. For k > 2bMc − 2 the singular values decay
super-geometrically. Right: The ratio ncheb

ε /kε. As M → ∞ the ratio tends to a
number that is very close to π/2.

Therefore, for any ε > 0 and we have ncheb
ε /kε → c for a constant c ≥ Mπ/(2M) =

π/2. In practice for large M we observe ncheb
ε /kε ≈ π/2.

Figure 3.2 (left) shows the initial decay of the singular values of eiMπxy. We observe
that the singular values do not decay until k > 2bMc−2 after which they decay super-
geometrically to zero, confirming the reasoning in Lemma 3.4. In Figure 3.2 (right)
we plot ncheb

ε /kε for M = 1, . . . , 300, where ε is machine precision, and find that the
ratio tends to a number that is very close to π/2.

The manifestation of the π/2 factor is a phenomenon that can be explained by the
near-optimality of Chebyshev interpolation. The Shannon–Nyquist sampling theorem
rate says that to recover an oscillatory function it must be sampled at a minimum of
2 points per wavelength [132]. Chebyshev points on [−1, 1] are clustered at ±1 and
near 0 they are π/2 times less dense than the same number of equally spaced points on
[−1, 1]. Therefore, for oscillatory functions Chebyshev interpolation can require about
π/2 times more points than is strictly necessary. This means that ncheb

ε ≈ (π/2)nε

and hence, for this function nε/kε ≈ 1 while ncheb
ε /kε ≈ π/2. This phenomenon

occurs surprisingly often, even for nonoscillatory functions, due to the fact that the
pivot columns and rows in the GE algorithm (see Section 2.1) have many zeros by
Theorem 2.1 and hence become highly oscillatory. This phenomenon also arises for
many functions if the SVD is used to construct best low rank approximations with
respect to the L2-norm as the singular vectors of a function can be oscillatory [90].

In Chebfun2 some functions become numerically of low rank in practice due to
this phenomenon. For instance, for cos(Mπxy) it can be shown that nε/kε ≈ 2 while

50

ncheb
ε /kε ≈ π > 2 where M � 1.

3.8 The singular value decomposition of a function

No discussion about low rank approximation is complete without the SVD, which in
our context is the SVD of a bivariate function.

Definition 3.2. Let f : [a, b]× [c, d] → C be a continuous function. An SVD of f is
a series

f(x, y) =
∞∑
j=1

σjuj(y)vj(x), (x, y) ∈ [a, b]× [c, d], (3.6)

converging in L2, where σ1 ≥ σ2 ≥ · · · ≥ 0, and {uj}j≥1 and {vj}j≥1 are orthonormal
sets of functions on [a, b] and [c, d], respectively.

Further assumptions on f are required to guarantee that the series in (3.6) converges
in a stronger sense. For example, if f is Lipschitz continuous in both variables, then
the series converges absolutely and uniformly to f .

Theorem 3.3 (Singular value decomposition of a function). Let f : [a, b]× [c, d] → C
be Lipschitz continuous with respect to both variables. Then the SVD of f exists and
the singular values are unique with σj → 0 as j → ∞. The singular vectors can
be selected to be continuous functions and those corresponding to simple2 singular
values are unique up to complex signs. Moreover, the series in (3.6) is absolutely and
uniformly convergent.

Proof. The existence and uniqueness of the SVD is due to Schmidt [130], though he
assumed that f was continuous and only showed that the series converges in the L2-
sense. Schmidt also showed that the singular vectors can be selected to be continuous.
Hammerstein showed that (3.6) is uniformly convergent under an assumption that is
implied by Lipschitz continuity [77], and Smithies showed absolute convergence under
an assumption that is implied by Hölder continuity with exponent > 1/2 [135].

Thus, when f is a Lipschitz continuous function the infinite sum in (3.6) has
three additional properties: (1) The series converges pointwise to f (since the series
is uniformly convergent), (2) The series can be interchanged with integration (since
the series is uniformly convergent), and (3) The series is unconditionally convergent,

2We say that a singular value σj is simple if σi 6= σj for 1 ≤ i 6= j.

51

so is independent of the order of summation (since the sum is absolutely convergent).
These properties will be important in Chapter 4.

The notion of the SVD of a function is a century old and preceded the matrix
SVD. An excellent account of the early history is given by Stewart in [139].

3.9 Characterizations of the singular values

There are many different characterizations of the singular values of a function, each
one corresponding to a characterization for the singular values of a matrix.

Theorem 3.4 (Characterizations of singular values). Let f : [a, b] × [c, d] → C be a
function satisfying the assumptions in Theorem 3.3. The first singular value is:

1. The operator norm of f ,

σ1 = sup
v∈L2([a,b])
‖v‖L2=1

(ˆ d

c

(ˆ b

a

f(x, y)v(x)dx

)2

dy

)1/2

.

2. The maximum absolute value of a variational form,

σ1 = sup
u∈L2([c,d]),v∈L2([a,b])

‖u‖L2=‖v‖L2=1

∣∣∣∣ˆ d

c

ˆ b

a

u(y)f(x, y)v(x)dxdy

∣∣∣∣ .

3. The value of the maximum eigenvalue of a symmetric nonnegative definite ker-
nel,

σ1 = sup
v∈L2([c,d])
‖v‖L2=1

∣∣∣∣ˆ b

a

ˆ b

a

v(y)

(ˆ d

c

f(y, s)f(x, s)ds

)
v(x)dxdy

∣∣∣∣ .

Proof. Let v ∈ L2([c, d]) be of unit length ‖v‖L2 = 1 and let
∑∞

j=1 σjuj(y)vj(x)

be the SVD of f(x, y). We can write v = vR + vN , where
´ b

a
f(x, ·)vN(x)dx ≡ 0 and

vR =
∑∞

j=1 γjvj with3 ‖γ‖2 ≤ 1. Therefore, since {uj}j≥1 and {vj}j≥1 are orthonormal

3The singular vectors {v}j≥1 form a complete orthonormal basis for the range of f [130].

52

sets we have

∥∥∥∥ˆ d

c

f(x, ·)v(x)dx
∥∥∥∥2
L2([c,d])

=

∥∥∥∥∥
∞∑
j=1

σjγjuj

∥∥∥∥∥
2

L2([c,d])

≤
∞∑
j=1

σ2
jγ

2
j ≤ σ2

1,

and the inequalities are satisfied as equalities for v = v1. Similar reasoning leads to
the second and third characterization, i.e., bound the supremum and verify that the
first singular vector(s) attains the resulting bound.

The other singular values can be characterized recursively, since for k ≥ 1

σk(f) = σ1(f − fk−1), fk−1(x, y) =
k−1∑
j=1

σj(f)uj(y)vj(x),

where σk(f) denotes the kth singular value of f .

3.10 Best low rank function approximation

In 1912 Weyl showed that the first k terms of the SVD of a symmetric function
give a best rank k approximant in the L2-norm [166]. Here, we show that the same
result and proof work for nonsymmetric functions (an alternative proof was given by
Schmidt [130]). The first step in the proof shows that the singular values of a function
are not too sensitive to low rank perturbations.

Lemma 3.5. Let f : [a, b] × [c, d] → C be a function satisfying the assumptions of
Theorem 3.3 and gk a continuous function of rank at most k ≥ 1. Then, σ1(f +gk) ≥
σk+1(f).

Proof. Let f(x, y) =
∑∞

j=1 σjuj(y)vj(x) be the SVD of f and gk(x, y) =
∑k

j=1 cj(y)rj(x)

for functions cj and rj. Since gk is of rank at most k there exists γ1, . . . , γk+1 such
that ˆ b

a

gk(x, y)v(x)dx ≡ 0, v =
k+1∑
j=1

γjvj.

53

Without loss of generality we assume that γ21 + · · ·+γ2k+1 = 1. Then, by Theorem 3.4

σ2
1(f + gk) ≥

ˆ b

a

ˆ b

a

v(y)

(ˆ d

c

(f(y, s) + gk(y, s))(f(x, s) + gk(x, s))ds

)
v(x)dxdy

=

ˆ b

a

ˆ b

a

v(y)

(ˆ d

c

f(y, s)f(x, s)ds

)
v(x)dxdy =

k+1∑
j=1

γ2jσ
2
j (f) ≥ σ2

k+1(f).

Taking the square root of both sides gives the result.

The preceding lemma can also be shown for L2-integrable functions if certain
equalities are understood in the L2-sense.

The second step in the proof shows how the singular values behave under addition.

Lemma 3.6. Let f, g : [a, b] × [c, d] → C be functions satisfying the assumptions in
Theorem 3.3, and let h = f +g. Then, for i, j ≥ 1 we have σi+j−1(h) ≤ σi(f)+σj(g).

Proof. Let h(x, y) =
∑∞

j=1 σj(h)uj(y)vj(x) be the SVD of h. By Theorem 3.4

σ1(h) =

ˆ d

c

ˆ b

a

u1(y)(f(x, y) + g(x, y))v1(x)dxdy ≤ σ1(f) + σ1(g),

which shows the lemma for i = j = 1. More generally, let fi−1 and gj−1 be the first
i− 1 and j− 1 terms of the SVD of f and g, respectively. Then, σ1(f − fi−1) = σi(f)

and σ1(g−gj−1) = σj(g). Furthermore, fi−1+gj−1 is of rank at most i+j−2. Hence,
we have by Lemma 3.5

σi(f) + σj(g) = σ1(f − fi−1) + σ1(g − gj−1) ≥ σ1(h− fi−1 − gj−1) ≥ σi+j−1(h).

Again, the preceding lemma also holds for L2-integrable functions.
Finally, the previous two lemmas can be combined to prove that the first k sin-

gular values and corresponding vectors of the SVD of a function give a best rank k

approximant to f in the L2-norm.

Theorem 3.5 (Best low rank approximation of a function). Let f : [a, b]× [c, d] → C
be a function satisfying the assumptions in Theorem 3.3. Then, the sum of the first

54

k terms of the SVD of f is a best rank k approximant to f in the L2-norm, i.e.,

‖f − fk‖L2 = inf
gk∈C([a,b]×[c,d])

rank(gk)≤k

‖f − gk‖L2 , fk(x, y) =
k∑

j=1

σj(f)uj(y)vj(x).

Proof. Let gk be a continuous function on [a, b]× [c, d] of rank k. By Lemma 3.6 we
have σj(f − gk) ≥ σk+j(f) for j ≥ 1 and hence,

‖f − gk‖2L2 =
∞∑
j=1

σj(f − gk)
2 ≥

∞∑
j=k+1

σj(f)
2.

Equality is attained when gk is the sum of the first k terms of the SVD of f .

In linear algebra, it is the connection between the SVD and best rank approxima-
tion that has made the SVD such a powerful tool [139].

The SVD of a function can be made into a practical algorithm by discretizing func-
tions on sufficiently fine tensor product grids and computing the matrix SVD [152,
Sec. 2]. However, we have found the practical algorithm derived from GE with com-
plete pivoting (see Section 2.1.1) to be far more efficient for constructing near-optimal
low rank approximations to smooth functions (see Section 2.1.2).

55

Chapter 4

Continuous analogues of matrix
factorizations*

A fundamental idea in linear algebra is matrix factorization, where matrices are
decomposed into a product of, for example, triangular, diagonal, or orthogonal ma-
trices. Such factorizations provide a tool for investigating properties of matrices as
well as analyzing and performing matrix computations [67, p. 607], and these ideas
are ubiquitous throughout numerical linear algebra [61, 81, 85, 160].

In this chapter we derive continuous analogues of matrix factorizations, where
matrices become quasimatrices and cmatrices (see Section 4.1). The factorizations
we consider come in three main flavors: (1) two-sided orthogonal (A = UΣV ∗), (2)
one-sided orthogonal (A = QR), and (3) non-orthogonal (A = LU and A = R∗R).
In each case we describe these factorizations for quasimatrices and cmatrices, prove
existence and uniqueness theorems, and state basic properties of the factorizations.

4.1 Matrices, quasimatrices, and cmatrices

An m × n matrix is an array of mn numbers where the entry in row i, column j

is denoted by A(i, j). An [a, b] × n quasimatrix A is a “matrix” for which the row
index is a continuous variable and the n columns are functions defined on [a, b] (see
Section 1.7). The row y ∈ [a, b], column j entry is denoted by A(y, j). An [a, b] ×
[c, d] cmatrix, also denoted by A, is a “matrix” for which both the row and column
indices are continuous variables. It is a bivariate function with the indexing variables
interchanged from the usual x, y ordering to make y the column (vertical) variable

*This chapter is based on a paper with Nick Trefethen [153]. I proposed the key ideas of trian-
gularity, the meaning of the main factorizations, and proved the convergence theorems. Trefethen
made the definition of a triangular quasimatrix precise, greatly simplified the proof of Theorem 4.6,
and was the lead author of the paper; however, this chapter is quite a bit different from the paper.

56

...................

Figure 4.1: A rectangular matrix (left), quasimatrix (center), and a rectangular cma-
trix (right). Matrices are drawn as boxes with crosses, quasimatrices as boxes with
vertical lines, and cmatrices as empty rectangles. Row quasimatrices are drawn as
boxes with horizontal lines and square cmatrices as empty squares.

and x the row (horizontal) variable for consistency with the algebra of matrices. The
row y ∈ [a, b], column x ∈ [c, d] entry is denoted by A(y, x), and likewise A(·, x) and
A(y, ·) are the xth column and yth row of A, respectively (continuous analogues of
column and row vectors).

Figure 4.1 shows a rectangular matrix, a quasimatrix, and a rectangular cmatrix.
A rectangular cmatrix is defined on [a, b]× [c, d], and is square1 if a = c and b = d.

Throughout this chapter we consider continuous quasimatrices, i.e., quasimatrices
with continuous columns and continuous cmatrices, which are cmatrices that are
continuous in both variables.

4.2 Matrix factorizations as rank one sums

Every matrix can be written as a sum of rank 1 matrices, and a decomposition of a
matrix A into a matrix-matrix product, A = BC, provides such an expression. For
example, if A = BC with B ∈ Cm×k and C ∈ Ck×n, then

A =
k∑

j=1

bjc
∗
j ,

where bj and c∗j are the jth column of B and jth row of C, respectively. In this way,
any matrix factorization can be interpreted as a finite sum of rank 0 or 1 matrices,
and if A ∈ Cm×n with m ≥ n, then the SVD, QR, and LU factorizations are the

1Note that an [a, b]× [c, d] cmatrix with b− a = d− c is not necessarily a square cmatrix.

57

following sums involving rank 0 or 1 terms, respectively:

A =
n∑

j=1

σjujv
∗
j , A =

n∑
j=1

qjr
∗
j , A =

n∑
j=1

`ju
∗
j . (4.1)

One way to generalize matrix factorizations to quasimatrices and cmatrices is
to replace the column or row vectors in (4.1) with functions. If A is an [a, b] × n

quasimatrix, then the SVD, QR, and LU factorizations become

A =
n∑

j=1

σjuj(y)v
∗
j , A =

n∑
j=1

qj(y)r
∗
j , A =

n∑
j=1

`j(y)u
∗
j ,

where each column vector is now a function of y (the vertical variable). Moreover, if
A is an [a, b]× [c, d] cmatrix then (4.1) becomes formally the infinite series

A =
∞∑
j=1

σjuj(y)v
∗
j (x), A =

∞∑
j=1

qj(y)r
∗
j (x), A =

∞∑
j=1

`j(y)u
∗
j(x), (4.2)

where column vectors are now functions of y and row vectors are functions of x.
Every factorization can be viewed either as a decomposition, e.g. A = LU , or as a

sum involving rank 0 or 1 terms. In the matrix (and quasimatrix) setting these two
viewpoints are mathematically equivalent, with the decomposition interpretation far
more popular and convenient. However, for cmatrices they are at least formally differ-
ent due to convergence issues, since each series in (4.2) contains potentially infinitely
many nonzero terms. To be able to write the convenient cmatrix decompositions
A = UΣV∗, A = QR, and A = LU we require that the series in (4.2) be uncondi-
tionally convergent, since in the decomposition interpretation the underlying rank 1

terms could be summed up in any order. Therefore, for cmatrices we will seek to find
assumptions on A that ensure the series in (4.2) are absolutely convergent2 so that
the two viewpoints are equivalent. In addition, we will require the series to converge
pointwise to A and to ensure this we demand that the series converges uniformly to
A.

2An absolutely convergent series is unconditionally convergent.

58

Object Factorization Pivoting strategy Chebfun command

quasimatrix
SVD None svd
QR None qr
LU Partial lu

cmatrix

SVD None svd
QR Column qr
LU Complete lu

Cholesky Diagonal chol

Table 4.1: Summary of the pivoting strategies we employ, and the corresponding
Chebfun commands. The quasimatrix Cholesky factorization does not exist because
a quasimatrix cannot be square (see Section 1.7).

4.3 The role of pivoting in continuous linear algebra

Algorithms for matrix factorizations can be stated and employed without pivoting,
and are often simple to describe and analyze. Pivoting is usually regarded as an op-
tional extra for matrices, making the algorithm perform more favorably, for example,
QR with column pivoting for least squares problems [59]. An exception to this is GE,
where partial pivoting is commonly used to prevent the algorithm failing on matrices
with singular or near-singular leading principal minors.

For quasimatrices and cmatrices the situation is quite different as pivoting is some-
times essential to even formulate the factorizations and to describe the corresponding
algorithms. To see why, consider GE without pivoting on an [a, b] × n continuous
quasimatrix A. The first step of GE causes no problems as we can conveniently re-
gard the first row as A(a, ·) and use it to introduce zeros in column 1, but what is
the second row of A? There is no natural “second” row,3 so GE without pivoting on
a quasimatrix is meaningless.

To overcome this fundamental issue we demand that GE pivots in the vertical
variable to select that “second” (and “third”) row. For example, GE with partial
pivoting (row pivoting) on an [a, b]×n quasimatrix can be defined without ambiguity
(see Section 4.7).

Similarly, to define GE on a cmatrix a pivoting strategy needs to select both the
next row and column. We use complete pivoting for this, where at each step the pivot
is the location of the maximum absolute value of the cmatrix (see Section 4.10).

3Fundamentally, this is because of the order structure of R. The reals have no successor function
under the standard ordering.

59

For cmatrices pivoting is also a sorting mechanism. All the cmatrix factorizations
are potentially infinite series and the pivoting strategy needs to approximately order
the rank 1 terms, with the most significant first, to ensure the series is convergent
in any sense. Table 4.1 summarizes the pivoting strategies that we use for each
factorization.

4.4 Psychologically triangular matrices and quasi-
matrices

For a matrix A, the most familiar way of describing partial pivoting in GE is
as an interchange of certain rows that leads to the factorization PA = LU , where
P is a permutation matrix, L is a unit lower-triangular matrix and U is an upper-
triangular matrix [160, p.159–160]. However, an equivalent formulation is to regard
pivoting as a selection of rows without physically interchanging them. This leads to a
factorization without a permutation matrix, A = LU , where L is now a psychologically
lower-triangular matrix.4

Definition 4.1. An m × n, m ≥ n, matrix L is psychologically lower-triangular if
there is a permutation {i1, . . . , in} of {1, . . . , n} such that column j has zero entries
at rows i1, . . . , ij−1. A matrix is psychologically upper-triangular if its transpose is
psychologically lower-triangular.

Figure 4.2 shows a lower-triangular matrix (left) and an example of a psychologi-
cally lower-triangular matrix (center). Psychologically lower-triangular matrices are
constructed by the lu command in MATLAB when executed with two output argu-
ments, and the specific permutation of {1, . . . , n} is returned when an optional flag
is supplied.

For quasimatrices and cmatrices we use pivoting as a way of selecting certain rows
and columns without interchange and hence, our factorizations involve psychologically
triangular quasimatrices (a continuous analogue of Definition 4.1).

Definition 4.2. An [a, b]×n quasimatrix is lower-triangular (we drop the term “psy-
chologically”) if there is a set of distinct values y1, . . . , yn ∈ [a, b] such that column
j has zeros at y1, . . . , yj−1. Similarly, an n × [a, b] quasimatrix is upper-triangular
if there is a set of distinct values x1, . . . , xn ∈ [a, b] such that row i has zeros at
x1, . . . , xi−1 (or, equivalently, if its transpose is lower-triangular).

4The phrase “psychologically triangular” is used almost exclusively in the documentation for the
lu command in MATLAB and was probably coined by Nick Trefethen years ago.

60

...................................
(0)

.
(1)

.
(2)

Figure 4.2: A lower-triangular matrix (left), a psychologically lower-triangular matrix
(center), and a lower-triangular quasimatrix (right). On the right, the numbers in
brackets indicate the numbers of nested zeros in each column and the black dots
are possible locations of those zeros. For subsequent diagrams involving triangular
quasimatrices we do not draw the black dots.

Triangular quasimatrices arise in continuous analogues of GE, the Cholesky algo-
rithm, and Gram–Schmidt orthogonalization on cmatrices, and there are analogues
of forward and back substitution for solving linear systems that involve triangular
quasimatrices [153, Sec. 8]. Figure 4.2 (right) shows a lower-triangular quasimatrix,
where the numbers in parentheses indicate the numbers of nested zeros in the columns.

Many of the standard definitions for triangular matrices generalize to triangular
quasimatrices.

Definition 4.3. If L is an [a, b] × n lower-triangular quasimatrix with respect to
y1, . . . , yn ∈ [a, b], then the diagonal of L is the set of values `1(y1), . . . , `n(yn), where
`j is the jth column of L. If the diagonal values are all 1, L is unit lower-triangular.
If each diagonal entry is (strictly) maximal, so that |`j(y)| ≤ |`j(yj)| (resp. |`j(y)| <
|`j(yj)|) for all j and y ∈ [a, b], y 6= yj, then we say that L is (strictly) diagonally
maximal. If L is (strictly) diagonally maximal and its diagonal values are real and
nonnegative, it is (strictly) diagonally real maximal. Analogous definitions also hold
for n× [a, b] upper-triangular quasimatrices.

4.5 The SVD of a quasimatrix

The first factorization we consider is the SVD of a quasimatrix, which appeared in [10,
Sec. 3.5] and is defined as follows. (Orthogonality of functions is defined with respect
to the standard L2 inner product.)

61

Definition 4.4. Let A be an [a, b] × n continuous quasimatrix. An SVD of A is
a factorization A = UΣV ∗, where U is an [a, b] × n continuous quasimatrix with
orthonormal columns, Σ is an n× n diagonal matrix with entries σ1 ≥ · · · ≥ σn ≥ 0,
and V is an n× n unitary matrix.

This definition can be extended to quasimatrices with columns in L2([a, b]) if the
equality in A = UΣV ∗ is understood in the L2 sense. Basic properties of the quasi-
matrix SVD are discussed in [9, Sec. 3.5] under the assumption that A is of full rank;
however, the full rank assumption is unnecessary.

Theorem 4.1 (SVD of a quasimatrix). Every [a, b] × n continuous quasimatrix A
has an SVD, A = UΣV ∗. The singular values are uniquely defined. The singular
vectors corresponding to simple singular values are unique up to complex signs. The
rank r of A is the number of nonzero singular values. The first r columns of U form
an orthonormal basis for the range of A when regarded as a map from Cn to C([a, b]),
and the last n− r + 1 columns of V form an orthonormal basis for the null space.

Proof. If A is of full rank then existence5 was shown in [9, Thm 3.5.1]. If A is
not of full rank, Theorem 4.4 shows that A has an LU factorization A = LAUA,
where LA is a unit lower-triangular continuous quasimatrix and UA is an upper-
triangular matrix. Since LA is unit lower-triangular it is a quasimatrix of full rank
and by [9, Thm 3.5.1] LA has an SVD, LA = ULΣLV

∗
L . The existence of the SVD for

A follows since A = UL(ΣLV
∗
LUA) = (ULU)ΣV

∗, where ΣLV
∗
LUA = UΣV ∗ is an SVD

of ΣLV
∗
LUA. Thus, we have constructed an SVD of A. For uniqueness suppose that

A = U1Σ1V
∗
1 = U2Σ2V

∗
2 . Then, A∗A = V1Σ

∗
1Σ1V

∗
1 = V2Σ

∗
2Σ2V

∗
2 and, by uniqueness

of the matrix SVD, Σ1 = Σ2 and the singular vectors in V1 and V2 that correspond to
simple singular values are unique up to complex signs. Moreover, since Σ1 = Σ2 is a
diagonal matrix, the columns of U1 and U2 that correspond to simple singular values
are also unique up to complex signs [160, Thm. 4.1].

The rank of A is equal to the rank of Σ (the number of nonzero singular values)
as U and V are of full rank. The range of A is the space spanned by the columns of
U corresponding to nonzero singular values, and the null space is the space spanned
by the columns of V corresponding to zero singular values.

5Though this property is not stated explicitly, the proof in [9, Thm 3.5.1] also shows that the
columns of U can be chosen to be continuous.

62

The first k terms of the SVD of an [a, b] × n quasimatrix A give a best rank k

approximant with respect to the quasimatrix norms ‖ · ‖2 and ‖ · ‖F , where

‖A‖2 = sup
v∈Cn\0

‖Av‖L2([a,b])

‖v‖2
, ‖A‖2F =

n∑
j=1

‖A(·, j)‖2L2([a,b]) . (4.3)

We summarize this statement as a theorem.

Theorem 4.2 (Best rank quasimatrix approximation). Let A be an [a, b]×n contin-
uous quasimatrix and ‖ · ‖F the quasimatrix norm in (4.3). Then, the first k terms
of the SVD for A give a best rank k approximant to A with respect to the quasimatrix
norms ‖ · ‖2 and ‖ · ‖F .

Proof. The reasoning is analogous to that in Section 3.10, but for quasimatrices in-
stead of functions.

The ability to take the SVD of a quasimatrix has been available in Chebfun since
the very beginning [10] via the svd command, and the underlying algorithm is based
on the QR factorization (as described in Section 1.7). From this factorization, we can
readily define notions such as the Moore–Penrose pseudoinverse A+ = V Σ+U∗ and
the condition number κ(A) = κ(Σ).

4.6 The QR factorization of a quasimatrix

The QR factorization of an [a, b] × n quasimatrix is analogous to the QR of a tall-
skinny matrix with no surprises.

Definition 4.5. Let A be an [a, b] × n continuous quasimatrix. A QR factorization
of A is a decomposition A = QR, where Q is an [a, b] × n continuous quasimatrix
with orthonormal columns and R is an n× n upper-triangular matrix.

The QR factorization of a quasimatrix was mentioned in [160, pp. 52–54], and
appeared around the same time in [140]. It was one of the original capabilities of
Chebfun [9, 10]. The algorithm originally relied on Gram–Schmidt orthogonalization
and was later replaced by a more stable algorithm based on a continuous analogue of
Householder triangularization [157].

The basic properties of the factorization are summarized by the following theorem.

63

Theorem 4.3 (QR factorization of a quasimatrix). Every [a, b]×n continuous quasi-
matrix A has a QR factorization. If the columns of A are linearly independent con-
tinuous functions and the diagonal entries of R are required to be nonnegative and
real, then the QR factorization is unique. For each k with 1 ≤ k ≤ n, the space
spanned by the columns a1(y), . . . , ak(y) of A is a subspace of the span of the columns
q1(y), . . . , qk(y) of Q.

Proof. If A is of full rank then existence and uniqueness were shown in [9, Sec. 3.4]
(an alternative proof is given in [140, p. 38]). If A is not of full rank, Theorem 4.4
shows that A has an LU factorization A = LAUA, where LA is a unit lower-triangular
continuous quasimatrix and UA is an upper-triangular matrix. Since LA is of full
rank, LA has a QR factorization, LA = QARA [9, Sec. 3.4]. The existence of the
quasimatrix QR factorization follows since A = QA(RAUA) is a QR factorization of
A.

For the last statement, since A =
∑n

j=1 qj(y)r
∗
j and R is an upper-triangular

matrix the columns a1(y), . . . , ak(y) of A can be expressed as linear combinations of
q1(y), . . . , qk(y).

If the columns of A are linearly dependent then one can find an arbitrary contin-
uous function that is orthogonal to the preceding columns of Q, making the factor-
ization nonunique.

One can also define the QR factorization of an n× [a, b] continuous quasimatrix,
involving an n × n unitary matrix Q and an n × [a, b] upper-triangular continuous
quasimatrix R. For the reasons discussed in Section 4.3 this factorization requires a
pivoting strategy in the x-variable.

4.7 The LU factorization of a quasimatrix

We now come to our first new factorization: the LU factorization of a quasimatrix.

Definition 4.6. Let A be an [a, b]× n continuous quasimatrix. An LU factorization
of A is a factorization A = LU , where U is an upper-triangular n× n matrix and L
is an [a, b]× n unit lower-triangular continuous quasimatrix.

Figure 4.3 shows the factorization, where the numbers in parentheses indicate the
numbers of nested zeros in each column. (This diagram does not show that L is unit
lower-triangular.)

64

........
(0)

.
(1)

.
(2)

Figure 4.3: The LU factorization of an [a, b] × n quasimatrix: A = LU , where L is
an [a, b] × n unit lower-triangular continuous quasimatrix and U is an n × n upper-
triangular matrix. The numbers in parentheses indicate the number of nested zeros
in each column.

An algorithm for computing the LU factorization involves pivoting in the vertical
direction (see Section 4.3), and we use GE with partial pivoting. Let A be an [a, b]×n
continuous quasimatrix. GE with partial pivoting on A is a direct algorithm requiring
n steps. Define E0 = A. At step k = 1, find a value y1 ∈ [a, b] for which |E0(·, 1)|
is maximal and define `1 = E0(·, 1)/E0(y1, 1), u∗1 = E0(y1, ·), and E1 = E0 − `1(y)u

∗
1.

(If E0(y1, 1) = 0, `1 can be any function in C([a, b]) with |`1(y)| ≤ 1 for all y and
`1(y1) = 1.) The new quasimatrix E1 is zero in row y1 and column 1. At step k = 2,
find a value y2 ∈ [a, b] for which |E1(·, 2)| is maximal and define `2 = E1(·, 2)/E1(y2, 2),
u∗2 = E1(y2, ·), and E2 = E1 − `2(y)u

∗
2. (If E1(y2, 2) = 0, `2 can be any function in

C([a, b]) with |`2(y)| ≤ 1 for all y, `2(y1) = 0, and `2(y2) = 1.) The quasimatrix E2
is zero in rows y1 and y2 and columns 1 and 2. Continuing in this fashion, after n
steps we have the zero quasimatrix En, and hence A =

∑n
j=1 `j(y)u

∗
j or, equivalently,

A = LU . Due to the pivoting strategy L is diagonally maximal in addition to being
a unit lower-triangular continuous quasimatrix (see Section 4.3).

The basic properties of this factorization are summarized in the following theorem.

Theorem 4.4 (LU factorization of a quasimatrix). Every [a, b]×n continuous quasi-
matrix A has an LU factorization A = LU . If A is of full rank and L is strictly
diagonally maximal, then the factorization is unique. The rank of A is equal to the
rank of U . For each 1 ≤ k ≤ n, the space spanned by the columns a1(y), . . . , ak(y) of
A is a subspace of the span of the columns `1(y), . . . , `k(y) of L.

Proof. Existence is evident from the GE algorithm. For uniqueness, we proceed by
induction. For n = 1, if there are two factorizations then we have `(1)1 u

(1)
11 = `

(2)
1 u

(2)
11 ,

and since A is of full rank u(1)11 6= 0 and `(1)1 = (u
(2)
11 /u

(1)
11)`

(2)
1 . In addition, `(1)1 and `(2)1

are strictly diagonally maximal so take the value of 1 at the same point, y(1)1 = y
(2)
2 ,

65

so u
(1)
11 = u

(2)
11 . Moreover, `(1)1 = `

(2)
1 as `(1)1 and `

(2)
1 are continuous. For general n

and a full rank A, we suppose that the first n − 1 columns of A have a unique LU
factorization. Then, we have the following expression for the last column of A:

u
(1)
1n `1 + · · ·+ u

(1)
n−1n`n−1 + u(1)nn`

(1)
n = u

(2)
1n `1 + · · ·+ u

(2)
n−1n`n−1 + u(2)nn`

(2)
n .

By the nested set of zeros in the first n − 1 columns we conclude u
(1)
jn = u

(2)
jn for

1 ≤ j ≤ n− 1, and hence u(1)nn`
(1)
n = u

(2)
nn`

(2)
n . Finally, u(1)nn = u

(2)
nn and `(1)n = `

(2)
n by the

same reasoning as in the n = 1 case. The result follows by induction on n.
The unit lower-triangular quasimatrix L is of full rank (its diagonal entries are

nonzero) and hence, rank(A) = rank(U). For the last statement, since we have
A =

∑n
j=1 `j(y)u

∗
j and U is an upper-triangular matrix, the columns a1(y), . . . , ak(y)

of A can be expressed as a linear combination of `1(y), . . . , `k(y).

The lu command in Chebfun computes an LU factorization of a quasimatrix by
using GE with partial pivoting; however, an LU factorization can be constructed us-
ing other row pivoting strategies in GE. This leads to lower-triangular quasimatrices
that are not diagonally maximal. Furthermore, one could introduce column pivot-
ing, in which case U would become a psychologically upper-triangular matrix (see
Section 4.3).

One can also define the LU factorization of an n× [a, b] quasimatrix A, requiring
column pivoting rather than row pivoting. This yields A = LU where L is an n×n unit
lower-triangular matrix and U is an n×[a, b] upper-triangular continuous quasimatrix.
If partial pivoting (in the column direction) is used then U is diagonally maximal.

4.8 The SVD of a cmatrix

We now come to our first cmatrix factorization and accordingly, we must now pay
attention to the convergence of the infinite series in (4.2). We have already seen the
SVD in Chapter 3, described as a factorization of functions instead of cmatrices. The
following cmatrix definition is analogous to the SVD of a continuous function (see
Definition 3.2).

Definition 4.7. Let A be an [a, b] × [c, d] continuous cmatrix. An SVD of A is an

66

..

u

.

u

....

σ

.

σ

....

v∗

.

v∗

...

Figure 4.4: Another way to visualize the SVD of a Lipschitz continuous cmatrix.
If A is Lipschitz continuous, then the infinite sum in (3.6) is absolutely convergent
and therefore, can be written as a product of quasimatrices and an infinite diagonal
matrix (see Corollary 4.1).

infinite series,

A =
∞∑
j=1

σjuj(y)v
∗
j (x), (x, y) ∈ [a, b]× [c, d], (4.4)

where σ1 ≥ σ2 ≥ · · · ≥ 0, and {uj}j≥1 and {vj}j≥1 are orthonormal sets of continuous
functions on [a, b] and [c, d], respectively. The equality in (4.4) should be understood
to signify that the series converges to A pointwise.

Theorem 3.3 states that if A is Lipschitz continuous in both of its variables, then
the SVD series is uniformly and absolutely convergent to A. In this situation the
series is unconditionally convergent so we can write it as A = UΣV∗ (see Section 4.3).
Figure 4.4 shows the SVD of a cmatrix as a decomposition.

Corollary 4.1. If A is an [a, b]×[c, d] cmatrix that is Lipschitz continuous with respect
to both its variables, then an SVD of A can be written as A = UΣV∗, where U is an
[a, b]×∞ continuous quasimatrix and V is an ∞× [c, d] continuous quasimatrix, both
with orthonormal columns, and Σ is an infinite diagonal matrix with real nonnegative
non-increasing entries.

Proof. This is equivalent to the statement in Theorem 3.3.

The underlying mathematics of the SVD of a cmatrix goes back to work by Schmidt
in 1907 [130] and Weyl in 1912 [166]. An account of the history can be found in [142].

The svd command in Chebfun2 is a valuable feature for appreciating the near-
optimality of the iterative GE algorithm (see Section 2.1.2). Figure 4.5 shows the
algorithm we employ in the svd command in Chebfun2, which first calculates the LU
factorization of a cmatrix (see Section 4.10) before computing a QR factorization of a

67

Pseudocode: SVD of a cmatrix

Input: An [a, b]× [c, d] cmatrix A.
Output: Quasimatrices with orthonormal columns U and V , and

an infinite diagonal matrix Σ such that A = UΣV∗.

1. Cmatrix LU factorization: A = LAUA (see Section 4.10)
2. Quasimatrix QR factorization: LA = QLRL and U∗

A = QURU

3. Matrix-matrix product: B = RLR
∗
U

4. Matrix SVD: B = UBΣBV
∗
B

5. Construct: UA = QLUB, VA = QRVB, and ΣA = ΣB

Figure 4.5: Pseudocode for computing the SVD of a cmatrix. An analogue of this
algorithm for matrices can be found in [12, pp. 15–16]. Alternatively, the cmatrix
QR factorization can be used in the first step and then the algorithm is a cmatrix
analogue of the algorithm in [34]. The standard matrix SVD algorithm by Golub
and Reinsch [60] involves bidiagonalization and a continuous analogue is more subtle.
This algorithm is theoretically justified if A satisfies the assumptions in Theorem 4.6.

lower-triangular quasimatrix. (In theory this algorithm is only justified for cmatrices
that satisfy the assumptions in Theorem 4.6, but in practice it works when there is
much less smoothness. We expect that Theorem 4.6 can be proven under weaker
assumptions.)

We have already covered the main features of the SVD, described for functions
rather than cmatrices. Theorems 3.1 and 3.2 related the smoothness of A to the
decay rates of its singular values, and the basic properties of the cmatrix SVD were
given in Theorem 3.3.

If A is a nonnegative definite Hermitian cmatrix (see Table 4.2), then continuity is
enough (Lipschitz continuity is not necessary) to ensure that the SVD series in (4.2)
is absolutely and uniformly convergent. This is Mercer’s Theorem [107].

4.9 The QR factorization of a cmatrix

The QR factorization of a cmatrix is also an infinite series.

Definition 4.8. Let A be an [a, b]× [c, d] continuous cmatrix. A QR factorization of
A is an infinite series,

A =
∞∑
j=1

qj(y)r
∗
j (x), (4.5)

68

Algorithm: Gram–Schmidt with column pivoting on cmatrices

Input: An [a, b]× [c, d] continuous cmatrix A.
Output: A QR series A =

∑∞
j=1 qj(y)r

∗
j (x).

E0(y, x) = A(y, x), ‖ · ‖ = ‖ · ‖L2([a,b])

for j = 1, 2, . . .

xj = argmaxx∈[c,d](‖Ej−1(·, x)‖)
Ej(y, x) = Ej−1(y, x)− Ej−1(y,xj)

‖Ej−1(·,xj)‖2
´ b
a
Ej−1(s, xj)Ej−1(s, x)ds

qj(y) = ±Ej−1(y, xj)/‖Ej−1(·, xj)‖
r∗j (x) = ±

´ b

a
Ej−1(s, xj)Ej−1(s, x)/‖Ej−1(·, xj)‖ds

end

Figure 4.6: Gram–Schmidt orthogonalization with column pivoting on cmatrices. In
practice the algorithm is terminated after k steps if max(‖Ek+1(·, x)‖) is less than a
prescribed tolerance leading to a rank k approximation of A.

where Q is a continuous quasimatrix with orthonormal columns q1, q2, . . . , and R is
an upper-triangular continuous quasimatrix with rows r∗1, r∗2, The equality in (4.5)
should be understood to signify that the series converges pointwise to A.

For this factorization, pivoting in the horizontal variable is essential and can be
achieved by a continuous analogue of Gram–Schmidt orthogonalization with column
pivoting. Figure 4.6 gives the pseudocode for the algorithm, and to make this contin-
uous idealization practical it must be discretized, involving adaptivity. Alternatively,
one could discretize the function on a sufficiently large tensor grid and perform a
weighted (with the Gauss–Legendre weights) QR with column pivoting on the result-
ing matrix. If one interpolated the resulting matrix factors to form quasimatrices,
then this would construct a QR factorization of a cmatrix.

In the qr command in Chebfun2 we employ a less direct algorithm that happens
to be easier to implement. We first compute the LU factorization of the cmatrix
A = LU (see Section 4.10) before taking the QR factorization of the lower-triangular
quasimatrix L = QR (see Section 4.6). This means we can write A = Q(RU), which
is a QR factorization of A. This is easier to implement because we have already
invested a significant amount of time into Gaussian elimination on cmatrices and
designed specialized adaptivity and resolution testing (see Section 2.1.1).

To justify writing the series in (4.5) as A = QR we require that the series is
unconditionally convergent to A (the product of quasimatrices does not impose the
order in which the rank 1 terms are summed). To guarantee this we prove that

69

the series in (4.5) converges absolutely to A, when A satisfies certain smoothness
assumptions.

Theorem 4.5 (Convergence of QR). Let A be an [a, b]×[c, d] cmatrix that is Lipschitz
continuous in the y-variable (uniformly in x) and such that, uniformly in y ∈ [a, b],
the row A(y, ·) is analytic and analytically continuable in the x-variable to a function
bounded in absolute value by a fixed constant in a region containing the Bernstein
ellipse with foci c and d, where the semiminor and semimajor axis lengths sum to√
2ρ(d − c) with ρ > 1. Then, its QR series (with column pivoting) converges uni-

formly, absolutely, and geometrically with rate ρ2/3 to A.

Proof. Let A be Lipschitz continuous in the y-variable with Lipschitz constant C <∞
(uniformly in x). The Gram–Schmidt process is such that Ej in Figure 4.6 is Lipschitz
continuous in the y-variable with a Lipschitz constant that at worst doubles at each
step,

‖Ej(y1, ·)− Ej(y2, ·)‖L∞([c,d]) ≤ 2jC|y1 − y2|, y1, y2 ∈ [a, b].

Since A is continuous on [a, b] × [c, d], so is Ej, and hence we can pick (tj, sj) ∈
[a, b]× [c, d] such that |Ej(tj, sj)| = ‖Ej‖∞. By Lemma B.1 with p = 2 we have

‖Ej‖∞ ≤ max

(
2(2jC)1/3‖Ej(·, sj)‖2/3L2 ,

2√
b− a

‖Ej(·, sj)‖L2

)
.

Moreover, ‖Ej(·, sj)‖L2 ≤ supx ‖Ej(·, x)‖L2 = |rj+1(xj+1)|, where the last equality
holds since |rj+1(xj+1)| = ‖Ej(·, xj+1)‖L2 and by column pivoting ‖Ej(·, xj+1)‖L2 =

supx ‖Ej(·, x)‖L2 . As a further consequence of column pivoting we have |rj+1(xj+1)| ≤
|rj(xj)| and hence,

‖Ej‖∞ ≤ max

(
2(2jC)1/3|rj(xj)|2/3,

2√
b− a

|rj(xj)|
)
. (4.6)

Now, consider the j × j submatrix R̃j satisfying (R̃j)st = rs(xt) for 1 ≤ s, t ≤ j.
The matrix R̃j is upper-triangular with the absolute value of its diagonal entries
bounded below by |rj(xj)|. If |rj(xj)| = 0 then supx ‖Ej−1(·, x)‖L2 = 0 and the QR
factorization of A contains only finitely many terms so the convergence results follow.
If |rj(xj)| 6= 0 then R̃j is invertible and by the same reasoning as in [153, Thm. 9.2]
we have,

‖R̃−1
j ‖2 ≤ 2j/|rj(xj)|.

70

Now, let Ãj be the x1, . . . , xj columns of A and Q̃j be the first j columns of Q,
respectively. Then, Ãj = Q̃jR̃j and the minimum singular value of Ãj is equal to the
minimum singular value of R̃j. Thus,

|rj(xj)| ≤ 2j/‖R̃−1
j ‖2 ≤ 2jσj(R̃j) = 2jσj(Ãj),

and combining with (4.6), we get

‖Ej‖∞ ≤ max

(
2j+1C1/3(σj(Ãj))

2/3,
2j+1

√
b− a

σj(Ãj)

)
. (4.7)

By the best rank property of the quasimatrix SVD (see Theorem 4.2) we have

σj(Ãj) = inf
Bj−1

∥∥∥Ãj − Bj−1

∥∥∥
2
,

where the infimum is taken over [a, b] × j quasimatrices Bj−1 of rank at most j − 1.
Moreover, for any [a, b] × j continuous quasimatrix F and v ∈ Cj with ‖v‖2 = 1 we
have

‖F‖22 ≤ ‖Fv‖22 =
ˆ b

a

∣∣∣∣∣
j∑

i=1

viF(y, i)

∣∣∣∣∣
2

dy ≤ j(b− a) sup
y∈[a,b]

sup
1≤i≤j

|F(y, i)|2 .

Thus, for any [a, b]× j quasimatrix Bj−1 of rank at most j − 1 we have

σj(Ãj) ≤
√
j(b− a) sup

y∈[a,b]
sup
1≤i≤j

∣∣∣Ãj(y, i)− Bj−1(y, i)
∣∣∣ .

Our analyticity assumption on A implies that it can be approximated to a uniform
accuracy of O((2

√
2(ρ + ε))−j) for some ε > 0 by functions that are polynomials of

degree j − 2 in the x-variable (see Theorem 3.2). When a quasimatrix is formed
by taking the x1, . . . , xj columns from such a function the resulting quasimatrix is
of rank at most j − 1. Combining this observation with (4.7) shows that ‖Ej‖∞ =

O(ρ−2j/3) = O(ρ−j
∗) as j → ∞, where ρ∗ = ρ2/3 > 1. That is, the convergence is

uniform and geometrically fast.
Finally, we consider the absolute convergence of the QR series. By definition we

71

........

q

.

q

.

(0)

.

(1)

Figure 4.7: The QR factorization of an [a, b] × [c, d] continuous cmatrix: A = QR,
where Q is an [a, b]×∞ continuous quasimatrix with orthonormal columns, and R is
an ∞× [c, d] upper-triangular continuous quasmatrix. The q’s indicate orthonormal
columns.

have
‖qj‖∞ ≤ ‖Ej−1(·, xj)‖∞

‖Ej−1(·, xj)‖L2

,

and by the Cauchy–Schwarz inequality

‖rj‖∞ ≤ ‖Ej−1(·, xj)‖L2 .

Therefore, we have absolute convergence

∞∑
j=1

|qj(y)||rj(x)| ≤
∞∑
j=1

‖Ej−1(·, xj)‖∞ ≤
∞∑
j=1

‖Ej−1‖∞ ≤
∞∑
j=1

O(ρ−j
∗) <∞.

Theorem 4.5 shows that Gram–Schmidt orthogonalization with column pivoting
can construct a QR factorization of a cmatrix. Figure 4.7 shows the QR factorization
of a cmatrix, A = QR, which we know exists for cmatrices satisfying the assumptions
of Theorem 4.5.

4.10 The LU factorization of a cmatrix

The LU factorization of a cmatrix involves both column and row pivoting and is an
important factorization for Chebfun2 as it is the main factorization used for approxi-
mating functions (see Chapter 2). It is also related to adaptive cross approximation,
the CUR decomposition, interpolative decompositions, and Geddes–Newton approx-
imation (see Section 2.1.3). The factorization can be defined as a series.

72

........
(0)

.
(1)

.

(0)

.

(1)

Figure 4.8: The LU factorization of an [a, b] × [c, d] cmatrix: A = LU , where L is
an [a, b] × ∞ unit lower-triangular continuous quasimatrix and U is an ∞ × [c, d]
upper-triangular continuous quasmatrix.

Definition 4.9. Let A be an [a, b] × [c, d] continuous cmatrix. An LU factorization
of A is an infinite series,

A(y, x) =
∞∑
j=1

`j(y)u
∗
j(x), (4.8)

where `1, `2, . . . and u∗1, u∗2, . . . are continuous, the [a, b]×∞ quasimatrix with columns
`1, `2, . . . is unit lower-triangular, and the ∞× [a, b] quasimatrix with rows u∗1, u∗2, . . .
is upper-triangular. The equality in (4.8) should be understood to signify that the
series converges pointwise to A.

In order to be able to write (4.8) as A = LU we must prove that the series con-
verges absolutely and uniformly to A, and under appropriate assumptions Figure 4.8
shows the decomposition. The nested set of zeros now occurs in the columns of L
and in the rows of U , as indicated by the numbers in parentheses. One would imag-
ine that relatively weak smoothness conditions on A are required (such as Lipschitz
continuity) to be able to write A = LU , but so far we have only been able to prove
this under assumptions that are far from weak. In practice we observe convergence
under much milder assumptions.

Theorem 4.6 (Convergence of LU). Let A be an [a, b] × [c, d] continuous cmatrix.
Suppose that the column A(·, x) is analytically continuable to an analytic function
bounded in absolute value by a fixed constant in the closed region consisting of complex
numbers at a distance of at most 2ρ(b − a) from [a, b] for some ρ > 1, uniformly in
x ∈ [a, b]. Then, the series constructed by Gaussian elimination converges absolutely,
uniformly, and geometrically with rate ρ to A.

73

Proof. Fix x ∈ [c, d] and let ek denote the error function at step k,

ek = A(·, x)−
k∑

j=1

`j(·)u∗j(x),

a function of y ∈ [a, b]. Furthermore, let K be the closed region consisting of complex
numbers at a distance of at most 2ρ(b−a) from [a, b] for some ρ > 1. By assumptions
in the theorem, A(·, x) is analytic in K and by the elimination process so is ek, with
the bound on the magnitude of ek that is at worst doubling at each step,

|ek(z)| ≤ 2kM, z ∈ K, (4.9)

where M <∞ is a constant such that for any x ∈ [c, d] we have supz∈K |A(z, x)| ≤M .
By Theorem 2.1, ek has at least k zeros y1, . . . , yk in [a, b]. Let pk(y) be the

polynomial (y − y1) · · · (y − yk). Then ek/pk is analytic in K and hence, satisfies the
maximum modulus principle within K. For any y ∈ [a, b], this implies

|ek(y)| ≤ |pk(y)| sup
z∈∂K

|ek(z)|
|pk(z)|

≤ 2kM sup
z∈∂K

|pk(y)|
|pk(z)|

.

In this quotient of polynomials, each of the k factors in the denominator is at least 2ρ
times bigger in modulus than the corresponding factor in the numerator. We conclude
that |ek(y)| ≤ ρ−kM for y ∈ [a, b]. Since this error estimate applies independently
of x and y, it establishes uniform convergence. It also implies that the next term
`k+1u

∗
k+1 in the series is bounded in absolute value by ρ−kM , which gives absolute

convergence since
∑∞

k=0 ρ
−kM <∞.

The theorem is equally applicable to the convergence of adaptive cross approxi-
mation and Geddes–Newton approximation in two dimensions (see Section 2.1.3). An
analogous theorem holds when the analyticity assumptions on A are imposed on the
rows, A(y, ·) for y ∈ [a, b], rather than the columns.

The region of analyticity in Theorem 4.6 appears in 1D approximation theory,
where it is called a “stadium” (of radius 2ρ(b−a)) [159, p. 82]. If a function f : [a, b] →
C is analytic in a stadium of radius ρ(b − a) with ρ > 1, then a sequence {pn}n≥1

of polynomials such that pn interpolates f at n distinct points in [a, b] converges
uniformly and geometrically to f as n → ∞, irrespective of how the interpolation
nodes are distributed in [a, b] [54, p. 63]. Here, double the radius, 2ρ(b−a), is required

74

to compensate for the potential doubling in (4.9). When A satisfies the assumptions
in Theorem 4.6 we can write the LU series as a decomposition, A = LU .

Corollary 4.2. Let A be an [a, b]× [c, d] cmatrix satisfying the assumptions of The-
orem 4.6. Then A = LU , where L is an [a, b]×∞ unit lower-triangular continuous
quasimatrix and U is an [c, d]×∞ upper-triangular continuous quasimatrix.

Proof. By Theorem 4.6 the series in (4.8) is absolutely and uniformly convergent. In
particular, it is unconditionally and pointwise convergent.

The algorithm we use for the cmatrix LU factorization is described in Section 2.1.
In Chapter 2 the iterative GE algorithm constructed a CDR factorization (2.2), but
this can be easily converted into an LU factorization by sharing out scaling factors in
the diagonal matrix, D, appropriately. Every function in Chebfun2 starts from an LU
factorization of finite rank that is truncated so the series is accurate to about machine
precision. Further operations, such as the integration, differentiation, and evaluation,
exploit the resulting low rank structure (see Chapter 2). The remarkable ability of
GE with complete pivoting to construct near-optimal low rank approximations to
cmatrices is a central observation underlying the adaptive approximation algorithm
of Chebfun2 (see Section 2.1.2).

4.11 The Cholesky factorization of a cmatrix

Our last factorization is a continuous analogue of the Cholesky factorization.

Definition 4.10. Let A be an [a, b] × [a, b] continuous cmatrix. A Cholesky factor-
ization of A is an infinite series,

A(y, x) =
∞∑
j=1

rj(y)r
∗
j (x), (4.10)

where r∗1, r∗2, . . . are continuous and the ∞× [a, b] quasimatrix R with rows r∗1, r∗2, . . .
is upper-triangular. The equality in (4.10) should be understood to signify that the
series is pointwise convergent to A.

Unlike the situation with the other factorizations not every sufficiently smooth
cmatrix can have a Cholesky factorization since if the series in (4.10) is absolutely
and uniformly convergent, then A must be Hermitian, i.e., A(y, x) = A(x, y), and
nonnegative definite.

75

Definition 4.11. An [a, b] × [a, b] continuous cmatrix is nonnegative definite if for
all continuous functions v ∈ C([a, b]),

v∗Av =

ˆ b

a

ˆ b

a

v(y)A(y, x)v(x)dxdy ≥ 0.

We would like to be able to prove the stronger result: a Hermitian cmatrix has a
Cholesky factorization if and only if it is nonnegative definite. We establish this in
Theorem 4.7 below under a fairly restrictive set of hypotheses on the smoothness of
A, though we suspect this statement holds under more modest assumptions. Before
proving Theorem 4.7 we need to derive several results about Hermitian and nonneg-
ative definite cmatrices.

Lemma 4.1. Let A be a continuous Hermitian [a, b]× [a, b] cmatrix. Then, the diag-
onal entries of A are real. In addition, if A is nonnegative definite then the diagonal
entries are nonnegative and for any x, y ∈ [a, b] we have |A(y, x)|2 ≤ A(y, y)A(x, x).
Moreover, an absolute maximum of A occurs on the diagonal.

Proof. If A is Hermitian then for x ∈ [a, b] we have A(x, x) = A(x, x) so the diagonal
entries are real. If A is nonnegative definite, then by [107, Sec. 5] we have A(x, x) ≥ 0.
Moreover, by [107, eq. (6)] (with n = 2, s1 = x, and s2 = y) the 2× 2 matrix

B =

[
A(y, y) A(y, x)

A(x, y) A(x, x)

]
=

[
A(y, y) A(y, x)

A(y, x) A(x, x)

]

is nonnegative definite and hence det(B) = A(y, y)A(x, x)−|A(y, x)|2 ≥ 0. Therefore,
we have |A(y, x)|2 ≤ sups∈[a,b] |A(s, s)|2 for any x, y ∈ [a, b] and hence, an absolute
maximum of A occurs on the diagonal.

The lower- and upper-triangular quasimatrix factors in a Cholesky factorization
of cmatrix are conjugate transposes of each other, and thus they must be triangular
with respect to the same indexing sequence (see Definition 4.2). Therefore, to select
a pivot the Cholesky algorithm searches along the diagonal. The pivoting strategy we
use is diagonal pivoting, where the location of an absolute maximum diagonal entry
of A is taken as the next pivot.

The Cholesky algorithm with diagonal pivoting can be described as follows: Let
A be a Hermitian nonnegative definite [a, b]× [a, b] cmatrix, and set E0 = A. At step
k = 1, select x1 ∈ [a, b] for which E0(x1, x1) = sups∈[a,b] E0(s, s). (The diagonal entries

76

are necessarily real and nonnegative by Lemma 4.1.) Let γ1 be the nonnegative
real square root of E0(x1, x1) and define r1 = E0(·, x1)/γ1 and E1 = E0 − r1r

∗
1. (If

E0(x1, x1) = 0, A is the zero cmatrix and we take r1 to be the zero function in
C([a, b]).) The cmatrix E1 is zero in row x1 and column x1, and E1 is Hermitian
and nonnegative definite itself (by the Schur Complement Lemma [141, Thm. 2.6]).
At step k = 2, select an x2 ∈ [a, b] for which E1(x2, x2) = sups∈[a,b] E1(s, s). Let γ2
be the nonnegative real square root of E1(x2, x2) and define r2 = E1(·, x2)/γ2 and
E2 = E1 − r2r

∗
2. The cmatrix E2 is zero in rows and columns x1 and x2, and E2

is Hermitian and nonnegative definite. We continue in this fashion, generating the
Cholesky factorization in (4.10) term-by-term.

We are able to show that the resulting Cholesky series is absolutely and uniformly
convergent when A is sufficiently smooth.

Theorem 4.7 (Convergence of Cholesky). Let A be an [a, b]× [a, b] continuous Her-
mitian nonnegative definite cmatrix. Suppose the function A(·, x) can be extended to
an analytic function bounded in absolute value by a fixed constant in the closed region
contained in the Bernstein ellipse with foci a and b with semiaxes lengths summing
to 2ρ(b − a) for some ρ > 1, uniformly in y ∈ [a, b]. Then, the series in (4.10) con-
structed by the Cholesky algorithm converges absolutely, uniformly, and geometrically
at rate ρ to A.

Proof. Let the first k + 1 pivots of the Cholesky algorithm be x1, . . . , xk+1 ∈ [a, b].
Since we are using diagonal pivoting and an absolute maximum occurs on the diagonal
(Lemma 4.1) we have

‖Ek‖∞ = rk+1(xk+1)
2 ≤ rk(xk)

2. (4.11)

Moreover,
∑k

j=1 rjr
∗
j interpolates A along the lines x = xj and y = xj for 1 ≤ j ≤ k

and therefore, there is an underlying k × k matrix Cholesky factorization:

Ak = R∗
kRk, (Ak)ij = A(xi, xj), (Rk)ij = rj(xi), 1 ≤ i, j ≤ k.

From [80] we have the bound
∥∥R−1

k

∥∥2
2
≤ 4k/rk(xk)

2 and hence,

σk(Ak)
−1 =

∥∥A−1
k

∥∥
2
=
∥∥R−1

k

∥∥2
2
≤ 4k/rk(xk)

2.

After rearranging we obtain rk(xk)
2 ≤ 4kσk(A). Thus, by combining with (4.11) we

have
‖Ek‖∞ ≤ 4kσk(Ak) = 4k inf ‖Ak − Ck−1‖2 ,

77

........
(0)

.
(1)

.

(0)

.

(1)

Figure 4.9: The Cholesky factorization of an [a, b]× [a, b] cmatrix: A = R∗R, where
R is an ∞× [a, b] upper-triangular continuous quasimatrix.

where the infimum is taken over k× k matrices of rank k− 1. By switching from the
2-norm to the maximum entry norm we have

‖Ek‖∞ ≤ k4k inf max
i,j

|(Ak − Ck−1)ij| .

Now, by Theorem 3.2 and our analyticity assumptions, A can be approximated to
an accuracy of O((4ρ)−k) by polynomials of degree k − 2 with respect to one of the
variables. Evaluating this polynomial approximation on the k×k tensor product grid
{(xi, xj) : 1 ≤ i, j ≤ k} leads to a matrix Ck−1 that is of rank at most k − 1 (see
Section 3.1) and satisfies |(Ak − Ck−1)ij| = O((4ρ)−k) with ρ > 1, which completes
the proof.

Theorem 4.7 is a continuous analogue of a convergence result for the pivoted
Cholesky algorithm for matrices [78]. When the Cholesky series in (4.10) is absolutely
and uniformly convergent we are able to write the decomposition A = R∗R, as shown
in Figure 4.9.

The chol command in Chebfun2 does not use the Cholesky algorithm, but instead
starts from the cmatrix LU factorization already computed when a chebfun2 is first
realized. The Cholesky factors are obtained by appropriately rescaling the lower- and
upper-triangular quasimatrix factors.

4.11.1 Test for nonnegative definite functions

The Cholesky algorithm is often used to test numerically if a matrix is positive defi-
nite. This simple and useful test can be generalized to cmatrices.

78

Clearly, if a Hermitian cmatrix A can be written as A = R∗R, then for any
continuous function v ∈ C([a, b]),

v∗Av = v∗R∗Rv = (Rv)∗(Rv) ≥ 0

and hence, A is nonnegative definite. We also have a partial converse.

Theorem 4.8 (Test for nonnegative definite functions). Let A be an [a, b] × [a, b]

Hermitian nonnegative definite cmatrix satisfying the assumptions in Theorem 4.7.
Then A has a Cholesky factorization A = R∗R.

Proof. The Cholesky algorithm completes without breaking down if A is Hermitian
and nonnegative definite. By Theorem 4.7 the series converges absolutely and uni-
formly and hence A = R∗R.

We use the Cholesky algorithm as a numerical test for nonnegative definite func-
tions even when they are not smooth enough to satisfy the assumptions in Theo-
rem 4.7. First, we approximate the function by a chebfun2 and then check if all the
GE pivots are nonnegative and lie on the diagonal,6 i.e., the line y = x. For example,
the inverse multiquadric function with ε > 0

A(y, x) = 1/(1 + ε(x2 + y2)) (4.12)

is nonnegative definite on [−1, 1]2 (or any other square domain), and this can be
numerically verified by checking that all its GE pivots are nonnegative and lie on the
diagonal. Figure 4.10 (left) shows the pivot locations for the inverse multiquadric.

As another example, we can numerically verify that A∗A is a nonnegative cmatrix.
For instance, take A(y, x) = cos(10xy) + y + x2 + sin(10xy) on [−1, 1]2 and calculate
B = A∗A, i.e.,

B(y, x) =
ˆ 1

−1

A(s, y)A(s, x)ds.

Then, B is a nonnegative definite cmatrix. Figure 4.10 (right) shows that the pivot
locations are on the diagonal, and in addition the pivot values are nonnegative.

6If there is a tie between an off-diagonal and a diagonal absolute maximum, the absolute maximum
occurring on the diagonal is taken.

79

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4.10: The Cholesky algorithm can be used as a numerical test for nonnegative
definite cmatrices. Here, it is applied to the inverse multiquadric function in (4.12)
with ε = 1,000 (left) and A∗A with A(y, x) = cos(10xy) + y+ x2 + sin(10xy) (right).
The black dots are the locations of the pivots taken by the algorithm.

4.12 More on continuous linear algebra

This chapter has concentrated on continuous analogues of matrix factorizations, but
many other matrix concepts also have analogues for quasimatrices and cmatrices.
Table 4.2 summarizes a selection for cmatrices.

80

Category Matrix setting Cmatrix analogue

Special matrices

Toeplitz A(y, x) = φ(x− y)

Hankel A(y, x) = φ(x+ y)

Cauchy A(y, x) = 1/(x+ y)

Z-matrix A(y, x) ≤ 0, x 6= y

Metzler A(y, x) ≥ 0, x 6= y

Rank 1 A(y, x) = g(y)h(x)

Matrix operations

transpose AT (y, x) = A(x, y)

conjugate transpose A∗(y, x) = A(x, y)

matrix addition (A+ B) (y, x) = A(y, x) + B(y, x)
matrix-vector product Av =

´
A(y, s)v(s) ds

vector-matrix product v∗A =
´
v(s)A(s, x) ds

matrix-matrix product AB =
´
A(y, s)B(s, x) ds

diagonal diag(A) = A(x, x)

trace tr(A) =
´
A(s, s) ds

Matrix properties

symmetric AT = A
Hermitian A∗ = A

normal A∗A = AA∗

diagonally dominant |A(y0, y0)| ≥
´
|A(y0, s)| ds, ∀y0

positive definite
´ ´

v(y)A(y, x)v(x)dxdy > 0, ∀v

Matrix norms

maximum norm ‖A‖max = sup(y,x) |A(y, x)|
Frobenius norm ‖A‖2F =

´ ´
|A(y, x)|2 dx dy

∞-norm ‖A‖∞ = supy

´
|A(y, x)| dx

2-norm ‖A‖2 = sup‖v‖L2=1 ‖Av‖L2

1-norm ‖A‖1 = supx

´
|A(y, x)| dy

Spectral theory
eigenvalues/eigenvectors Av = λv

Rayleigh quotient R(A, v) = v∗Av/‖v‖L2 , ‖v‖L2 6= 0

field of values W (A) = {R(A, v) : ‖v‖L2 6= 0}

Table 4.2: Continuous analogues of standard matrix definitions for cmatrices. When
the matrix setting requires square matrices, the analogous cmatrix definition requires
square cmatrices. If A is an [a, b]× [c, d] cmatrix, then Av requires v to be a function
on [c, d], v∗A requires v to be a function on [a, b], and AB requires B to be an [c, d]×I
cmatrix for some interval I ⊆ R.

81

Chapter 5

Bivariate rootfinding*

There are two operations on bivariate functions that are commonly referred to as
rootfinding : (1) finding the zero level curves of f(x, y) and (2) finding the common
zeros of f(x, y) and g(x, y). These operations are mathematically quite different. The
first, generically, has solutions along curves, while the second, generically, has isolated
solutions.

In this chapter, we concentrate on the second problem: find all the solutions to

(
f(x, y)
g(x, y)

)
= 0, (x, y) ∈ [−1, 1]2, (5.1)

with the assumption that the solutions are isolated. The algorithm we derive is a 2D
analogue of the 1D rootfinder in Chebfun, which is based on recursive subdivision
and computing the eigenvalues of a colleague matrix [27, 161]. Unlike the tensor
product operations discussed in Section 2.2, we do not know how to exploit the low
rank structure of f and g, and fundamentally new techniques are required. The 2D
rootfinding algorithm we derive still relies on recursive subdivision and eigenvalues of
matrices, but also employs additional techniques such as resultants, local refinement,
and regularization.

Chebfun2 can also find the zero level curves of f(x, y) via the roots(f) command.
The underlying algorithm is based on a marching squares technique [96], which is used

*This chapter is based on a paper with Yuji Nakatsukasa and Vanni Noferini [113]. I developed
the algorithm for the construction of Chebyshev–Bézout resultant matrices, proposed and analyzed
the domain subdivision algorithm, and introduced many practical features. Noferini proposed resul-
tant methods for 2D rootfinding, explained why spurious infinite eigenvalues are usually harmless,
and developed the algebraic understanding of rootfinding and resultants. Nakatsukasa proved the
conditioning of the eigenvalues of the Bézout matrix polynomial and was the lead programmer. We
jointly wrote the paper, though this chapter is substantially different. I have not included Noferini’s
algebraic discussions or Nakatsukasa’s conditioning analysis.

82

in computer graphics to display contour plots of scalar valued functions. Chebfun2
uses the same algorithm to calculate approximants to them. A short description is
given in Section 5.4.2 and more details can be found in [152].

Throughout, we consider the rootfinding problem on [−1, 1]2, though the algo-
rithm and its implementation are applicable to any bounded rectangular domain. We
assume that f and g are continuously differentiable and the solutions to (5.1) are
simple1.

5.1 A special case

If f or g is of rank 1 then this structure can be exploited when solving (5.1). Without
loss of generality suppose that f(x, y) = cf (y)rf (x) is of rank 1. Then the real
solutions (if any) of f(x, y) = 0 form lines parallel to the coordinate axes. (A line
either has a y-intercept at a root of cf or an x-intercept at a root of rf .) The lines on
[−1, 1]2 are easily computed by approximating cf and rf by Chebyshev interpolants
on [−1, 1] and employing the 1D rootfinder in Chebfun. Afterwards, further 1D
rootfinding problems can be solved involving g restricted to the solutions of f(x, y) = 0

on [−1, 1]2: g(·, y0) = 0 for each root y0 ∈ [−1, 1] of cf and g(x0, ·) for each root
x0 ∈ [−1, 1] of rf . Thus, when f or g is of rank 1 the 2D rootfinding problem in (5.1)
can be solved with existing 1D algorithms.

Moreover, in this special case, if f and g are polynomials then the number of
solutions to f = g = 0 is generically finite. Suppose that f and g are nonzero
polynomials p = f and q = g of degrees2 (mp, np) and (mq, nq), respectively, in
addition to f(x, y) = cf (y)rf (x). By the fundamental theorem of algebra, cf has at
most np roots y1, . . . , ynp in [−1, 1] and each g(·, yj) for 1 ≤ j ≤ np has at most mq

roots (assuming g(·, yj) 6= 0). Hence, there are at most npmq pairs (x, y) ∈ [−1, 1]2

such that cf (y) = 0 and g(x, y) = 0, all of which satisfy f(x, y) = g(x, y) = 0.
Similarly, rf has at most mp roots x1, . . . , xmp in [−1, 1] so there are at most mpnq

pairs (x, y) ∈ [−1, 1]2 such that rf (x) = 0, g(x, y) = 0, and f(x, y) = g(x, y) = 0

(assuming g(·, xj) 6= 0 for 1 ≤ j ≤ mp). We conclude that the set of solutions in this
case to (5.1) either contains a line (when g(·, yj) = 0 or g(xj, ·) = 0) or there are at
most

mpnq + npmq (5.2)
1We say that a solution to f = g = 0 is simple if the Jacobian of f and g is invertible at the

solution.
2A bivariate polynomial is of degree (mp, np) if it is of degree mp in x and np in y.

83

..
(
f(x, y)
g(x, y)

)
= 0.

(
p(x, y)
q(x, y)

)
= 0.

Degree

≤ 16?
.

Resultant method

with regularized

Bézout resultants

.

1D rootfinding

and local

refinement

.

no, subdivide

. yes

Figure 5.1: Flowchart of our 2D rootfinding algorithm based on a resultant method
with Bézout resultants. First, f and g are approximated by polynomials and [−1, 1]2

is recursively subdivided until the polynomial degree on each subdomain is at most
16 (Section 5.5). Then, a component of the solutions is computed by a resultant
method using regularized Bézout resultant matrices (Section 5.6). The remaining
component is computed by a 1D rootfinder. Local refinement is employed to improve
the accuracy of the final solutions (Section 5.8).

isolated solutions. The same maximum number of finite solutions is also true more
generally (see Theorem 5.1).

5.2 Algorithmic overview

When f and g in (5.1) are of rank > 1 the problem is more challenging. For this case,
our numerical algorithm involves several key steps.

First, in keeping with the usual Chebfun2 framework, we replace f and g by global
polynomial approximants that are accurate to normwise relative machine precision
on [−1, 1]2 (see Section 5.3). Then, we recursively subdivide [−1, 1]2 into rectangles
and represent f and g by low degree piecewise polynomials (see Section 5.5). On
each subdomain, one component of the solutions is computed by using a hidden vari-
able resultant method with Bézout resultants (see Section 5.6), which are regularized
(see Section 5.8). The remaining component of the solutions is computed by a 1D
rootfinder (see Section 5.7). Finally, the accuracy of the computed solutions is im-
proved by a local refinement procedure (see Section 5.8). Figure 5.1 summarizes the
key steps of the algorithm, and the rest of this chapter explains each one of them in
turn.

The algorithm is implemented in the roots(f,g) command in Chebfun2 [148], and
works in double precision with floating-point arithmetic. It does not require higher
precision or symbolic manipulation. The algorithm is designed to be a backward
stable 2D rootfinder for (5.1) under the assumptions that the solutions are simple.

84

5.3 Polynomialization

Our first step replaces f and g in (5.1) by chebfun2 approximants3 p and q that are
constructed to satisfy ‖f−p‖∞ ≤ ε‖f‖∞ and ‖g−q‖∞ ≤ ε‖g‖∞ (see Chapter 2). The
underlying low rank structure of a chebfun2 that was so readily exploited in Chapter 2
is ignored, and p and q are considered in tensor product form, i.e., for some integers
mp, mq, np, and nq,

p(x, y) =

mp∑
j=0

np∑
i=0

PijTi(y)Tj(x), q(x, y) =

mq∑
j=0

nq∑
i=0

QijTi(y)Tj(x), (5.3)

where P ∈ C(np+1)×(mp+1) and Q ∈ C(nq+1)×(mq+1) are matrices containing the Cheby-
shev expansion coefficients of p and q, respectively.

We proceed to solve the polynomial system of approximants,

(
p(x, y)
q(x, y)

)
= 0, (x, y) ∈ [−1, 1]2, (5.4)

under the expectation that its solutions approximate those of the original problem
in (5.1). It can be shown with Taylor expansions that if (x∗, y∗) ∈ [−1, 1]2 is a simple
solution to f = g = 0 and (x̃, ỹ) is a solution to p(x̃, ỹ) = q(x̃, ỹ) = 0 that is sufficiently
close to (x∗, y∗) to allow higher order terms to be ignored, then

∥∥∥∥(x̃− x∗
ỹ − y∗

)∥∥∥∥
∞

≤ O
(
umax (‖f‖∞, ‖g‖∞) ‖J(x∗, y∗)−1‖∞

)
, J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
,

(5.5)
where u is unit machine roundoff. We conclude that in many circumstances the
solutions to (5.1) are only slightly perturbed (in the absolute sense) by replacing f
and g by accurate approximants p and q. However, if f or g have widely varying
magnitudes, then some of the solutions to (5.1) may not be well-approximated by
those of (5.4) (see Section 5.9).

In the rootfinding literature it is standard to begin with a system of prescribed
low degree (≤ 30) polynomials, usually expressed in the monomial basis, and then to
use an algorithm with a complexity of the maximum polynomial degree to the power
of 6 [138] or worse [30, 111]. Instead, we start with a system of functions, rather than
polynomials, and our first step constructs a nearby polynomial rootfinding problem.

3A chebfun2 approximant is also a bivariate polynomial approximant.

85

Therefore, we have the freedom to select the polynomial basis in which to represent the
polynomials, and we choose the Chebyshev polynomial basis for numerical reasons.
As a further consequence, rootfinding problems are routinely generated and solved
that involve polynomials of high degree (≥ 100).

For the remainder of this chapter we assume that the functions in the original
problem (5.1) have been replaced by chebfun2 approximants p and q.

5.3.1 The maximum number of solutions

Replacing f and g by polynomials is not only numerically convenient, it also ensures
the rootfinding problem is computationally tractable as polynomial systems have,
generically, finitely many solutions. The maximum number of finite solutions that a
polynomial system can have depends on the polynomial degrees. In one variable the
number of complex solutions equals the polynomial degree. In two or more variables
an analogous theorem is known as Bézout’s Theorem [91, Ch. 3].

In two variables, the standard formulation of Bézout’s Theorem applies to systems
of polynomials with total degree4 m and n. The polynomials p and q in (5.3) are of
total degree mp + np and mq + nq, respectively, and a direct application of Bézout’s
Theorem shows that, generically, the number of solutions to p = q = 0 is at most
(mp + np)(mq + nq). In our case, one can improve this bound to show that (5.4) has,
generically, at most mpnq +mqnp solutions (cf. (5.2)).

Theorem 5.1 (Bézout bound). Let p(x, y) and q(x, y) be bivariate polynomials with
complex coefficients of degrees (mp, np) and (mq, nq), respectively. The solution set to
p = q = 0 is either positive dimensional (containing a curve) or contains at most

mpnq + npmq (5.6)

isolated solutions.

Proof. Apply Bernstein’s Theorem to obtain a mixed volume bound (see [137, p. 139–
143]).

Theorem 5.1 can be seen as a 2D generalization of the Fundamental Theorem
of Algebra. There are variants of Theorem 5.1 where the number of solutions is
exactly mpnq + npmq and to make such a theorem precise one must work in the

4A bivariate polynomial is of total degree n if it can be written in the form
∑

i+j≤n αijy
ixj .

86

complex projective space CP2 and be careful about multiple solutions and solutions
at infinity [91, Thm. 3.1]. These questions are within the broad subject of algebraic
geometry, which quantifies the word “generically” and more intricate structures of the
solution sets. An interested reader may like to begin with [137, Chap. 3].

5.4 Existing bivariate rootfinding algorithms

There are many existing numerical algorithms for bivariate rootfinding based on,
for example, resultants [21, 44, 89, 101], homotopy continuation [8, 137], and two-
parameter eigenvalue problems [3, 111]. In addition, there are symbolic algorithms
such as those that use Gröbner bases [30], which are extremely useful for small degree
polynomial systems but generally have a high complexity. Here, we briefly review
algorithms for bivariate rootfinding. The algorithm described in this chapter is based
on the hidden variable resultant method for polynomials expressed in the Chebyshev
basis.

5.4.1 Resultant methods

The hidden variable resultant method is based on selecting one variable, say y, and
writing bivariate polynomials p and q of degrees (mp, np) and (mq, nq) as polynomials
in x with coefficients in that are polynomials in y, i.e.,

p(x, y) = py(x) =

mp∑
j=0

αj(y)x
j, q(x, y) = qy(x) =

mq∑
j=0

βj(y)x
j. (5.7)

Here, the polynomials p and q in (5.7) are represented in the monomial basis because
that is how it is commonly given in the literature [41, 49]; however, representing
the polynomial in the Chebyshev basis is numerically stable when working on real
intervals [159]. For this reason, we always represent the polynomials p and q using
the Chebyshev polynomial basis.

Generically, two univariate polynomials do not have a common root, and certain
matrices, known as resultant matrices (with entries depending on the coefficients of
the polynomials), can be constructed that are singular if and only if a common root
exists. In particular, the two polynomials py(x) and qy(x) in (5.7), thought of as
univariate in x, have a common zero if and only if a resultant matrix is singular [6].

87

Therefore, the y-values of the solutions to p = q = 0 can be computed by finding the
y-values such that a resultant matrix is singular.

There are many different types of resultant matrices such as Sylvester [41], Bé-
zout [19], and others [6, 49, 87]. These resultant matrices are usually constructed
for polynomials expressed in the monomial basis [21, 101], but they can also be con-
structed for polynomials expressed in other bases [20]. See Appendix C for the con-
struction of the Bézout resultant matrix for polynomials expressed in the Chebyshev
basis.

Finding the y-values such that the resultant matrix is singular is equivalent to a
polynomial eigenvalue problem, and many techniques exist for solving such problems,
including methods based on contour integrals [2, 18], Newton-type methods, inverse
iteration methods [106], the Ehrlich–Aberth method [22], and the standard approach
of solving via linearization [58]. We use linearization and replace polynomial eigen-
value problems by generalized eigenvalue problems (see Section 5.6) that have the
same eigenvalues and Jordan structure [58].

A related approach is the u-resultant method, which starts by introducing a
dummy variable to make the polynomials homogeneous. The hidden variable resul-
tant method is then applied to the new polynomial system of three variables selecting
the dummy variable first. This ensures that the x- and y-variables are treated in the
same way. Unfortunately, making a polynomial homogeneous when expressed in the
Chebyshev basis is numerically unstable.

Some resultant methods, such as the rootfinder in MapleTM, first apply a coor-
dinate transformation to ensure that two solutions do not share the same y-value.
Such transforms are unnecessary in our algorithm (see Figure 5.5). Other changes of
variables can be applied, such as x = (z+ω)/2 and y = (z−ω)/2 [138], but we have
found that such changes of variables give little benefit in practice.

5.4.2 Contouring algorithms

Contouring algorithms such as marching squares and marching triangles [83, 96] are
employed in computer graphics to generate zero level curves of bivariate functions.
These contouring algorithms can be used to solve (5.1) very efficiently. Prior to the
development of the algorithm discussed in this chapter, the roots(f,g) command
in Chebfun2 exclusively employed such a contouring approach [148], where the zero
level curves of f and g were computed separately using the MATLAB command5

5The MATLAB command contourc employs an algorithm based on marching squares.

88

contourc, and then the intersections of these zero level curves were used as initial
guesses for a Newton iteration.

Contouring algorithms suffer from several drawbacks:

1. The level curves of f and g may not be smooth even for very low degree poly-
nomials, for example, f(x, y) = y2 − x3.

2. The number of disconnected components of the level curves of f and g can be
potentially quite large. The maximum number is given by Harnack’s Curve
Theorem [79].

3. Problems are caused if the zero level curves of f or g are self-intersecting, leading
to the potential for missed solutions.

4. The zero level curves must be discretized and therefore the algorithm requires
a fine tuning of parameters to balance efficiency and reliability.

For many practical applications solving (5.1) via a contouring algorithm may be an
adequate approach, but not always.

The roots(f,g) command in Chebfun2 implements both the algorithm based
on a contouring algorithm and the approach described in this chapter. An optional
parameter can be supplied by a user to select one of the algorithms. We have decided
to keep the contouring approach as an option in Chebfun2 because it can sometimes
run faster, but we treat its computed solutions with suspicion.

5.4.3 Other numerical methods

Homotopy continuation methods [137] have the simple underlying idea of solving an
initial “easy” polynomial system that can be continuously deformed into the desired
“harder” polynomial system. Along the way several polynomial systems are solved
with the current solution set being used as an initial guess for the next. These meth-
ods have received significant attention in the literature and are a purely numerical
approach that can solve multivariate rootfinding problems [8, 137]. A particularly
impressive software package for homotopy methods is Bertini [8].

The two-parameter eigenvalue approach constructs polynomial interpolants to f
and g and then rewrites p(x, y) = q(x, y) = 0 as a two-parameter eigenvalue prob-
lem [3],

A1v = xB1v + yC1v, A2w = xB2w + yC2w.

89

This approach has advantages because the two-parameter eigenvalue problem can be
solved with the QZ algorithm [84]; however, the construction of the matrices Ai, Bi, Ci

for i = 1, 2 currently requires the solution of a multivariate polynomial rootfinding
problem itself [121]. Alternatively, matrices of much larger size can be constructed
using a generalized companion form, but this is quite inefficient [111].

5.5 Recursive subdivision of the domain

Domain subdivision is a simple and powerful technique for solving a high degree
rootfinding problem via the solution of several subproblems of low degree6. It is a
useful step when mp, np, mq, and nq are greater than 20 and absolutely essential when
they are in the hundreds or thousands.

The methodology we employ is a 2D analogue of Boyd’s 1D subdivision tech-
nique [27], as utilized by the roots command in Chebfun [161]. First, [−1, 1]2 is
subdivided from top to bottom if max(mp,mq) > 16, i.e., the degrees of p or q in the
x-variable are greater than 16, and subdivided from left and right if max(np, nq) > 16,
where the number 16 was determined by optimizing the computational time of the
overall algorithm on a set of test problems. The process terminates if no subdivision
is required. Otherwise, new continuous piecewise approximants to p and q are con-
structed that are polynomial on each subdomain. The process is applied recursively
with further subdivision if a domain contains a polynomial of degree more than 16 in
the x- or y-variable. As an example, Figure 5.2 shows how [−1, 1]2 is subdivided for
sin((x−1/10)y) cos(1/(x+(y−9/10)+5)) = (y−1/10) cos((x+(y+9/10)2/4)) = 0.

When subdividing, the domain is not exactly bisected, but instead divided asym-
metrically to avoid splitting at a solution to p = q = 0. Two small arbitrary constants7

rx and ry have been picked so that when [−1, 1]2 is subdivided from top to bottom
the domains [−1, rx] × [−1, 1] and [rx, 1] × [−1, 1] are formed, and when subdivided
from left to right the domains [−1, 1]× [−1, ry] and [−1, 1]× [ry, 1] are formed. This
is to avoid accidentally subdividing at a solution since, for example, it is common to
have a solution with x = 0, but highly contrived to have one with x = rx.

6Domain subdivision has similarities to the Interval Projected Polyhedron algorithm [110, 134]
except the focus here is on reducing the computational cost of rootfinding rather than determining
subregions that are guaranteed to contain the solutions.

7We take rx ≈ −0.004 and ry ≈ −0.0005. The full 16 digits for rx and ry are a guarded secret
as this knowledge leads to the construction of a example where solutions are double counted. There
is no significance to the values of rx and ry except that they are nonzero, small, and arbitrary.

90

Figure 5.2: Subdivision of [−1, 1]2 selected by Chebfun2 when f = sin((x −
1/10)y) cos(1/(x+ (y− 9/10) + 5)) and g = (y− 1/10) cos((x+ (y+9/10)2/4)). The
blue and red lines represent subdivisions used to reduce the degrees of the piecewise
polynomial approximant to f and g, respectively, and the green lines are subdivisions
used to reduce the degrees of both. The black dot is the only solution to f = g = 0
in [−1, 1]2.

For domain subdivision to reduce the overall computational cost of rootfinding, it
must significantly decrease the degrees of the polynomial approximants. Suppose, for
simplicity, that all the degrees of p and q are equal to n, i.e., n = mp = np = mq = mq,
and that on average a subdivision reduces the degrees by a factor 0 < τ ≤ 1. Then, the
number of subdivisions required is the largest integer, k, that satisfies nτ k ≤ d = 16.
Hence, k ≈ (log d − log n)/(log τ). One subdivision splits a domain into four and
thus k levels of subdivision creates O(4k) low degree rootfinding subproblems. Each
subproblem can be solved in a computational time independent of n and hence, the
resulting cost of our algorithm is

O
(
4k
)
= O

(
4

log d−logn
log τ

)
= O

(
4−

logn
log τ

)
= O

(
n− log 4

log τ

)
.

Figure 5.3 shows the exponent − log 4/ log τ as a function of τ . When τ ≤ 0.5 the
overall computational cost can be as low as O(n2) and is dominated by the initial
construction of p and q. When τ = 0.79 the cost is as high as O(n6), and if τ > 0.79

subdivision increases the computational cost. For many practical problems we observe
that τ ≈

√
2/2 ≈ 0.707, which leads to a computational cost of O(n4). At first sight

these computational costs may seem unacceptably large, but by Theorem 5.1 there
can be as many as 2n2 solutions to (5.4) when n = mp = np = mq = mq and hence,
in that case just to evaluate p and q at all the solutions requires O(n4) operations.

91

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

τ

α

Figure 5.3: Computational cost required after subdivision is O (nα), where α =
− log 4/ log τ and τ is the average reduction in polynomial degrees per subdivision.

The parameter τ can take any value in (0, 1] as the following four examples show:

1. Consider f(x, y) = cf (y)rf (x), where cf and rf are highly oscillatory. By the
Shannon–Nyquist sampling theorem [132], cf and rf require at least 2 samples
per wavelength to be resolved. A subdivision halves the number of oscillations
in the x- and y-variable and hence τ ≈ 0.5.

2. Consider the contrived example f(x, y) = |x − rx||y − ry|, which is of high
numerical degree on [−1, 1]2. However, after subdividing in both directions the
polynomial approximants are piecewise linear and hence τ ≈ 0.

3. Bivariate polynomials of low degree with non-decaying coefficients tend to have
τ ≈ 1 (see the Hadamard Example in Section 5.10.4).

The parameter τ is closely related to the approximation theory of piecewise poly-
nomials of two variables, which is analyzed in the hp-FEM (finite element method)
literature [70]. Here, instead of considering the approximation power of piecewise
polynomials we are looking at the number of degrees of freedom required to maintain
a fixed approximation error.

Figure 5.4 shows the computational time for solving sin(ω(x + y)) = cos(ω(x −
y)) = 0 for 1 ≤ ω ≤ 50, with and without subdivision. In our implementation we
keep a running estimate of τ and stop the subdivision process if τ > .79 for three
consecutive subdivisions.

Once [−1, 1]2 has been sufficiently subdivided we proceed to solve the rootfinding
problem on each subdomain. Usually these rootfinding problems involve polynomials
of degree at most 16 in both variables, unless τ was estimated to be more than 0.79.

92

20 40 80
10

−1

10
0

10
1

10
2

Polynomial degree

E
xe

cu
tio

n
tim

e

with subdivision
without subdivision

O(n6)
O(n4)

Figure 5.4: Execution time for the roots(f,g) command in Chebfun2 to solve
sin(ω(x + y)) = cos(ω(x − y)) = 0 for 1 ≤ ω ≤ 50, with and without subdivision.
Here, subdivision reduces the cost from O(n6) to O(n4).

We expect, and it is almost always the case, that the union of solutions to all these
subproblems approximate those of the original problem (5.1). Rootfinding problems
where this fails to hold usually involve a function with a large dynamic range (see
Section 5.9).

5.6 A resultant method with Bézout resultants

After domain subdivision we are left with low degree polynomial bivariate rootfinding
problems. In this section we describe the resultant method we use to solve these
polynomial systems. Without loss of generality we assume the solutions are desired
in [−1, 1]2; otherwise, an affine transformation can be used to map the rectangular
domain to [−1, 1]2.

The resultant method we use is called a hidden variable resultant method [137,
p. 73], which selects a variable, say y, and rewrites the polynomials p(x, y) and q(x, y)
in (5.4) as univariate polynomials in x with coefficients that depend on y, i.e.,

p(x, y) = py(x) =

mp∑
j=0

αj(y)Tj(x), q(x, y) = qy(x) =

mq∑
j=0

βj(y)Tj(x).

The y-values for the solutions to p = q = 0 can then be determined by finding the
common roots of py and qy, which in turn can be computed from a resultant matrix.
We use a (Chebyshev–)Bézout resultant matrix, as opposed to a Sylvester resultant

93

matrix, because it is symmetric, which makes it more amenable to theoretical study
(see, for instance, [113, Thm. 1]).

5.6.1 Bézout resultants for finding common roots

The Bézout matrix is a special square matrix that is usually associated with two
univariate polynomials expressed in the monomial basis [32]. It is useful because its
determinant is a nonzero constant multiple of the product of the pairwise differences
between the roots of the two polynomials, and hence it is singular if and only if the
two polynomials have a common root [56, p. 401].

Bézout matrices have an analogue for polynomials expressed in the Chebyshev
polynomial basis, which we call Chebyshev–Bézout matrices. Let p and q be two
Chebyshev series of degree m and n (with real or complex coefficients) given by

p(x) =
m∑
i=0

αiTi(x), q(x) =
n∑

i=0

βiTi(x), x ∈ [−1, 1].

Then, the Chebyshev–Bézout matrix of size max(m,n)×max(m,n) associated with
p and q is defined as B = (bij)1≤i,j≤max(m,n), where the entries of B satisfy

p(s)q(t)− p(t)q(s)

s− t
=

max(m,n)∑
i,j=1

bijTi−1(t)Tj−1(s). (5.8)

The defining relation in (5.8) differs from the standard definition for Bézout matrices
in that monomials have been replaced by Chebyshev polynomials. A description of
how to construct Bézout matrices numerically is given in Appendix C.

The Chebyshev–Bézout matrix can be used to compute the common roots of two
univariate polynomials.

Theorem 5.2 (Resultant theorem). Let p and q be two polynomials of exact degree
m and n, respectively. Then, the Chebyshev–Bézout matrix defined in (5.8) has the
following properties:

1. The matrix B is symmetric, i.e., bij = bji.

2. If B is a nonzero matrix, then x0 ∈ [−1, 1] is a common root of p and q if and
only if

[
T0(x0), . . . , Tmax(m,n)−1(x0)

]T is an eigenvector of B corresponding to a
zero eigenvalue.

94

3. The matrix B is singular if and only if p and q have a finite common root.

Proof. The bivariate function k(s, t) = (p(s)q(t)− p(t)q(s))/(s− t) satisfies k(s, t) =
k(t, s) so its coefficient matrix, B, is symmetric.

For the second statement, note that (5.8) can be written as

B

T0(s)

T1(s)

...

Tmax(m,n)−1(s)

 =

1
π

´ 1

−1
k(s,t)T0(t)√

1−t2
dt

2
π

´ 1

−1
k(s,t)T1(t)√

1−t2
dt

...

2
π

´ 1

−1

k(s,t)Tmax(m,n)−1(t)√
1−t2

dt

 ,

by using the integral definition of Chebyshev expansion coefficients (see (1.4)). Thus,
if
[
T0(x0), . . . , Tmax(m,n)−1(x0)

]T with x0 ∈ [−1, 1] is an eigenvector of B corresponding
to a zero eigenvalue, then

´ 1

−1
k(x0, t)Tj(t)/

√
1− t2 dt = 0 for 0 ≤ j ≤ max(m,n)− 1.

Hence, k(x0, ·) ≡ 0 and p(x0)q(t) ≡ p(t)q(x0). If p(x0) 6= 0 or q(x0) 6= 0 then p

and q are proportional, leading to B = 0. By assumption B is a nonzero matrix so
p(x0) = q(x0) = 0 and x0 is a common root of p and q. Conversely, if x0 ∈ [−1, 1]

is a common root then k(x0, ·) ≡ 0 and hence
[
T0(x0), . . . , Tmax(m,n)−1(x0)

]T is an
eigenvector of B corresponding to a zero eigenvalue.

For the last statement, let X be the max(m,n) × max(m,n) upper-triangular
matrix that converts Chebyshev coefficients to monomial coefficients (the jth column
ofX contains the first max(m,n) monomial coefficients of Tj−1). Then, X is invertible
and XBX−1 is the standard Bézout matrix associated with p and q expressed in the
monomial basis. Therefore, det(B) = det(XBX−1) is a nonzero constant multiple of
the product of the pairwise differences between the roots of p and q [56, p. 401] and
the result follows.

Theorem 5.2 tells us that the invertibility of the Chebyshev–Bézout matrix in (5.8)
can be used as a test for common roots of two univariate polynomials expressed in
the Chebyshev basis. This fact is the essential ingredient for the resultant method
we employ for bivariate rootfinding.

5.6.2 Bézout resultants for bivariate rootfinding

We now describe the hidden variable resultant method for solving p(x, y) = q(x, y) =

0, which is derived from the following observation: If (x0, y0) ∈ [−1, 1]2 is a solution

95

to p = q = 0, then the univariate polynomials p(·, y0) and q(·, y0) have a common root
(at x0) and, by Theorem 5.2, the associated Chebyshev–Bézout matrix is singular.
Conversely, if the Chebyshev–Bézout matrix associated with p(·, y0) and q(·, y0) is
singular, then for some finite x0 we have8 p(x0, y0) = q(x0, y0) = 0. This simple
observation means we can use the Chebyshev–Bézout matrix to compute the y-values
of the solutions to (5.4).

More formally, we can define a function9 B(y) : [−1, 1] → CN×N , where N =

max(mp,mq), which takes y ∈ [−1, 1] to the Chebyshev–Bézout matrix associated
with p(·, y) and q(·, y). By Theorem 5.2, if there is a finite x0 (not necessarily in
[−1, 1]) such that p(x0, y0) = q(x0, y0) = 0, then det(B(y0)) = 0. Hence, all the y-
values of the solutions satisfy det(B(y)) = 0 (and all the finite roots of det(B(y)) = 0

are such that py and qy have a common root). Thus, the idea is to solve det(B(y)) = 0

and then substitute these y-values into p and q to find the corresponding x-values of
the solutions (see Section 5.7).

Since p and q are bivariate polynomials of degrees (mp, np) and (mq, nq), B(y) =

(bij(y))1≤i,j≤N satisfies (see (5.8))

p(s, y)q(t, y)− p(t, y)q(s, y)

s− t
=

N∑
i,j=1

bij(y)Ti−1(t)Tj−1(s).

Hence, for each fixed y ∈ [−1, 1], B(y) is an N ×N matrix and each entry of B(y) is
a polynomial of degree at most M = np + nq in y. Matrices with polynomial entries,
such as B(y), are known as matrix polynomials (see, for example, [58]). We say that
B(y) is a matrix polynomial of size N × N and degree M . The problem of solving
det(B(y)) = 0 is an example of a polynomial eigenvalue problem.

The matrix polynomial B(y) can be represented in the Chebyshev basis with
matrix coefficients,

B(y) =
M∑
i=0

AiTi(y), Ai ∈ CN×N , y ∈ [−1, 1]. (5.9)

The matrices Ai can be constructed by calculating the Chebyshev expansions of each
8Here, we assume that x0 is finite, but the Chebyshev–Bézout matrix associated with p(·, y0) and

q(·, y0) is also singular if x0 is infinite, i.e., the leading coefficients of both p(·, y0) and q(·, y0) are
zero.

9We always write the function B(y) with its argument in parentheses to distinguish it from a
Bézout matrix. For each fixed y ∈ [−1, 1], B(y) is a Chebyshev–Bézout matrix.

96

entry of B(y).
By assumption the solutions to p = q = 0 are isolated so det(B(y)) 6≡ 0, i.e., B(y)

is a regular matrix polynomial. This means that det(B(y)) is a nonzero scalar poly-
nomial and its roots are precisely the finite eigenvalues of B(y) [98]. The eigenvalues
of B(y) can be computed by solving the following MN ×MN generalized eigenvalue
problem (GEP) [149]:

1

2

−AM−1 IN − AM−2 −AM−3 · · · −A0

IN 0 IN
. . .

. . .
. . .

IN 0 IN
2IN 0

 v = λ

AM

IN
. . .

IN
IN

 v.
(5.10)

This GEP is a matrix analogue of the colleague matrix for scalar polynomials [63],
and the Chebyshev analogue of the companion matrix for matrix polynomials [98].

The GEP can be solved numerically by the eig command in MATLAB, involving
a computational cost of about O(M3N3) operations. If n = mp = np = mq = nq then
O(M3N3) = O(n6) and hence, the cost of solving (5.10) becomes prohibitive when
n ≥ 30. To combat this we use domain subdivision (see Section 5.5) to reduce the
polynomial degrees in the resultant method, which usually means that the constructed
GEPs are not larger than 512× 512.

To summarize, the y-values of the solutions are computed by constructing the
matrix polynomial B(y) that is singular at those values. Then, the equivalent problem
of det(B(y)) = 0 is handled by solving a GEP. Any solutions to the GEP that lie
outside of [−1, 1] are filtered out. Finally, the x-values of the solutions are computed
(see Section 5.7).

The methodology described above also works when the roles of x and y are in-
terchanged, though this can alter the computational cost of the resulting algorithm.
As we have seen, if the y-values are solved for first, then the resulting GEP is of
size max(mp,mq)(np + nq), while if the x-values are solved for first then the size is
max(np, nq)(mp +mq). These two sizes and resulting computational costs are equal
when n = mp = np = mq = nq; however, the sizes can differ by a factor as large
as 2, resulting in a discrepancy as large as 8 in the computational cost. Table 5.1
summarizes the size of the GEP based on whether the x- or y-values are solved for
first. In the algorithm we minimize the size of the GEP by solving for the y-values
first if max(mp,mq)(np + nq) ≤ max(np, nq)(mp + mq); otherwise, we solve for the
x-values first.

97

Bézout resultant Size of Ai in (5.9) Degree Size of GEP in (5.10)

y first max(mp,mq) np + nq max(mp,mq)(np + nq)

x first max(np, nq) mp +mq max(np, nq)(mp +mq)

Table 5.1: Sizes and degrees of the matrix polynomials constructed by the resul-
tant method. The size of the resulting GEP depends on whether the x- or y-
values are solved for first. We solve for the y-values first if max(np, nq)(mp +mq) ≤
max(mp,mq)(np + nq); otherwise, the x-values are first.

Regardless of which variable is solved for first the GEP is at least of size mpnq +

npmq. However, the number of eigenvalues of the GEP can occasionally be more than
the bound in Theorem 5.1. Since the polynomial system has at most mpnq + npmq

solutions, the resultant method can generate extra solutions that have nothing to do
with the rootfinding problem; however, Theorem 5.2 tells us that these extra solutions
cannot be finite. Therefore, we have an interesting algebraic phenomenon where the
resultant method can generate extra solutions, but these are always at infinity and
are usually harmless.10

In subsequent sections we assume that the y-values are solved for first.

5.7 Employing a 1D rootfinder

At this stage we assume that the y-values of the solutions to (5.4) have been computed
and to obtain the full set of solutions the corresponding x-values are required.

In principle for each y-value of a solution, say y0 ∈ [−1, 1], the eigenvectors of
Bézout matrix B(y0) corresponding to zero eigenvalues can be used to compute the
corresponding x-values (see Theorem 5.2). However, in practice, the eigenvectors of
B(y0) are not always computed with high accuracy and instead, we employ a 1D
rootfinder.

For each y-value of a solution, y0 ∈ [−1, 1], two sets of roots for the univariate
polynomials p(·, y0) and q(·, y0) are computed separately using the roots command
in Chebfun. Then, we find the roots that are shared by verifying that both |p| and
|q| are less than O(u1/2), where u is unit machine roundoff, discarding those that are
not. Afterwards, we merge any x-values that are closer than a distance of O(u) apart
by averaging, which prevents double counting a solution due to rounding errors.

10To ensure that the spurious infinite solutions are harmless one must also assume that the infinite
solutions are simple so that the eigenvalues of B(y) are semisimple. More details are given in [113].

98

5.8 Further implementation details

A few implementation details remain. Without loss of generality, we assume in this
section that the polynomials p and q have been scaled so that ‖p‖∞ = ‖q‖∞ = 1.
(Otherwise, some of the tolerances need to be scaled by ‖p‖∞ and ‖q‖∞.)

5.8.1 Regularization

In exact arithmetic the polynomial det(B(y)) is zero at precisely the y-values of the
solutions to p = q = 0, including those outside of [−1, 1]. However, B(y) can be
numerically singular, i.e., ‖B(y)‖2‖B(y)−1‖2 > 1016, for many other values of y. As
a consequence of numerical rounding and this extreme ill-conditioning, an eigenvalue
solver applied to the GEP in (5.10) can compute spurious eigenvalues anywhere in the
complex plane [4, Sec 8.7.4], and these can cause all the eigenvalues to be computed
inaccurately [119, Ch. 13]. As a remedy we apply a regularization step to B(y).

First, we partition B(y) into the following four parts:

B(y) =

[
B1(y) E(y)T

E(y) B0(y)

]
,

where B0(y) and E(y) are k × k and k × (N − k), respectively. Here, k is selected to
be the smallest integer so that both ‖B0(y)‖2 = O(u) and ‖E(y)‖2 = O(u1/2) for all
y ∈ [−1, 1]. If B(y) is real, then B(y) is Hermitian and by Weyl’s Theorem [166] the
eigenvalues of

B̃(y0) =

[
B1(y0) E(y0)

T

E(y0) 0

]
,

for any y0 ∈ [−1, 1] are within O(u) of those of B(y0). In fact, as argued in [113,
Sec. 6.2], the finite eigenvalues of B̃(y0) that are small in magnitude are closely
approximated by the eigenvalues of B1(y0) if the entries of B(y0) decay sufficiently
quickly as the column and row indices increase. (This is usually the case for the
polynomials derived from interpolation of smooth functions.) Therefore, the small
finite eigenvalues of B(y0) are well-approximated by those of B1(y0). We continue to
observe this when B(y) is complex valued.

Instead of computing the eigenvalues of B(y) we find the eigenvalues of B1(y),
setting up the GEP in (5.10) as before. This smaller Bézout matrix polynomial, B1(y),
has better conditioned eigenvalues and often the y-values in [−1, 1] are computed
much more accurately.

99

This regularization step is equivalent to removing the high degree terms in (5.8)
that are negligible and has the consequence of removing the eigenvalues of B(y) that
have a large absolute magnitude. This step is primarily for improving the numerical
stability of the resultant method, but it has an secondary efficiency benefit because
it reduces the size of B(y) and the corresponding GEP in (5.10).

5.8.2 Local refinement

Unfortunately, the condition number of a root of det(B(y)) can be as large as the
square of the condition number of the corresponding solution to the original prob-
lem (5.4) [113, Thm. 1]. Therefore, the computed y-values may be inaccurate, and
some sort of local refinement is necessary to improve the accuracy of the solutions.
Our rootfinding algorithm thus splits into two parts. First, an initial global resultant
method (see Section 5.6) is used to obtain estimates of the solutions with an error
that is potentially larger than desired. Then, a local refinement strategy is applied
to clean up these estimates as necessary.

A simple option is to use a single iteration of Newton’s method to polish the
computed solutions, i.e., if (x̃, ỹ) is a computed solution, then update by the procedure

(
x̃
ỹ

)
− J(x̃, ỹ)−1

(
p(x̃, ỹ)
q(x̃, ỹ)

)
,

where J(x̃, ỹ) is the Jacobian matrix (see (5.5)). Often a single iteration is enough
to obtain a solution that is as accurate as can be expected from a backward stable
algorithm, though this is not guaranteed [147]. This strategy does have some difficulty
when two simple solutions are numerically close as two initial guesses can converge
to the same solution, and this can lead to simple solutions being missed.

Instead, we perform local refinement by rerunning the resultant method in a
“zoomed-in” region whenever the 2-norm of the Jacobian is small, as this is the case
where the Bézout resultant method increases the condition number [113, Thm. 1].

This strategy involves resampling the polynomials p and q in a region close to a
computed solution, and repeating our Bézout resultant method in this small region.
Usually, these local refinement regions are so small that the polynomial systems are
of very low degree, so the extra cost of this vital step is negligible.

100

5.8.3 Solutions near the boundary of the domain

Some care is required to avoid missing solutions that lie on or near the boundary
of [−1, 1]2, as they can be easily perturbed to lie outside. Similarly, real solutions
can be perturbed to complex solutions with negligible imaginary parts. We deal
with the first of these problems by looking for solutions in a slightly larger domain
[−1 − u1/2, 1 + u1/2]2, and any computed solution that is within a distance of 10u

to [−1, 1]2 is perturbed onto the boundary of [−1, 1]2. To deal with the second we
keep the eigenvalues of the GEP11 in (5.10) that have a real part in [−1, 1] and an
imaginary part of size at most u1/2. At the end we perturb a complex solution onto
[−1, 1]2 if it has an imaginary part of size less than 10u, by setting the imaginary
part to 0. The various parameters, that are envitable when designing a numerical
rootfinder, are subject to change but are documented in the MATLAB code [148].

5.9 Dynamic range

In some examples, the very first step of the rootfinding algorithm where f and g are
replaced by polynomials may cause a numerical problem caused by a large dynamic
range12 of f and g [28]. For example, if f and g in (5.1) vary widely in magnitude,
then the chebfun2 approximants p and q can have poor relative accuracy (but good
absolute accuracy) in regions where |f | � ‖f‖∞ and |g| � ‖g‖∞. This means that
the error bound in (5.5) may be much larger than one would expect by considering
the conditioning of a solution. This numerical issue can be easily overcome if the
original functions f and g are resampled in the domain subdivision procedure [28].

Since the primary goal of Chebfun2 is to work with approximants rather than
function handles and the functionality of Chebfun2 is much broader than just bivariate
rootfinding, the implementation of our algorithm in the roots(f,g) command does
not resample the original functions during subdivision. An implementation of the
algorithm described in this chapter that does resample the original functions during
subdivision is also publicly available [112].

A typical example for which dynamic range is an issue is when f and g are mod-
erate degree polynomials represented in the monomial basis. This is reflected in the
comparisons with the roots(f,g) command in [138], and the apparent failure of

11The GEP in (5.10) has complex eigenvalues, but we are only interested in the numerically real
eigenvalues in [−1, 1] as they correspond to solutions to (5.1).

12The dynamic range of a complex valued continuous function f is the length of the smallest
interval containing the range of |f |.

101

Chebfun2 is due to this dynamic range issue rather than the underlying methodology
of the algorithm.

5.10 Numerical examples

In this section we present six examples to illustrate the accuracy and robustness of
our algorithm and its ability to solve problems with very high polynomial degree.

In the figures of this section the zero contours of f and g are drawn as blue and
red curves, respectively, computed by the command roots(f) in Chebfun2 (except
for Example 3, which is computed by the contour command in MATLAB). The black
dots are the solutions computed by the roots(f,g) command in Chebfun2 (again,
except for Example 3).

5.10.1 Example 1 (Coordinate alignment)

Our first example involves functions f and g approximated by polynomials of degrees
(20, 20) and (24, 30), respectively:

(
T7(x)T7(y) cos(xy)

T10(x)T10(y) cos(x
2y)

)
= 0, (x, y) ∈ [−1, 1]2. (5.11)

This problem has 140 solutions. Many of the solutions lie along lines parallel to the
coordinate axes, which means that the polynomial det(B(y)) has roots with high mul-
tiplicity. This does not cause any numerical difficulties because the roots correspond
to semisimple eigenvalues (the algebraic and geometric multiplicities are equal) of the
GEP associated with the matrix polynomial B(y), and hence can be calculated to full
accuracy [145, 167]. In this case the solutions are computed to an absolute maximum
error of 8.88×10−16. Figure 5.5 (left) shows the zero contours and solutions for (5.11).

5.10.2 Example 2 (Face and apple)

In the next example we take functions f and g that are polynomials, i.e., f = p

and g = q, with zero contours resembling a face and an apple, respectively. These
polynomials are from [129] and have degrees (10, 18) and (8, 8). We take the domain
to be [−2, 2] × [−1.5, 4]. Figure 5.5 (right) shows the face and apple contours and
their intersections.

102

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

0

1

2

3

4

Figure 5.5: The zero contours of f (red) and g (blue), and the common zeros (black
dots) computed by the roots(f,g) command in Chebfun2. Left: Coordinate align-
ment (5.11). Simple common zeros are aligned with the coordinate directions, but
this causes no numerical difficulties. Right: Face and apple. The polynomials are
very small near the origin and local refinement is essential for obtaining accurate
solutions.

This example illustrates the importance of local refinement. The polynomials are
of low degree, but |f | and |g| are less than 10−5 near the origin and initially the
solutions are computed inaccurately. However, the ill-conditioned region is detected
and the solutions recovered by rerunning the resultant method on a small domain
containing the origin (see Section 5.8.2).

5.10.3 Example 3 (Devil’s example)

A problem, which due to the dynamic range issue is particularly ill-conditioned, is
the following:

(∏10
i=0(y

2(4y2 − i/10)− x2(4x2 − 1))

256(x2 + y2)2 + 288(x2 + y2)− 512(x3 − 3xy2)− 27

)
= 0, (x, y) ∈ [−1, 1]2.

(5.12)
We call this the “Devil’s example” because of the difficulty it causes bivariate rootfind-
ers when the polynomials are represented in the Chebyshev basis. Here, the functions
f and g are polynomials with degrees (44, 44) and (4, 4). It is extremely difficult with-
out resampling the original functions to obtain accurate solutions because the func-
tions vary widely in magnitude. In the roots(f,g) command in Chebfun2 we do not
resample the original functions f and g when subdividing and for this reason (5.12)

103

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.6: Left: Devil’s example (5.12). By resampling f and g during the domain
subdivision procedure, accurate solutions are obtained despite the dynamic range
issue. The function f varies widely in magnitude, and hence Chebfun2 cannot accu-
rately compute the zero level curves of f . Instead, in this figure we use the contour
command in MATLAB by sampling f on a 2000×2000 equally-spaced tensor product
grid. Right: Hadamard example. The polynomials are constructed from interpolation
data, and domain subdivision was stopped prematurely as the running estimate for
τ was larger than 0.79 (see Section 5.5).

cannot be solved by Chebfun2; however, our implementation that does resample the
original functions can compute all the solutions accurately [112].

Figure 5.6 (left) shows the zero contours and solutions.

5.10.4 Example 4 (Hadamard)

Chebfun2 can construct polynomials from interpolation data taken on a Cheby-
shev tensor product grid. In this example we take the interpolation data to be the
Hadamard matrices H32 and H64 of size 32× 32 and 64× 64, i.e., we solve f = g = 0

on [−1, 1]2, where f(xchebi , xchebj) = H32(i, j), g(xchebi , xchebj) = H64(i, j), and xchebi are
Chebyshev points on [−1, 1] (see (1.1)). The Hadamard matrices contain ±1 entries
and therefore, f and g (of degrees (31, 31) and (63, 63)) have many zero contours.
The roots(f,g) command in Chebfun2 requires 89 seconds to solve this problem
and |f | and |g| are at most 3.98×10−13 at the computed solutions. Figure 5.6 (right)
shows the zero contours and solutions.

In this example, subdivision was stopped prematurely as it was estimated that
τ ≈ 0.82 for f and τ ≈ 0.75 for g (see Section 5.5). Such high τ are to be expected
as f and g are low degree bivariate polynomials with coefficients that do not decay.

104

5.10.5 Example 5 (Airy and Bessel functions)

As an illustration that the algorithm can solve high degree problems, consider:

(
Ai(−13(x2y + y2))

J0(500x)y + xJ1(500y)

)
= 0, (x, y) ∈ [−1, 1]2, (5.13)

where Ai is the Airy function and J0 and J1 are Bessel functions of the first kind
with parameter 0 and 1, respectively. The polynomial degrees required by Chebfun2
are (171, 120) and (569, 569), respectively. The roots(f,g) command in Chebfun2
finds all 5,932 solutions in 501 seconds. These solutions were independently verified
using a contouring algorithm (see Section 5.4.2). Figure 5.7 (left) shows the computed
solutions to (5.13).

Here, τ ≈ 0.59 with a corresponding estimated cost of O(nα) operations, where
α = − log 4/ log τ ≈ 2.6 and n is the maximum polynomial degree in each variable
(see Section 5.5).

5.10.6 Example 6 (A SIAM 100-Dollar, 100-Digit Challenge
problem)

In 2002, an article in SIAM News set a challenge to solve ten problems, each to
ten digits (the solution to each problem was a single real number) [155]. The fourth
problem was to find the global minimum of the following complicated and highly
oscillatory function:

f(x, y) =

(
x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
y2

4
+ sin(60ey) + sin(sin(80y))

)
− cos(10x) sin(10y)− sin(10x) cos(10y).

(5.14)
Since the local extrema of a function, including the global minimum, satisfy ∂f/∂x =

∂f/∂y = 0, we can solve this problem by computing all the local extrema of f and
picking the global minimum from among them. A simple argument shows that the
global minimum must occur in [−1, 1]2 [25] so we approximate ∂f/∂x and ∂f/∂y on
[−1, 1]2 by polynomials of degrees (625, 901).

The roots(f,g) command in Chebfun2 computes all 2,720 local extrema of (5.14)
in 257 seconds and obtains the global minimum to an accuracy of 1.12× 10−15. The
function (5.14) is actually of rank 4 as pointed out in [152] and Chebfun2 correctly
calculates the rank, but this structure is not directly exploited in the rootfinding

105

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.7: Left: Solutions to (5.13). The number of isolated solutions is 5,932. There
are so many that they appear as lines rather than dots. Right: The local extrema
(black dots) and the global minimum (red dot) of the SIAM 100-Dollar, 100-Digit
Challenge problem (5.14). These examples are of very high polynomial degree.

algorithm. Figure 5.7 (right) shows the location of the 2,720 local extrema and the
global minimum. In this example τ ≈ 0.53 with a corresponding cost of O(nα)

operations, where α = − log 4/ log τ ≈ 2.2 and n is the maximum polynomial degree
in both variables.

Finally, to increase the degrees further, the function in (5.14) was replaced by

f(x, y) =

(
x2

4
+ esin(100x) + sin(140 sin(x))

)
+

(
y2

4
+ sin(120ey) + sin(sin(160y))

)
− cos(20x) sin(20y)− sin(20x) cos(20y).

Now ∂f/∂x and ∂f/∂y are approximated by polynomials of degrees (1781, 1204) on
[−1, 1]2. Our algorithm computed all 9,318 local extrema in 1,300 seconds with an
estimated cost of O(n2.1) operations, where n is the maximum polynomial degree in
both variables. These solutions were independently verified by a contouring algorithm
(see Section 5.4). The global minimum of f(x, y) on [−1, 1]2 computed by Chebfun2
is −3.398166873463248 and we expect the first 14 digits to be correct13.

13We are ready for the next SIAM 100-Dollar, 100-Digit Challenge!

106

Chapter 6

The automatic solution of linear
partial differential equations*

In this chapter we discuss linear partial differential equations (PDEs) defined on
rectangular domains with the aim of extending the low rank ideas from functions to
partial differential operators. These new ideas lead to an efficient spectral method
for solving certain linear PDEs defined on rectangular domains.

Specifically, we consider linear PDEs with variable coefficients defined on [a, b]×
[c, d] of the form:

Lu = f, L =

Ny∑
i=0

Nx∑
j=0

`ij(x, y)
∂i+j

∂yi∂xj
, (6.1)

where Nx and Ny are the differential orders of L in the x- and y-variables, respectively,
f(x, y) and `ij(x, y) are known functions defined on [a, b] × [c, d], and u(x, y) is the
desired solution. The operator L in (6.1) is called a partial differential operator
(PDO) [86].

We suppose that the PDE in (6.1) is supplied with Kx ≥ 0 and Ky ≥ 0 linear
constraints on the solution, i.e.,

Bxu = g =

 g1
...
gKx

 , Byu = h =

 h1
...

hKy

 ,

to ensure that there is a unique solution, where g and h are vector valued functions
*This chapter is based on a manuscript in preparation with Sheehan Olver [150]. I proposed the

low rank representations of PDEs, showed how to construct such representations, and derived the
algorithm for solving PDEs based on these ideas. Olver worked out how to solve the constrained
matrix equations and how to deal with general linear constraints.

107

with components g1, . . . , gKx and h1, . . . , hKy , respectively. For example, if Bx and
By are Dirichlet boundary conditions, then

Bxu =

(
u(a , ·)
u(b , ·)

)
, Byu =

(
u(· , c)
u(· , d)

)
.

Here, Kx = Ky = 2 and the vector valued functions g and h represent the Dirich-
let data on the boundary of [a, b] × [c, d]. Other examples of linear constraints are
Robin conditions, constraints involving high-order derivatives, and integral condi-
tions. Without loss of generality we assume that the constraints are linearly indepen-
dent in the sense that their number cannot be reduced without relaxing a constraint
on the solution.

Throughout this chapter the variable coefficients in (6.1), the right-hand side
f , and the solution u, are assumed to be smooth functions, and we restrict our
attention to linear PDEs defined on [−1, 1]2, unless stated otherwise. The ideas and
implementation of the resulting PDE solver permit general rectangular domains.

6.1 Low rank representations of partial differential
operators

A low rank representation of a 2D object is a sum of “outer products” of 1D
objects. For linear PDOs those 1D objects are linear ordinary differential operators
(ODOs). A linear ODO acts on univariate functions and can be written as a finite
linear combination of differential and multiplication operators.

A linear PDO is of rank 1 if it can be written as an outer product of two ODOs,
i.e., Ly⊗Lx. For example, ∇2 = D2⊗I+I⊗D2, where D is the first-order differential
operator and I is the identity operator. In each case, the operator Ly ⊗ Lx acts on
bivariate functions by

(Ly ⊗ Lx)u =
∞∑
j=1

(Lycj) (L
xrj) , u(x, y) =

∞∑
j=1

cj(y)rj(x).

In Chapter 2 a rank 1 PDO would have been referred to as a tensor product operator
(see Definition 2.1). A linear PDO L of rank k can be written as a sum of k rank 1

PDOs, i.e.,

L =
k∑

j=1

(
Ly
j ⊗ Lx

j

)
,

108

and the rank of a PDO is the minimum number of terms in such a representation.
Definition 6.1. Let L be a linear PDO in the form (6.1). The rank of L is the
smallest integer k for which there exist ODOs Ly

1, . . . ,L
y
k (acting on functions in y)

and Lx
1 , . . . ,L

x
k (acting on functions in x) that satisfy

L =
k∑

j=1

(
Ly
j ⊗ Lx

j

)
. (6.2)

A linear PDO of finite differential order with variable coefficients of finite rank is
itself of finite rank and is usually of infinite rank if one of the variable coefficients is
of infinite rank.

6.2 Determining the rank of a partial differential op-
erator

One way to determine the rank of a PDO is directly from Definition 6.1. For
example, the rank of the Helmholtz operator ∂2/∂x2 + ∂2/∂y2 +K2 is 2 since

∂2/∂x2 + ∂2/∂y2 +K2 =
(
I⊗D2

)
+
(
(D2 +K2I)⊗ I

)
,

where I is the identity operator and D is the first order differential operator. Fur-
thermore, it can be shown that the rank of ∂2/∂x2 + ∂2/∂x∂y + ∂2/∂y2 is 3 and the
rank of (2 + sin(x+ y))∂2/∂x2 + e−(x2+y2)∂2/∂y2 is 4.

Another way to calculate the rank of a PDO is given by the following lemma.
Lemma 6.1. Let L be a linear PDO in the form (6.1) with variable coefficients of
finite rank. Then, the rank of L is equal to the minimum number of terms k required
in an expression of the form

Ny∑
i=0

Nx∑
j=0

`ij(s, t)y
ixj =

k∑
j=1

cj(t, y)rj(s, x), (6.3)

where cj and rj are bivariate functions.

109

Proof. Let T be the linear operator1 defined by

T
[
`(s, t)yixj

]
= `(x, y)

∂i+j

∂yi∂xj
, i, j ≥ 0,

which replaces x and y by s and t and powers of x and y by partial derivatives. Now
suppose that L is a linear PDO of rank r and k is the minimum number of terms
required in (6.3). We show that r = k.

Note that the linear operator T can be used to give the following relation:

L =

Ny∑
i=0

Nx∑
j=0

`ij(x, y)
∂i+j

∂yi∂xj
= T

[
Ny∑
i=0

Nx∑
j=0

`ij(s, t)y
ixj

]
= T [H(s, x, t, y)] .

where H(s, x, t, y) =
∑Ny

i=0

∑Nx

j=0 `ij(s, t)y
ixj. If the function H(s, x, t, y) can be writ-

ten as
∑k

j=1 cj(t, y)rj(s, x), then we have

L = T

[
k∑

j=1

cj(t, y)rj(s, x)

]
=

k∑
j=1

T [cj(t, y)rj(s, x)] =
k∑

j=1

T [cj(t, y)]⊗ T [rj(s, x)] ,

where T [cj(t, y)] and T [rj(s, x)] are ODOs with variable coefficients in y and x, re-
spectively, and hence r ≤ k. Conversely, a rank r expression for L can be converted
(using T) to a rank r expression for H, and hence k ≤ r. We conclude that r = k

and the rank of L equals the minimum number of terms required in (6.3).

A special case of Lemma 6.1 gives a connection between constant coefficient PDOs
and bivariate polynomials. This has been previously used to investigate polynomial
systems of equations [144, Chap. 10]. Thus, if L has constant coefficients then a low
rank representation can be constructed via the SVD of a bivariate polynomial (see
Section 4.8).

More generally, Lemma 6.1 allows us to calculate a low rank representation for a
linear PDO via a low rank representation of an associated function. For PDOs with
variable coefficients of finite rank we do not make an attempt to find the exact rank,

1The definition of this operator is motivated by Blissard’s symbolic method (also known as umbral
calculus) [17].

110

PDO Operator

Laplace uxx + uyy

Helmholtz uxx + uyy +K2u

Heat ut − α2uxx

Transport ut − bux

Wave utt − c2uxx

Euler–Tricomi uxx − xuyy

Schrödinger iεut +
1
2
ε2uxx − V (x)u

Black–Scholes ut +
1
2
σ2x2uxx + rxux − ru

Table 6.1: Selection of rank 2 PDOs (see Definition 6.1). Not all constant coefficient
PDOs are of rank 2. For instance, the biharmonic operator is of rank 3.

but instead we write each variable coefficient in (6.1) in low rank form,

`ij(x, y) =

kij∑
s=1

cijs (y)r
ij
s (x), 0 ≤ i ≤ Ny, 0 ≤ j ≤ Nx,

and then use the following low rank representation for L:

L =

Ny∑
i=0

Nx∑
j=0

kij∑
s=1

(
M[cijs]D

i
)
⊗
(
M[rijs]D

j
)
, (6.4)

where M[a] is the multiplication operator for a(x), i.e., M[a]u = a(x)u(x). Fortu-
nately, in practice, it turns out that when a PDO is of rank greater than 2 there
is little to be gained by finding a low rank representation of minimal rank (see Sec-
tion 6.5.1). If a variable coefficient is of infinite rank, then we can replace it by a
chebfun2 approximant and proceed to form (6.4).

Surprisingly, several standard linear PDOs are of rank 2 and Table 6.1 presents a
selection. Most linear PDOs with variable coefficients are of rank greater than 2, and
ODOs are rank 1 PDOs.

111

6.3 The ultraspherical spectral method for ordinary
differential equations*

Once we have a low rank expression for a PDO we proceed to represent the
rank 1 terms by a spectral method. Possible choices are the Chebyshev collocation
method [51, 154], Petrov–Galerkin methods [133], and the Tau-method [116]. We have
chosen the ultraspherical spectral method because it leads to a spectrally accurate
discretization and almost banded2 well-conditioned matrices. This section reviews
the ultraspherical spectral method (for further details see [115]).

First, we consider a linear ODE with constant coefficients defined on [−1, 1] with
the following form:

aN
dNu

dxN
+ · · ·+ a1

du

dx
+ a0u = f, N ≥ 1, (6.5)

where a0, . . . , aN are complex numbers, f is a known univariate function, and u is
an unknown solution. Furthermore, we assume that the ODE is supplied with K

linear constraints, i.e., Bu = c where B is a linear operator and c ∈ CK , so that
the solution to (6.5) is unique. The ultraspherical spectral method aims to find
the solution of (6.5) represented in the Chebyshev basis and computes a vector of
Chebyshev expansion coefficients of the solution. That is, the spectral method seeks
to find an infinite vector u = (u0, u1, . . .)

T such that

u(x) =
∞∑
j=0

ujTj(x),

where Tj is the jth Chebyshev polynomial (see Section 1.1).
Classically, spectral methods represent differential operators by dense matrices [26,

2A matrix is almost banded if it is banded except for a small number of columns or rows.

*This section is based on a paper with Sheehan Olver [115]. I devised the scheme to construct
ultraspherical multiplication operators and the algorithm for solving linear systems involving almost
banded matrices. Olver constructed the differentiation and conversion operators and noted that the
Chebyshev multiplication operator has a Toeplitz-plus-Hankel plus rank 1 form. The paper contains
far more than this short summary. The majority of Section 6.3.1 and the whole of Section 6.3.2 do
not appear in the paper.

112

51, 154], but the ultraspherical spectral method employs a “sparse” recurrence relation

dkTn
dxk

=

2k−1n(k − 1)!C

(k)
n−k, n ≥ k,

0, 0 ≤ n ≤ k − 1,

where C(k)
j is the ultraspherical polynomial with parameter k > 0 of degree j (see Sec-

tion 1.5). This results in a sparse representation for first and higher-order differential
operators. In particular, the differentiation matrix for the kth derivative is given by

Dk = 2k−1(k − 1)!

k times︷ ︸︸ ︷

0 · · · 0 k
k + 1

k + 2
. . .

 , k ≥ 1.

For k ≥ 1, Dk maps a vector of Chebyshev expansion coefficients to a vector of C(k)

expansion coefficients of the kth derivative. The operator D0 is the infinite identity
matrix.

Since Dk for k ≥ 1 returns a vector of ultraspherical expansion coefficients, the
ultraspherical spectral method also requires conversion matrices denoted by Sk for
k ≥ 0. The matrix S0 converts a vector of Chebyshev coefficients to a vector of C(1)

coefficients and, more generally, the operator Sk for k ≥ 1 converts a vector of C(k)

coefficients to a vector of C(k+1) coefficients. Using the relations in [114, (18.9.7) and
(18.9.9)] it can be shown that (see [115] for a derivation)

S0 =

1 0 −1
2

1
2

0 −1
2

1
2

0
. . .

1
2

. . .

. . .

, Sk =

1 0 − k
k+2

k
k+1

0 − k
k+3

k
k+2

0
. . .

k
k+3

. . .

. . .

, k ≥ 1.

Note that for k ≥ 1, the matrix S−1
0 · · · S−1

k−1Dk is dense and upper-triangular. This is
the matrix that represents kth order differentiation in the Chebyshev basis without
converting to ultraspherical bases [116].

We can combine these conversion and differentiation matrices to represent the

113

ODE in (6.5) as follows:

(aNDN + aN−1SN−1DN−1 + · · ·+ a0SN−1 · · · S0D0)u = SN−1 · · · S0f , (6.6)

where u and f are vectors of Chebyshev expansion coefficients of u and f , respec-
tively. The conversion matrices are used in (6.6) to ensure that the resulting linear
combination maps Chebyshev coefficients to C(N) coefficients, and the right-hand side
f is represented by a vector of C(N) expansion coefficients.

To make the solution to (6.6) unique we must impose the K prescribed linear
constraints in B on u. That is, we must represent the action of the linear constraints
on a vector of Chebyshev coefficients. For example, Dirichlet boundary conditions
take the form

B =

(
T0(−1) T1(−1) T2(−1) T3(−1) · · ·
T0(1) T1(1) T2(1) T3(1) · · ·

)
=

(
1 −1 1 −1 · · ·
1 1 1 1 · · ·

)
,

since then Bu = (u(−1), u(1))T , and Neumann conditions at x = ±1 take the form

B =

(
T ′
0(−1) T ′

1(−1) T ′
2(−1) T ′

3(−1) · · ·
T ′
0(1) T ′

1(1) T ′
2(1) T ′

3(1) · · ·

)
=

(
0 −1 4 −9 · · ·
0 1 4 9 · · ·

)
,

since then Bu = (u′(−1), u′(1))T . In general, any linear constraint can be represented
by its action on a vector of Chebyshev coefficients.

Finally, to construct a linear system that can be solved for the first n Chebyshev
coefficients of u we take the n × n finite section of various matrices. Let Pn be the
truncation matrix that maps C∞ to Cn such that Pnu = (u0, . . . , un−1)

T . We take
the first n columns of B, B = BPT

n , the (n − K) × n principal submatrix of L,
L = Pn−KLPT

n , and form the linear system:

(
B
L

)
Pnu =

(
c

Pn−KSN−1 · · · S0f

)
. (6.7)

Since the matrices Dk and Sk are banded, the matrix L is banded, and the resulting
linear system is almost banded, i.e., banded except for K rows imposing the linear
constraints on u. The K rows in (6.7) that impose the linear constraints could also
be placed below L, but we have decided to make the linear system have a structure
that is as close as possible to upper-triangular.

114

6.3.1 Multiplication matrices

For ODEs with variable coefficients we need to be able to represent the multiplication
operation M[a]u = a(x)u(x), and since the ultraspherical spectral method converts
between different ultraspherical bases, we need to construct multiplication matrices
for each ultraspherical basis.

Suppose we wish to represent M[a]u where a(x) and u(x) have Chebyshev expan-
sions

a(x) =
∞∑
j=0

ajTj(x), u(x) =
∞∑
j=0

ujTj(x),

and we desire the Chebyshev expansion coefficients of a(x)u(x). Define M0[a] to be
the matrix that takes a vector of Chebyshev expansion coefficients of u(x) and returns
the vector of Chebyshev expansion coefficients of a(x)u(x). It is shown in [115] that
M0[a] can be written as the following Toeplitz-plus-Hankel plus rank 1 matrix:

M0[a] =
1

2

2a0 a1 a2 a3 . . .

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

a3 a2 a1 2a0
. . .

...
. . .

. . .
. . .

. . .

+

0 0 0 0 . . .

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.
. .
.
. .
.
. .
.

.

This multiplication operator looks dense. However, if a(x) is approximated by a
polynomial of degree m then M0[a] is banded with bandwidth of m. Moreover,
the matrix-vector product M0[a]u returns the Chebyshev expansion coefficients of
a(x)u(x).

We also require multiplication operations Mk[a] representing multiplication of two
C(k) series. That is, if u is a vector of Chebyshev expansion coefficients of u, then
the sequence of matrices Mk[a]Sk−1 · · · S0u returns the C(k) expansion coefficients of
a(x)u(x). In [115] an explicit formula for the entries of Mk[a] for k ≥ 1 is given. Here,
we show that the matrices Mk[a] can also be constructed from a 3-term recurrence
relation.

Suppose we wish to construct Mk[a], where a(x) has a uniformly and absolute
convergent C(k) expansion given by

a(x) =
∞∑
j=0

ajC
(k)
j (x).

115

Since Mk[a] is a linear operator we know that

Mk[a] =
∞∑
j=0

ajMk[C
(k)
j], (6.8)

and furthermore, since the ultraspherical polynomials satisfy a 3-term recurrence
relation (see (1.7)) and multiplication is associative we have

Mk[C
(k)
j+1] =

2(j + k)

j + 1
Mk[x]Mk[C

(k)
j]− j + 2k − 1

j + 1
Mk[C

(k)
j−1], j ≥ 1. (6.9)

Therefore, the terms in the series (6.8) can be constructed recursively from Mk[C
(k)
1]

and Mk[C
(k)
0]. The matrix Mk[C

(k)
0] is the infinite identity operator because C(k)

0 = 1

and the construction of Mk[C
(k)
1] is all that remains. Since C

(k)
1 = 2kx we have

Mk[C
(k)
1] = 2kMk[x]. To derive Mk[x] we rewrite the 3-term recurrence relation

satisfied by ultraspherical polynomials as

xC
(k)
j (x) =

j+1

2(j+k)
C

(k)
j+1(x) +

j+2k−1
2(j+k)

C
(k)
j−1(x), j ≥ 1,

1
2k
C

(k)
1 (x), j = 0,

and then use it to derive a C(k) expansion for xu(x), where u(x) =
∑∞

j=0 ujC
(k)
j (x).

We have

xu(x) =
∞∑
j=0

ujxC
(k)
j (x) =

∞∑
j=1

ujxC
(k)
j (x) + u0xC

(k)
0 (x)

=
∞∑
j=1

uj
j + 1

2(j + k)
C

(k)
j+1(x) +

∞∑
j=1

uj
j + 2k − 1

2(j + k)
C

(k)
j−1(x) + u0

1

2k
C

(k)
1 (x)

=
∞∑
j=1

(
uj−1

j

2(j + k − 1)
+ uj+1

j + 2k

2(j + k + 1)

)
C

(k)
j (x) + u1

2k

2(k + 1)
C

(k)
0 (x),

116

Figure 6.1: Typical structure of the matrices constructed by the ultraspherical spec-
tral method in [115].

which calculates the columns of Mk[x], i.e.,

Mk[x] =

0 2k
2(k+1)

1
2k

0 2k+1
2(k+2)

2
2(k+1)

0 2k+2
2(k+3)

2
2(k+2)

0
. . .

. . .
. . .

.

Thus, Mk[a] in (6.8) can be constructed from the 3-term recurrence relation in (6.9).
These multiplication operators can be used to represent ODEs with variable co-

efficients. For example, if

aN
dNu

dxN
+ · · ·+ a1

du

dx
+ a0u = f, N ≥ 1,

where a0, . . . , aN are univariate functions, then the ODE can be represented as

(MN [aN]DN + · · ·+ SN−1 · · · S1M1[a1]D1 + SN−1 · · · S0M0[a0]D0)u = SN−1 · · · S0f ,

where the conversion matrices are used to ensure that the range is represented in a
C(N) basis. The K linear constraints can be incorporated into the linear system in the
same way as before (see (6.7)). Figure 6.1 shows the typical structure of the nonzero
entries in a linear system constructed by the ultraspherical spectral method.

117

(a) Original matrix (b) After left Givens rotations (c) After right Givens rotations

Figure 6.2: Typical structure during the computation of the QRP∗ factorization of
an almost banded matrix.

6.3.2 Fast linear algebra for almost banded matrices

The ultraspherical spectral method requires the solution of a linear system Ax = b

where A ∈ Cn×n is a banded matrix with mR = O(m) nonzero superdiagonals and
mL = O(m) nonzero subdiagonals (so that m = mL +mR + 1), except for the first
K dense boundary rows. The typical structure of A is shown in Figure 6.2a. Here,
we describe a stable algorithm3 to solve Ax = b in O(m2n) operations and a storage
complexity of O(mn).

Since A is nearly upper-triangular, except for m1 subdiagonals, a first attempt
to solve Ax = b is to compute the QR factorization by applying Givens rotations
on the left. Unfortunately, whether we apply the rotations on the left or the right,
the resulting upper-triangular part will become dense because of the boundary rows.
Instead, by applying a partial factorization on the left followed by another partial
factorization on the right we can obtain a factorization A = QRP ∗, where P and Q

are orthogonal and R is upper-triangular with no more nonzero entries than A.
We first apply Givens rotations on the left of A to introduce zero entries in the

m1th subdiagonal. These rotations introduce zeros starting in the (m1, 1) entry and
successively eliminate down the subdiagonal to the (n, n − m1 + 1) entry. Each
rotation applied on the left of A results in a linear combination of two neighboring
rows. One of the rows contains the nonzero entry to be eliminated and the other is
the row immediately above this. After the first n−m1 rotations, the resulting matrix
has a zero m1th subdiagonal and, typically, nonzero entries along the (m2 + 1)th
superdiagonal have been introduced.

3Similar techniques have been employed by Chandrasekaran and Gu for solving linear systems
involving banded plus semiseparable linear systems [33]. An alternative algorithm for solving almost
banded linear systems is the QR factorization applied to a “filled-in” representation [115].

118

In the same way, we then use Givens rotations to eliminate, in turn, the (m1−1)th,
(m1−2)th, . . ., (K+1)th subdiagonals. The typical structure of the resulting matrix
is shown in Figure 6.2b and has lower bandwidth of K and an upper bandwidth of
m2 +m1 −K, except for the K boundary rows.

We now apply Givens rotations on the right. The first sequence of rotations
eliminate the Kth subdiagonal by starting in the last row and successively eliminate
to the Kth row. Each rotation applied on the right performs a linear combination
of two neighboring columns. One of the columns contains the nonzero entry to be
eliminated and the other is the column immediately to the right. After the first
n−K rotations the resulting matrix is zero along the Kth subdiagonal and, typically,
nonzero entries along the (m2 +m1 −K + 1)th superdiagonal have been introduced.
Finally, we use Givens rotations to eliminate, in turn, the (K − 1)th, (K − 2)th,. . .,
1st subdiagonals. The resulting matrix is upper-triangular, with upper bandwidth of
m1 +m2 (except for the first K rows) as shown in Figure 6.2c.

In summary, each Givens rotation, whether applied on the left or right, eliminates
one zero in a subdiagonal and introduces at most one nonzero in a superdiagonal.
Thus, the final upper-triangular matrix usually has no more nonzeros than the original
matrix A.

As mentioned above, this factorization can be written as A = QRP ∗, where
Q,P ∈ Cn×n are orthogonal and R ∈ Cn×n is upper-triangular. To reduce storage
requirements we overwrite A with Q, R, and P as we perform the factorization using
a technique described by Demmel [43, p. 123]. Note that, if we were solving Ax = b

just once, we would not store any information about Q, because we could apply
the left Givens rotations directly to the vector b. However, in practice our method
progressively increases n, until the solution of the differential equation is well-resolved,
and in this case we can reapply the left Givens rotation used on the smaller system
when computing the factorization for the new larger system.

In summary the system Ax = b is solved with the following four steps:

1. Factorize A = QRP ∗ by applying left and right Givens rotations,

2. Compute Q∗b,

3. Solve Ry = Q∗b for y by back substitution,

4. Compute x = Py.

119

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x

u

Figure 6.3: The solution of eu′′(x) + xu′(x) + sin(x)u(x) = 0, u(±1) = 1, for e =
10−1, 10−3, 10−7. For e = 10−7 the solution requires a polynomial of degree 22,950
to be globally resolved to machine precision. Typically, the ultraspherical spectral
method constructs well-conditioned matrices and hence, can resolve solutions that
require large linear systems.

The factorization requires O(mn) Givens rotations with each one involving a linear
combination of O(m) nonzero entries. Hence, this factorization can be computed in
O(m2n) operations. Back substitution takes O(m2n) operations, since R is banded
except for the first K = O(1) rows. Moreover, Q∗b and Py are computed by applying
the O(mn) rotations to vectors and hence can be computed in O(mn) operations.
In total, an almost banded linear system constructed by the ultraspherical spectral
method can be solved in O(m2n) operations.

The storage requirement is asymptotically minimal since A has O(mn) nonzero
entries, and R also has O(mn) nonzero entries.

Typically, the linear systems constructed by the ultraspherical spectral method are
well-conditioned [115]. Therefore, the accuracy of the computed solution is usually
close to machine precision. Figure 6.3 shows the solution to a boundary layer problem
eu′′(x)+xu′(x)+sin(x)u(x) = 0, u(±1) = 1, for e = 10−1, 10−3, 10−7. For e = 10−7 the
solution requires a Chebyshev expansion of degree 22,950 to be resolved to machine
precision.

6.4 Discretization of partial differential operators in
low rank form

Once discretized a low rank representation for a PDO (see (6.2)) becomes a gen-
eralized Sylvester matrix equation, i.e., A1XB

T
1 + · · ·+ AkXB

T
k , where the matrices

120

A1, . . . , Ak and B1, . . . , Bk are ultraspherical spectral discretizations of ODOs and X
is a matrix containing the bivariate Chebyshev coefficients for the solution.

Specifically, suppose we seek to compute an ny ×nx matrix X of bivariate Cheby-
shev expansion coefficients of the solution u(x, y) to (6.1) satisfying

∣∣∣∣∣u(x, y) ≈
ny∑
i=0

nx∑
j=0

XijTi(y)Tj(x)

∣∣∣∣∣ ≤ O(ε‖u‖∞), (x, y) ∈ [−1, 1]2,

where ε is machine precision. The ultraspherical spectral method can be used to
represent the ODOs Ly

1, . . . ,L
y
k and Lx

1 , . . . ,L
x
k in (6.2) as matrices Ly

1, . . . ,L
y
k and

Lx
1 , . . . ,Lx

k. These matrices can be truncated to form a generalized Sylvester matrix
equation

A1XB
T
1 + · · ·+ AkXB

T
k = F, (6.10)

where Aj = PnyL
y
jPT

ny
and Bj = PnxLx

jPT
nx

for 1 ≤ j ≤ k, and F is the ny×nx matrix
of bivariate Chebyshev expansion coefficients of the right-hand side f in (6.1).

Typically, the matrix equation (6.10) does not have a unique solution as the
prescribed linear constraints Bx and By must also be incorporated. By investigating
the action of Bx on the basis {T0(x), . . . , Tnx−1(x)}, we can discretize any linear
constraint as

XBT
x = GT ,

where Bx is an Kx × nx matrix and G is an Kx × ny matrix containing the first ny

Chebyshev coefficients of each component of g. Similarly, by investigating the action
of By on the basis {T0(y), . . . , Tny−1(y)} we can discretize Byu = h as

ByX = H,

where H is an Ky × nx matrix containing the first nx Chebyshev coefficients of each
component of h.

For the constraints to be consistent the matrices Bx and By must satisfy the
following compatibility condition:

HBT
x = (ByX)BT

x = By(XB
T
x) = ByG

T . (6.11)

For example, in order that Dirichlet conditions satisfy the compatibility conditions

121

the boundary data must agree at the four corners of [−1, 1]2.
In practice, the solver determines the parameters nx and ny by progressively dis-

cretizing the PDE on finer grids until the solution is resolved. First, we discretize
the PDE with nx = ny = 9 and solve the resulting matrix equation (6.10) under
linear constraints (see the next section for details). Then, we check if the Chebyshev
coefficients in X decay to below machine precision. Roughly speaking, if the last few
columns of X are above machine precision, then the solution has not been resolved
in the x-variable and nx is increased to 17, 33, 65, and so on, and if the last few rows
in X are above machine precision, then ny is increased to 17, 33, 65, and so on. The
exact resolution tests we employ are the same as those employed by Chebfun2, which
are heuristic in nature, but based on a significant amount of practical experience. The
discretization parameters nx and ny are independently increased and the resolution
test is performed in both directions after each solve.

6.5 Solving matrix equations with linear constraints

In this section we describe how to solve the following matrix equation with linear
constraints:

k∑
j=1

AjXB
T
j = F, X ∈ Cny×nx , ByX = H, XBT

x = GT , (6.12)

where Aj ∈ Cny×ny , Bj ∈ Cnx×nx , F ∈ Cny×nx , By ∈ CKy×ny , Bx ∈ CKy×nx , H ∈
CKy×nx , and G ∈ CKx×ny . Our approach is to use the linear constraints to remove
degrees of freedom in X and thus obtain a generalized Sylvester matrix equation with
a unique solution without constraints.

By assumption the prescribed linear constraints are linearly independent so the
column ranks of Bx and By are Kx and Ky, respectively. Without loss of generality,
we further assume that the principal Kx ×Kx and Ky ×Ky submatrices of Bx and
By are the identity matrices4 IKx and IKy . Then, we can modify the matrix equation
in (6.12) to

k∑
j=1

AjXB
T
j −

k∑
j=1

(Aj)1:ny ,1:KyByXB
T
j = F −

k∑
j=1

(Aj)1:ny ,1:KyHB
T
j ,

4Otherwise, permute the columns of Bx and By so the principal Kx ×Kx and Ky ×Ky matrices
B̂x and B̂y are invertible and redefine as Bx = B̂−1

x Bx, G = B̂−1
x G, By = B̂−1

y By, and H = B̂−1
y H.

122

where we have used the constraint ByX = H. Moreover, by rearranging we have

k∑
j=1

AjXB
T
j −

k∑
j=1

(Aj)1:ny,1:KyByXB
T
j =

k∑
j=1

(
Aj − (Aj)1:ny ,1:KyBy

)
XBT

j ,

and since the Ky × Ky principal matrix of By is the identity matrix, each matrix
Aj − (Aj)1:ny,1:KyBy for 1 ≤ j ≤ k is zero in the first Ky columns. Similarly, the
condition XBT

x = GT can be used to further modify the matrix equation as follows:

k∑
j=1

(
Aj − (Aj)1:ny ,1:KyBy

)
X (Bj −Bx(Bj)1:nx,1:Kx)

T

= F −
k∑

j=1

(Aj)1:ny ,1:KyHB
T
j −

k∑
j=1

(
Aj − (Aj)1:ny,1:KyBy

)
GT (Bj)

T
1:nx,1:Kx

,

(6.13)

so that the matrices (Bj − Bx(Bj)1:nx,1:Kx)
T for 1 ≤ j ≤ k are zero in the first Kx

rows.
Now, the first Ky columns of Aj − (Aj)1:ny,1:KyBy and the first Kx rows of (Bj −

Bx(Bj)1:nx,1:Kx)
T are zero in (6.13) and hence, the matrix equation is independent of

the first Ky rows and Kx columns of X. Therefore, the matrix equation in (6.13) can
be reduced by removing these zero columns and rows and then solved for a matrix
X22 ∈ C(ny−Ky)×(nx−Kx), where

X =

(
X11 X12

X21 X22

)
, X11 ∈ CKy×Kx , X12 ∈ CKy×(nx−Kx), X21 ∈ C(ny−Ky)×Kx .

The solution of the resulting generalized Sylvester equation is given in Section 6.5.1.
Once we have computed X22 we can recover the remaining parts of X using the

linear constraints. For instance, since ByX = H and the Ky×Ky principal submatrix
of By is the identity matrix, we have

X12 = H2 −B(2)
y X22,

where H = [H1, H2] with H1 ∈ CKy×Kx and H2 ∈ CKy×(nx−Kx), and By = [IKy , B
(2)
y]

with B(2)
y ∈ CKy×(ny−Ky). Furthermore, since XBT

x = GT and the Kx ×Kx principal

123

submatrix of Bx is the identity matrix, we have

X21 = GT
2 −X22(B

(2)
x)T ,

where G = [G1, G2] with G1 ∈ CKx×Ky and G2 ∈ CKx×(ny−Ky), and Bx = [IKx , B
(2)
x]

with B(2)
x ∈ CKx×(nx−Kx). Lastly, we can recover X11 using either of the two formulas

X11 = H1 −B(2)
y X21, X11 = GT

1 −X12(B
(2)
x)T ,

since the compatibility condition (6.11) ensures that both these formulas are equiva-
lent.

6.5.1 Solving the matrix equation

We are left with a standard generalized Sylvester matrix equation of the form

k∑
j=1

ÃjX22B̃
T
j = F̃ , (6.14)

and the exact algorithm we use to solve for X22 depends on the integer k.
If k = 1, the matrix equation takes the form Ã1X22B̃

T
1 = F̃ , and since we are

using the ultraspherical spectral method (see Section 6.3) the matrices Ã1 and B̃1

are almost banded. Therefore, we can solve Ã1Y = F̃ for Y ∈ C(ny−Ky)×(nx−Kx) in
O(nxny) operations and then solve B̃1X

T
22 = Y T for X22 in O(nxny) operations using

the QRP ∗ factorization described in Section 6.3.2.
If k = 2, the matrix equation takes the form

Ã1X22B̃
T
1 + Ã2X22B̃

T
2 = F̃ . (6.15)

To solve (6.15) we use the generalized Bartels–Stewart algorithm [7, 55], which re-
quires O(n3

x + n3
y) operations. Alternatively, the generalized Hessenberg–Schur al-

gorithm can be used [55]. It turns out that many standard PDOs with constant
coefficients are of rank 2 (see Table 6.1 for a list of examples).

For k ≥ 3, we are not aware of an efficient algorithm for solving (6.14). Instead,

124

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

O(
n

3
x
+
n

3
y
)

O(
nx
n y
)O

(n
3 x
n y
)

nx, ny

E
xe

cu
ti

on
ti

m
e

Figure 6.4: Typical computation cost for solving the matrix equations Ã1X22B̃
T
1 =

F̃ , (6.15), and (6.16). For rank 1 PDOs the complexity of the solver is O(nxny), for
rank 2 it is O(n3

x + n3
y), and for rank 3 it is O(n3

xny).

we expand the matrix equation into an nxny × nxny linear system

(
k∑

j=1

(B̃j ⊗ Ãj)

)
vec(X22) = vec(F̃), (6.16)

where ‘⊗’ denotes the Kronecker product operator for matrices and vec(C) denotes
the vectorization of the matrix C formed by stacking the columns of C into a single
column vector.

Naïvely solving the resulting linear system (6.16) requires O((nxny)
3) operations.

However, the matrices Ãj and B̃j are almost banded and hence the matrix
∑k

j=1(B̃j⊗
Ãj) is also almost banded with bandwidth O(nx) except for the first O(nx) rows
that are dense. Thus, the linear system can be solved in O(n2

x(nxny)) = O(n3
xny)

operations using the QRP ∗ factorization described in Section 6.3.2.
Figure 6.4 shows the computational time for solving Ã1X22B̃

T
1 = F̃ , (6.15),

and (6.16), where the matrices are almost banded with bandwidth of 10. This shows
the typical dominating computational cost of the solver for rank 1, rank 2, and higher
rank PDOs. In particular, it shows the substantial efficiency gain that can be achieved
when the rank 1 or rank 2 structure of a PDO is exploited.

6.5.2 Solving subproblems

In some special cases the computational cost of solving the matrix equation can be
reduced if the even and odd modes decouple and can be solved for separately.

125

For example, Laplace’s equation with Dirichlet conditions can be split into four
subproblems since the PDO contains only even derivatives in x and y and the bound-
ary conditions can be equivalently written as the following operators:

Bx =

(
1 0 1 0 1 · · ·
0 1 0 1 0 · · ·

)
, By =

(
1 0 1 0 1 · · ·
0 1 0 1 0 · · ·

)
.

In this case since Laplace’s equation is of rank 2 the computational time is reduced
by a factor of 8.

In fact, any PDO with constant coefficients that contains only even order deriva-
tives in one variable accompanied with Dirichlet or Neumann boundary conditions
decouples into two subproblems. Moreover, if it contains only even (or odd) order
derivatives in both variables then it decouples into four subproblems. Our imple-
mentation automatically detects these cases and splits the problem into two or four
subproblems when possible.

6.6 Numerical examples

In this section we demonstrate the effectiveness of the algorithm on several examples.5

We note that since our algorithm is based on a dense and direct solver, it does not
matter to the stability of the approach if the PDE is elliptic, hyperbolic, or parabolic.

First, we consider Helmholtz’s equation uxx+uyy+K2u = 0 with Dirichlet bound-
ary conditions on [−1, 1]2, where K is the wavenumber. Here, we take

uxx + uyy + (
√
2ω)2u = 0, u(±1, y) = f(±1, y), u(x,±1) = f(x,±1), (6.17)

where ω ∈ R and f(x, y) = cos(ωx) cos(ωy). The exact solution to (6.17) is u =

cos(ωx) cos(ωy), which is highly oscillatory for large ω. In Figure 6.5 we plot the
solution for ω = 50 and plot the Cauchy error for ω = 10π, 50π, 100π. The Cauchy
error shows that the solution is rapidly resolved once we have computed an dωe×dωe
matrix of Chebyshev coefficients (in agreement with the Shannon–Nyquist sampling
rate [132]).

5The PDE solver described in this chapter has been implemented in MATLAB. It is publicly
available as part of Chebfun via the chebop2 command.

126

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0 100 200 300 400 500
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

||u

1.
01

n
 −

u n ||
2

n

w = 10π
w = 50π
w=100π

Figure 6.5: Left: Contour plot of the solution of (6.17) for ω = 50. Right: Cauchy
error for the solution coefficients for ω = 10π (dashed), ω = 50π (dot-dashed) and
ω = 100π (solid), which shows the 2-norm difference between the coefficients of the
approximate solution when solving an n×n matrix equation and an d1.01ne×d1.01ne
matrix equation.

In particular, for ω = 100π in (6.17) we have

(ˆ 1

−1

ˆ 1

−1

(ũ(x, y)− u(x, y))2 dxdy

) 1
2

= 5.44× 10−10,

where ũ is the computed solution and u is the exact solution. This error is relatively
small considering that the solution has about 20,000 local extrema in the domain
[−1, 1]2. The solution ũ was computed in6 7.58 seconds. The implementation auto-
matically detected and set up subproblems, which reduced the computational time
by a factor close to 8.

As a second example, we compare the evolution of a Gaussian bump e−10x2 when
its propagation is governed by the wave equation and Klein–Gordon equation

utt = uxx, utt = uxx − 5u,

respectively. A similar comparison is done in [158]. In order to work on a bounded
rectangular domain we restrict the x-variable to [−15, 15] and Figure 6.6 shows the
propagation of e−10x2 for both equations for 0 ≤ t ≤ 10. In these equations we impose
zero Dirichlet conditions along x = ±15 with an initial pulse of e−10x2 at t = 0. To

6Experiments were performed on a 2012 1.8GHz Intel Core i7 MacBook Air with MATLAB
2012a.

127

Figure 6.6: Comparison of the evolution of the Gaussian e−10x2 on [−15, 15] when
propagation is governed by the wave equation (left) and the Klein–Gordon equation
(right).

investigate the error for the solution of the wave equation we check if the wave’s
energy

E(t) =
1

2

ˆ 15

−15

u2tdx+
1

2

ˆ 15

−15

u2xdx

is conserved throughout t ∈ [0, 10]. (The algorithm does not impose that this quantity
is conserved.) We find that ‖E−E(0)‖∞ = 9.48×10−10. In the wave equation utt−uxx
all the modes travel at a speed of 1, while in the Klein–Gordon equation utt−uxx+5u

different frequencies travel at different speeds.
For a third example we take the time-dependent Schrödinger equation on [0, 1]×

[0, 0.54],

iεut = −1

2
ε2uxx + V (x)u,

with ε = 0.0256, u(0, t) = 0, u(1, t) = 0, and an initial condition u(x, 0) = u0(x),
where

u0(x) = e−25(x−1/2)2e−i/(5ε) log(2 cosh(5(x−1/2))).

In Figure 6.7 (left) for V (x) = 10 and (right) for V (x) = x2, we solve for the
solution u and plot its real part. In both cases, we see the formation of caustic. In
Figure 6.8, we plot |u(x, 0.54)|2 for V (x) = 10 and two values of ε. The results are
consistent with Fig. 2a/b of [5], which used periodic boundary conditions in place of
Dirichlet.

The last example we consider is the biharmonic equation, a fourth order elliptic

128

Figure 6.7: Real part of the solution to the time-dependent Schrödinger equation on
[0, 1]× [0, 0.54] with ε = 0.0256 for V (x) = 10 (left) and V (x) = x2 (right).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u(
x,

.5
4)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u(
x,

.5
4)

Figure 6.8: Solution to the Schrödinger equation with V (x) = 10 at t = .54 for
ε = 0.0256 (left) and ε = 0.0064 (right).

129

PDE, given by

uxxxx + uyyyy + 2uxxyy = 0, (x, y) ∈ [−1, 1]2

with Dirichlet and Neumann boundary data corresponding to the function

v(x, y) = Im
(
(x− iy)e−2(x+iy) + cos(cos(x+ iy))

)
.

The exact solution is v itself. The implementation adaptively finds that a bivari-
ate Chebyshev expansion of degree 30 in x and y is sufficient to resolve the solution
to a maximum absolute error of 4.59 × 10−13. This is a PDO of rank 3 and hence
the algorithm solves a matrix linear system rather than a Sylvester matrix equa-
tion (see Section 6.5.1). Therefore, the computational time to solve this problem is
2.52 seconds, compared to a fraction of a second for a rank 2 PDO with the same
discretization.

130

Conclusions

The original motivation for this thesis was to extend Chebfun to two dimensions,
and at the start of 2012 such a project seemed daunting and quite frankly a little
unrealistic. Yet, since then new mathematical ideas have come into fruition, many
of them in this thesis, that have made this project a reality. Here, in 2014, we have
a fully integrated 2D component of Chebfun — consisting of thousands of lines of
MATLAB code — with dreams of conquering 3D next. This thesis has focused on
the mathematical advances that have taken place to make all this possible.

One of the most important advances was how we turned the continuous ideal-
ization of Gaussian elimination for functions into a practical, efficient, and adaptive
algorithm. This allowed us to represent scalar valued functions by low rank approxi-
mants, i.e., sums of functions of the form g(y)h(x), where g(y) and h(x) are univariate
functions. In doing so we were able to build on 1D Chebyshev technology in a power-
ful way and exploit decades of practical algorithmic experience in Chebfun. Chapter 2
discussed these advances and showed how they have been extended to vector calculus
operations on vector fields and parametric surfaces.

Later we wanted to better understand the class of functions that are amenable to
low rank approximation. In Chapter 3 we first developed the results necessary to make
such a discussion precise and defined the concepts of numerical degree, numerical
rank, and functions that are numerically of low rank. Then, we proved theorems
to show when best low rank approximants converge algebraically and geometrically,
before providing further insight by investigating three examples. In the final part we
discussed the singular value decomposition for functions and its connection to best
low rank function approximation.

In the original Chebfun thesis, Battles briefly mentioned (in the third from last
paragraph) a vision of linear algebra for “matrices” that are indexed by continuous
variables. In Chapter 4 we realized this vision by defining “cmatrices” to be those
objects. We went on to define and analyze a full set of standard cmatrix factorizations,

131

and we demonstrated the striking similarities and subtle differences to matrix algebra.
New mathematical problems arise for cmatrix factorizations related to compactness
and convergence of infinite series. In a systematic way we proved convergence of each
factorization under certain assumptions on the cmatrices.

Initially, a significant problem in extending Chebfun to two dimensions was the
lack of a robust global bivariate rootfinder. Many different bivariate rootfinders were
proposed, but each one left us wishing for a more robust alternative. In Chapter 5
we described such a robust alternative based on a resultant method, Bézout resultant
matrices, and domain subdivision. This algorithm not only meets our needs but fits
into the theme of computing 2D operations with 1D technology as it is based on using
resultant matrices for finding the common roots of two univariate polynomials. The
final algorithm is able to solve bivariate rootfinding problems for polynomials of much
higher degree than algorithms previously proposed. It is one of the landmarks in our
2D extension of Chebfun.

Our latest project has been to extend low rank ideas to the solution of PDEs
defined on rectangular domains, and in Chapter 6 we showed that low rank repre-
sentations for partial differential operators can be easily calculated. We went on to
exploit these representations to develop a framework for solving PDEs. We coupled
this with the well-conditioned 1D spectral method by Olver and the author [115] and
were able to efficiently solve PDEs in an automated manner using generalized matrix
equations with almost banded matrices.

Even in just two dimensions, many challenges remain. We have not discussed the
approximation of piecewise smooth functions that have discontinuities along curves, or
the approximation of functions on arbitrary domains in R2, or imagined how to com-
pute with the resulting approximants. Such problems present tantalizing prospects
for future work.

132

Appendix A

Explicit Chebyshev expansions

A Lipschitz continuous function f : [−1, 1] → C has an absolutely and uniformly
convergent Chebyshev expansion (see Section 1.2),

f(x) =
∞∑
j=0

ajTj(x), x ∈ [−1, 1].

The expansion coefficients {aj}j≥0 can be numerically calculated from their integral
definition (see (1.4)); however, in some special cases they can be derived in closed
form. The results in this appendix are used in Section 3.7 to calculate the numerical
degree of functions.

One special case is when a function f has a pole on the real axis outside of [−1, 1].

Lemma A.1. Let a > 1. Then

1

x− a
=

−2√
a2 − 1

∞∑
j=0

′ Tj(x)

(a+
√
a2 − 1)j

,

1

x+ a
=

2√
a2 − 1

∞∑
j=0

′ (−1)jTj(x)

(a+
√
a2 − 1)j

,

where the prime indicates that the first term is halved.

Proof. From Mason and Handscomb [104, (5.14)] we have for a > 1

1

x− a
=

−2√
a2 − 1

∞∑
j=0

′
(a−

√
a2 − 1)jTj(x),

133

and the first expansion follows by noting that (a−
√
a2 − 1) = (a+

√
a2 − 1)−1. The

Chebyshev expansion of 1/(x+ a) can also be immediately derived since

1

x+ a
=

−1

(−x)− a
=

2√
a2 − 1

∞∑
j=0

′ Tj(−x)
(a+

√
a2 − 1)j

and Tj(−x) = (−1)jTj(x).

More generally, explicit Chebyshev expansions are known for certain meromorphic
functions [48].

Another special case is when the function is a Gaussian.

Lemma A.2. The Chebyshev series expansion of e−γx2 is

e−γx2

=
∞∑
j=0

′
(−1)j

2Ij(γ/2)

eγ/2
T2j(x),

where Ij(z) is the modified Bessel function of the first kind with parameter j and the
prime indicates that the first term is halved.

Proof. See equation (14) on page 32 of [97].

Finally, the expansion coefficients for eiMπxy can be derived.

Lemma A.3. The bivariate Chebyshev expansion of eiMπxy is

eiMπxy =
∞∑
p=0

′
∞∑
q=0

′
apqTp(y)Tq(y),

apq =

4iqJ(q+p)/2(Mπ/2)J(q−p)/2(Mπ/2), mod(|p− q|, 2) = 0,

0, otherwise,

where the primes indicate that the p = 0 and q = 0 terms are halved. In particular,
the p = q = 0 term should be divided by four.

Proof. The bivariate Chebyshev expansion of eiMπxy is given by

eiMπxy =
∞∑
p=0

′
∞∑
q=0

′
apqTp(y)Tq(y), apq =

4

π2

ˆ 1

−1

ˆ 1

−1

eiMπxyTp(y)Tq(x)√
1− y2

√
1− x2

dxdy,

134

where the primes indicate that the p = 0 and q = 0 terms are halved. By the change
of variables x = cos θ and [114, (10.9.2)] we have

ˆ 1

−1

eiMπxyTq(x)√
1− x2

dx =

ˆ π

0

eiMπy cos θ cos(qθ)dθ = πiqJq(Mπy).

Therefore, by the change of variables y = cos θ we have

apq =
4iq

π

ˆ 1

−1

Tp(y)Jq(Mπy)√
1− y2

dy =
4iq

π

ˆ π

0

Jq(Mπ cos θ) cos(pθ)dθ.

If p and q are either both even or odd, then the integrand is an even function about
π/2 and we have

apq =
8iq

π

ˆ π/2

0

Jq(Mπ cos θ) cos(pθ)dθ = 4iqJ(q+p)/2(Mπ/2)J(q−p)/2(Mπ/2),

where the last equality is from [114, (10.22.13)]. The result follows since if p and q

are of different parity then the integrand is odd and hence, apq = 0.

135

Appendix B

The Gagliardo–Nirenberg
interpolation inequality

The Gagliardo–Nirenberg interpolation inequality is a result usually stated for
multivariate functions defined on Lipschitz smooth domains [95, Thm. 1.4.5]. We
used this result in Section 4.9 to obtain estimates of a function in the L∞-norm from
those in the L2-norm. In one dimension the inequality becomes easier to prove and the
constants can be calculated explicitly. First, in the 1D setting we derive an inequality
that is slightly stronger than the more general Gagliardo–Nirenberg result.
Lemma B.1. Let f : [a, b] → C be a Lipschitz continuous function with Lipschitz
constant C <∞. Then, for any 1 ≤ p <∞ we have

‖f‖L∞([a,b]) ≤ max

(
2C1/(p+1)‖f‖p/(p+1)

Lp ,
2

(b− a)1/p
‖f‖Lp

)
.

Proof. Since f is continuous, it attains its supremum. Pick x0 ∈ [a, b] such that
|f(x0)| = ‖f‖L∞([a,b]). Then, for any x ∈ I ∩ [a, b] with

I = [x0 − |f(x0)|/(2C), x0 + |f(x0)|/(2C)]

we have, by the reverse triangle inequality,

|f(x)| ≥ |f(x0)| − C |x0 − x| ≥ 1

2
|f(x0)| .

136

Thus, by basic estimates, for 1 ≤ p <∞

ˆ b

a

|f(x)|pdx ≥
ˆ min(x0+|f(x0)|/(2C),b)

max(x0−|f(x0)|/(2C),a)

|f(x)|pdx

≥
(
1

2
|f(x0)|

)p

min(|f(x0)|/(2C), b− a).

The result follows by rearranging this inequality.

For a continuously differentiable function, f , the Lipschitz constant is bounded
by ‖f ′‖∞ and hence

‖f‖L∞([a,b]) ≤ max

(
2‖f ′‖1/(p+1)

L∞ ‖f‖p/(p+1)
Lp ,

2

(b− a)1/p
‖f‖Lp

)
≤ 2‖f ′‖1/(p+1)

L∞ ‖f‖p/(p+1)
Lp +

2

(b− a)1/p
‖f‖Lp ,

where the last inequality holds because both arguments in the maximum are nonneg-
ative. This is a special case of the Gagliardo–Nirenberg interpolation inequality.

137

Appendix C

The construction of Chebyshev
Bézout resultant matrices*

Let p and q be two Chebyshev series of degree m and n (with real or complex coeffi-
cients) given by

p(x) =
m∑
i=0

αiTi(x), q(x) =
n∑

i=0

βiTi(x), x ∈ [−1, 1].

The Chebyshev Bézout matrix of order max(m,n) associated with p and q is defined
as B = (bij)1≤i,j≤max(m,n), where the matrix entries satisfy

p(s)q(t)− p(t)q(s)

s− t
=

max(m,n)∑
i,j=1

bijTi−1(t)Tj−1(s).

By multiplying both sides by s− t we obtain an equivalent relation

s

max(m,n)∑
i,j=1

bijTi−1(t)Tj−1(s)

− t

max(m,n)∑
i,j=1

bijTi−1(t)Tj−1(s)

 = p(s)q(t)− p(t)q(s).

(C.1)
The equation in (C.1) involves polynomials expressed in the Chebyshev basis and
hence, can be written as a relation between Chebyshev coefficients

MB −BMT = pqT − qpT , M =

0 1
1
2

0 1
2

. . .
. . .

. . .
1
2

0 1
2

1
2

0

 . (C.2)

*This appendix is adapted from a paper with Vanni Noferini and Yuji Nakatsukasa [149]. I
derived the algorithm (for the construction of linearizations in the Double Ansatz Space, see [149])
and Noferini pointed out that it could also be used for the construction of Bézout resultant matrices.

138

where p and q are the vectors of the first max(m,n) + 1 Chebyshev coefficients for
p and q, respectively. (Note that M represents multiplication, when applied on the
left it represents multiplication by ‘t’ and when its transpose is applied on the right
it represents multiplication by ‘s’.)

The Bézout matrix can then be constructed in O(max(m,n)2) operations by
solving (C.2) using the Bartels–Stewart algorithm [7]. Note that as M is upper-
Hessenberg, the matrix equation is already in reduced form. This results in the
following MATLAB code:

function B = ChebyshevBezoutResultant(p, q)
% Construct the Chebyshev Bezout resultant matrix associated to two
% polynomials.
% B = CHEBYSHEVBEZOUTRESULTANT(P, Q) returns the Chebyshev Bezout
% resultant matrix associated to the Chebyshev series P and Q.
% P and Q are column vectors of the Chebyshev coefficients.

m = length(p); n = length(q); N = max(m,n) - 1;
p(m+1:N+1) = 0; q(n+1:N+1) = 0;% Pad p and q to the same degree
B = zeros(N);
E = p*q.’ - q*p.’; % B satisfies M*B-B*M’ = p*q.’-q*p.’
B(N,:) = 2*E(N+1,1:N);
B(N-1,:) = 2*E(N,1:N) + [0 2*B(N,1) B(N,2:N-1)] + [B(N,2:N) 0];
for i = N-2:-1:1 % back subs for M*B-B*M’ = p*q.’-q*p.’

B(i,:) = 2*E(i+1,1:N)-B(i+2,1:N) + ...
[0 2*B(i+1,1) B(i+1,2:N-1)]+[B(i+1,2:N) 0];

end
B(1,:) = B(1,:)/2; % T_0 coefficients are halved

This algorithm can be generalized to efficiently construct Bézout matrices in other
polynomial degree-graded bases1 including the monomial basis.

1A polynomial basis φ0, φ1, . . . , is degree-graded if φk is of exact degree k for k ≥ 0.

139

Bibliography

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 10th edition, Dover Publications, New York, 1972.

[2] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method
for nonlinear eigenvalue problems using contour integrals, JSIAM Letters, 1 (2009), pp. 52–55.

[3] F. V. Atkinson, Multiparameter Eigenvalue Problems, Academic Press, New York, 1972.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[5] W. Bao, S. Jin, and P. A. Markowich, On time-splitting spectral approximations for the
Schrödinger equation in the semiclassical regime, J. Comp. Phys., 175 (2002), pp. 487–524.

[6] S. Barnett, Greatest common divisors from generalized Sylvester resultant matrices, Linear
Multilinear Algebra, 8 (1980), pp. 271–279.

[7] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C, Comm.
ACM, 15 (1972), pp. 820–826.

[8] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically Solving
Polynomial Systems with Bertini, SIAM, Philadelphia, 2013.

[9] Z. Battles, Numerical Linear Algebra for Continuous Functions, DPhil thesis, University of
Oxford, 2005.

[10] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743–1770.

[11] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000),
pp. 565–589.

[12] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, Springer-Verlag Berlin Heidelberg, 2008.

[13] M. Bebendorf, Adaptive cross approximation of multivariate functions, Constr. Approx., 34
(2011), pp. 149–179.

[14] M. Bebendorf and S. Kunis, Recompression techniques for adaptive cross approximation,
J. Integral Equations Appl., 21 (2009), pp. 329–470.

[15] M. Bebendorf, Y. Maday, and B. Stamm, Comparison of some reduced representation
approximations, submitted, 2013.

[16] B. Beckermann, The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices, Numer. Math., 85 (2000), pp. 553–577.

[17] E. T. Bell, The history of Blissard’s symbolic method, with a sketch of its inventor’s life,
Amer. Math. Monthly, 45 (1938), pp. 414–421.

[18] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra
Appl., 436 (2012), pp. 3839–3863.

140

[19] É. Bézout, Théorie Générale des Équations Algébriques, PhD Thesis, Pierres, Paris, 1779.

[20] D. A. Bini and L. Gemignani, Bernstein–Bézoutian matrices, Theoret. Comput. Sci., 315
(2004), pp. 319–333.

[21] D. Bini and A. Marco, Computing curve intersection by means of simultaneous iterations,
Numer. Algorithms, 43 (2006), pp. 151–175.

[22] D. Bini and V. Noferini, Solving polynomial eigenvalue problems by means of the Ehrlich–
Aberth method, Linear Algebra Appl., 439 (2013), pp. 1130–1149.

[23] A. Birkisson and T. A. Driscoll, Automatic Fréchet differentiation for the numerical so-
lution of boundary-value problems, ACM Trans. Math. Software, 38 (2012), pp. 26:1–26:29.

[24] V. I. Bogachev, Measure Theory, Volume 1, Springer-Verlag Berlin Heidelberg, 2007.

[25] F. Bornemann, D. Laurie, S. Wagon and J. Waldvogel, The SIAM 100-Digit Challenge:
A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004.

[26] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover Publications, New
York, (2001).

[27] J. P. Boyd, Computing zeros on a real interval through Chebyshev expansion and polynomial
rootfinding, SIAM J. Numer. Anal., 40 (2002), pp. 1666–1682.

[28] J. P. Boyd, Finding the zeros of a univariate equation: proxy rootfinders, Chebyshev interpo-
lation, and the companion matrix, SIAM Rev., 55 (2013), pp. 375–396.

[29] L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal.,
15 (1978), pp. 694–704.

[30] B. Buchberger and F. Winkler, Gröbner Basis and Applications, Cambridge University
Press, 1998.

[31] O. A. Carvajal, F. W. Chapman and K. O. Geddes, Hybrid symbolic-numeric integration
in multiple dimensions via tensor-product series, Proceedings of the 2005 International Sympo-
sium on Symbolic and Algebraic Computation, Manuel Kauers (ed.), ACM Press, New York,
2005, pp. 84–91.

[32] A. Cayley, Note sur la méthode d’élimination de Bézout, J. Reine Angew. Math., 53 (1857),
p. 366–367.

[33] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable
systems of linear equations, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 373-384.

[34] S. Chandrasekaran and I. C. F. Ipsen, Analysis of a QR algorithm for computing singular
values, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 520–535.

[35] F. W. Chapman, Generalized orthogonal series for natural tensor product interpolation, PhD
Thesis, University of Waterloo, 2003.

[36] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[37] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Comp., 9 (1955),
pp. 118–120.

[38] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic
computer, Numer. Math., 2 (1960), pp. 197–205.

[39] J. A. Cochran, The nuclearity of operators generated by Hölder continuous kernels, Math.
Proc. Cambridge Philos. Soc., 75 (1974), pp. 351–356.

[40] J. A. Cochran, Growth estimates for the singular values of square-integrable kernels, Pacific
J. Math., 56 (1975), pp. 51–58.

141

[41] D. A. Cox, J. B. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edition, Springer-
Verlag, 2007.

[42] C. De Boor, An alternative approach to (the teaching of) rank, basis, and dimension, Linear
Algebra Appl., 146 (1991), pp. 221–229.

[43] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[44] P. Dreesen, K. Batselier, and B. De Moor, Back to the roots: Polynomial system solving,
linear algebra, systems theory, Proc. 16th IFAC Symposium on System Identification, pp. 1203–
1208, 2012.

[45] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36 (2006),
pp. 184–206.

[46] T. A. Driscoll, F. Bornemann, and L. N. Trefethen, The chebop system for automatic
solution of differential equations, BIT Numerical Mathematics, 48 (2008), pp. 701–723.

[47] C. Eckart and G. Young, The approximation of one matrix by another of lower rank,
Psychometrika, 1 (1936), pp. 211–218.

[48] D. Elliott, The evaluation and estimation of the coefficients in the Chebyshev series expansion
of a function, Math. Comp., 18 (1964), pp. 274–284.

[49] I. Z. Emiris and B. Mourrain, Matrices in elimination theory, J. Symbolic Comput., 28
(1999), pp. 3–43.

[50] J. C. Ferreira and V. A. Menegatto, Eigenvalues of integral operators defined by smooth
positive definite kernels, Integral Equations Operator Theory, 64 (2009), pp. 61–81.

[51] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press,
1998.

[52] L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford University
Press, Oxford, 1968.

[53] R. Franke, A critical comparison of some methods for interpolation of scattered data, Naval
Postgraduate School, Tech. Report, March 1979.

[54] D. Gaier, Lectures on Complex Approximation, Birkhäuser, Basel, 1987.

[55] J. D. Gardiner, A. J. Laub, J. J. Amato, C. B. Moler, Solution of the Sylvester matrix
equation AXBT + CXDT = E, ACM Trans. Math. Software, 18 (1992), pp. 223–231.

[56] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and
Determinants, Birkhäuser, Boston, 2008.

[57] W. M. Gentleman, Implementing Clenshaw–Curtis quadrature II: Computing the cosine
transformation, Comm. ACM, 15 (1972), pp. 343–346.

[58] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, SIAM, Philadelphia,
USA, 2009, (unabridged republication of book first published by Academic Press in 1982).

[59] G. H. Golub, Numerical methods for solving least squares problems, Numer. Math., 7 (1965),
pp. 206–216.

[60] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions,
Numer. Math., 14 (1970), pp. 403–420.

[61] G. H. Golub and C. F. Van Loan, Matrix Computation, 4th edition, Johns Hopkins Uni-
versity Press, Maryland, 2013.

[62] P. Gonnet, S. Güttel, and L. N. Trefethen, Robust Padé approximation via SVD, SIAM
Review, 55 (2013), pp. 101–117.

142

[63] I. J. Good, The colleague matrix, a Chebyshev analogue of the companion matrix, Q. J. Math.,
12 (1961), pp. 61–68.

[64] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N.
L. Zamarashkin, How to find a good submatrix, in Matrix Methods: Theory, Algorithms and
Applications, V. Olshevsky and E. Tyrtyshnikov, eds., World Scientific, Hackensack, NJ, 2010,
pp. 247–256.

[65] , S. A. Goreinov, E. E. Tyrtyshnikov, The maximal-volume concept in approximation by
low-rank matrices, Contemporary Mathematics 280 (2001), pp. 47–52.

[66] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskele-
ton approximations, Linear Algebra Appl., 261 (1997), pp. 1–21.

[67] T. Gowers, J. Barrow-Green, and I. Leader, eds., The Princeton Companion to Math-
ematics, Princeton University Press, New Jersey, 2008.

[68] L. Grasedyck, Singular value bounds for the Cauchy matrix and solutions of Sylvester equa-
tions, Technical report 13, University of Kiel, 2001.

[69] M. Griebel and H. Harbrecht, Approximation of bi-variable functions: singular value
decomposition versus sparse grids, IMA J. Numer. Anal., 34 (2014), pp. 28–54.

[70] B. Guo and I. Babuška, The hp version of the finite element method, Comput. Mech., 1
(1986), pp. 21–41.

[71] A. Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Mathe-
matische Annalen, 78 (1917), pp. 294–311.

[72] W. Hackbusch, Hierarchische Matrizen: Algorithmen und Analysis, Springer-Verlag Berlin
Heidelberg, 2009.

[73] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer-Verlag Berlin Hei-
delberg, 2012.

[74] N. Hale and A. Townsend, Fast and accurate computation of Gauss–Legendre and Gauss–
Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013), A652–A674.

[75] N. Hale and A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using
an asymptotic formula, SIAM J. Sci. Comput., 36 (2014), pp. A148-A167.

[76] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217–288.

[77] A. Hammerstein, Über die Entwickelung des Kernes linearer Integralgleichungen nach Eigen-
funktionen, Sitzungsberichte Preuss. Akad. Wiss., (1923), pp. 181–184.

[78] H. Harbrecht, M. Peters, and R. Schneider, On the low-rank approximation by the
pivoted Cholesky decomposition, Appl. Numer. Math., 62 (2012), pp. 428–440.

[79] A. Harnack, Über Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann., 10 (1876),
pp. 189–198.

[80] N. J. Higham, A survey of condition number estimation for triangular matrices, SIAM Rev.,
29 (1987), pp. 575–596.

[81] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, SIAM, Philadel-
phia, 2002.

[82] E. Hille and J. D. Tamarkin, On the characteristic values of linear integral equations, Acta
Math., 57 (1931), pp. 1–76.

143

[83] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt, Marching triangles:
range image fusion for complex object modelling, IEEE International Conference on Image Pro-
cessing, pp. 381–384, 1996.

[84] M. E. Hochstenbach, T. Košir, and B. Plestenjak, A Jacobi–Davidson type method
for the two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 477–497.

[85] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[86] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory
and Fourier Analysis, Springer-Verlag, Berlin, 2003.

[87] D. Kapur and T. Saxena, Comparison of various multivariate resultant formulations, In
Levelt, A., ed., Proc. Int. Symp. on Symbolic and Algebraic Computation, Montreal, pp. 187–
194, 1995.

[88] M. Javed, Numerical computation with delta functions in Chebfun, MSc. Thesis, University of
Oxford, 2011.

[89] G. Jónsson and S. Vavasis, Accurate solution of polynomial equations using Macaulay resul-
tant matrices, Math. Comp., 74 (2005), pp. 221–262.

[90] O. D. Kellogg, Orthogonal function sets arising from integral equations, Amer. J. Math., 40
(1918), pp. 145–154.

[91] F. C. Kirwan, Complex Algebraic Curves, Cambridge University Press, Cambridge, 1992.

[92] G. Klein, Applications of Linear Barycentric Rational Interpolation, PhD thesis, University
of Fribourg, 2012.

[93] S. Knapek, Hyperbolic cross approximation of integral operators with smooth kernel, Tech.
Report 665, SFB 256, University of Bonn, 2000.

[94] G. Little and J. B. Reade, Eigenvalues of analytic kernels, SIAM J. Math. Anal., 15 (1984),
pp. 133–136.

[95] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, CRC Press, USA,
1999.

[96] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction
algorithm, ACM Comput. Graph., 21 (1987), pp. 163–169.

[97] Y. L. Luke, The special functions and their approximations, Vol. II, Academic Press, New
York, 1969.

[98] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations
for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004.

[99] M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis,
Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 697–702.

[100] J. C. Mairhuber, On Haar’s theorem concerning Chebychev approximation problems having
unique solutions, Proc. Amer. Math. Soc., 7 (1956), pp. 609–615.

[101] D. Manocha and J. Demmel, Algorithms for intersecting parametric and algebraic curves
I: simple intersections, ACM Trans. Graphics, 13 (1994), pp. 73–100.

[102] P. G. Martinsson, V. Rokhlin, Y. Shkolnisky, and M. Tygert, ID: a software package
for low-rank approximation of matrices via interpolative decompositions, version 0.2.

[103] P. G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decom-
position of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.

[104] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Florida, 2003.

144

[105] P. C. Matthews, Vector Calculus (Springer Undergraduate Mathematics Series), Springer-
Verlag London, 1998.

[106] V. Mehrmann and H. Voss, Nonlinear Eigenvalue Problems: A Challenge for Modern
Eigenvalue Methods, Mitt. der Ges. für Angewandte Mathematik and Mechanik, 27 (2005),
pp. 121–151.

[107] J. Mercer, Functions of positive and negative type and their connection with the theory of
integral equations, Philos. Trans. R. Soc. Lond. Ser. A, 209 (1909), pp. 415–446.

[108] J. Milnor, Analytic proofs of the “Hairy Ball theorem" and the Brouwer fixed point theorem,
Amer. Math. Monthly, 85 (1978), pp. 521–524.

[109] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., 11
(1960), pp. 50–59.

[110] B. Mourrain and J. P. Pavone, Subdivision methods for solving polynomial equations, J.
Symbolic Comput., 44 (2009), pp. 292–306.

[111] A. Muhič and B. Plestenjak, On the quadratic two-parameter eigenvalue problem and its
linearization, Linear Algebra Appl., 432 (2010), pp. 2529–2542.

[112] Y. Nakatsukasa, V. Noferini, and A. Townsend, Computing common zeros of
two bivariate functions, MATLAB Central File Exchange, http://www.mathworks.com/

matlabcentral/fileexchange/44084, 2013.

[113] Y. Nakatsukasa, V. Noferini, and A. Townsend, Computing the common zeros of two
bivariate functions via Bézout resultants, to appear in Numer. Math., 2014.

[114] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of
Mathematical Functions, Cambridge University Press, Cambridge, 2010.

[115] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55
(2013), pp. 462–489.

[116] E. L. Ortiz and H. Samara, An operational approach to the Tau method for the numerical
solution of non-linear differential equations, Computing, 27 (1981), pp. 15–25.

[117] R. Pachón, R. B. Platte, and L. N. Trefethen, Piecewise-smooth chebfuns, IMA J.
Numer. Anal., 30 (2010), pp. 898–916.

[118] R. Pachón and L. N. Trefethen, Barycentric-Remez algorithms for best polynomial ap-
proximation in the chebfun system, BIT Numer. Math., 49 (2009), pp. 721–741.

[119] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.

[120] R. B. Platte and L. N. Trefethen, Chebfun: a new kind of numerical computing, Progress
in Industrial Mathematics at ECMI 2008, Springer-Verlag Berlin Heidelberg, 15 (2010), pp. 69–
87.

[121] D. Plaumann, B. Sturmfels, and C. Vinzant, Computing linear matrix representations
of Helton–Vinnikov curves, Mathematical Methods in Systems, Optimization, and Control Op-
erator Theory, 222 (2012), pp. 259–277.

[122] M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, Cam-
bridge, 1981.

[123] J. B. Reade, Eigenvalues of positive definite kernels, SIAM J. Math. Anal., 14 (1983),
pp. 152–157.

[124] J. B. Reade, Eigenvalues of positive definite kernels II, SIAM J. Math. Anal., 15 (1984),
pp. 137–142.

[125] J. R. Rice, Tchebycheff approximation in several variables, Trans. Amer. Math. Soc., 109
(1963), pp. 444–466.

145

[126] M. Richardson, Approximating functions with endpoint singularities, PhD thesis, University
of Oxford, 2013.

[127] T. J. Rivlin and H. S. Shapiro, Some uniqueness problems in approximation theory, Comm.
Pure Appl. Math., 13 (1960), pp. 35–47.

[128] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number
Theory, 2nd edition, J. Wiley, 1990.

[129] M. Sagraloff and others, Gallery of algebraic curves and their arrangements, http:

//exacus.mpi-inf.mpg.de/gallery.html.

[130] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwick-
lung willkürlichen Funktionen nach Systemen vorgeschriebener, Math. Ann., 63 (1907), pp. 433–
476.

[131] J. Schneider, Error estimates for two-dimensional cross approximation, J. Approx. Theory,
162 (2010), pp. 1685–1700.

[132] C. E. Shannon, Communication in the presence of noise, Proc. IEEE, 86 (1998), pp. 447–457.

[133] J. Shen, Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order
equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), pp. 74–87.

[134] E. C. Sherbrooke and N. M. Patrikalakis, Computation of the solutions of nonlinear
polynomial systems, Comput. Aided Geom. Design, 10 (1993), pp. 379–405.

[135] F. Smithies, The eigenvalues and singular values of integral equations, Proc. Lond. Math.
Soc., 2 (1938), pp. 255–279.

[136] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes
of functions, Dokl. Akad. Nauk SSSR, 4 (1963), pp. 240–243.

[137] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science, World Scientific, Singapore, 2005.

[138] L. Sorber, M. Van Barel, and L. De Lathauwer, Numerical solution of bivariate and
polyanalytic polynomial systems, submitted, 2013.

[139] G. W. Stewart, On the early history of the singular value decomposition, SIAM Review, 35
(1993), pp. 551–566.

[140] G. W. Stewart, Afternotes Goes to Graduate School, SIAM, Philadelphia, 1998.

[141] G. W. Stewart, Matrix Algorithms Volume 1: Basic Decompositions, SIAM, Philadelphia,
1998.

[142] G. W. Stewart, Fredholm, Hilbert, Schmidt: Three fundamental papers on integral equations,
www.cs.umd.edu/~stewart/FHS.pdf, 2011.

[143] M. H. Stone, The generalized Weierstrass approximation theorem, Math. Mag., 21 (1948),
pp. 237–254.

[144] B. Sturmfels, Solving Systems of Polynomial Equations, American Mathematical Society,
2002.

[145] J.-G. Sun, On condition numbers of nondefective multiple eigenvalue, Numer. Math., 61
(1992), pp. 265–275.

[146] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., 1939.

[147] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of gener-
alized eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1038–1057.

[148] A. Townsend, Chebfun2 software, http://www.chebfun.org/chebfun2, 2013.

146

[149] A. Townsend, V. Noferini, and Y. Nakatsukasa, Vector spaces of linearizations for
matrix polynomials: A bivariate polynomial approach, submitted.

[150] A. Townsend and S. Olver, The automatic solution of partial differential equations using
a global spectral method, unpublished manuscript, 2014.

[151] A. Townsend and L. N. Trefethen, Gaussian elimination as an iterative algorithm, SIAM
News, 46, March 2013.

[152] A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM
J. Sci. Comput., 35 (2013), pp. C495–C518.

[153] A. Townsend and L. N. Trefethen, Continuous analogues of matrix factorizations, sub-
mitted to SIAM Review, 2014.

[154] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.

[155] L. N. Trefethen, A Hundred-Dollar, Hundred-Digit Challenge, SIAM News, 35, Jan./Feb.
2002.

[156] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. Comput.
Sci., 1 (2007), pp. 9–19.

[157] L. N. Trefethen, Householder triangularization of a quasimatrix, IMA J. Numer. Anal., 30
(2010), pp. 887–897.

[158] L. N. Trefethen and K. Embree, The PDE Coffee Table Book, unpublished book, http:
//people.maths.ox.ac.uk/trefethen/pdectb.html, 2011.

[159] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[160] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[161] L. N. Trefethen et al., Chebfun Version 5, The Chebfun Development Team (2014),
http://www.chebfun.org/.

[162] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule,
SIAM Rev., to appear in 2014.

[163] J. Van Deun and L. N. Trefethen, A robust implementation of the Carathéodory–Fejér
method for rational approximation, BIT Numer. Math., 51 (2011), pp. 1039–1050.

[164] J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT
Numer. Math., 46 (2006), pp. 195–202.

[165] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial func-
tions of minimal degree, Adv. Comput. Math., 4 (1995), pp. 389–396.

[166] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differen-
tialgleichungen (mit einer Andwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71
(1912), pp. 441–479.

[167] H. Xie and H. Dai, On the sensitivity of multiple eigenvalues of nonsymmetric matrix pencils,
Linear Algebra Appl., 374 (2003), pp. 143–158.

147

