# Numerical Computing without Discretization Woes

## Alex Townsend Cornell University



...give a **visionary** computational science talk... Ben Zhang & Ricardo Baptista

#### Discretization alleviating colleagues:



Dan Fortunato Marc Gilles Andrew Horning Sheehan Olver Nick Trefethen Grady Wright Heather Wilber Aaron Yeiser

# Computing trends



## Floating point arithmetic

### **Prediction I:**

Floating point arithmetic will remain important.



## The IEEE 754-1984 format



William Kahan

"An adult's version of significant digits."  $\pm$ significant × base<sup>exponent</sup>

Example:  $x = 100\pi = 314.159265359$   $x \approx \hat{x} = 3.14 \times 10^2$   $\hat{x}^2 = 98596 \approx \widehat{98596} = 9.86 \times 10^2$   $\widehat{x^2} = 9.87 \times 10^4$ Round after every operation.

Floating point is similar, but in base 2:



# Floating point numbers

Most of time, we do not worry about floating point arithmetic.



**Except...** in the rare cases when it matters...

How high can a computer count?

```
for k = 1, 2, ...,

print k

end >> (2^53+1)-2^53

ans =
```





Kelsey Houston-Edwards

# Numerical computing without discretization woes

(I) Functions

ch/eb/fu/n

RKToolbox

ApproxFun

(2) Differential equations





(3) Geometry

 Dedalus Project

 gmsh
 OpenVFOAM

 Image: Comparison of the second second

**Goal:** Develop discretization oblivious software for (1)-(3).

### Functions

### **Prediction 2:**

Computing with functions will be more adaptive.

f(x)

### Adaptively computing with functions



An automatic way to tell us how "complicated" a function is.





Computing with functions without discretization woes

| >>  | f = ch                           | nebfun(@  | (x) abs | (4*cos(3                       | 3*pi*x)). | /(x2)) | ;   |  |  |  |  |  |  |  |
|-----|----------------------------------|-----------|---------|--------------------------------|-----------|--------|-----|--|--|--|--|--|--|--|
|     | chebfun column (8 smooth pieces) |           |         |                                |           |        |     |  |  |  |  |  |  |  |
|     | inte                             | rval      | length  | ength endpoint values endpoint |           |        |     |  |  |  |  |  |  |  |
| [   | -1,                              | -0.83]    | 13      | -3.3                           | -7.6e-16  | [0]    | 0]  |  |  |  |  |  |  |  |
| [   | -0.83,                           | -0.5]     | 16      | -4.8e-15                       | -1.6e-14  | [0]    | 0]  |  |  |  |  |  |  |  |
| [   | -0.5,                            | -0.17]    | 20      | 1.3e-14                        | 6e-16     | [0]    | 0]  |  |  |  |  |  |  |  |
| [   | -0.17,                           | 0.17]     | 59      | 2.9e-14                        | -2.6e-14  | [0]    | 0]  |  |  |  |  |  |  |  |
| [   | 0.17,                            | 0.2]      | 9       | -2.6e-13                       | -Inf      | [0]    | -1] |  |  |  |  |  |  |  |
| [   | 0.2,                             | 0.5]      | 15      | Inf                            | -4.8e-14  | [-1    | 0]  |  |  |  |  |  |  |  |
| [   | 0.5,                             | 0.83]     | 21      | 6.3e-14                        | 1.4e-14   | [0]    | 0]  |  |  |  |  |  |  |  |
| [   | 0.83,                            | 1]        | 13      | -1.3e-14                       | 5         | [0     | 0]  |  |  |  |  |  |  |  |
| ver | tical sc                         | ale = Inf | Total   | length =                       | 166       |        |     |  |  |  |  |  |  |  |



Rodrigo Platte



Ricardo Pachon







Heather Wilber

Grady Wright

### Differential equations

### **Prediction 3:**

Differential equations may not be discretized by matrices.

 $\mathcal{L}u = f$ 

### Discretize-then-solve



### Finite diff & pseudospectral:

- $\mathcal L$  is an unbounded operator
- $\cdot$  A is a bounded operator
- Want A to be well-conditioned
- Want A to capture  $\mathcal L$



## Revisiting Krylov subspace

**Task:** Solve 
$$Ax = b$$
 for  $x$ 

A is large fast mat-vecs

Krylov subspace methods are iterative solvers, computing iterates from:

$$\mathcal{K}_k(A,b) = \operatorname{Span}\left\{b, Ab, A^2b, \dots, A^{k-1}b\right\}$$

- Preconditioning PAx = Pbdepends on both the discretization and PDE.
- If n is inadequate to resolve solution, then one needs to rediscretize the PDE.



### Operator analogue of Krylov methods

**Task:** Solve 
$$\mathcal{L}u = f$$
 for  $u$   $\mathcal{L}$  is 2nd order, elliptic  
 $\mathcal{K}_k(\mathcal{L}, b) = \operatorname{Span} \{f, \mathcal{L}f, \mathcal{L}^2 f, \dots, \mathcal{L}^{k-1}f\}$   
**Example:**  $-u_{xx} = 1 - x^2$   $u(\pm 1) = 0$   
 $\mathcal{K}_k(\mathcal{L}, f) = \operatorname{Span} \{1 - x^2, 2\}$  Does not contain  
the solution.

Modify the diff. operator:  $\mathcal{T} = \Pi^* \mathcal{R}^* \mathcal{L} \mathcal{R} \Pi$  $\Pi =$  projection operator, imposes bc  $\mathcal{R} =$  operator preconditioner





Jörg Liesen

Josef Málek



Zdenek Strakoš



[Málek & Strakoš, 2014] [Gilles & T., 2018]

## Differential eigenproblems

#### "Discretize-then-solve"



Discretizing can increase the sensitivity of eigenvalues.



Anthony Austin

Geometry

#### **Prediction 4:**

Element methods will be oblivious to domain discretizations.

### $\Omega = \text{domain}$

| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 4 |



## Oblivious to mesh quality

"FEMs are numerically unstable when a mesh has certain skinny triangles." [Babuška & Aziz, 1978]

I. Instability with skinny mesh elements A random mesh



0

## Element methods oblivious to underlying mesh



- Employ a mesh that reduces the CFL-like timestep restrictions.
- For high-Reynolds flows, we use skinny elements.

Aaron Yeiser



## Oblivious to hp-adaptivity

In practice, hp-adaptivity means  $p \lesssim 6$  in practice [Sherwin 2014]



Complexity: 
$$\mathcal{O}(p^6/h^2) = \mathcal{O}(p^4N)$$

High-p regime useful for advection-dominated flow simulations:



Nekar++ (simulation for Mclaren Racing Ltd)



Limiton Inc



SEAL (spectral element analysis lab)

### An optimal hp-adaptive FEM

#### Optimal complexity Poisson solver in p:

h = 2p = 1,000



**Challenge:** Develop an optimal-complexity hp-adaptive Poisson solver:



| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
| 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |

## Predictions

I. Floating point arithmetic will remain important.

- 2. Computing with functions will be more adaptive.
- 3. Differential equations may not be discretized by matrices.
- 4. Element methods will be oblivious to domain discretizations.
- 5. We will be able to write down a PDE and have it solved.

### Thank you

Research supported by:

