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Floating point arithmetic

Floating point arithmetic will remain important.

x ⇡

Prediction 1:



The IEEE 754-1984 format

64-bit IEEE 784 float:

±significant⇥ baseexponent
“An adult’s version of significant digits.” 

Example: x = 100⇡ = 314.159265359

x ⇡ x̂ = 3.14⇥ 102

x̂

2 = 98596 ⇡ \98596 = 9.86⇥ 102

Floating point is similar, but in base 2:

c
x

2 = 9.87⇥ 104

Round after every operation.

William Kahan



Floating point numbers

Most of time, we do not worry about floating point arithmetic.

Except… in the rare cases when it matters…
nek5000

Pipeflow: Weather:

 Lawrence Berkeley National Laboratory, 2014

How high can a computer count? 
for k = 1, 2, . . . ,

print k
end

PBS infinite series

Kelsey Houston-Edwards



Numerical computing without discretization woes

(1) Functions

RKToolbox ApproxFun

(2) Differential equations

Goal: Develop discretization oblivious software for (1)-(3).

(3) Geometry



Functions

f(x)

Computing with functions will be more adaptive.

Prediction 2:



Adaptively computing with functions

A simple example: sound

sound(t) = 3 cos(2⇡10t+ 0.2) + cos(2⇡30t� 0.3) + 2 cos(2⇡40t+ 2.4)

|Frequencies|

Hz

Sound

time

FFT

An automatic way to tell us how “complicated” a function is.

FFT



Computing with functions without discretization woes

Ricardo Pachon

Rodrigo Platte

Heather Wilber Grady Wright



Differential equations

Differential equations may not be discretized by matrices.

Prediction 3:

Lu = f



Discretize-then-solve
“Discretize-then-solve”

Lu = f on ⌦

u|@⌦ = g

Ax = b

Matrix

Discrete
solution x

û
Approx.
solution

Linear,
elliptic,

2nd order, 
PDE

Finite diff & pseudospectral:
L•    is an unbounded operator

•    is a bounded operatorA

• Want    to be well-conditionedA

• Want    to capture A L
2nd order diff matrices



Revisiting Krylov subspace

Kk(A, b) = Span
�
b, Ab,A2b, . . . , Ak�1b

 

Task: Solve Ax = b

for x

Krylov subspace methods are iterative solvers, computing iterates from:

A is large
fast mat-vecs

Spectral method

• Preconditioning     
PAx = Pb

depends on both the discretization 
and PDE.

• If    is inadequate to resolve solution, 
then one needs to rediscretize the 
PDE.

n



Task: Solve forLu = f u

Kk(L, b) = Span
�
f,Lf,L2f, . . . ,Lk�1f

 
L is 2nd order, elliptic

�u

xx

= 1� x

2

Kk(L, f) = Span
�
1� x

2
, 2
 Example: u(±1) = 0

Operator analogue of Krylov methods

Does not contain 
the solution.

T = ⇧⇤R⇤LR⇧Modify the diff. operator: 
⇧ = projection operator, imposes bc

R = operator preconditioner

Marc Gilles Zdenek Strakoš Jörg Liesen Josef Málek

Operator CG method

[Gilles & T., 2018][Málek & Strakoš, 2014]



Differential eigenproblems
“Discretize-then-solve”

Eigenvalue
problem

Eigenvalues, 
eigenvectors

Eigenvalues, 
eigenfunctions

Differential
eigenvalue 
problem

u|@⌦ = 0
Lu = �u on ⌦

• Discretizing can increase the 
sensitivity of eigenvalues.

Andrew HorningAnthony Austin

Ax = �̂x

�̂, x

�̂, û



Geometry

Element methods will be oblivious to domain discretizations.

Prediction 4:

⌦ = domain



Poisson’s equation:

1. Instability with skinny mesh elements

A random
mesh

Oblivious to mesh quality
“FEMs are numerically unstable when a mesh has certain skinny triangles.”

[Babuška & Aziz, 1978]



Element methods oblivious to underlying mesh
• Employ a mesh 

that reduces the 
CFL-like time-
step restrictions.

Aaron Yeiser

• For high-Reynolds 
flows, we use skinny 
elements.

r2u+ 500(1� y)u = �1, ⌦ = penrose, u|@⌦ = 0

Navier-Stokes simulation

[Yeiser, 2018]



Oblivious to hp-adaptivity

In practice, hp-adaptivity means 

ph

N = O(p2/h2)

Complexity:

[Sherwin 2014] 
in practicep . 6

O(p6/h2) = O(p4N)

Nekar++
(simulation for Mclaren Racing Ltd)

Limiton Inc

High-p regime useful for advection-dominated flow simulations:

SEAL 
(spectral element analysis lab)



An optimal hp-adaptive FEM

p
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e

Dan Fortunato

ph
Desired complexity:

h = 2
p = 1,000

Optimal complexity Poisson solver in   :

Challenge: Develop an optimal-complexity hp-adaptive Poisson solver : 
[Fortunato & T., 2018]

p



Predictions

Thank you

Research supported by:

1. Floating point arithmetic will remain important.

2. Computing with functions will be more adaptive.

3. Differential equations may not be discretized by matrices.

4. Element methods will be oblivious to domain discretizations. 

5. We will be able to write down a PDE and have it solved.  


