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Abstract
The label content on one side of a Schubert calculus puzzle indicates

what flag manifold it is for, so that content should match the label content
on the other two sides. Asking that this matching should stem from
a local conservation law leads us to collections of vectors we recognize
as the weights of some minuscule representations. The R-matrices of
those representations (which, for 2-step flag manifolds, involve triality of
D4) degenerate to give us puzzle formulæ for two previously unsolved
Schubert calculus problems: KT(2-step flag manifolds) and K(3-step flag
manifolds). The K(3-step flag manifolds) formula, which involves 151
new puzzle pieces, implies Buch’s correction to the first author’s 1999
conjecture for H∗(3-step flag manifolds).
Via computer, we’ve proved that (under certain assumptions) there will be
no puzzle-based combinatorial formula for H∗

T(3-step) nor for H
∗(4-step).
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Grassmannian puzzles and their cohomology algebras.

Index Schubert classes on Grk(C
n) by bit-strings 0k1n−k.

Introduce a third edge label (10)with which to adorn edges
of triangles. Associate a vector, rotation-equivariantly, to
each edge label on a puzzle piece:

0

1 10

Then there are four ways, up to rotation, to label a triangle such that the three
associated vectors cancel each other. We’ll assign each little triangle a fugacity,
and we’ll multiply these fugacities when we glue pieces together into a puzzle.
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Define cνλµ(β, γ) :=

∑{
fugacity(P) : P a puzzle of shape n∆, with ∂P = λ ∆ µ

ν

}
.

Theorem. 1. [K-ZJ] These define a commutative associative algebra.
2. [K-Tao ’03] For β = γ = 0, it’s cohomology.
3. [Tao/Buch/Vakil ’06] For β = −1, γ = 0, it’s K-theory.
4. [Wheeler-ZJ ’16] For β = 0, γ = −1, it’s K-theory, in the dual basis.
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Equivariant cohomology, and Green’s theorem.

Hereafter our puzzles are always of shape n∆.

For T -equivariant cohomology and K-theory we need to break Z3-invariance,
which we did in [K-Tao ’03] by introducing the equivariant rhombus, whose
fugacity (in cohomology) is yi − yj depending on its location.
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These compute c100010,100 = c100100,010 respectively, as y1 − y3 = (y1 − y2) + (y2 − y3).

Theorem [Pechenik-Yong ’15]. There exists a puzzle formula for T -equivariant
K-theory of Grassmannians (and another in the dual basis [Wheeler-ZJ ’16]),
with fugacities in KT = Z[exp(±y1), . . . , exp(±yn)].

Theorem. Let P be a puzzle made of the puzzle pieces just listed, with no (10)s
on the boundary. Then the number of 1s on each side is the same.

Proof: Sum the vectors over all edges of all little triangles and rhombi. Inside
each piece they cancel, so the total vanishes. Likewise, on each internal edge
the two summands cancel, leaving only the external edges. After that it’s easy.
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Edge labels for 2- and 3-step flag manifolds.

A d-step flag manifold {(0 ≤ V1 ≤ . . . ≤ Vd ≤ C
n)} is one with ≤ d interesting

subspaces. My puzzle conjecture from ’99 was correct for 2-step flag manifolds
[Buch-Kresch-Purbhoo-Tamvakis ’14], with eight multinumber labels

0, 1, 2, 20, 21, 10, 2(10), (21)0

and while incorrect for 3-step, was conjecturally fixed up by Buch to have
twenty-seven labels

{X, 3X : X above}, 3, (32)0, (32)1, (31)0, (32)(10), ((32)1)0, (3(21))0,

and Buch’s (3(21))(10), (32)((21)0), 3(((32)1)0), (3(2(10)))0

where the puzzle pieces are of the forms

i i

i

Y X

(YX) up to rotation.

Question. Can we assign a unit vector ~fX to each valid multinumber X, with
which to prove a similar Green’s theorem?
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The “weight” ~fX of a multinumber X.

Let Λ denote the triangular lattice with 120◦ symmetry τ, and basis ~f, τ~f with

Gram matrix
[

2
−1

−1
2

]

. To each d-step multinumber, we assign a vector in Λ1+d

by
~fi := the ith basis vector, ~fYX = −τ~fY − τ2~fX

and insist that each valid multinumber X (for which we only have definitions

when d ≤ 3) enjoy |~fX|
2 = 2. In particular the direct sum Λ1+d is not orthogonal.

d = 1. The multinumber 10, and the τ-symmetry, force the Gram matrix of
~f0, τ~f0, ~f1, τ~f1 to be













2 −1 2− a a− 1

−1 2 −1 2− a

2− a −1 2 −1

a− 1 2− a −1 2













d = 2. The multinumbers 20, 21, 20 force all the 2 × 2 blocks to match those in
the d = 1 case, but with three parameters a20, a21, a10. Then the multinumbers
2(10), (21)0 force a20 = a21 = a10. So there is only one parameter, a.

d = 3. Each multinumber X already enjoys |~fX|
2 = 2; no extra condition on a.
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The vectors of norm-square 2, for d ≤ 3.

Theorem.

1. For d ≤ 4, and a ∈ (0, 1), this Gram matrix is positive definite.
For d ≥ 5 there is no value of a giving even semidefiniteness.

2. For d = 1, 2, 3, the lattice vectors in Λ1+d with norm-square 2 (independent

of a) are exactly those of the form ±τi~fX, i.e. those vectors that we assign to
puzzle-piece edges.

At a = 1, the vector configuration {~fX} is isometric to the weights in the
standard rep of A2 (for d = 1), the vector rep of D4 (for d = 2), and the
27-dim rep of E6 (for d = 3). It’s τ-invariant for d = 1, 3 but not d = 2, where

τ acts by D4 triality, e.g. {τ~fX} is the weights of the spin+ representation.

3. For d = 4, the Gram matrix is semidefinite at a = 1. Modulo a 2-dim kernel,
the lattice is E8. (Hence its norm-square 2 vectors are the 240 roots.)

The cluster varieties of Dynkin type A2, D4, E6, E8 are the Grassmannians
Gr(3, n) for n = 5, 6, 7, 8. After that, 3-Grassmannians are still cluster but
infinite type. We don’t know how to work the irreps into the cluster story.
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The puzzle rules, in view of this representation theory.

To each edge of ∆ or ∇, we have a minuscule irrep V of some group (A2, D4,
or E6). Each ∆ piece gives us basis vectors in VS, VNW, VNE; the Green’s theorem
vanishing condition says that their tensor product is T -invariant.

Summing those fundamental tensors times the corresponding fugacities, we get

tensors ~∆ ∈ VS⊗VNW⊗VNE and ~∇ ∈ VN⊗VSE⊗VNW
∼= V∗

S⊗V∗
NW⊗V∗

NE (within
which we use the dual basis).

Then ~∆⊗(n+1
2 )⊗~∇

⊗(n2) contracts, across each interior edge of n∆, to give a tensor
in V⊗n

S ⊗V⊗n
NW⊗V⊗n

NE . Expanded in its basis of fundamental tensors, the resulting
coefficient on ν⊗λ⊗µ is exactly the puzzle sum, of products of fugacities. The
edge-matching of puzzles is due to the use of dual bases of the two dual
minuscule representations associated to an edge, so contractions give 0 or 1.

If we want to include the equivariant rhombi, we need to work with a tensor
R(q) ∈ VSE⊗VSW⊗VNE⊗VNW

∼= End(VSE⊗VSW) including a parameter q that we
specialize to yi − yj for H

∗
T or exp(yi − yj) for KT .

Theorem. For d = 1, 2, 3, the Jimbo R-matrix of the tensor product VSE⊗VSW

factors as VSE⊗VSW → VN → VSE⊗VSW at q = c/3, where c is the dual Coxeter
number 3, 6, 12. For d = 4, we need to take each V∗ = e8 ⊕ 1 to get a Jimbo
R-matrix, and that R-matrix again factorizes at q = c/3, where now c = 30.
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New Schubert calculus formulæ.

As in the d = 1 case and its two K-pieces, we need to take certain degenerations
of these R-matrices to get the actual puzzle formulæ (which spoils the G-
equivariance of the R-matrix; this is weird and deserves better understanding).

Theorem. Add the following K-pieces to compute Schubert calculus in KT(2-
step flags). Some nonequivariant rhombi acquire an extra fugacity factor
exp(yi − yj), if the sum of lengths of top multi-numbers is greater than that
of bottom multi-numbers – and in case of equality, if max(NE) > max(SE).

2(10)

(21)0 1

(21)0

1 2(10)

(21)0

10 20

(21)0

(21)0    (21)0
10 10

10

20 20

20

21 21

21

(21)0  2(10)

1

10 (21)0

20

(21)0 20

10

21 20

2(10)

20 2(10)
21

2(10) 21

20

Even for nonequivariant K, there was no conjectured rule before.

In the 3-step case, degenerating some terms to zero takes others to infinity,
unless we first pass to the nonequivariant situation q = c/3.

Theorem. Buch’s 27-label correction to my 1999 conjecture correctly computes
Schubert calculus in H(3-step flags). One can add 151 K-pieces in order to
compute K-theory. Each spoils the inversion count, sometimes by up to 5.
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Ingredients of the proof (for d = 1, 2 at least).

It’s convenient and customary among the integrable crowd to work with the
dual picture, where the vertical rhombi (into which we’ll place R-matrices) and
the triangles at the bottom (into which we’ll place the invariant trilinear form)
as crossing lines and trivalent vertices.

Then the “Yang-Baxter” and
“bootstrap” equations become

Given an R-matrix, define Sλ|σ as the matrix coefficient

(

σ∏
R

)λ

Id

, i.e. using a

wiring diagram for σ. In a certain limit of R, this reduces to the restriction of
the equivariant Schubert class.

Proposition. σ σ

σ

Proof. Clearly suffices
to handle σ = ri.
Use YBE and bootstrap
equations repeatedly.

Corollary.
∑

ν (
∑

∆ fugacity(∆)) Sν|σ = Sλ|σ Sµ|σ. Once we have that for all σ,
we’re done.
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