
LIE THEORY AND TOPOLOGY

ALLEN KNUTSON

1. MOTIVATION OF LIE GROUPS

Define a topological Lie group to be a group object in the category of topological man-
ifolds. Until stated otherwise G is assumed finite-dimensional.

Theorem 1.1. LetG be a compact, simple Hausdorff group. Then eitherG is a finite simple group
or it is Lie.

The latter are much easier to classify: they are U(n), O(n), U(n,H) mod their centers, or one
of five special cases (of dimensions ≤ 248), each more or less blamable on the octonions.

Nonexamples: profinite groups are compact and not Lie, but not simple.

Theorem 1.2. Any closed subgroup of a Lie group is Lie.

We’ll define a Lie group to be a group object in the category of smooth manifolds. The
principal example is GLn(R).
Theorem 1.3. Any topological Lie group is uniquely (equivariantly) smoothable, and indeed,
uniquely real-analytic.

Moreover, any measurable homomorphism of Lie groups is automatically continuous smooth
real-analytic.

However, not every Lie group is real algebraic, one standard example being S̃L2(R).
Proof: the center of an algebraic group is algebraic, and a discrete algebraic variety (of

finite type) should be finite, but Z(S̃L2(R)) ∼= π1(SL2(R)) ∼= Z.
Differential topology is a great place to work, in that any smooth Lie group comes

with an adjoint action on the tangent space g at the identity. Differentiating that map
G→ End(g) at the identity, we get the map ad : g→ End(g).

Theorem 1.4. Each connected normal subgroup H of G gives a subrepresentation h ≤ g.

The group structure on G induces a “Lie algebra” structure on g, but we’ll have very
little use for it. In particular there are many subalgebras that don’t come from closed sub-
groups, because of irrational-flow-on-a-torus problems. It is interesting to note, though,
that every Lie algebra has a faithful matrix representation, and that the map ad only de-
pends on the Lie algebra.

Hereafter the term simple group will mean one whose normal subgroups are finite
rather than trivial.

Theorem 1.5. If G is connected and simple, its normal subgroups are central, and G/Z(G) is
simple in the usual sense.
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2. REDUCTION TO COMPACT GROUPS

Recall that any group has a unique maximal normal solvable subgroup. In a topological
group we can add the adjective “connected”.

Define the Killing form on g to be

〈X, Y〉 := Tr(ad X · ad Y).
This extends to a G×G-invariant pseudoRiemannian metric on G.

Theorem 2.1. (1) If G is simple, this metric is unique.
(2) If G is compact, this metric is negative semidefinite, and its kernel is tangent to Z(G).
(3) If G is simple and this metric is definite, then G is compact. (Since ad only depends on the

Lie algebra, this says that if G,G ′ have the same Lie algebra and G is compact with finite
center, then G ′ is also compact.)

(4) The radical of the Killing form is the tangent space to the unique maximal normal solvable
connected subgroup.

A group is semisimple if its Killing form is nondegenerate.

Theorem 2.2. (1) (Levi 1905) There exists a semisimple “Levi subgroup” complementary to
the radical of the Killing form.

(2) (Mal ′cev 1942) Any two such choices are conjugate by elements of the maximal normal
solvable connected subgroup.

So far we’ve split the group into the kernel of 〈, 〉 and a semisimple complement. We
can go further inside the semisimple part, essentially splitting into positive and negative
parts:

Theorem 2.3. (Iwasawa 1949) Let G be connected and semisimple. Let K be a maximal com-
pact connected subgroup. Then there exists a complementary subgroup A n N, where A is Ad-
diagonalizable andN is Ad-unipotent, and AN is diffeomorphic to a vector space. In particular K
is a deformation retract of G.

There is another decomposition G = KP, where P is the exponential of k⊥ ≤ g and is
not a subgroup.

If G is real algebraic, N will be too but A need not be. We can replace A by its Zariski
closure A ′, but then the map K×A ′ ×N→ G is only onto not bijective.

3. COMPACT CONNECTED LIE GROUPS

We’ll usually use K for a compact connected Lie group.
Example 1. S1.
Example 2. T = (S1)n, called an n-torus.

Example 3. If π1(K) is finite, then K̃.

Theorem 3.1. If Z(K) is finite, then π1(K) is too.

Example 4. K1 × K2 × . . .× Km.
Example 5. K/Γ , where Γ ≤ Z(K).
By the long exact sequence, if π1(K) = 0, then π1(K/Γ) = Γ .
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Theorem 3.2. Any K is a quotient of K ′ := T × K1 × . . . × Km by a finite central subgroup,
where each Ki is simple and simply-connected. We can take T = Z(K)0, and K1 × . . .× Km as the
universal cover of the commutator subgroup K ′.

Note that the quotient map K ′ � K induces an isomorphism of their Lie algebras.
Each Ki is real algebraic, so K is algebraic too. Indeed, there is a complex matrix group KC

containing K as a subgroup, homotopy retract, and fixed points of an antiholomorphic involution.

In particular, if K has a finite center, then there are finitely many connected groups with
its Lie algebra, and they are all compact. (Whereas a torus has the same Lie algebra as a
vector space.)

Example 6. U(n) ∼= (T 1 × SU(n))/Zn.
Example 7. SU(2)/Z2 ∼= SO(3). That gives three obvious quotients of SU(2) × SU(2).

The nonobvious one turns out to be SO(4), where one thinks of U(1,H) × U(1,H) acting
on H by left and right multiplication. People make a big deal about this when studying
the hydrogen atom, e.g. http://math.ucr.edu/home/baez/classical/runge.pdf.

Example 8. For n > 2, π1(SO(n)) = Z2. (Proof: SO(3) ∼= RP3, and we get a long exact
sequence on homotopy using the fibration over the sphere SO(n)/SO(n−1).) Its universal
cover is called Spin(n). Z(SO(odd)) = 1, so Z(Spin(odd)) ∼= Z2, but Z(SO(even)) ∼= Z2,
so |Z(Spin(even)| = 4. Strangely, that center isZ4 forn ≡ 2 mod 4, Z2×Z2 forn ≡ 0 mod 4.

Example 9. Spinc(n) := (Spin(n)×S1)/(Z2)∆, so quotients to SO(n) but not to Spin(n).
Example 10. SU(n), SO(n), U(n,H). These collide at U(1,H) ∼= SU(2)→ SO(3), also at

Spin(4) ∼= SU(2)2 as mentioned above, again at U(2,H) ∼= Spin(5), and also at Spin(6) ∼=
SU(4) (as the image of SU(4)→ U(Alt2C4) is SO(6)),

Example 11. G2 = Aut(O) is 14-dimensional, simple, centerless, simply-connected.
Example 12. F4 = Aut(Herm3(O)) is the automorphism group of the “exceptional

Jordan algebra” of real dimension 27, the 3 × 3 octonionic-Hermitian matrices, under
anticommutator. F4 is 56-dimensional, centerless, simply-connected.

Example 13. E6 also acts on the Jordan algebra, but only preserving the “determinant”
3-form, or one can see it as the collineation group of the octonionic projective plane. (Note
that collineation groups are usually semidirect products, with one factor being the auto-
morphism group of the skew-field involved!) It is 78-dimensional, and the center of its
simply-connected form is Z3.

Example 14. E7 is a 133-dimensional group, that acts on a 64-fold known as the “quate-
roctonionic projective plane”, and the center of its simply-connected form is Z2.

Example 15. E8 is 248-dimensional, centerless, and simply-connected. Its smallest linear
representation is its adjoint representation, which is pretty obnoxious if you ask me.

4. AVERAGING

Theorem 4.1. (Haar 1933) On any locally compact group G there is a left-invariant measure,
unique up to scale. Its total volume is finite exactly if G is compact (in which case we often scale it
to be 1).

If G has no one-dimensional representations, then its left-invariant measures are also right-
invariant. (Non-example: the {ax+ b} solvable group.)

http://math.ucr.edu/home/baez/classical/runge.pdf
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If G is Lie, existence is really easy; we even have left-invariant volume forms (unique
up to scale).

Theorem 4.2. On a compact group K, there exists a biinvariant Riemannian metric. The expo-
nential map k→ K defined using its geodesics is K-equivariant.

(If K has discrete center, the negative of the Killing form will do.)

Proof. Pick any metric and average it under the K× K-action. �

Theorem 4.3. If K acts on a real resp. complex vector space V , then V can be given a K-invariant
orthogonal resp. Hermitian form.

Thus, any K-subrepresentation of V has a K-invariant complement.
Thus, any finite-dimensional representation of K is a direct sum of irreducible representations.

Lots more to say about that, of course! Let’s start with

Lemma 4.4. Let T act linearly on V = Rn. Then V is the direct sum of VT and a bunch of
2-dimensional irreps. In particular dimR V ≡ dimR V

T mod 2.
If T acts linearly on V = Cn, then V is a direct sum of complex-one-dimensional irreps.

Proof. Pick a T -invariant orthogonal form on V , so we can split complements U⊥ to sub-
representations.

If ~v ∈ V ⊗ C is an eigenvector for t, then ~v + ~v, i(~v − ~v) generate a T -subrep U ∼= R2.
If we’ve already split off the invariants, then U must be irreducible, since any homomor-
phism of T → O(1) is trivial.

The complex case is similar but simpler. �

5. MAXIMAL TORI AND WEYL GROUPS

A maximal torus T of a compact Lie group is what you’d expect.1 Let t ∈ T be a
topological generator, i.e. 〈t〉 = T (that’s most elements). Then

K · t ∼= K/CK(t) ∼= K/CK(T)

and since T is a maximal torus, the group CK(T)/T must be finite, so this space K · t is a
finite quotient of K/T . (Later we’ll see that if K is connected, then CK(T) = T .)

The fixed points of t on K/T are also fixed by T ;

TkT/T = kT/T ⇐⇒ k ∈ N(T)

so the fixed points correspond toW := N(T)/T , the Weyl group.

Lemma 5.1. (1) If K is compact positive-dimensional, then K contains a circle.
(2) If T is maximal, thenCK(T)/T is finite. (Later we will show that ifK is connected,CK(T) =

T .)

1For noncompact groups, one generalizes the notion of “torus” to a connected group that acts diagonal-
izably on g, so e.g. the diagonal matrices in SLn(R) count as a “torus”.
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Proof. Pick X ∈ k\0, and let J = exp(R · X). Then J is connected, and abelian, so exp : j→ J
is a group surjection. Since J is connected and Hausdorff, ker exp is a lattice so J is a torus.
Then tori contain circles.

If CK(T)/T isn’t finite, then we can choose a circle subgroup J ′ in CK(T), and take its
preimage J in CK(T). This is a compact connected group, so we know what it looks like.
But for T to be codimension one in it, J has to be a torus. In which case T wasn’t maximal.

�

Theorem 5.2. The Weyl group is finite.

Proof. We need to show NK(T)0 = T , so W is discrete, but also compact hence finite. We
already noted that CK(T)0 = T .

The kernel of the conjugation action of N(T) on T is CK(T), so there is a faithful action
of a finite quotient ofW on T . But T ’s automorphism group is GLdim T(Z), so discrete. �

If we can pick X ∈ t, such that exp(X) = t, then the isolated fixed points says that X’s
vector field has isolated zeros. To apply Poincaré-Hopf, we need to compute indices:

Lemma 5.3. If VT = {~0}, and X ∈ t such that t := exp(X) topologically generates T , then the
index of X’s unique fixed point is 1.

Proof. By assumption, V = ⊕Ui, where Ui is a 2-d irrep of T . The homomorphism T →
O(Ui) ∼= O(2) lands inside SO(2), so gives index 1. When we take the sum of all the
irreps, we take the product of the indices and get 1. �

Theorem 5.4. (1) The Euler characteristic of K/T is |W| 6= 0.
(2) The Lefschetz number of any k acting on K/T is |W| 6= 0.
(3) Any element is contained in a conjugate of T .
(4) Any two maximal tori are conjugate, in particular, all of the same dimension, called the

rank of K. (E.g. “Unitary matrices are diagonalizable.”)

Proof. (1) The vector field given by X is almost complex, so all the indices are positive.
(Actually they’re 1.)

(2) Since K is connected, any k’s Lefschetz number is the Euler characteristic.
(3) Since kmust have a fixed point, kxT = xT , we learn k ∈ xTx−1.
(4) Let k be a topological generator of a second maximal torus, and apply the previous.

�

One view is that maximal tori are analogous to Sylow subgroups, and this χ 6= 0 argu-
ment takes the place of the counting argument that one uses to prove that all p-Sylows
are conjugate. We’ll see another application of this analogy later.

Factoid: if K is simply connected, then every abelian subgroup lies in a maximal torus.
Non-examples:

• The diagonal matrices in SO(3) don’t live in any maximal torus (SO(2), or a con-
jugate).
• There exist infinite-dimensional symplectomorphism groups with finite-dimensional

maximal tori of differing dimensions.
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The idea that we can cover a group using conjugates of an abelian subgroup will turn
out to be incredibly great. Note that we can never cover a finite group G with conjugates
of a proper subgroup H (even nonabelian):

|∪g∈Gg·H| = |∪g∈G/N(H)g·H| < |
∐

g∈G/N(H)

g·H| =
∑

g∈G/N(H)

|g·H| = |G/N(H)||H| = |G|/|N(H)/H| ≤ |G|.

The first ≤ can only be = if N(H) = G, and the second only if N(H) = H.)

6. MORSE THEORY ON COADJOINT ORBITS

It’d be nice if X’s vector field was something like the gradient of a Morse function, so
we could do Morse theory on K · t. The natural place for X ∈ k to induce a function is
on k∗. Since exponential maps are local diffeomorphisms, we get to roughly correspond
the conjugation orbits of K on K with the orbits of K on k, and on k∗ (again using the
K-invariant metric).

One reason that g∗ is a great space to work on, in general, is that it has an interesting
Poisson structure, which is a shadow of the fact that

Fun(g∗) = Sym(g) = gr Ug.

The Poisson bivector π ∈ Γ(Alt2Tg∗) is easy to write down:

π(X, Y)|λ := λ([X, Y]), X, Y ∈ (Tλg
∗)∗ ∼= g

Its symplectic leaves turn out to be exactly the orbits of G, called coadjoint orbits.
Example: K = U(n). Then we can equivariantly identify k∗ with the space of Hermitian

matrices, and the orbits Oλ are isospectral sets, i.e. correspond to spectra (λ1 ≥ . . . ≥ λn).
The simplest case is λ = (1, 1, 1, . . . , 1, 0, . . . , 0) with k 1s, in which case the map M 7→
Image(M) corresponds Oλ with the Grassmannian of k-planes.

More generally, we can take M to the nested list (
∑

top i eigenspaces), corresponding
it to a partial flag manifold {(V1 < V2 < . . . < Cn)}. It is rather amazing that the real
vector space k∗ has been naturally partitioned into compact complex manifolds! (Of course
symplectic manifolds are always even-real-dimensional, but they are not always complex
[Thurston ’76].)

In Morse theory, one uses a Riemannian metric to build a vector field from a function
(or really, from the 1-form obtained as its derivative). What is perhaps unsatisfying is
that the resulting vector fields do not annihilate the metric or the function. If one uses
a Poisson bivector instead, the resulting “Hamiltonian vector fields” do annihilate the
Poisson tensor and the function.

Theorem 6.1. If K is compact, then any coadjoint orbit can be given a K-invariant Riemannian
metric compatible with its symplectic structure, such that the result is almost Kähler.

(In fact it will be honestly complex, but we won’t use that.)

Proof. Pick a compatible almost complex structure, get a metric, average it. �

Lemma 6.2. Let T act on a Hermitian vector space V ∼= ⊕λiCλi , where each Cλi is an irrep with
character λ ∈ T ∗. Then for X ∈ t, the function

fX : V → R, (z1, . . . , zm) 7→∑
i

−
1

2
|zi|

2〈X, λi〉
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has Poisson gradient equal to the action of X, and is unique with this property up to addition of a
constant.

If no 〈X, λi〉 = 0, then it is a Morse function, with index 2#{λi : 〈X, λi〉 < 0}.

Theorem 6.3. K/T has an even-dimensional cell decomposition, with cells indexed by W. In
particular, χ(K/T) = |W|, and K/T is simply-connected. Moreover CK(T) = T .

Proof. Fix a K-invariant metric on k. Pick λ ∈ k∗ such that the corresponding λ∗ ∈ k is
within the injectivity radius of exp : k → K, and such that t := exp(λ∗) topologically
generates T . Then

K · λ∗ ∼= K · t ∼= K/CK(t) ∼= K/CK(T).

On k∗, we have the linear functionalX·, which restricted toK·λ∗ gives a function. We can
analyze its critical points using the Hamiltonian vector field (which is not the Riemannian
gradient) to determine that they are isolated and even index. �

Let T be a maximal torus, t ∈ T a topological generator within the injectivity radius of
exp, and X ∈ t its logarithm. Then X defines a map

ΦX : K · X→ R, µ 7→ 〈µ,X〉
which will turn out to give a Morse decomposition into even-dimensional cells, gener-
alizing the usual one for projective space. In the next section we figure out what the
dimensions are of those cells.

6.1. The Weyl group is a reflection group. Note first that W acts on t preserving the
Killing form, so, orthogonally.

Theorem 6.4. Let T act on g/t, a sum of 2-irreps.

(1) These irreps U are all nonisomorphic.
(2) Each t + u is the tangent space to a subgroup LU isomorphic to SU(2) × Tn−1, possibly

mod (Z2)∆.
(3) W(LU) ≤W is isomorphic to Z2.

Because complex representation theory is easier than real, we’ll often complexify k to
kC := C⊗ k. We’ll use T ∗ to denote the set of one-dimensional complex representations or
weights of T , which we can identify with a lattice in t∗ by

λ : T → U(1) 7→ λ ′ : t→ iR 7→ iλ ′ ∈ t∗.

ThenW preserves T ∗ inside t∗.
Example: K = U(n),W ∼= Sn, T ∗ ∼= Zn, with the usual action.
The root system ∆ ⊂ T ∗ of K is the set of weights in (g/t) ⊗ C. So each U in the above

decomposition gives a pair ±β of such roots, and we’ll use Lβ or L−β in place of LU.
If we pick a random functional X ∈ t, i.e. no 〈X,β〉 = 0, then we can use it to define a

positive system ∆+ ⊂ ∆. Let ∆1 ⊆ ∆+ denote the simple roots, that aren’t sums of other
positive roots.

Theorem 6.5. (1) The action ofW(LU) on T ∗ is by reflections.
(2) ∆1 is linearly independent.
(3) The reflections {rα ∈W(Lα)}α∈∆1

generateW.
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(4) ∆1 spans a lattice inside T ∗ of index |Z(K)|, called the root lattice.

Proof. (1) We already calculated that the action of WU(n) on T ∗ is the standard action
of Sn on Zn, which barely modified tells us that WSU(2) acts on its T ∗ ∼= Z by reflec-
tion (negation). Enlarging SU(2) to SU(2) × Tn−1 just gives the reflection a large
invariant space.

Because K preserves the definite form on k∗, N(T) preserves the restriction of
that form to t∗.

(2) The proof goes by a better fact: each 〈α,α ′〉 ≤ 0. Anyway it’s findable in any Lie
textbook.

(3) This is too. It’s really a statement about reflection groups, not Lie theory. (Note,
though, that it usesK connected; otherwise we could take theZ3 half ofN(T) inside
SU(3).)

(4) The kernel in K of the adjoint action is Z(K) ≤ CK(T) = T ; write Ad T for T/Z(K), a
maximal torus of K/Z(K). The U(1)-dual of the exact sequence of compact groups

1→ Z(K)→ T → Ad T → 1

is the exact sequence of discrete groups

0←− Z(K)∗ ←− T ∗ ←− root lattice←− 0.
http://en.wikipedia.org/wiki/Pontryagin_duality

�

At this point we can jack into the purely combinatorial theory of reflection groups, to
learn things like

Theorem 6.6. If w ∈ W, then |∆+ \ w · ∆+| = `(w), the length of w written as a minimal
product of simple reflections.

Corollary 6.7. The Morse cell of ΦX, coming down from the point wT/T ∈ K/T , has dimension
2`(w). In particular, if Z(K) is finite then H2(K/T) ∼= Zdim T .

Define the height of a root β ∈ ∆ as the sum of the coefficients when β is expanded in
the simple roots ∆1. (Then if we let ∆k denote the set of roots of height k, it motivates the
notation ∆± and ∆1.)

7. TOPOLOGY OF K/T

The long exact sequence on homotopy for T → K→ K/T gives us

. . .→ π2(T)→ π2(K)→ π2(K/T)→ π1(T)→ π1(K)→ π1(K/T)→ π0(T) = 1.

We know the homotopy groups of T . But let’s be more precise than just to say π1(T) ∼=
Zdim T ; we can identify it as a group with the coweight lattice Λ, the kernel of the expo-
nential map t→ T . (This is the Z-dual of the weight lattice T ∗.)

1→ π2(K)→ π2(K/T)→ Λ→ π1(K)→ π1(K/T)→ 1

Since K/T is simply-connected, we can kill the last one, and invoke Hurewicz:

1→ π2(K)→ H2(K/T)→ Λ→ π1(K)→ 1

http://en.wikipedia.org/wiki/Pontryagin_duality
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So in particular π1(K) is abelian (but the Eckman-Hilton argument lets one see that for
any group).

The Z-dual of this map H2(K/T) → Λ is a map H2(K/T) ←− T ∗, and turns out to be
the map λ 7→ c1(K×T Cλ) taking a representation to the first Chern class of its “associated
bundle”, under the associated-bundle construction for the principal bundle K→ K/T .

Theorem 7.1. π2(G) = 1 for any finite-dimensional Lie group.

Proof. Retract G to K. The above sequence says π2(K) is free abelian, so nonzero iff
H2(K;R) 6= 0. We can compute the latter using de Rham cohomology, as follows. In-
side the complex of forms lies the finite-dimensional subcomplex of left-invariant forms,
and we can average forms to show that the inclusion induces a homotopy equivalence
of the complexes. Then the “Lie algebra cohomology” H2(k) turns out to be measuring
nontrivial central extensions, and there are none. �

So for instance, any principal bundle over S3 with finite-dimensional structure group
must be trivial! (Of course the tangent bundle is, because S3 is a group, but not every
Z2-bundle over S1 is trivial, for instance.)

Corollary 7.2. If K is centerless, then π1(K) is finite.

Proof. If K is centerless, than ∆1 spans T ∗, so in

1→ H2(K/T)→ Λ→ π1(K)→ 1

H2(K/T) and Λ have the same rank. �

It turns out that π3(K) is always Z for a compact simple group (e.g. SO(5) but not
SO(4)). Basically, each L ′β → K gives the generator of π3, remembering that L̃ ′β ∼= S3.

7.1. Schubert calculus. Let Sw ∈ H∗(K/T) denote the cohomology class dual to the cycle
Xw flowing down into the point w, so deg Sw = 2`(w), and cwuv ∈ Z denote the structure
constants in the multiplication SuSv =

∑
w Sw.

Theorem 7.3. (Kleiman 1973) Each cwuv is nonnegative.

Proof. In fact K/T is a complex manifold, and each Xw is a subvariety, called a Schubert
variety.

We can compute
∫
K/T
SwSv by intersecting Xv with w0 · Xw. Morse-theoretically, we get

the closure of the union of the lines from w0w down to v.

(1) If w0w 6≥ v, this is empty.
(2) If w0w > v, this is positive-dimensional.
(3) If w0w = v, this is just a point.

So
∫
K/T
SwSv = δw0w,v. (N.B. We need to use the fact that this Morse function is Palais-

Smale.)
Hence cwuv =

∫
SuSvSw0w = |Xu ∩ (g · Xv) ∩ (h · Sw0w)| for generic g, h ∈ K, because the

complex structure guarantees that each point in that triple intersection contributes 1 to
the cohomological intersection. �
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There are many extensions of this result to other cohomology theories (e.g. equivariant
quantum K-theory), but manifestly positive formulæ for very few of them. The simplest
(and most important) case is when K · t is a Grassmannian, and there we do have many
rules.
http://www.math.cornell.edu/~allenk/plenary.pdf

7.2. A non-topological applications of the Morse theory: Horn’s inequalities.

Lemma 7.4. Let f be a Morse function on M with C the set of critical points, and M =
∐

CMc

the Morse decomposition. Ifm ∈Mc, then f(m) ≥ f(c).

Theorem 7.5. (Helmke-Rosenthal 1995) Let Ha + Hb + Hc = 0, where each Hd is a Hermitian
matrix with spectrum (d1 ≥ d2 ≥ . . . ≥ dn). Let (λ, µ, ν) be a triple of Schubert classes on
Grk(Cn) such that

∫
SλSµSν 6= 0. Then

λ · a+ µ · b+ ν · c ≤ 0

where we consider λ, µ, ν as vectors from {0n−k1k}.

Proof. Each Hd gives a Morse function V 7→ Tr(Hdπv) on the k-Grassmannian, whose
critical points come when V is a sum of eigenlines of Hd. By the integral, there exists a
V ∈ Grk(Cn) in the intersection of the three Morse strata for the three different Morse-
Schubert stratifications. Hence

0 = Tr(0) = Tr((Ha+Hb+Hc)πV) = Tr(Haπv)+ Tr(Hbπv)+ Tr(HcπV) ≥ λ ·a+µ ·b+ν · c.

�

Klyachko proved that these give all the inequalities on a, b, c. Belkale proved that it’s
enough to consider

∫
SλSµSν = 1. Tao, Woodward, and I proved that all those remaining

inequalities are indeed necessary. Much more about this is at the URL above.

8. A HINT OF REPRESENTATION THEORY

Theorem 8.1. Let V,W be reps of an arbitrary group G.

(1) Hom(V,W) and V∗ ⊗W are reps, and the natural map V∗ ⊗W → Hom(V,W) is G-
equivariant.

(2) If V is finite-dimensional, then g 7→ Tr(g|V) is constant on conjugacy classes, and called
the character of V .

(3) If V,W are isomorphic finite-dimensional reps, they have the same character.
(4) Let HomG(V,W) := Hom(V,W)G, the equivariant maps or intertwiners. If V,W are

irreducible, then dimHomG(V,W) = [V ∼=W] (Schur’s lemma).

If G is compact:

(1) Tr(g|V) = Tr(g|V∗).
(2) Let πG|V =

∫
G
g|V . Then πG is a projection V → VG.

(3) Consequently, if V is finite-dimensional, Tr(g|V) = dimVG.

Theorem 8.2. The characters of the irreps of a compact group K are orthonormal elements of the
Hermitian vector space L2(K;C).

http://www.math.cornell.edu/~allenk/plenary.pdf
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Proof.

〈Tr(g|V), Tr(g|W)〉 :=
∫
K

Tr(g|V)Tr(g|W) =

∫
K

Tr(g|V∗)Tr(g|W)

=

∫
K

Tr(g|V∗⊗W) =

∫
K

Tr(g|Hom(V,W)) = dimHom(V,W)K = dimHomK(V,W)

and that is 1 or 0 by Schur’s lemma. �

Of course, they’re not a basis for L2(K), since they’re constant on conjugacy classes;
really we might hope that they be a basis for L2(K/∼) (as indeed they are). We study that
space in the next section.

Corollary 8.3. Let V,W be reps of a compact connected group K, with maximal torus T . Then
V,W are isomorphic if they isomorphic as T -representations.

The nicest way to write down a T -representation is as a function T ∗ → N, taking

λ 7→ dimHomT(Cλ, V) =
∫
T

t−λTr(t|V).

If the representation comes from K, then this multiplicity diagram will be W-invariant.
When dimHomT(Cλ, V) > 0, call λ a weight of V .

The biggest theorem in the subject requires a concept early from the next section.

9. CONJUGACY CLASSES

Each β ∈ ∆ defines a hyperplane in t, and this gives a decomposition of t into top-
dimensional cones called Weyl chambers. It is a wonderful result in finite reflection
groups that W acts simply transitively on the set of Weyl chambers. Having picked ∆+,
we have exactly broken thisW-symmetry to have a positive Weyl chamber

t+ := {X : 〈X,α〉 ≥ 0 ∀α ∈ ∆1}
which provides a system of representatives:

t+ ↪→ t � t/W.

This is one of the great benefits of W being a reflection group. (We will see an example
later of how much more annoying moduli spaces are when quotienting by a group that
isn’t one.)

Because the simple roots are linearly independent, this cone is always an orthant times
a vector space (whose dimension is that of Z(K)).

Recall that given X ∈ t not perpendicular to any β ∈ ∆, i.e. in the interior of some Weyl
chamber, we can define ∆+ := {β ∈ ∆ : 〈X,β〉 > 0. Then defining t+ as above, we obtain
the chamber that contains X.

We can now state the big theorem in the subject of representations of compact con-
nected groups, which uses the corresponding chamber in t∗.

Theorem 9.1 (of the highest weight). Fix X ∈ t, defining a positive Weyl chamber t∗+ of a
connected compact Lie group K. Then the map

[V] 7→ argmax
λ∈T∗

{
〈X, λ〉 : λ is a weight of V

}
taking an isomorphism class [V] of K-irreps to its highest weight is a bijection {[irreps]}→ T ∗+.
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Moreover, that dimHomT(Cλ, V) is 1, i.e. the high weight vectors are unique up to scale.

How to think about the lower-dimensional walls in the Weyl hyperplane arrangement?
If 〈X,β〉 = 0, then CK(X) ≥ Lβ, and vice versa. So as we go to smaller faces, the centralizer
jumps dimension, and the K-orbit shrinks.

9.1. Conjugacy classes in k∗ (coadjoint orbits). So far we’ve shown that every conjugacy
class of K meets T , so using the exponential map, every orbit in k goes through t. (That
only works within the injectivity radius, but we can rescale to work in there.) And then,
we can useW to cut t down further to its positive Weyl chamber.

Using an invariant form, we can regard t∗ as a subspace of k∗, and define a positive Weyl
chamber there as well.

In both cases, though, we haven’t discussed the issue of whether the chamber repre-
sents some K-conjugacy class more than once (it will turn out it does not).

Example: if K = U(n), and we naturally identify t∗ with Rn, then the usual positive
Weyl chamber is (λ1 ≥ λ2 ≥ . . . λn). If we restrict to SU(n), then it gets the additional
condition

∑
λi = 0, and becomes a pointed cone.

9.2. Conjugacy classes in K. So far T/W maps onto the space K/ ∼ of conjugacy classes.
To know it’s an isomorphism, we need

Lemma 9.2. Two elements of T are K-conjugate iff they’re N(T)-conjugate.

Proof. Let t, gtg−1 ∈ T be the two elements, so t ∈ g−1Tg. Let H = CK(t)0. Then H ≥
T, g−1Tg. Hence some h ∈ H has h−1Th = g−1Tg, since all tori in the compact connected
Lie group H are conjugate. So hg−1 ∈ N(T), and

gtg−1 = gh−1thg−1 = (hg−1)−1t(hg−1). �

The corresponding statement for Sylow subgroups of a finite group is called “Burn-
side’s fusion theorem”, and has very much the same proof.

Corollary 9.3. The subset t∗+ ⊆ k∗ meets each coadjoint orbit exactly once.

Call an element of K regular if it lies in a unique maximal torus, which includes the
case of topological generators but is more general. Example: a unitary matrix is regular
iff it has distinct eigenvalues (rather than their logs being incommensurable).

This property is obviously invariant under conjugacy, so it suffices to understand which
elements of T are regular. If t ∈ T lies in another torus, then dimCG(t) > dim T , so t acts
trivially on some part of k/t, i.e. β(t) = 1 for some β ∈ ∆.

This is easiest to analyze up on t, where the condition is 〈β,X〉 ∈ Z, giving a decompo-
sition of t into Weyl alcoves. Note that nearby 0, this is just the decomposition into Weyl
chambers.

T/W ∼= (t/Λ)/W ∼= t/(W nΛ)

Theorem 9.4. If K is simple and simply connected, then W n Λ is an affine reflection group,
whose new generator is reflection through the hyperplane 〈·, α0〉 ≤ 1 where α0 is the lowest root
in ∆, the one of greatest negative height.

In particular, T/W can be identified with a simplex T+ inside t.
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• If t is on a face of dimensionm of the positive Weyl alcove T+, the group CK(t) has
central rankm.
• So t is on a vertex iff CK(t) is semisimple. The rank(G) + 1 many such conjugacy

classes are called special.
• Z(K) acts on T+ by rigid motions, taking the identity vertex to the other “central

vertices”.
• Hence |Z(K)| ≤ rank(K) + 1. Equality holds exactly for K = SU(n).
• To compute the order (resp. adjoint order) of a conjugacy class, scale it until it lies

on a reflection of the identity vertex (resp. a central vertex).
• W ·T+, considered inside t, is a polytope that tesselates t. The map exp :W ·T+ → T

is onto, and one-to-one away from the boundary.
• If K has finite center, we can still use this technology to analyze K’s conjugacy

classes by K/∼ = (K̃/∼)/π1(K). But this may not be a polytope, as in PU(3). (Or it
may be, as in SO(5).)

10. LOOP GROUPS

10.1. Loop spaces. Let M be a Riemannian manifold, and LM = Map(S1,M) be the
space of smooth based loops into M. This is an infinite-dimensional Fréchet manifold,
with tangent spaces

TγLM ∼= Γ(S1;γ∗TM), γ ∈ LM.

We can define a metric on the loop space:

〈~v, ~w〉 :=
∫
S1
〈~v|t, ~w|t〉

where the latter 〈, 〉 occurs inside TMγ(t). We also can define a 1-form

α(~v) =

∫
S1
〈~v|t, γ ′(t)〉

and take d of it to get a closed 2-form.
Finally, we can define an action functional

A(γ) =

∫
S1

1

2
|γ ′(t)|2

whose critical points are the geodesic loops.

Theorem 10.1. Where ω is nondegenerate, the “rotate the loop” vector field is the Hamiltonian
vector field of the action functional.

For a generic metric, the closed geodesics are isolated, and A is a Morse function –
indeed, Morse invented Morse theory for this application.

One can do some amazing, if nonrigorous, stuff with this 2-form [At83]. But it’s in some
sense boring since it’s d of a 1-form.

If M is a group G, then TM ∼= G × g, so each tangent space is isomorphic to Lg. In
particular, we can talk about the derivative of a tangent vector, and get another tangent
vector!
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10.2. The based loop group. Fix a compact connected Lie group K. (So the metric will be
very nongeneric.)

The correct space to work on will be not LK, butΩK =Map(S1, K), the space of smooth
based loops into K. Both of these are groups, under pointwise multiplication, something
like a limit of Kn as the n points become dense in S1, and they are related by

LK/K ∼= ΩK, identifying K ∼= {constant loops}.

One benefit of this identification is to put a circle action on ΩK, which doesn’t exist for
generalM. But each turns out to be the wrong group!
ΩK has very nice geodesics:

Theorem 10.2. γ : S1 → K is a basepoint-preserving geodesic iff it is a one-parameter subgroup.
We can conjugate it to lie in T , and then to get its generator to lie in the positive Weyl chamber t+.

So the space of critical points of A is a disjoint union of adjoint K-orbits, one for each dominant
coweight in t+. When the dominant coweight lies in the interior, the orbit is a K/T .

The index of a stratum is the height of the coweight, and in particular, finite.

This is the example for which Bott invented Morse-Bott theory; A turns out to be a
Morse-Bott function.

Also, there is a natural symplectic 2-form onΩK:

ω(~v, ~w) =

∫
S1
〈~v ′, ~w〉

which is antisymmetric by integration-by-parts. (It is even the imaginary part of a Kähler
form on ΩK [Pr82].) Then the circle action is Hamiltonian, and generated by the energy
functional.

Theorem 10.3. If G acts transitively and symplectically on a symplectic manifold M, then M is
a cover of a central extension of G, but not necessarily of G itself.

(Even better: if M’s 2-form ω is the curvature of a Hermitian line bundle L, then some central
extension of G can have its action lifted to L.)

Proof. On the Lie algebra level, g→ symp(M). There is an exact sequence 0→ H0(M)→
C∞(M) → symp(M) → H1(M) → 0 of Lie algebras making C∞(M) → symp(M) a
central extension. Pull it back to get a central extension ĝ of g, and the dual of this gives a
G-equivariant mapM→ ĝ∗.

The group version is based on Aut(L) → Symp(M), where the automorphisms of L
may move the base but must preserve parallel transport. �

• Let R2n act on itself by translation, preserving the standard symplectic form. Then
the above construction discovers the Heisenberg group.
• Let Sp(R2n) act on R2n \ ~0. This is a double cover of the minimal coadjoint orbit
(R2n \ ~0)/±. If one tries to act on the Hermitian line bundle, one discovers the
metaplectic group.
• Let LK act on ΩK. Then the above discovers that LK has a central extension L̂K, of

whichΩK is a coadjoint orbit.
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Central extensions of a group are related to elements of H2. If the group is compact
connected, then thatH2 is also related toH2 of its Lie algebra. So we get the weird situation
that even though H2(R2n) = 0, we have H2(r2n) ∼= H2(t2n) ∼= H2(T 2n) 6= 0, so R2n can
have a central extension. The symplectic Lie algebra is semisimple, so has no central
extensions, but the group is homotopic toU(n) so has a double (or even Z-) cover. Finally,
H2(LK) ∼= H3(K) ∼= π3(K) ∼= Z for K simple and simply-connected, which gives a hint as
to why LK should have a canonical central extension.

Morse-Bott theory on this manifold is a little weird, not so much because it’s infinite-
dimensional but because it’s noncompact. Consider Morse theory on the punctured torus,
using a function that goes to ∞ at the puncture. The Morse strata then form a figure 8,
which is only a deformation retract of the punctured torus, rather than equal to it.

Theorem 10.4. ΩK deformation-retracts to the union Gr =
∐

λ∈t+ Gr
λ
◦ of the finite-dimensional

Morse-Bott strata. EachGrλ◦ is isomorphic to a complex vector bundle over a complex flag manifold
K/Kλ, each closure is a projective variety, and the union is an “ind-scheme”.

We heard already that dominant weights control representation theory. So how can we
pull representations out of these Grλ?

Baby case: K = U(n), ΩK has Z-many components. The minimum A-stratum on the
kth component is isomorphic to Grk mod n(Cn). The homology of that manifold is

(
n
k

)
-

dimensional, which by amazing coincidence is also the dimension of the kth fundamental
representation of U(n)!

Of course, that’s also the cohomology of that manifold. But Grλ is singular in general, so
these will differ, and which should we use? In general we won’t want to use either, but
the intersection homology, which we give a brief picture of.

The homology of a singular (or any) space is easy to think about geometrically, using
cycles. The cohomology is just as easy if the space is smooth. The best smoothness we
have available here is that each Grλ =

∐
µ≤λGr

µ
◦ is stratified by smooth manifolds Grµ◦ , so

instead of thinking about arbitrary cycles, we think about cycles that “behave well” with
respect to the stratification.

The cohomology of a (compact, oriented, and nicely) stratified space X is easy to de-
scribe using cycles C that are dimensionally transverse to the strata Y:

dimC− (C ∩ Y) ≥ dimX− dim(Y = X ∩ Y)
whereas to compute homology we don’t need any condition:

dimC− (C ∩ Y) ≥ 0.
For “intersection homology in middle perversity”, we split the difference:

dimC− (C ∩ Y) ≥ 1
2

(
dimX− dim Y

)
.

Call such C intersection homology chains, and make a complex with them, with the usual
boundary as differential, to define IH(X). It is naturally a module over H∗(X) by a sort of
cap product, but this isn’t so useful since H∗(X) can be so nasty.

Theorem 10.5 (Geometric Satake correspondence). There is a natural action of LG on IH(Grλ),
making the latter into the irrep of LG with highest weight λ. Here LG is the Langlands dual
group of G, whose weight lattice is the Z-dual of G’s coweight lattice, and vice versa.
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The proof of this (first approximated by Ginzburg, now spread out over papers of
Ginzburg, Lusztig, and Mirkovič-Vilonen) is rather indirect; they make a category that
looks like the representations of some group, in that it has tensor products (the hard part)
and a forgetful functor to Vec, whose simple objects are the IH(Grλ). Then the Tannaka re-
construction theorem says that this category is the representations of some group. Which
one? With not much work, they relate its weight lattice withG’s coweight lattice, finishing
the identification.

Theorem 10.6. (1) (Mirkovič-Vilonen ’99) If one does Morse theory on the singular space
Grλ, using a component X· of the T moment map, the Morse strata are reducible varieties,
and their components give a basis of IH(Grλ).

(2) (Jared Anderson ’03) One can use these cycles to compute weight multiplicities and tensor
products of representations. It is even enough to know just their moment polytopes, “M-V
polytopes”.

(3) (Kamnitzer ’05) The polytopes are all distinct, and there is a simple characterization of
them, bypassing all the infinite-dimensional geometry.
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