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.. Interpolating a target function

.
INPUT..

.. ..

.

.

Ω ⊆ Rd bounded Lipschitz domain.
Continuous target function f ∈ Hτ (Ω)

.
Multilevel Algorithm
..

.. ..

.

.

f0 = 0, e0 = f
for j = 1, 2, . . . , n
Compute sj such that sj(x) = ej−1(x) ∀x ∈ Xj
fj = fj−1 + sj
ej = ej−1 − sj
end
.
OUTPUT..
.. ..

.

.Interpolant to f and an idea of how well we did.
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.. Notation

For any data set X = {x1, . . . , xN} ⊂ Ω then the fill distance is

hX ,Ω := sup
x∈Ω

min
1≤i≤n

‖x − xi‖2

This is the parameter we use to state all convergence orders.
Choose sequence of quasi-uniform data sets X1,X2, . . . ,Xn ⊂ Ω to have
decreasing fill distance.

.
Definition (Compactly Supported Radial Function)..

.. ..

.

.

A function Φ : Rd 7→ R such that Φ(x) = φ (||x ||2) for ∀x ∈ R with a
continuous φ : [0,∞) 7→ R and φ(t) = 0 for t ≥ 1.

sj is formed by linear combination of scaled and translated compactly
supported radial basis functions.

Alex Townsend Supervised by Holger Wendland 29th June 2011



. . . . . .

.. Further Notation

That means,

sj(x) =
|Xj |∑
i=1

α
(j)
i Φδj (x − xi)

where
Φδj (·) = δ−d

j Φ

(
·
δj

)
By interpolation conditions we get sj(xk) = ej−1(xk) ∀xk ∈ Xj .

This corresponds to the symmetric, positive definite linear system

AX ,Φα
(j) = ej−1|Xj

Compactly supported radial basis functions⇒ AXj ,Φ is sparse.
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.. Multilevel Motivation

For compactly supported RBFs [Schaback, 1997]:

High accuracy←→ low efficiency

Each level is fast but low accuracy. Get high accuracy by working on
finer levels!
Interpolation matrices have good conditioning.
Capture large scale variation on coarse level and details on finer levels.
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.. Previous Convergence Results

Multiscale analysis in Sobolev spaces on bounded domains
.
Theorem (Wendland, 2010)..

.. ..

.

.

Let Ω ⊂ Rd be Lipschitz bounded domain and a sequence of denser data
sets X1,X2 · · · ⊂ Ω. Further, let Φ be a compactly supported radial basis
function with reproducing Hilbert space equivalent to Hτ (Rd). Then if the
target function f ∈ Hτ (Ω), τ > d/2 then the multilevel algorithm converges
with

‖en‖L2(Ω) ≤ Chτ−ε
n ‖f‖Hτ (Ω)

for some constants C and ε < τ .

Problem: Support of interpolant overlaps the domain boundary.
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.. Support is not contained on domain

Support overlapping the boundary causes three main problems:
Large point-wise error when on cracked domains.
Unable to enforce boundary conditions of the interpolant.
Makes Galerkin methods for solving PDEs hard to analyse.
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.. Multilevel with restricted interpolation points in action
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.. Multilevel with restricted interpolation points in action
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.. Multilevel with restricted interpolation points in action
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.. Restricting Interpolation points

.
Definition (δ-interior of a domain)..

.. ..

.

.

Given δ > 0 and a bounded domain Ω ⊂ Rd the δ-interior of Ω is

Ωδ = {x ∈ Ω : dist(x , ∂Ω) > δ}

Want to do
‖ej‖L2(Ω) ≤ ‖ej‖L2(Ωδj )

+ ‖ej‖L2(Ω\Ωδj )

For the region near the boundary,
no existing theory.
If the δ-interior domain has smooth
boundary we can use previous
ideas.
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.. Smoothing interior domain boundary

.
Problem..
.. ..

.

.Ω is a Lipschitz domain 6⇒ Ωδ is a Lipschitz domain.
Things that can go wrong − Cusp forms

Interweave δ-interior domains with
interior cone domains:

K1 ⊆ Ωδ1 ⊆ K2 ⊆ Ωδ2 ⊆ . . . ⊆ Kn ⊆ Ωδn

For each level j ,
‖ej‖L2(Ω) ≤ ‖ej‖L2(Kj)

+ ‖ej‖L2(Ω\Kj)
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.. Bounding error near the boundary
Spying on the interpolation matrix
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Make the interpolation matrix banded.
Estimate convexity of p 7→

∥∥A−1
∥∥

p

With quasi-uniform data set Xj ⊂ Ωδj and δj = νhXj ,Ωδj
we have∥∥∥A−1

Xj ,Φ

∥∥∥
∞
≤ Cδd

j
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. . . . . .

.. Getting Convergence

Allows us to bound interpolants,

‖sf‖L∞(Ω) ≤ C ‖f‖L∞(Ω)

and error at each level,

‖en‖L∞(Ω) ≤ D(1 + C)n ‖f‖Hτ (Ω)

Using Conditional Brownian Motion in rapidly exhaustible domains
[Falkner, 1987] gives

Vol (Ω \ Kn) ≤ Cδn

Hence,

‖en‖L2(Ω\Kn)
≤ Cδ

1/2
n ‖en‖L∞(Ω) ≤ C(1 + C)nδ

1/2
n ‖f‖Hτ (Ω)
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.. New convergence result
.
Theorem..

.. ..

.

.

Let Ω ⊂ Rd be Lipschitz bounded domain and a sequence of denser
quasi-uniform data sets X1 ⊂ Ωδ1,X2 ⊂ Ωδ2 . . . . Further, let Φ be a compactly
supported radial basis function with reproducing Hilbert space equivalent to
Hτ (Rd). Then if the target function f ∈ Hτ (Ω), τ > d/2 then the multilevel
algorithm converges with

‖en‖L2(Ω) ≤
(

C1hτ−ε1
n + C2h1/2−ε2

n

)
‖f‖Hτ (Ω)

for some constants C1, C2, ε1 and ε2.

If we have l ∈ N, l < τ − d/2 vanishing derivatives of the function on the
boundary. Then,

‖en‖L2(Ω) ≤
(

D1hτ−ε3
n + D2hl+1/2−ε4

n

)
‖f‖Hτ (Ω)
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.. Numerical Simulations

Apply the multilevel algorithm with Wendland’s radial basis function
φ2,1 ∈ H2.5(Ω) to

fk(x) = (sin(πx) sin(πy))k

on the domain Ω = [−1, 1]2.
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k=0
k=1
k=2
k=3
k=4
k=5

k l2order expected
0 0.499 0.50
1 1.51 1.50
2 2.50 2.50
3 3.47 2.50
4 3.40 2.50
5 3.42 2.50

Alex Townsend Supervised by Holger Wendland 29th June 2011



. . . . . .

.. Numerical Simulations
Apply the multilevel algorithm with Wendland’s radial basis function
φ2,1 ∈ H2.5(Ω) to

fk = (1− x2)k(1− y2)k(tanh(100(x − y)) + 1)/9

on the domain Ω = [−1, 1]2.
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Convergence rates for increasing vanishing derivatives

 

 

k=0
k=1
k=2
k=3
k=4
k=5

Level l2 l2 order CG
1 5.19e − 02 0.00 1
2 5.19e − 02 0.00 1
3 1.74e − 02 1.57 5
4 7.82e − 03 1.16 37
5 4.32e − 03 0.85 55
6 2.56e − 03 0.76 59
7 7.81e − 04 1.71 60
8 8.16e − 05 3.26 58
9 5.35e − 06 3.93 54

10 4.49e − 07 3.57 59
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.. Future Directions

Convergence Results for variations on the multilevel algorithm.
Multilevel algorithm backwards.
Galerkin Methods for solving PDEs.
Optimising constants.
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