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The problem

Problem: Solve linear ordinary differential equations (ODEs)

NU u
M) T+ (0 4 e = (), xe[-1,1]

with K linear boundary conditions (Dirichlet, Neumann, f_ll u=c, etc.)
Assumptions:

@ &, ..

aV f are continuous with bounded variation.
@ The leading term a"(x) is non-zero on the interval.
@ The solution exists and is unique.

Main philosophy: Replace a°,...,a", f by polynomial approximations,
and solve for a polynomial approximation for u. The spectral method
finds the coefficients in a Chebyshev series in O(m?n) operations:

x) & z o Te(x), Ti(x) = cos(k cos ™! x).
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Quotes about spectral methods

“It is known that matrices generated by spectral methods can
be dense and ill-conditioned.” [Chen 2005]

“The idea behind spectral methods is to take this process to
the limit, at least in principle, and work with a differentiation
formula of infinite order and infinite bandwidth, i.e., a dense

matrix.” [Trefethen 2000]

“The best advice is still this: use pseudospectral (collocation)
methods instead of spectral (coefficient), and use Fourier series
and Chebyshev polynomials in preference to more exotic

functions.” [Boyd 2003]

The Ultraspherical spectral method (US method) can result in almost

banded, well-conditioned linear systems.
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Chebyshev spectral methods

u”’(x) + cos(x)u(x) = 0, u(+1) = 0.

Collocation Coefficients US method
Condition - " |
number ) )
Density

Collocation Coefficient US method
Matrix structure Dense Banded from below | Banded + rank-K
Condition number |  O(n?") O(n*N) O(n?(P-1))

Problem sizes n < 5,000 n < 5,000 n < 70,000

Operation count O(n?) O(mn?) O(m?n)
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First-order differential equations

Differentiation Multiplication
Operator Operator

u’(x) + a(xju(x) = f(x)

(D + SM[a])u = Sf

Jacobi with w(x)=(1-x)*(1+x)P

e D:T—Cl)

o Ma: T—>T

Hypergeometric functions

o S : T — C(l) = = = Ultraspherical

Hypergeometric functions

a5 1 -05 0 05 1 1.5
o
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First-order operators

Differentiation operator: D : T — C(Y), [DLMF]

01
dT  [kclV,, k=1, 2
dx 0, k=0,
Conversion operator: S: T — C(), [DLMF]
10 —3
1 1
L -cfY,), k=2 DY
Te=41gY, k=1, S 1
i, k=0,

Muiltiplication operator: MJa]: T — T, [DLMF]

7-ka: (ﬂj—k\+7—j+k)7 JakZO

N| -
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First-order multiplication operator

2 dag ay an as

a1 2a a1 a a1 a a3 as

dy as da ds

1 .
./\/l[a]:i a a 2a a |+

as an ai 2ag . a3 a4 as de

Toeplitz Hankel + rank-1
Multiplication is not a dense operator in finite precision. It is m-banded:
o0 m
=Y aTu(x) = > 3 Ti(x) + O(e),
k=0 k=0

where 3y are aliased Chebyshev coefficients.
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Imposing boundary conditions
@ Dirichlet: u(—1) =c:
B=(1,-1,1,-1,...,), Ti(—1) = (—1)%.
@ Neumann: /(1) =c:
B=(0,1,4,9,....), Te(1) = k2.
e Other conditions: f_ll u=c, u(0)=c, or u(0) + u'(r/6) = c.
Imposing boundary conditions by boundary bordering:

R o fu)=(0)

The finite section can be done exactly by projection P, = (/, , 0):

BPT B c
PoaDP] + Py 1SPL  PosmM[alP] ) \P,af )
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First-order examples

' (x) + x3u(x) = 100sin(20,000x?), u(—-1) =0.

The exact solution is

X
u(x) = e (/ 1006 sin(20,000t2)dt> .

@ N = ultraop(@(x,u) ---);
N.lbc = 0; u =N \ f;

@ Adaptively selects the
discretisation size.

degree(u) = 20391

02 fime = 15.55 @ Forms a chebfun object
0 [Chebfun V4.2].
_0'21 0.5 0 0.5 1 ("] ||l[l - U||OO - 1.5 X 10_15.
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t-order examples

L
— U\ X
1 + 50,000x2

u'(x) + ) =0, u(—1)=1.

The exact solution with a = 50,000 is

u(x) = exp (tanl(ﬁX)\/Jgtanl(ﬁ)) _

1.005 10°
1
—10
degree(u) = 5093 5 10
©
= o
Z0.995 3
3
< 1045
0.99
Old chebop
— Preconditioned collocation
0|~ US method
0985 05 0 05 1 07 05 0 05 1
X
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Higher-order linear ODEs
Higher-order diff operators: D, : T — C"), [DLMF]

A times
’—/%
dcM _{mcﬁ”l”, k>1 0 - 0 A

= Dy =22 1(A=1)!
dx 0, k=0 A -1

A+1

)

Higher-order conversion operators: Sy : CY) — CA1) | [DLMF]

A+1 A+1 A
2 (M-, k22 e
M =¢ 2, k=1, S\= pes? 313
c?“), k=0,
Multiplication operators: .
My[a] : C* — C*, '
M;[a] : €V — c®),
M;[a] = Toeplitz + Hankel. T“ P —
’Ofn‘é' 0 05 1 15 as:hem‘z.s
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Construction of ultraspherical multiplication operators

Mia] : €A — €W represents multiplication with a(x) in C). If
m
A
a(x) =" 3V (x),
j=0

then it can be shown that M,[a] is m-banded with

k

(MalaDie= D (k25 +j—k),  j k>0,
s=max(0,k—j)

where (to prevent overflow issues) we have

. s—1
k)= LTEEAZE AT
JtK+A—Ss 0 +t 0 +t

s—1 . Jj—s—1
XH2)\+J+k 25+t k—s+1+t
t=0

X _—
At j+k—2s+1t ol k—s+ X+t

For efficiency, we use a recurence relation to generate c(j, k).
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A high-order example

+ -+ 3(X)u = f(x), Bu=c,

B c
(MN[aN]DN + Sy iMy_1[@a¥V Dy 4+ Sy - -30M0[30]> N (SN—l S Sof)

Example 3: High-order ODE

u9(x) + cosh(x)u® (x) + cos(x)u® (x) + x2u(x) = 0
u(£1) =0, (1) =1, v (£1) =0, k =2,3,4.

u(x)
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Airy equation and regularity preserving

Example 4

Consider Airy's equation for € > 0,

eu(x) — xu(x) = 0, u(—=1) = Ai (—\3/176) , u(l)=Ai (3 1/6) .

Relative error in derivative at x=1/2

10
A
——A@
10 —aj100)
I
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£ 2
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o 1OAD
10°
e=1
oo [T e e e 107°
05 1 1.5 2 25 3 0 50 100 150 200
n x 10" n

The US method can accurately compute high derivatives of functions.
For a different approach, see [Bornemann 2011].
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Stability when K = N

Assumption: Number of boundary conditions = Differential order.

Definition: Higher-order (2-norms

For A € N, £3 C C™ is the Banach space with norm

oo

lullZ = 3l + K2 < oo.
k=0

Right diagonal preconditioner:

—
=l

N+1
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Stability when K = N

Recall the notation:

Solve Lu = f,
with Bu = ¢, B: EZD — CK. bounded, D > 1.

Theorem: Condition number is bounded with n

Let (i) : 63, — 4 be an invertible operator for some A > D — 1.

Then, as n — oo,
[AnRnllz = O(1), 1(AaRn) Iz = O(1),
where

£

Ry=PJRP,,  Ar=P, <B> Po.

@ Proof uses integral reformulation ideas: “R integrates the ODE to
form a Fredholm operator”, i.e.,

(?) R=T+K, K = compact.
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Convergence with K = N
Theorem: Computed solution converges in high-order norms

Suppose f € £3_, ., for some A > D — 1, and that (IZ’) 03,3 0s

an invertible operator. Define

—_ A1 c
u, = An Pn (SN—l Sof) )

then

lu =P unllg,, < Cllu—P,) Poullg, -

Relative error in derivative at x=1/2

—— A
A2
—— A(100)

@ The constant, C, does not 10° 1
depend on n.

@ You don't always need the
complex plane to compute
high derivatives.

Relative error
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Fast linear algebra: The QTP* factorisation

Original matrix: After left Givens: After right Givens:

@ Apply a partial factorisation on the left, followed by a partial
factorisation on the right.

e Factorisation: A, = QTP* in O(m?n) operations.

@ No fill-in: The matrix T contains no more non-zeros than A,,.

@ For solving A,x = b: The matrix @ can be immediately applied to b.
The matrix P* can be stored using Demmel’s trick [Demmel 1997].

o UMFPACK by Davis is faster for n < 50000, but has observed
complexity of, roughly, O(n*?%) with a very small constant.
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Constant coefficient PDEs

Consider the constant coefficient PDE
N N—j

oty
Zzaum:f(X7y), aUER

j=0 i=0
defined on [a, b] x [c, d] with linear boundary conditions satisfying

continuity conditions.
We discretise as a generalised Sylvester matrix equation

k
> oGAXBT =F, A €R™™M, B e R®*™,
j=1

where A; and B; are US discretisations, for example,
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Determining the rank of a PDE operator

Given a PDE with constant coefficients of the form,
N N—j o
ot
£=32 aigrgy A=)
Jj=0 i=
We can rewrite this as
3°/0x°
L=D(y)"AD(x), D(x)= :
oN JoxN
Hence, if A= UXZVT is the truncated SVD of A with ¥ € R¥*k then
L=2(y)" (UZVT)D(x) = (D(y)"U) = (VTD(x)).

This low rank representation for L tells us how to discretize and solve the
PDE.
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Matrix equation solvers

@ Rank-1: A XB] = F. Solve A;Y = F, then Bi.X"T = YT,

e Rank-2: A1 XB/ + A;XB) = F. Generalised Sylvester solver
[Jonsson & Kagstrom, 1992].
@ Rank-k, k > 3: Solve nyny x nyny system with QTP* factorization.

Solve time

2

Time to solve matrix equation

@ Boundary conditions are

imposed by carefully
removing degrees of
freedom in the matrix
equation.

@ Automatically forms and
solves subproblems, if

possible.
k=2 @ Corner singularities can be
—k=38 partly resolved by domain
500 1000 1500 2000 .
n & subdivision.
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Example 5: Helmholtz equation

U + Uy + 2020 =0, u(£l,y) = f(£1,y), u(x,=+1)=f(x,=£1),

where f(x,y) = cos(wx) cos(wy).

® =50

1 = @ N = chebop2(@(u) ... );
N.1lbc=£f(-1,:); u=N\0;
@ Adaptively selects the
discretisation size.

0.5

@ Forms a chebfun2 object
[T. & Trefethen 2013].

@ For w = 2000,

1 |G — ull, =2.43 x 107°.

-1 -0.5 0 0.

For w = 50 solve takes 0.27s for n; = n, = 126,
for w = 2000 solve takes 32.1s for ny = ny, = 2124,
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Conclusions

@ The US method results in almost banded well-conditioned matrices.

It requires O(m?n) operations to solve an ODE.

It can be used as a preconditioner for the collocation method.

The US method converges and is numerically stable.

@ It can be extended to a spectral method for solving PDEs on
rectangular domains.

Alex Townsend, University of Oxford 24th of June 2013



Historical example [Orszag 1971]

Orr-Sommerfeld equation

1

W(u”" —2u" + u) = 2iu—i(1 = x*)(u" — u) = A\u" — u),

u(£1) = ' (£1) = 0.

Eigenvalues of the Orr—Sommerfeld operator

imag
5
S

00 o
0000000000000 0000000 go
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Thank you

More information:
S. Olver & T., A fast and well-conditioned spectral method, to appear in
SIAM Review, (2013).
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Chebyshev polynomials

An underappreciated fact: Every Chebyshev series can be rewritten as
a palindromic Laurent series.

The degree k Chebyshev polynomial (of the first kind) is defined by

Ti(x) = cos (kcos™tx) = = (2 +z7F), x € [-1,1],

N =

where z = e*? and cosf = x.

7,00 T,5(6) = cos(256)

B 05 0 05 1 ’10
x

1.5;08 3.1416
Every Chebyshev series can be written as a palindromic Laurent series:

N 1N 1N
kzgak Tk(x) = 5 Zakz*k + lag + 5 Zakzk,
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Demmel’s trick for storing Givens rotations

A Givens rotation zeros out one entry of a matrix and we can store the
rotation information there.

X X X X Givens X X X X
X X X X ~= X X X X
—

x K x X X p X X
X X X X X X X X

Let s =sinf and ¢ = cosf, where 8 is rotation angle, then

s sign(c), |s| < [cl.
sign(s) Is| > ||
c ) — :

To restore (up to a 180 degrees): If |p| < 1, then s = p and
¢ =+/1—s?, otherwise c =1/p and s = v1 — 2.
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