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The problem

Problem: Solve linear ordinary differential equations (ODEs)

aN(x)
dNu

dxN
+ · · ·+ a1(x)

du

dx
+ a0(x)u = f (x), x ∈ [−1, 1]

with K linear boundary conditions (Dirichlet, Neumann,
∫ 1

−1 u = c , etc.)
Assumptions:

a0, . . . , aN , f are continuous with bounded variation.

The leading term aN(x) is non-zero on the interval.

The solution exists and is unique.

Main philosophy: Replace a0, . . . , aN , f by polynomial approximations,
and solve for a polynomial approximation for u. The spectral method
finds the coefficients in a Chebyshev series in O(m2n) operations:

u(x) ≈
n−1∑
k=0

αkTk(x), Tk(x) = cos(k cos−1 x).
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Quotes about spectral methods

“It is known that matrices generated by spectral methods can
be dense and ill-conditioned.” [Chen 2005]

“The idea behind spectral methods is to take this process to
the limit, at least in principle, and work with a differentiation
formula of infinite order and infinite bandwidth, i.e., a dense
matrix.” [Trefethen 2000]

“The best advice is still this: use pseudospectral (collocation)
methods instead of spectral (coefficient), and use Fourier series
and Chebyshev polynomials in preference to more exotic
functions.” [Boyd 2003]

The Ultraspherical spectral method (US method) can result in almost
banded, well-conditioned linear systems.
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Chebyshev spectral methods

u′′(x) + cos(x)u(x) = 0, u(±1) = 0.

Collocation Coefficients US method

Condition
number
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Density

Collocation Coefficient US method
Matrix structure Dense Banded from below Banded + rank-K

Condition number O(n2N) O(n2N) O(n2(D−1))
Problem sizes n ≤ 5,000 n ≤ 5,000 n ≤ 70,000

Operation count O(n3) O(mn2) O(m2n)

Alex Townsend, University of Oxford 24th of June 2013 4/26



First-order differential equations

Differentiation
Operator

Multiplication
Operator

u′(x) + a(x)u(x) = f(x)

(D + SM[a]) u = Sf

D : T→ C(1)

M[a] : T→ T

S : T→ C(1)
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First-order operators

Differentiation operator: D : T→ C(1), [DLMF]

dTk

dx
=

{
kC

(1)
k−1, k ≥ 1,

0, k = 0,
D =


0 1

2
3

. . .

 .

Conversion operator: S : T→ C(1), [DLMF]

Tk =


1
2

(
C

(1)
k − C

(1)
k−2

)
, k ≥ 2,

1
2C

(1)
1 , k = 1,

C
(1)
0 , k = 0,

S =


1 0 − 1

2
1
2 0 − 1

2

1
2 0

. . .

. . .
. . .

 .

Multiplication operator: M[a] : T→ T, [DLMF]

TjTk =
1

2

(
T|j−k| + Tj+k

)
, j , k ≥ 0.
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First-order multiplication operator

TjTk =
1

2
T|j−k| +

1

2
Tj+k

M[a] =
1

2



2a0 a1 a2 a3 . . .

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

a3 a2 a1 2a0
. . .

...
. . .

. . .
. . .

. . .


︸ ︷︷ ︸

Toeplitz

+
1

2



0 0 0 0 . . .

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.

. .
.

. .
. . . .


︸ ︷︷ ︸

Hankel + rank-1

Multiplication is not a dense operator in finite precision. It is m-banded:

a(x) =
∞∑
k=0

akTk(x) =
m∑

k=0

ãkTk(x) +O(ε),

where ãk are aliased Chebyshev coefficients.
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Imposing boundary conditions

Dirichlet: u(−1) = c :

B = (1,−1, 1,−1, . . . , ) , Tk(−1) = (−1)k .

Neumann: u′(1) = c :

B = (0, 1, 4, 9, . . . , ) , Tk(1) = k2.

Other conditions:
∫ 1

−1 u = c , u(0) = c , or u(0) + u′(π/6) = c .

Imposing boundary conditions by boundary bordering:

u′(x)+a(x)u(x) = f ,

Bu = c ,

(
B

D + SM[a]

)
=

(
c
f

)
.

The finite section can be done exactly by projection Pn = (In , 0):(
BPT

n

Pn−1DPT
n + Pn−1SPT

n+mPn+mM[a]PT
n

)
=

(
c

Pn−1f

)
.
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First-order examples

Example 1

u′(x) + x3u(x) = 100 sin(20,000x2), u(−1) = 0.

The exact solution is

u(x) = e−
x4

4

(∫ x

−1
100e

t4

4 sin(20,000t2)dt

)
.
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degree(u) = 20391

time = 15.5s

N = ultraop(@(x,u) · · · );
N.lbc = 0; u = N \ f;

Adaptively selects the
discretisation size.

Forms a chebfun object
[Chebfun V4.2].

‖ũ − u‖∞ = 1.5× 10−15.
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First-order examples

Example 2

u′(x) +
1

1 + 50,000x2
u(x) = 0, u(−1) = 1.

The exact solution with a = 50,000 is

u(x) = exp

(
− tan−1(

√
ax) + tan−1(

√
a)√

a

)
.
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Higher-order linear ODEs

Higher-order diff operators: Dλ : T→ C(λ), [DLMF]

dC
(λ)
k

dx
=

{
2λC

(λ+1)
k−1 , k ≥ 1,

0, k = 0,
Dλ = 2λ−1(λ−1)!


λ times︷ ︸︸ ︷

0 · · · 0 λ
λ+ 1

. . .

 .

Higher-order conversion operators: Sλ : C(λ) → C(λ+1), [DLMF]

C
(λ)
k =


λ

λ+k

(
C

(λ+1)
k − C

(λ+1)
k−2

)
, k ≥ 2,

λ
λ+1

C
(λ+1)
1 , k = 1,

C
(λ+1)
0 , k = 0,

Sλ =


1 − λ

λ+2
λ

λ+1
− λ

λ+3
. . .

. . .

 .

Multiplication operators:

Mλ[a] : Cλ → Cλ,

M1[a] : C(1) → C(1),

M1[a] = Toeplitz + Hankel.
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Construction of ultraspherical multiplication operators

Mλ[a] : C(λ) → C(λ) represents multiplication with a(x) in C (λ). If

a(x) =
m∑
j=0

ajC
(λ)
j (x),

then it can be shown that Mλ[a] is m-banded with

(Mλ[a])j,k =
k∑

s=max(0,k−j)

a2s+j−kcλs (k , 2s + j − k), j , k ≥ 0,

where (to prevent overflow issues) we have

cλs (j , k) =
j + k + λ− 2s

j + k + λ− s
×

s−1∏
t=0

λ+ t

1 + t
×

j−s−1∏
t=0

λ+ t

1 + t

×
s−1∏
t=0

2λ+ j + k − 2s + t

λ+ j + k − 2s + t
×

j−s−1∏
t=0

k − s + 1 + t

k − s + λ+ t
.

For efficiency, we use a recurence relation to generate cλs (j , k).
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A high-order example

aN(x)
dNu

dxN
+ aN−1(x)

dN−1u

dxN−1 + · · ·+ a0(x)u = f (x), Bu = c,

(
B

MN [a
N ]DN + SN−1MN−1[a

N−1]DN−1 + · · ·+ SN−1 · · · S0M0[a0]

)
=

(
c

SN−1 · · · S0f

)

Example 3: High-order ODE

u(10)(x) + cosh(x)u(8)(x) + cos(x)u(2)(x) + x2u(x) = 0

u(±1) = 0, u′(±1) = 1, u(k)(±1) = 0, k = 2, 3, 4.
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Airy equation and regularity preserving

Example 4

Consider Airy’s equation for ε > 0,

εu′′(x)− xu(x) = 0, u(−1) = Ai
(
− 3
√

1/ε
)
, u(1) = Ai

(
3
√

1/ε
)
.
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The US method can accurately compute high derivatives of functions.
For a different approach, see [Bornemann 2011].

Alex Townsend, University of Oxford 24th of June 2013 14/26



Stability when K = N

Assumption: Number of boundary conditions = Differential order.

Definition: Higher-order `2
λ-norms

For λ ∈ N, `2λ ⊂ C∞ is the Banach space with norm

‖u‖2`2λ =
∞∑
k=0

|uk |2(1 + k)2λ <∞.

Right diagonal preconditioner:

R =
1

2N−1(N − 1)!


IN

1
N

1
N+1 . . .

 .
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Stability when K = N

Recall the notation:

Solve Lu = f ,

with Bu = c, B : `2D → CK ,bounded, D ≥ 1.

Theorem: Condition number is bounded with n

Let

(
B
L

)
: `2λ+1 → `2λ be an invertible operator for some λ ≥ D − 1.

Then, as n→∞,

‖AnRn‖`2λ = O(1), ‖(AnRn)−1‖`2λ = O(1),

where

Rn = PT
n RPn, An = PT

n

(
B
L

)
Pn.

Proof uses integral reformulation ideas: “R integrates the ODE to
form a Fredholm operator”, i.e.,(

B
L

)
R = I +K, K = compact.
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Convergence with K = N

Theorem: Computed solution converges in high-order norms

Suppose f ∈ `2λ−N+1 for some λ ≥ D − 1, and that

(
B
L

)
: `2λ+1 → `2λ is

an invertible operator. Define

un = A−1n Pn

(
c

SN−1 · · · S0f

)
,

then
‖u− P>n un‖`2λ+1

≤ C‖u− P>n Pnu‖`2λ+1
.

The constant, C , does not
depend on n.

You don’t always need the
complex plane to compute
high derivatives.
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Fast linear algebra: The QTP∗ factorisation

Original matrix: After left Givens: After right Givens:

Apply a partial factorisation on the left, followed by a partial
factorisation on the right.

Factorisation: An = QTP∗ in O(m2n) operations.

No fill-in: The matrix T contains no more non-zeros than An.

For solving Anx = b: The matrix Q can be immediately applied to b.
The matrix P∗ can be stored using Demmel’s trick [Demmel 1997].

UMFPACK by Davis is faster for n ≤ 50000, but has observed
complexity of, roughly, O(n1.25) with a very small constant.
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Constant coefficient PDEs

Consider the constant coefficient PDE

N∑
j=0

N−j∑
i=0

aij
∂ i+ju

∂ ix∂jy
= f (x , y), aij ∈ R

defined on [a, b]× [c , d ] with linear boundary conditions satisfying
continuity conditions.
We discretise as a generalised Sylvester matrix equation

k∑
j=1

σjAjXBT
j = F , Aj ∈ Rn1×n1 , Bj ∈ Rn2×n2 ,

where Aj and Bj are US discretisations, for example,

Aj =

( )
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Determining the rank of a PDE operator

Given a PDE with constant coefficients of the form,

L =
N∑
j=0

N−j∑
i=0

aij
∂ i+j

∂ ix∂jy
, A = (aij) .

We can rewrite this as

L = D(y)TAD(x), D(x) =

 ∂0/∂x0

...
∂N/∂xN

 .

Hence, if A = UΣV T is the truncated SVD of A with Σ ∈ Rk×k then

L = D(y)T
(
UΣV T

)
D(x) =

(
D(y)TU

)
Σ
(
V TD(x)

)
.

This low rank representation for L tells us how to discretize and solve the
PDE.
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Matrix equation solvers

Rank-1: A1XBT
1 = F . Solve A1Y = F , then B1XT = Y T .

Rank-2: A1XBT
1 + A2XBT

2 = F . Generalised Sylvester solver
[Jonsson & Kågström, 1992].

Rank-k, k ≥ 3: Solve n1n2 × n1n2 system with QTP∗ factorization.

O(n1n2)

O(n31 + n32)O(n31n2)

n1 & n2

Boundary conditions are
imposed by carefully
removing degrees of
freedom in the matrix
equation.

Automatically forms and
solves subproblems, if
possible.

Corner singularities can be
partly resolved by domain
subdivision.
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Examples

Example 5: Helmholtz equation

uxx + uyy + 2ω2u = 0, u(±1, y) = f (±1, y), u(x ,±1) = f (x ,±1),

where f (x , y) = cos(ωx) cos(ωy).

x

y

ω = 50

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1 N = chebop2(@(u) ... );

N.lbc=f(-1,:); u=N\0;
Adaptively selects the
discretisation size.

Forms a chebfun2 object
[T. & Trefethen 2013].

For ω = 2000,
‖ũ − u‖2 = 2.43× 10−9.

For ω = 50 solve takes 0.27s for n1 = n2 = 126,
for ω = 2000 solve takes 32.1s for n1 = n2 = 2124.
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Conclusions

The US method results in almost banded well-conditioned matrices.

It requires O(m2n) operations to solve an ODE.

It can be used as a preconditioner for the collocation method.

The US method converges and is numerically stable.

It can be extended to a spectral method for solving PDEs on
rectangular domains.
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Historical example [Orszag 1971]

Orr-Sommerfeld equation

1

5772.2
(u′′′′ − 2u′′ + u)− 2iu − i(1− x2)(u′′ − u) = λ(u′′ − u),

u(±1) = u′(±1) = 0.
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The end

Thank you

More information:
S. Olver & T., A fast and well-conditioned spectral method, to appear in
SIAM Review, (2013).
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Chebyshev polynomials

An underappreciated fact: Every Chebyshev series can be rewritten as
a palindromic Laurent series.

The degree k Chebyshev polynomial (of the first kind) is defined by

Tk(x) = cos
(
k cos−1 x

)
=

1

2

(
zk + z−k

)
, x ∈ [−1, 1],

where z = e ikθ and cos θ = x .
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Every Chebyshev series can be written as a palindromic Laurent series:

N∑
k=0

αkTk(x) =
1

2

N∑
k=1

αkz−k + 1α0 +
1

2

N∑
k=1

αkzk , z = e ikθ.
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Demmel’s trick for storing Givens rotations

A Givens rotation zeros out one entry of a matrix and we can store the
rotation information there.

× × × ×
× × × ×
× � × ×
× × × ×

 Givens︷︸︸︷
−→


× × × ×
× × × ×
× p × ×
× × × ×


Let s = sin θ and c = cos θ, where θ is rotation angle, then

p =

{
s · sign(c), |s| < |c |,
sign(s)

c , |s| ≥ |c |.

To restore (up to a 180 degrees): If |p| < 1, then s = p and
c =
√

1− s2, otherwise c = 1/p and s =
√

1− c2.
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