Spectral Methods Without Discretization Woes

Alex Townsend Cornell University townsend@cornell.edu

Colleagues that cure discretization woes:

Dan Fortunato Marc Gilles Nick Hale Andrew HorningSheehan Olver Nick Trefethen Geoff Vasil Grady Wright Heather Wilber

Algorithms, adaptivity, & encapsulation

Highlight reel: functions

Adaptive 2D approximation

with Platte

Fast rotate on hemisphere

with Bostwick, Steen, & Zhao

Robust rootfinders

Helmholtz decomposition in ball

Highlight reel: DEs

Navier-Stokes on disk Active fluids in 3D ball Sessile drops (hemisphere)

18.336, Fall 2015

with Boulle, Słomka, & Dunkel

with Bostwick, Steen, & Wesson

Timeline

2004

The ID era

The ID era: functions

The ID era: DEs

Linear and nonlinear systems of BVPs:

plot(chebop(@(x,u) diff(u,2)+50*(1+sin(x)).*u,[-20,20],0,0)\1)

Linear and nonlinear systems of IVPs:

Ásgeir Birkisson Tob

Toby Driscoll

Timeline

What happened between 2012-2017? I will partly summarize five years with five ideas.

Idea I: Leverage ID technology for code maintenance

Low rank approximation $A \approx u_1 v_1^T + \dots + u_r v_r^T$ $f(x,y) \approx g_1(y)h_1(x) + \dots + g_r(y)h_r(x)$ (Can also be a more efficient representation.) Integration, differentiation, evaluation, etc. Why? $\int_{-1}^{1} \int_{-1}^{1} f(x,y) dx dy \approx \int_{-1}^{1} g_1(y) dy \int_{-1}^{1} h_1(x) dx + \dots + \int_{-1}^{1} g_r(y) dy \int_{-1}^{1} h_r(x) dx$

Computing low rank function approximants

How to compute it? Gaussian elimination

 $f \leftarrow f - f(x_0, \cdot)f(\cdot, y_0)/f(x_0, y_0)$

Highly related to: ACA, two-sided IDs, skeleton decomp., Geddes-Newton

Gaussian elimination on functions

Pivot locations:

GE is a rank revealer for smooth functions:

Theorem [T.& Trefethen, 2013]
If
$$f$$
 on $[-1,1]^2$ is cont. and $f(x, \cdot)$
analytic and bounded in stadium
of radius 4ρ (with $\rho > 1$). Then,
 $\left\| f - \sum_{j=1}^r g_j h_j^T \right\|_{\infty} \le C\rho^{-r}$

GE is robust to pivoting mistakes [T. 2016]

Idea 2: Fast transforms for highly adaptive algorithms

Double Fourier sphere method

 $\mathcal{S}^2 \times \mathbb{Z}_2 \simeq \text{Torus}$

[Merilees, 1973], [Orszag, 1974], [Fornberg, 1995]

Sphere and disk

We use double Fourier sphere with structure-preserving GE. [T., Wright, Wilber, 2016]

Diskfun:

Spherefun:

f = spherefun(@(x,y,z) cos(5*x.*y.*z));

Why double Fourier sphere?

We need fast transforms.

(While Slevinsky's SHT is fast it's not FFT speed.)

Grady Wright Heather Wilber

Selection of FFT-based fast transforms

Discrete Fourier transform trigtech.vals2coeffs,trigtech.coeffs2vals

Discrete Chebyshev transform coeffs2vals, vals2coeffs

Chebyshev-to-Legendre transform cheb2leg, leg2cheb

Discrete Legendre transform dlt, idlt chebcoeffs2legvals

> Nonuniform FFTs [Ruiz & T., 2018] nufft, inufft

Marcus Webb

Diego Ruiz

All based on FFTW so tunes to individual hardware.

Other approaches: oversampling and conv., H-matrices, asymptotics.

Mikael Slevinsky

Idea 3: Nonperiodic analogue of the Fourier spectral method for flexibility and speed

Modern version: rectangular spectral collocation [Driscoll & Hale, 2015], [Du, 2015]

Spectral collocation

"It is well-known that matrices generated by spectral methods are dense and ill-conditioned." [Chen, 2005]

Typically dense matrices

Off-diagonal structure [Shen, Wang, & Xia, 2016].

Typically ill-conditioned

Ideas: [Du, 2015], [Wang, Samson, & Zhao, 2013]

The Fourier spectral method

Fourier spectral method

$$u''(\theta) = f(\theta)$$
, periodic

$$u(\pi) = 0$$

$$u(\theta) = \sum_{k=-\infty}^{\infty} u_k e^{ik\theta}$$

Г

$$\begin{bmatrix} \ddots & & & & & & \\ & -4 & & & & \\ & & -1 & & & \\ \cdots & e^{-2\pi i} & e^{-\pi i} & 1 & e^{\pi i} & e^{2\pi i} & \cdots \\ & & & -1 & & \\ & & & -4 & \\ & & & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ u_{-2} \\ u_{-1} \\ u_{0} \\ u_{1} \\ u_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ f_{-2} \\ f_{-1} \\ 0 \\ f_{1} \\ f_{2} \\ \vdots \end{bmatrix}$$

Almost-banded matrices

Well-conditioned matrices

Qu: What is the non-periodic analogue?

Sparse recurrence relations

Ist order recurrences:

$$T'_{k}(x) = kU_{k-1}(x) \quad xT_{k}(x) = \frac{1}{2} \left(T_{k+1}(x) + T_{k-1}(x) \right)$$

$$T_{n}(x) = \frac{1}{2} \left(U_{n}(x) - U_{n-2}(x) \right)$$
[DMLF, Chap. 18] [DMLF, Chap. 18]

[Olver & T., 2013]

The ultraspherical spectral method

Highly related to: Petrov-Galerkin, Integral Reformulation, Integral preconditioning, Clenshaw's method, Tuckermann's lin. alg., etc.

Idea 4: Infinite-dimensional algebra for robustness

Adaptive QR

What will the backward error be? The norm of the tail: ϵ

Linear complexity comes from careful data structures [Olver & T., 2014].

Two types of differential equations

I) Singularly perturbed problems

Also, adaptive subdivision: [Lee & Greengard, 1997].

2) High-order ODEs

Active fluids: automatic code generation

Generalized Navier-Stokes equations: [Słomka & Dunkel, 2015]

$$\nabla \cdot v = 0 \text{ Navier-Stokes activity damping}$$

$$\partial_t v + (v \cdot \nabla)v = -\nabla p + \Gamma_0 \nabla^2 v + \Gamma_2 \nabla^4 v + \Gamma_4 \nabla^6 v$$

$$v = \text{ velocity field, } p = \text{ internal pressure, } \Gamma_0, \Gamma_2, \Gamma_4 > 0$$
No-slip and h.o. bcs

Solid ball, velocity field

Disk, vorticity

Idea 5: Exploratory PDE solvers

Separable representation Computed via a tensor-train $\mathcal{L} \approx \mathcal{L}_1^x \otimes \mathcal{L}_1^y + \dots + \mathcal{L}_r^x \otimes \mathcal{L}_r^y$ (e.g. $\nabla^2 u + \cos(xy)u$ well-approx. when r = 7) decomposition Chebfun2 code cheb.xy tree for diff operator $N = chebop2(@(x,y,u) lap(u) + 10000*y.^2.*u);$ N.bc = 0; $u = N \setminus cos(x.*y);$ Low-rank rep. of operator $\mathcal{L}u = u_{xx} + u_{yy} + 10000y^2u$ $\mathcal{L} = \frac{d^2}{dx^2} \otimes \mathcal{I} + \mathcal{I} \otimes \left(\frac{d^2}{dy^2} + 10000y^2\right)$ Individually discretized by ultraspherical

spectral method

Exploratory solvers

Software for solving PDEs on simple geometries

Simple geometries Rectangle Disk Sphere Cylinder Solid ball

Poisson

by Dan Fortunato

by Hadrien Montanelli

Reaction-diffusion (Turing patterns)

Spiral waves (Barkley model)

Bonus idea: Discretization oblivious algorithms

• Discretizing can increase the sensitivity of eigenvalues.

Anthony Austin Andrew Horning

Thank you

Advertisement:

"A continuous analogoue of FEAST for differential eigenvalue problems".

9:00-11:30am, Room 750

Andrew Horning

What if all you had to do to solve an ODE were just to write it down?

Opening line of "Exploring ODEs" [Trefethen, Driscoll, & Birkisson, 2018]

Algorithms Adaptivity Encapsulation

Thanks to

