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Combinatorics and Geometry of
K-orbits on the Flag Manifold

R. W. RICHARDSON AND T. A. SPRINGER

Introduction

Let G be a reductive algebraic group over an algebraically closed field F' of
characteristic # 2 and let # be an automorphism of G of period two. Let K be
a subgroup of the fixed point subgroup G? which contains (G%)°, the identity
component of G¥. Let B = B(G) denote the variety of Borel subgroups of G;
B is the flag manifold of G. If B € B, we may identify B with the coset space
- B\G. We consider the K—orbits on the flag manifold B or, equivalently, the set
V = B\G/K of (B x K)-orbits of G. It is known that V is finite and there is a
natural partial order on V given by inclusion of the orbit closures.

The classification and properties of these orbits play an important role in the
representation theory of real semisimple groups (see [V1] and [HMSW]) and in
a number of geometric problems. If G = H x H, where H is a reductive group,
and if § is given by 8(z,y) = (y,2), (z,y) € HxH, then K = {(h,h)|h€ H}
and the K-orbits on B(G) = B(H) x B(H) can be naturally parametrized by
W (H), the Weyl group of H. In this case the partial order on the set V' of orbits
corresponds to the usual Bruhat order on the Weyl group W(H). One would
like a similar description of the poset V = B\G/K in the general case.

In this paper we will give an informal discussion, mostly without proofs, of
some recent results of the authors on the set V of orbits. In the joint paper
[RS], we developed some techniques for the analysis of the orbits. Using this
machinery, we were able to give a purely combinatorial description of the partial
order on V and to generalize to the poset V a number of standard properties of
the usual Bruhat order on the Weyl group W(G). Although the results of [RS]
are based on simple geometric ideas, the discussion there sometimes gets bogged
down in technical detail and parts of the paper are difficult to read {even for the
authors). In Sections 1-4 of this paper, we discuss the main ideas and theorems
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of [R8]. We have tried to omit most of the technical detail and to emphasize the
underlying geometric ideas.

Let G be simple (over its center) and simply connected. Then we say that
the pair (G,8) is of “Hermitian symmetric type” if the center of K = (¢ has
positive dimension. Roughly speaking, pairs (G, #) of Hermitian symmetric type
correspond to Hermitian symmetric spaces. In Section 5, we discuss some recent
(unpublished) results on the parametrization of the set V of orbits for pairs (G, 6)
of Hermitian symmetric type. In this case, there is an elementary combinatorial
model for the poset V in terms of combinatorial data involving only the Weyl
group.

In Section 6, we consider the transcendental case F = C. In this case, there
is a real form Gg of G such that Kz = G N K is a maximal compact subgroup
of both Gg and K. Matsuki has shown that there is a natural duality between
the K-orbits and the Gr-orbits on B which reverses the natural partial order
on these orbits and he has proved a number of results concerning both the K-
orbits and the Gg-orbits [M1-M5, MO]. It has been shown recently by one of
us (RWR) that the machinery of [RS] can equally well be used for the analysis
of the Gr-orbits on B. We discuss these results and indicate some extensions of
Matsuki’s work.

In the applications to the representation theory of real semisimple Lie groups,
an important role is played by certain representations of the Hecke algebra H of
the Weyl group W of G (see [LV]). In Section 7, we give a description of these
representations of A in terms of our analysis of the set V of orbits.

§1 Some basic constructions of [RS]

1.1. Preliminaries. Our main reference for algebraic groups and algebraic
geometry will be Borel’s book [B] and we will usually follow the terminology and
notation there. All algebraic varieties will be taken over an algebraically closed
field F' with char(F) # 2.

Since we consider left, right and two sided actions of groups, we need to be
careful about the notation for the sets of orbits. Let the groups H and L act
on the set E, with H acting on the left and L acting on the right. Then we let
H\E denote the set of H-orbits of E and let £/L denote the set of L-orbits. If
the actions of H and L commute, so that we get an action of H x L on E, we
let H\E/L denote the set of (H x L)-orbits of E.

Throughout the paper, G, § and K will be as in the Introduction. In order
to conform with the notation of [RS], we will always assume that K = GY.

REMARKS 1.1.1. (a) If G is semisimple and simply connected, then it follows
from a theorem of Steinberg [St, Thm. 8.1] that K = G? is connected. For a
general reductive G however, the fixed point subgroup K = G? is not necessarily
connected, so that the K-orbits on B are not necessarily connected. However,
the B-orbits on /K are always connected (and irreducible), so that one can
apply standard irreducibility arguments to these orbits.

:

-
S
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{b) The assumption that ¢ = K is not an essential restriction. The ar-
gument goes as follows. Let #; : G1 — G be an involutive automorphism
of a reductive group G; and let K; be a subgroup of the fixed point sub-
group G%' containing the identity component (G9)0. We note that the center
Z(G4) acts trivially on B(G), so that we get an induced action of Ad(G1) on
B(G,) = B(Ad(G4)). A straightforward argument, using the result of Steinberg
mentioned in (a) above, shows that there exists a covering group G of Ad(G1)
and an involutive automorphism # of &, such that, setting K = G?, we have
Ad(K) = Ad(K,) (as subgroups of Ad(G1) = Ad(G)). Thus the K-orbits of
B(G) = B(Ad(G,)) are the same as the K;-orbits, and we are in the case with
K =GY.

The group G acts on B (on the left) by conjugation. In order to avoid confusing
notation, such as K - B for the K—-orbit on B of a Borel subgroup B, we will
often let X denote the projective G-variety corresponding to B. If z € X, we let
B, denote the corresponding Borel subgroup; thus K -z, the K-orbit of z on X,
is equal to {¥B, | k € K }.

1.2. In order to bring the Weyl group into the picture, we need to consider
maximal tori. Let 7 = 7(G) denote the variety of maximal tori of G. Then 0
acts on 7 and we let 79 be the subvariety of §—stable maximal tori. If T € 7,
we let W(T) = Ng(T)/T denote the corresponding Weyl group. Let

C={(B,T)eBxT|TCB} andlet Co=Cn(BxT").

The group G acts on C (on the left) by conjugation and it is clear that Cp is
K-stable. Define 7 : C — B by m(B,T) = B. Then the restriction of 7 to Cy
determines a map ~y : K\Cy — K\B of the sets of K-orbits.

ProprosiTiON 1.2.1. v: K\Co — K\B is a bijection.

ProoF. We will give the proof, since it is quite easy. Let B € B. Since
BN6(B) is of maximal rank, it follows from another theorem of Steinberg [St,
Thm. 7.5] that BNH(B) contains a #-stable maximal torus. Thus - is surjective.
To prove that v is injective, we need to prove that if 7' and T’ are G—stable
maximal tori of B, then they are conjugate by an element of BN K. Now T
and T’ are maximal tori of B N #(B), hence they are conjugate by an element
u of R,(B N #(B)), the unipotent radical of B N O(B). It follows from this
that u=8(w) € Ng(T) N Ry(B N O(B)). But R,(BNE(B)) C Ru(B), so that
uw'8(u) € Neg(T) N R,(B) = {1}; thus #(u) = v and hence v € K

In the transcendental case F' = C, Proposition 1.2.1 is due to Matsuki [M1]
and Rossman [Ros]. The basic idea is due to Wolf [W], who proved a similar
theorem for the Gr—orbits on B. (Here G is as in the Introduction.)

We say that a pair (B,T) € C is a standard pair if both B and T' are -
stable. It follows from [St, Thm. 7.5] that standard pairs exist. We choose
a standard pair (Bg,Tp), which will remain fixed throughout the paper. Let
W = W(Ty) and N = Ng(Tp). Let @ = ®(Tp,G) be the set of roots of G
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relative to Tp, let @7 = &(Ty, By) be the set of positive roots determined by By
and let A = A(Tp, By) be the set of simple roots corresponding to @, fa € @,
let s, € W be the corresponding reflection. Let S = {s, | @ € A}. Then
W = (W, S) is a Coxeter group. Let [ denote the length function on W and let
< be the Bruhat order on W.

For each subset 1 of A, let W be the subgroup of W generated by { s, |a € I}
and let Pr = BoW7B; be the “standard” parabolic subgroup of G corresponding
to I. We let wy denote the longest element of W; and let wg = wa be the longest
element of W.

Define (5 : G — C by (olg) = (Q‘IBgﬁgﬁlT{)). Then (g is constant on right Ty
cosets of G and induces a isomorphism of varieties { : Tp\G — €. The group G
acts on Tp\G on the right and we have ((z-g) = ¢~} - {(z), g € G, z € Ty\G.
Set

V={geGlghlg) ' eN}={geG|? TheT’}=("(Co)

Since Ng(Bp) = Bp and By NN = Ty, we see that the restriction of (o to V
induces a bijection of T5\V onto Cy. Thus there is an induced bijection of orbit
sets To\V/K — K\Cg.

The map g 9~1B0 of G to B is constant on left Bg-cosets and induces an
isomorphism of K-varieties Bo\G — B. Thus we obtain a bijection Bo\G/K =
K\B.

Cormbining all of these results with Proposition 1.2.1, we obtain:

ProrosiTioNn 1.2.2. There exist canonical bijections between the following
Jour seis of orbits: (a) To\V/K; (b) K\Cs; (c) K\B; and (d) By\G/K.

We observe that the bijection Ty\V/K = By\G/K is induced by the inclusion
map V — G.

We let V denote the set To\V/K of (T x K)-orbits on V. By Proposition
1.2.2, we may identify V with each of the orbit sets given in (b), (¢) and (d) of
the Proposition. Occasionally we will make make such identifications without
being very explicit about it.

1.3. Notation and remarks. (a) We let 2y € X correspond to By,
so that By, = Bg. If v € V, then v is a (T, K) double coset, v = TygK,
with ¢ € V. In this case we let BovK denote the set-theoretic product; thus
BovK = Bo(TogK)K = BogK. Tt v € V, we will let O(v) denote ByvK, and
let K(v) denote the corresponding K-orbit on X. Thus, if v = TpgK and if
z = g1 zg (so that B, =9 By), then K(v) is equal to K - z, the K—orbit of
zon X.

(b) The varieties 7%, Cy and V are not connected. In fact, it follows from
[R1, Thm. A] that K, the identity component of K, acts transitively on each
irreducible component of 79, Using this, one can show that K© acts transitively
on each irreducible component of C? and that Ty x K° acts transitively on each
irreducible component of V. In particular, all K-orbits on Cy are closed and all

K-ORBITS ON THE FLAG MANIFOLD 113

{(Tp x K)-orbits on V are closed. Thus, one cannot obtain any information about
closures of K—orbits in X or closures of (By x K)-orbits in G from the closures
of the corresponding orbits on Cg or V.

1.4. The map ¢ and the W-action on V. Since T and IV are f-stable,
we get an induced action of § on the Weyl group W. Let T = {w € W | 6(w) =
w~t}. We say that the elements of T are twisted involutions. If # is an inner
automorphism of (G, then 6 acts trivially on W and 7 is just the set of ordinary
involutions of W. We define the “twisted action” of the group W on the set W
by the following rule : if w', w € W, then w' * w, the twisted action of v’ on w,
is equal to w'wd{w' ~1). It is clear that the set 7 of twisted involutions is stable
under the twisted action of W. We have the following elementary result [S1, §3]
concerning 1:

LEMMA 1.4.1. Let s € S and a € T and assume that sxa # a. Ifl{sa) > I(a),
then I(s x a) = l(a) + 2 and if [(sa) < l(a), then l(s*x a) = I(a) — 2.

Define s : G — G by x(g) = gf(g)™*. Then « is constant on left K-cosets,
and induces an isomorphism of G/K onto the closed subvariety s(G) of G. We
note that ¥V = x~*(N). Let 7 : N — W be the canonical projection. Then the
map g — w{x(g)) from V to W is constant on {Tp x K)—-orbits and hence induces
amap ¢ : V — W. If g € G, then it is easy to check that 8(k{g)) = x(g)™?,
which shows that ¢(V) C 7. Let v = TogK € V and let ¢{v) = a. Then
#{O(v)) C BpaBy; one can use this to give an alternate definition of the map ¢.

The map ¢ was introduced in [S1]. A geometric interpretation of ¢ in terms
of the canonical Weyl group W is given in 1.7. The map ¢ plays an important
role in the study of the set V of orbits. For example, we have:

PROPOSITION 1.4.2. Let v € V. Then the orbit O(v) is closed if and only if
plv) = 1.

See [81, §6.6].

We also have the following characterization of closed orbits:

PROPOSITION 1.4.3. Let z € X. Then the orbit K -z is closed in X if and
only if the Borel subgroup B, is 6-stable.

Let Vo = {v € V | ¢(v) = 1} denote the set of closed orbits. An easy
argument shows that all closed K-orbits on X have dimension equal to the di-
mension of B(K?), the flag manifold of K°; this is equivalent to the statement
that if B € BY, then K% N B is a Borel subgroup of K°. If v € V, we set
l(v) = dim K(v) — dim B(K?). We say that [(v) is the length of v. In the case
G = H x H and 8(z,y) = (y,z), which was discussed in the Introduction, the
orbits are parametrized by the Weyl group W (H) and the length function [ on
the set V of orbits corresponds to the usual length function on the Coxeter group
W(H).
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Since IV is 6-stable, it is clear that V is stable under left multiplication by N.
Thus we get an action of W on V = To\V/K. We let w - v denote the action of
w e W onwv e V. A geometric interpretation of the action of W on the set V of
orbits in terms of the canonical Weyl group W is given in 1.7.

The W action on V and the twisted W action on T are related by the following
proposition:

PrOPOSITION 1.4.4. (1) Ifw € W and v € V, then ¢(w-v) = wx ${v).
Thus ¢ 2V — T is W-equivariant. (2) If ¢(v) = ¢(v'), then v and v lie in the
same W-orbit. (3) There are canonical bijections between the following three
sets of orbits: (i) W\V; (i) W\image(¢); and (ili) K\7?.

1.5. Examples. (See [RS, §10].)

(1) Let H be reductive, let G = H x H and let 8 be defined by 8(x,y) = (y,2).
In this case we may identify W(G), the Weyl group of G, with W(H) x W(H)
and the set 7 of twisted involutions is given by 7 = {(w,w™) | w € W(H) }.
The map ¢ : V — 7 is a bijection.

(2) Let G = GL(n, F) and define § : G — G by 6(g) = 'g~*. Thus K is equal
to the orthogonal group O(n, F) and W is the symmetric group S,,. Let 7 = J,
be the set of all involutions in §,,. Then 7 = Jwg. In this case also, ¢ : V — 7T
is a bijection.

(3) Let G = SL(n, F) and let § be as in (2). Then K = SO(n, F). Again
W =28, and T = Jwy. The map ¢ : V — T is surjective. Let J° C J be the
set of fixed point free involutions in §, and let 7! C 7 be the set of involutions
which have a fixed point. If a € J°, then |¢~(awg)| = 2 and if a € J*, then
|¢~ (awp)] = 1. Thus |V] = 2|J° + |7} So, in particular, ¢ is bijective if n is
odd but is not bijective if n is even.

(4) Let G = SL(2n,F) and let J € G be defined by: J{e;) = —enqy and
Jleps1) = e;, 4= 1,...,n, where e;,...,eg, Iis the standard basis of Fn,
Define the involutive automorphism § : G — G by 8(g) = Jig7'J™'. Then
the fixed point subgroup K = G? is the symplectic group Sp(2n, F). The Weyl
group W is the symimetric group S,. Let J = Ja, and J° be as above. Then
the set 7 of twisted involutions is equal to Jwp and the image of ¢ is equal to
jO’wo.

We note that in general the map ¢ : V — 7 is not necessarily either injective
or surjective. It follows from Proposition 1.4.4 that the image of ¢ is a union of
twisted W—orbits of 7.

1.6. Since Bo\G/K is finite, there exists a unique open (By x K )-orbit of G.
Let s € V be such that Ov,e,) is open in G and let ey = ¢(Umas). One
can describe ,,., in terms of the Araki diagram associated o (G, 8). (See [S2]
for the Araki diagram.) Let J C 5 correspond to the set of black dots in the
Araki diagram. Then ama. is equal to wywe, where wy and wg are as in 1.2

We have the following criteria for the map ¢ to be surjective:
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ProrosiTioON 1.6. The following four conditions are equivalent: (i) ¢ is
surjective; (1) Gmag = wo; (iii) the Areki diagram of (G,6) does not contain
any black dots; and (iv) there exists a 6-split Borel subgroup of G.

Recall that a Borel subgroup B is #-split if BN(B) is a maximal torus of G.

1.7. The canonical Weyl group. The map ¢ : V — W and the W-
action on V are defined in terms of the standard pair (Bg, Ty). If (By,71) is
another standard pair, then it can be shown that Ty and T are K—conjugate
(in fact K°-conjugate), but it is not necessarily true that By and B; are K-
conjugate. We will show that ¢ and the W-action on V are canonically defined.
To discuss this, we need the canonical Weyl group W. As a set W is equal
to G\(B x B), the set of G-orbits on B x B. For each (B,T) in C, there is
a bijective map npr : W(T) — W defined by npr(w) = p(B,*B), where
p:Bx B — G\(B x B) =W is the canonical map. Let 1y = np, 17,. We define
the group structure on W by requiring that 7y be an isomorphism of groups.
This implies that each np r is an isomorphism of groups. If (B, B') € B x B and
if W = p(B, B'), then we say that W € W is the relative position of (B, B'). Let
S = no(S). Then W = (W, 5) is a Coxeter group; this Coxeter group structure
on W is canonical. As usual, we let [ denote the length function on W.

There is a canonical action of W on C defined as follows:

Let W € W and let (B,T) € C. Choose w in W(T') such that ngr{w) = .
Then w- (B,T) = (“"wl B,T). It is a straightforward exercise to prove that this
defines an action of W on €. The projection ¢ — 7T, (B, T) — T, is a Galois
covering and W acts on C as the group of “deck transformations”. (For the case
F = C, the projection C — 7 is a covering map in the usual sense.)

We note that Cy is stable under the W-action and it is clear that the W-action
on C commutes with the action of G on C by conjugation. Let ¢ : Tp\G — C
be as in 1.2. Left multiplication by IV gives an action of W = W(Tj) on Tp\G.
An easy argument shows that ((w - z) = no{w) - {(z), for w € W and z € Tg\G,
so that ¢ is equivariant (with respect to ). Now ¢ maps Tp\V equivariantly
onto Cg. Thus the bijection of V = Tp\V/K onto K\(y determined by ( is
equivariant with respect to 7. This proves that the W-action on the set of
orbits is canonical. (This was not done in [RS].)

As regards the map ¢ : V — Z, we have the following proposition.

ProrosiTION 1.7.1. Let v € V and let x € K{v), so0 that K{v) = K -z. Let
a = no(¢(v)). Then @ is the relative position of (B, 8(Ba)).

The proof is straightforward.
It follows from Proposition 1.7.1 that @ = 55(¢(v)) depends only on the orbit
K(v) = K -z and is independent of the choice of standard pair (By, Tp).

§2. The product of a minimal parabolic and an orbit

Let s € § and let P, = By U BgsBp be the corresponding standard minimal
parabolic subgroup. If v € V, then the product P,BovK = P,vK is a union
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of a finite number of (By x K)-orbits. In this section, we will analyze the
decomposition of P,vK into (By x K)-orbits. In order to do this, it is easier to
work with the K-orbits on X rather than the (B x K)-orbits.

Most of the results of this section are contained in [LV].

2.1. Real, complex and imaginary roots. Let T be a §-stable maximal
torus and let ®(T,G) be the set of roots of G relative to T. If o € ®(G,T),
let G4, be the subgroup of G generated by the root subgroups U, and U.4; the
subgroup G, is semisimple of rank one. Let T, = T'NG4; then T, is a maximal
torus of G,,.

There are three cases to consider.

(a) #(a) = a. In this case we say that o is imaginary (relative to 9). If
a is imaginary, the subgroup G, is f-stable. There are two subcases. If the
restriction of 6 to Gy, is trivial, so that G, C K, then a is compact imaginary. If
G, ¢ K, then a is non-compact imaginary. In the latter case, Ty, is the identity
component of G¥,.

(b) 6(a) = —a. Then we say that « is real. In this case, G, is §-stable and
(G9)0 is a maximal torus of Gq.

(c) 8(a) # ta. Then o is complex. In this case G4 is not f-stable.

REMARK. The terminology of real, complex and imaginary roots is taken
from the theory of real semisimple Lie groups.

2.2. The P! approach. Let ¥ = P, denocte the variety of all conjugates
of P,. Let m, : X — Y denote the morphism which assigns to every B € B
the unique P € P, which contains B. Let yo = ms(zo) (recall that Bg, = By).
Now let y € ¥ and let P, € P, be the corresponding parabolic subgroup. Let
X, denote B(P,), the variety of Borel subgroups of P; note that X, = ;7 H(y).
Then X, is a complete subvariety of X which is isomorphic to P*(F) = P. Let
A, = Aut(X,), the group of automorphisms of the algebraic variety X, and let
h: P, — Ay be the canonical homomorphism. Then A, is an algebraic group
isomorphic to PGL(2,F). Let K, = K N P,; then K, is the isotropy subgroup
at y for the action of K on Y. The following lemma is elementary:

LemMA 2.2.1. Let z € X, and g € G be such that g -z € X;,. Then g € P.

Let € X,. Then it follows easily from Lemma 2.2.1 that K -z2NX, = Ky -z.
Furthermore K -z is a homogeneous fiber bundle over K -y with fiber K, -z. In
particular, we have a bijective correspondence between the K-orbits on K - X,
and the K,~orbits on X,. Since K\X is finite, K, has a finite number of orbits
on X,. Since h(K,) is an algebraic subgroup of A, = PGL(2,F), it is easy
to analyze the possibilities for the K,-orbits on X,. There are four cases to
consider.

Case 1. h(K,) # Ay and h(K,) contains a non-trivial unipotent subgroup.
Then there are two K,~orbits on X, one of which is a fixed point.
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Case 2. h(K,) = A,. Then K, is transitive on X,.

Case 3. h(K,) is a maximal torus of A,. There are three orbits, two fixed
points and one open dense orbit.

Case 4. h(K,) is the normalizer of a maximal torus of A,. There are two
orbits. There are two fixed points of K§7 which are permuted by Ky, and there
is an open dense orbit.

2.3. Further analysis of the K, —orbits on X,. Let z € X, and let
B = B,. Let T be a f-stable maximal torus of B, and let ®(T,G) and A(T, B)
be defined as usual. Then there exists @ € A(T, B) such that P = P, is equal
t0 P, = BU Bs,B. Note that, since T is §-stable, 8 acts on ®(T,G).

Case A. « is complex (relative to 6). In this case h(K,) is a solvable group
with non-trivial unipotent radical. Thus we are in Case 1 above.

Case B. « is compact imaginary. Then G, C PN K and hence h(K,) = Ay.
Thus we are in Case 2 above and K, is transitive on X,.

Case C. « is non-compact imaginary. In this case (G%)? = T, and h(T,) =
h(K,)°. Then we are in either Case 3 or Case 4 above. We have h(K,)? -z = z,
and there are either two or three Ky-orbits. If h(K,) is connected, there are
three K,—orbits on X, and if h(Ky) is not connected, there are two orbits.

Case D. a is real. Then (G%)° is a maximal torus of G, and A((G4)%) =
h(K,)?. We are in either Case 3 or 4 above. There are either two or three
K,~orbits on X, and K, - = is the unique dense open orbit in X,.

2.4. Case analysis for the (B x K)—orbits on PwK. Let a € A =
ATy, Bp). Let s = s, and let v = TygK € V. We wish to describe the
decomposition of P,uK into (By x K)-orbits. Let z = g7 ! -z, let T = 97T,
and let B = 9-180. Thus T' € 7% and B = B,. Let y = w,(z) and let
P=P = g_lPs. The map g’ — ¢~ - zp from G to X determines a bijection
from (Bg x K)-orbits on P,uK to K-orbits on K - X, and it follows from the
discussion above that there is a bijection from K,—orbits on X, to K-orbits on
K - X,,. Thus we may use the case analysis of 2.3 above for the {Bp x K)-orbits
on PowK.

First we need some definitions. The inner automorphism Int(g™*) of G maps
Ty to T and maps ® = ®(T,,G) onto &(T,G). Let o/ = Int(g~*)(a). We say
that a (or s = s,) is complex, compact imaginary, ..., for v if o/ is complex,
compact imaginary, ..., relative to 8 in the sense of 2.1. These definitions are
independent of the choice of g € v. Let ¢(v) = a. Then it is easy to check that:
(i) a is complex for v if af(a) # Fo; (ii) e is imaginary for v if af(a) = a; and
(iii) o is real for v if af(a) = —a. We observe that if s = s, is real (respectively
imaginary) for v, then I(sa) < l{a) (respectively I(sa) > I(a))-

Now we can apply the results of 2.2 and 2.3 to the (By x K )~orbits of P,vK.

Case A. s is complex for v. Then P,wK = O(v)UO(s-v) and 5-v # v. Thus
there are two By x K—orbits on P,wK. If sa > a (respectively sa < a) then O(v)



118 B. W. RICHARDSON AND T. A. SPRINGER

(respectively O(s-v)) is closed in PyvK and O(s - v) (respectively O(v)) is open
and dense in P,v K.

Case B. s is compact imaginary. There is only one orbit, so that O(v) =
PouK.

Case C. s is non-compact imaginary for v. Then there exists v’ € V such
that PawK = O(v) UO(s-v) UO(v'). The orbits O(v) and O(s - v) are closed in
PyuK and O(v') is open and dense in PywK. If 5+ v # v, there are three orbits
and if s - v = v, then there are two orbits. Both cases can occur.

Case D. s is real for v. Then there exists v’ € V such that P,vK = O(v) U
O(@")UO(s - v'). The orbits O(v') and O(s - v') are closed in P,wK and O(v)
is open and dense in PowK. If 5- v’ # ¢/, there are three orbits, otherwise there
are two orbits. Both cases can occur.

In Case C (respectively Case D), s is real (respectively non-compact imagi-
nary) for v’ and PyjvK = Py K.

83 The monoid M(W)

3.1. The monoid M(W). In our analysis of the orbits, an important role
is played by a certain monoid M = M{W) which is canonically associated to
the Coxeter group W = (W, 5). (See [RS, §3].) As a set, M consists of symbols
m(w), one for each w € W. Multiplication in M is determined by the following
rule: if w € W and s € S, then m(s)m(w) is equal to m(sw) if [(sw) > [(w) and
is equal to m(w) if I(sw) < I(w). Note that m(1) is the identity element of M
and m(wp) is the “final element” of M, i.e. m(w)m(wo) = m(wg) = m(wo)m(w)
forevery w € W. f w € W and if s = (sy,..., %) is a reduced decomposition
of w, then m(w) = m(s1)m(sq)---m(s;). If s € S, then m(s)? = m(s).

The monoid algebra Z[M (W)] can be viewed as a degeneration of the Hecke
algebra H of W (see Section 7).

There is a geometric interpretation of the multiplication in M in terms of
the product of (By x Bg)-orbits of G. By the Bruhat Lemma, we have G =
Hwew BowBg, where the symbol || denotes the disjoint union. Let w, w’ and
w"” € W. Then m(w)m(w') = m(w") if and only if Bow"” By is the unique dense
open (Bp x Bp)-orbit in the product BywBy - Byw' By.

3.2. Action of M on V. There is an action of M on the set V (or, equiva-
lently, an action on Bo\G/K or K\B) defined as follows: If v € V and w € W,
then m(w) - v is the unique element v/ € V such that Bov'K is the dense open
(Bo x K)-orbit in the product BowDBy - BovK. It follows from the geometric
description of the multiplication in M that this defines an action of M on V. If
veV,then M-v={m(w) v|we W} denotes the M-orbit of V.

Let s € §,let v € V and let a = ¢(v). Then Bem(s) - vK is the dense open
(Bo x K)~orbit in PyvK. If m(s) - v # v, then we write v — m(s) - v. It follows
from 2.5 that v — m(s) - v if and only if one of the following two conditions
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holds: (i) s is complex for v and I(sa) > i(a); or (ii) s is non-compact imaginary
for v.

REMARK 3.2.1. If v — m(s) - v, then it is clear that dimO(m(s) - v) =
dim O(v) + 1 and dim K(m(s) - v) = dimK(v) + 1.

LEMMA 3.2.2. Let s € S, let v € V and let a = ¢(v). Assume that I(sa) <
I(a). Then there exists v' € V such that v/ — m(s)- v = v. Furthermore, if
v" € V is such that v — m(s) -v" = v, then either (i) v" = or (i) s is
non-compact imaginary for v and v = s-v # v .

The proof follows easily from 2.4.

DEFINITION 3.2.3. Let v € V. A reduced decomposition of v is a pair (v,s),

where v = {vg,...,v;) is a sequence in V and s = (s1,...,8;) is a sequence in
S, which satisfies the following conditions: (1) vy € Vp and v = v; and (2) for
eachi=0,1,...,k— 1, we have v; — m(8;41) - v; = v;41. We say that % is the

length of the reduced decomposition (v,s).

It follows from Lemma 3.2.2 that every v € V has a reduced decomposition.
It follows from Remark 3.2.1 that every reduced decomposition of v has length
equal to I[(v). If (v,s) is a reduced decomposition of v, it is clear that vy and 8
determine (v, s). It is not necessarily the case that v determines s.

Reduced decompositions of elements of V should be considered as the analogue
of reduced decompositions of elements of the Weyl group. For the case in which
G = H x H and 0(h,}') = (h',h), the orbits are parametrized by the Weyl
group W (H) and reduced decompositions of elements of V' correspond to reduced
decompositions of the corresponding elements of W(H).

3.3. Action of M on 7. (See [RS, §3].) There is an action of the monoid
M on the set T of twisted involutions which, in a sense, parallels the twisted
action of the Weyl group W on Z. If s € § and ¢ € Z, we define soa € T as
follows: if s*a = a, then soa = sa; if sxa # a, then soa = s*a. For each
5 € 8, the map a = soa is a fixed point free bijection of T of order two. We
now define the twisted action of elements m(s), s € S,onZ. Ifs€ Sanda €I,
we set m(s) * a equal to s o a if [(sa) > l{a) and equal to a if I(sa) < {a). The
proof that this extends to give an action of M on T is a bit tricky. f m € M
and a € T, then m * a denotes the twisted action of m on a.

LeEMMA 3.3.1. Ifa €T, then there exists m € M such thal mx1 = a.

DEFINITION 3.3.2. Let @ € Z. Then L{a), the length of a as a twisted
involution, is the smallest integer k for which there exists w € W with l{(w) = k
and m(w) *1 = a.

Tt is clear that L{a) < I{a), where I(a) is the length of a as an element of the
Coxeter group W = (W, S), but it seldom happens that L(a) = l(a). We can
also define L(a) in terms of the —1 eigenspace of the involution afl, acting on
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E=X{(T)®zR. Ifae&Z, let E_{a) denote the —1 eigenspace of ad on E. Then
2L{a) = i{a) +dim E_(a) — dim E_(1).

Let s € Sand a € T. If a # m(s) x a, then we write ¢ — m{s) * a. In this
case L{a) +1 = L{m(s) xa).

The action of M on V and the twisted action of M on 7 are related by the
following proposition.

PROPOSITION 3.3.3. Letv, v € V andlet s € S. (1) Ifv' = m(s)-v =,
then ¢(v') — m(s) = p(v") = ¢(v). (2) Assume that ¢(v') — m(s) * $(v"). Then
v' — m(s)-v' unless s is compact imaginary for v', in which cese v’ = m(s)-v'.

Note that it is not necessarily the case that the map ¢ : V — T is M-
equivariant.

Now let (v,s = (s1,...,8x)) be a reduced decomposition of v € V and let
a = ¢(v). Then it follows from Proposition 3.3.3 that a = m(sg) x m(sg—1 % *
m(s1) * 1 and that L(a) = k. Thus we obtain:

PROPOSITION 3.3.4. Letv € V and let a = ¢(v). Then I(v) = L(a). Conse-
quently dim K(v) = L(a)+dim B(K°) and diim O(v) = L{a)+dim B(K°)+dim B.

We see from Proposition 3.3.4 that the dimensions of the orbits K(v) and
O(v) are determined by L{¢(v)), the length of ¢(v) as a twisted involution.

We define the weak order on 7, denoted by , as follows: Let a, b € Z. Then
at bif b€ M xa, where M * o denotes the (twisted) M-orbit of a.

The next proposition describes the image of the map ¢.

PROPOSITION 3.3.5. The following three conditions on a € T are equivalent:
(i) a € image(d); (i) a b Gmasx; and (iil) there ewists b € W % a such that
E_(b) C E (Omaz)-

3.4. (P x K)—orbits on G. Let I be a subset of A and let P = F; be
the corresponding standard parabolic subgroup. Then each (Bg x K)-orbit of
G is contained in a unigue (P x K)-orbit, so that we have a surjective map
fr: Bo\G/K — P\G/K of the orbit sets. It is of interest to describe the fibres
of the map fr. We shall how indicate how to handle this problem in terms of
the M (W) formalism. Since this problem is not discussed in [RS], we shall give
proofs in this subsection.

PROPOSITION 3.4.1. Letv', v € V. Then the following conditions are equiv-
alent:

(1) PvK = PvK.

(2) m(wy) v =mwy)-v.

PRrROOF. (1) = (2). Since Bowy By is a dense open subset of P, it is clear that
the product Bow; By - Bov' K (respectively Bowy By - BovK) is open and dense in
Pv'K (respectively PuK). Consequently we see that the sets Bow;Bg - Bov' K
and Bowr By - BovK intersect in a dense open subset of Pv'K = PuvK, which
implies that (2) holds.
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(2) = (1). Let v" = m(wy)-v. Then Bov"K is a dense open subset of
Bow;Bg - Bev' K, hence a dense open subset of Py K. Similarly it follows that
Bov" K is a dense open subset of PvK. Thus we see that Pv'K = Pv"K = PuK.

It is clear that each (P x K)-orbit of G contains a (unique) open dense
(By x K)~orbit. Let V; be the set of all v € V such that ByvK is an open dense
subset of PvK. Thus the map v — PvK is a bijection from V7 to P\G/K.

PROPOSITION 3.4.2. The following conditions on v € V are equivalent:
(1) v € Vy.

(2) m{sq)-v="u for every x € 1.

(3) mwy) v=r.

(4) v =mlwy) v for somev' €V.

PRrROOF. (1) = (2). If (1) holds, then BouK is dense in PvK. If a € I and
s = s,, then P, C P, so that P,uK C PvK C BouK. Thus (2) holds.

(2) & (3) If (2) holds, then (3) holds, since m(wy) is a product of terms of
the form m{sa), @ € I. Assume (3) holds. If o € I, then sqwy < wy, so that
m(sq)m(w;) = m(wr). Hence (2) holds.

(3) = (4). Trivial

(4) = (1). If (4) holds, then ByvK is dense in BowrBo - Byv'K, and hence is
dense in Pv'K, so that v € V;.

COROLLARY 3.4.3. For eachv € Vi, let T'(w) = {v/ € V | m{w;)-v' = v}.
Then we have:

(1) G=1l,ev, PvK.

(2) For each v € Vy, we have PvK = 1, icr( By’ K.

We note that Proposition 3.4.2 and Corollary 3.4.3 give a description of the
fibres of the map f; in terms of the action of M on V.

Let P; be the variety of all conjugates of the parabolic subgroup P. Then
there is an obvious correspondence between the K-orbits on Py and the (PxK)-
orbits on G. Thus all of the results of this subsection have an interpretation in
terms of the K—orbits on P;.

In a number of concrete examples, one can give quite precise descriptions of
the sets V7 and I'(v). See the comments in §5.4.

4. The partial order on the orbits

(See [RS, §7].) We define a partial order on the set V' of orbits as follows:
' < v if and only if O(v') € O(v). We call this the Bruhat order on V because of
the analogy with the usual Bruhat order on W. It is also useful to define another
partial order on V, the weak order, denoted by +. If o', v €V, we write v’ v
if v belongs to M - v/, the M-orbit of v/, This is equivalent to the condition that
there exists a reduced decomposition (v = (vg, ..., V), s) of v and an integer 7,
0 < j <k, such that v/ = v;. It is clear that - is a partial order on V and that
v’ b v implies that v' < v.
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The following result is the key to the combinatorial description of the Bruhat
order on V.

PROPOSITION 4.1. Lets € S andv € V and assume that v — m(s)-v. Then

O(m(s) -v) = | J P.OW).

v <y

The proof of Proposition 4.1 is by an easy induction on I(v).
It will be convenient to translate Proposition 4.1 into a combinatorial frame-
work involving the action of M on V. If s € S and v € V, we let

p(s,v) = {v € V| OW)C POWw)} = { EV}m(s‘)m’:m(s)-v}.

It follows from the case analysis of 2.5 that p(s,v) contains either one, two
or three elements. If s is compact imaginary for v, then p(s,v) = {v}. If 5 is
complex for v, then p(s,v) = {v,s v} and s-v # v. If 5 is either real or non-
compact imaginary for v, then p(s, v) contains either two or three elements. We
observe that {v,m(s)-v} C p(s,v) and that, if v" € p(s,v), then p(s,v) = p(s,v).

The following result is a reformulation of Proposition 4.1:

PROPOSITION 4.2. Let s € S andv € V and assume that v — m(s)-v. Then

{(v eV v <m(s) v}= U (s, v).
v’ <v

Thus, for y € V, we have y < m(s) v if and only if there exists v' < v such that

m(s) -y =m(s)-v.

We note that Proposition 4.2 gives an elementary inductive description of the
partial order on V in terms of the M-action on V. In [RS], the property of the
partial order < on V' given by Proposition 4.2 is called the “one-step property”.
It describes how the partial order behaves as we go up one step from v to m(s)-v.
(The description of the set p(s,v) in [RS] is slightly different from the one we
have given here.)

The Bruhat order on V has a number of properties which are generalizations
of standard properties of the Bruhat order on the Coxeter group W = (W,S).
We list below a number of these properties. The proofs are in [RS, §5-§7] and
involve a considerable amount of combinatorial formalism.

DEFINITION 4.3. Let (v = {vp,...,v;),8 = (81,..., 5% )) be a reduced decom-
position of v. A sequence u = (ug,...,u) in V is a subexpression of (v,s) if
ug = vp and, for every ¢ = 0,...,k ~ 1, one of the following three alternatives

holds: (a) wiy1 = us; (b) u; — m{8ip1) - u; = uzp1; or

(c) uy — m{8iqy1) - u;, Uip1 — M{Siq1) - Uigr
and  m(si41)  w = m(8i41) - Uip1-
If u=(ug,...,ur) is a subexpression of (v,s), then uy, is the final term of u.
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In Definition 4.3, if alternative (c¢) holds and if u; % u;41, then 8,41 I8 non-
compact imaginary for u; and w411 = 8,41 - 4.

PROPOSITION 4.4. Let v/, v € V and let (v,s) be a reduced decomposition of
v. Then v’ < v if and only if there is a subexpression u of (v,8) with final term

v,

ProPOSITION 4.5 (The exchange property). Let {(v,s = (s1,...,8)) be a
reduced decomposition of v. Let s, v" be such that v' — m(s)-v' = v. Then there
exists ¢ € [1,k] and a reduced decomposition (w = (ug,...,u),8") of v such that
g1 =0 and s’ = (81,...,8;, ..., 5k, 8).

PROPOSITION 4.6 {Property Z(s,u,v)). Letu, v € V and s € S be such that
u— m{8)-u and v — m{s)-v. Then the following three properties are equivalent:
(i) either u < v or there exists u' with v’ — m(s) v = m(s) - u such that v’ < v;
(iiy m(s’ v <m(s)-v; and (iil) v <m(s)-v.

PROPOSITION 4.7. Let u, v € V be such that v — m(s) - v and u < m(s) - v.
Then one of the following three conditions holds: (i) u < v; (i) u — m(s) - u
and there exists v’ such that v’ — m(s) - v = m(s)-u and v’ < v; and (i)
there exists u” < v such that v — m(s) - u"” = w.

ProprosiTioN 4.8 (The chain condition). If u < v, then there exists a se-
quence u =g < g < - < up =0 with {u;q1) =Hw)+1 fori=0,....k— 1.

DEFINITION 4.9. A partial order <X on V is compatible with the M-action on
V if the following three conditions are satisfied for al w, v € V and s € §: (i)
v = m(s)-v; (i) if uw < v, then m(s)-u X m(s) -v; and (iii) if u < v and
I(v) <i(u), then u = v.

ProroSITION 4.10. The Bruhat order on V' s the weakest partial order on
V' which is compatible with the M —action on V.

A direct description of the weakest partial order on V compatible with the
M-action on V is given in [RS, §5.2].

4.11. The Bruhat order on Z. Using the M—action on 7 and the length
function L on Z, we can define precise analogues of all of the earlier results of
this section for the set 7 of twisted involutions. The definition of a reduced
decomposition of an element of T is essentially the same as that given in 4.3 for
reduced decompositions of elements of V. We also have an obvious definition of
a partial order < on 7 being compatible with the M-action. The Bruhat order
on 7 is defined to be the weakest partial order on 7 which is compatible with the
M-action. It is a surprising fact (at least to the authors) that this Bruhat order
on T agrees with the restriction to T of the usual Bruhat order ou W. In [RS],
it was incorrectly stated that these two partial orders on T were not necessarily
equal. A proof that they are equal appears in [RS1]. We refer the reader to
[RS, §5 and §8] for the precise formulation of analogues for the Bruha. order on
T of 4.3-4.10 above. We will only formulate the appropriate exchange condition:
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PRrROPOSITION 4.11.1 (The exchange condition). Let a € Z, let L{a) = k and

let s = (s1,...,8;) be a sequence in S such that a = s 0 8g_30---0s1 0L Let
s € § be such that s o a < a (or, equivalently, such that sa < a). Then there
exists i € 1,...,k such that soa=sy0---05,0---08;01.

Tt seems to be a non-trivial exercise to give a direct proof of 4.11.1.

§5 Combinatorial parametrization of the
orbits. The Hermitian symmetric case

Tt follows from the Bruhat Lemma that the (Bg % Bp)-orbits on G (or, equiv-
alently, the G-orbits on B x B) can be canonically parametrized by the Weyl
group W. We would like & similar parametrization for the K-orbits on B. For
one class of pairs (G, 8), those of “Hermitian symmetric type”, there exists an
elementary parametrization which is very satisfactory. We shall describe this
parametrization in this section. A detailed exposition will appear in a paper
now in preparation by one of us (RWR).

5.1. The hermitian symmetric type. We will assume in §5 that G is
simple (over its center) and simply connected. We consider first the case F' = C.
In this case, G is a simple complex Lie group and has an underlying structure of a
simple real Lie group. By a Cartan involution of G we mean a Cartan involution
of the underlying simple real Lie group. It is known that there exists a Cartan
involution 7 of G which commutes with #. Let o = 6r = 76. Then the fixed
point subgroups U/ = G and Gg = G are real forms of G and U is a maximal
compact subgroup of G. Let Kp = U? = UNK = (Gg)? = GrNU. Then Ky
is a maximal compact subgroup of both K and Gg, and the coset spaces U/Kg
and Gr/Kg are dual irreducible Riemannian symmetric spaces. We say that the
pair (G,0) is of Hermitian symmetric type if Gr/Kg is a Hermitian symmetric
space; this is equivalent to the condition that U/Kg be a Hermitian symimetric
space. It is known that Gg/Kg is Hermitian symmetric if and only if the center
of Kg (or of K) has positive dimension (see [H, Chap. 8]).

We return to the case where F is algebraically closed of characteristic # 2.

DEFINITION 5.1.1. Let G be simple and simply connected and let § be an in-
volutive automorphism of G. Then we say that (G, 8) is of Hermitian symmetric
type if the center of G? = K has positive dimension.

Roughly speaking, involutions 6 of G such that (G, 8) is of Hermitian symmet-
ric type correspond to parabolic subgroups of G with abelian unipotent radical.
A precise statement is given in Theorem 5.1.2 below.

In Theorem 5.1.2, G is simple and simply connected and we do not assume
that we are given in advance an involution 8 and a standard pair (By, To)-

THEOREM 5.1.2. (1) Let P be a parabolic subgroup of G with abelian unipotent
radical. Let By be e Borel subgroup of P and let Ty be o mazimal torus of
B{). Let & = @(G,TQ), let Ot = @(TQ,BQ) and let A = A(B{)T(}) Let o =
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oaca Nal@)a denote the highest root. Let J C A be such that P = P;. Then
J is equal to A\ {7}, where v is an element of A such that ny(a) = 1. In
particuler, P is a mazimal (proper) parabolic subgroup of G. Let ¢, € Ty be such
that v(cy) = —1 and alcy) = 1 for o € J and let 6 = Int{c,) denote the inner
automorphism induced by ¢,. Then § is an involutive automorphism of G and
G? = K is the unique Levi subgroup of P containing To. In particular, K has a
center of positive dimension, so that (G, 6) is of Hermitian symmetric iype.

(2) Let By be a Borel subgroup of G and let Ty be o mazimal torus of By.
Let @, A and & be as in (1) above. Let v € A be such that n (&) = 1 and let
J = A\ {v}. Then the standard parabolic subgroup Py has abelian unipotent
radical.

(3) Let 6 be an involutive automorphism of G such that the center of K = GY
has positive dimension. Then there exist P, By, Ty, ¢y, ... as in (1) above such
that 0 = Int{c,) and K = GY is the unique Levi subgroup of P containing Tp.

See [RRoSt] for (1) and (2).

Using the classification of involutions [$2], one can show that the classification
(over F) of pairs (G, ) of Hermitian symmetric type corresponds exactly to the
classification of simply comnected, irreducible Hermitian symmetric spaces of
compact type. See [H, p. 518] for this classification.

REMARK 5.1.3. Let A = {ay,..., @, } and let the simple roots be indexed as
in [Bou, Planches I-IX]. We list below all simple roots -y such that n,(a) = 1.
The corresponding (maximal) parabolic subgroups Py, where J = A\ {v}, give
all standard parabolic subgroups with abelian unipotent radical.

(1) Type A,. Y=y, Qg .., Qg

(2) Type B,. ¥ = ay.

(3) Type Cp. v = aa.

(4) Type D,. Vo= O, Gpet, G

(5) Type Es. v = ay, ag.

(6) Type E7. Y= Q7.
For types Eg, Fy and G, there are no proper parabolic subgroups with abelian
unipotent radical.

5.2. The parameter set £. For the rest of §5, we will assume that (G,9)
is of hermitian symmetric type. Let P, By, Tp, A&, J = A\ {v}, ..., be as
in Theorem 5.1.2(1). We note that, since § is an inner autororphism, 7 is the
set of involutions of W. For each v € V, the involution ¢(v) is an invariant
associated to the orbit O(v). In the case at hand, there is a second natural
invariant which one can associate to O(v). Since K C P, each (By x K)-
orbit of G is contained in a unique (By x P)~orbit and it is known that the set
of (Bg x P)-orbits is canonically parametrized by W/W;. Thus we obtain a
surjective map v : V — W/W; defined by: v(v) = dWy if ByvK C BodP. Let
D=Dy={deW|d(J)C @} be the set of minimal left coset representatives
for W/Wy. Ford € D, let V(d) = {v eV |v(v) =dW;}. Thus, forveV
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and d € D, we have v € V(d) if and only if BovK C BodP. Consequently,

BodP = [ ev (g OW)-
If sd < d, then sd € D and we have

PSBOSdP = BoSdP U BQSB()SdP = B()SdP U BQdP

The following theorem gives detailed information on the corresponding relation-
ship between the sets of orbits V(sd) and V(d).

THEOREM 5.2.1. Let s € § and d € D, with sd < d.

(1) Letwv € V(sd). Then: (i) v — m(s)-v andv # s-v; (ii) BsBO(v) =
O(s-v)UO(m(s)-v) C BdP; and (iii) P;O(v) = O(v) U O(s-v) U O(m(s) - v).
Furthermore s is either complex for v, in which case s -v = m(s) - v, or non-
compact imaginary for v, in which case s-v # m(s) - v.

(2) Let v, v' € V(sd), with v # v'. Then P,O(v) and P;O(v') are disjoint.

(3) V(d)=s V(sd)yum(s) V(sd) = [{ev(sa) {5 v,m(s)-v}.

We now have the following key theorem:

THEOREM 5.2.2. Definen:V — I x W/W; by n(v) = (¢(v),v(v)). Thenn
is tnjective.

SKETCH OF PROOF. In order to prove Theorem 5.2.2, it suffices to prove that
the restriction of ¢ to each subset V(d), d € D, is injective. The proof is by
induction on I(d). Let sd < d. In the inductive step of the proof, one needs
to analyze the passage from V(sd) to V(d), and the necessary information for
doing this is given by Theorem 5.2.1.

It follows from Theorem 5.2.2 that the subset set £ = image(n) of T x W/W,
is a parameter set for the set V of orbits. If d € D, let Z(d) = {a € T | (a,d) €
£}. Thus £ = {(a,d) € T x W/W; | a € I(d)}. Note that 1 € D. Since
BoK = BoP = P, it is easy to see that Z(1) = {1}. The following lemma gives
an elementary inductive description of the sets Z(d), and hence of the parameter
set £.

LEMMA 5.2.3. Letd € D and s € § be such that sd < d. Then
I(d) = s * Z(sd) Um(s) x I(sd).

The proof follows from 1.4.4, 3.3.3 and 5.2.1(3).
Next we describe the image of 7. Let ¥ denote ®(Ty, Ry (P)), the support of
R.(P).

THEOREM 5.2.4. Let (a,dW;) € T x W/W, withd € D. Then (a,dW;) €
image(n) if and only if there exists a sequence (b1, ..., Br) of mutually orthogonal
roots in ®t N d(—T) such that a = sg, 53, - - 54, -

Briefly, the proof goes as follows. For each d € D, let A(d) be the set of all
a € T such that a = sg, sg, - - - 8g,,, where (B1,.--,0k) is a sequence of mutually
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orthogonal roots in @7 Nd(—U). Let sd < d. Then one proves that
Ald) = s x A(sd) Um(s) x A(sd).

Since it is clear that A(1) = {1}, it follows from 5.2.3 that A(d) = Z(d), which
proves 5.2.4.

5.3. An example. Let G = SL(n, F) and let v = a;, (we follow the notation
of Remark 5.1.3). In this example, the coset space G/ P is the Grassmann variety
of k—planes in F™ and

K=1{(g,h) € GL{k,F) x GL{n — k, F) | det(g)det(h) =1},

where we embed GL(k, F) x GL(n — k,F) in GL{(n,F) in the obvious way.
Assume that k <n — k.

We will give an elementary description of the parameter set £.

We identify the Weyl group with the symmetric group 5,. Then Wj is the
stabilizer of [1,%] in S,. Each involution a in S, is a product of disjoint two-
cycles:

a = (i17j1>(i27j2)"'<iijT) with 7:13 <jp7 p:l?...,r.
We set Hi(a) = (.- jr} = {3 € [1,n] | a(j) <} and Lo(a) = {ir,... i} =

{i € [1,n] | a(d) > i}; we say that Hi(a) (resp. Lo(a)) is the set of high points
(vesp. low points) of a. Let ¥ = X(k,n) denote the set of all k-element subsets
of [1,n]. f we W, let w e T denote {w(l),...,w(k)}. Then the map w — w,
W — I, is constant on left coset of W; and induces a bijection from W/W; to
.

The set D of minimal left coset representatives is given by
D={deW|d(1)<d(2) - <dk)and dk+ 1) <dk+2)---<d(n)}.

We have ¥ = {d | d € D}. The subset ¥ (the support of B,(P)) is equal to
{gi—€; |1 <i<k<j<n} (Wefollow the notation of [Bou, Planche I].)
Let d € D. Then an easy argument shows that

T Nd(—V)={e;—¢;|i<j, jedandigd}.
It follows from this that
I{(d)={a €I |Hi(e) Cdand Lola)Nd=10}.
Thus the set
M =1{(a,d) €T x T |Hi(a) Cdand Lola)Nd=10}

is a parameter set for the set V of orbits.

We discuss in more detail the case n = 4, k = 2. In this case, G/P is the
set of 2-planes in F* and T is the set of two—element subsets of [1,4]. For each
d € T, we list below the involutions in Z(d).



128 R. W. RICHARDSON AND T. A. SPRINGER
d Z(d)
{1,2} 1
{1,3} 1, (2,3)
1,4} 1, (2,4), (3.4)
{2,3} 1, (1,2), (1,3)
(2,4} 1, (1,2), (1,4), (3,4), (1,2)(3,4)
{3,4} 1, (1,3), (1,4), (2,3), (2,4), (1,3)(2.4), (1,4)(2,3)

Thus we see that there are 21 orbits. Note that this list agrees with the list
in [C].

These examples for type A, were worked out by P. D. Ryan [Ry] in his M.Sc.
thesis at the Australian National University. Ryan also gives similar concrete
models of the parameter sets for the other pairs (G,#) of Hermitian symmetric
type whenever G is a classical group (i.e., for the examples of type B, C, and
D, in Remark 5.1.3).

5.4. The actions of M and W on the parameter set £. We define
actions of M and W on the parameter set £ = image(n) by requiring that
n:V — € be an isomorphism of M-sets and of W-sets. Thus, if w € W and
v € V, then we have n(m(w) - v) = m(w) - n(v) and n(w - v) = w - n(v).

In order to describe the action of M on &, we first need to define an action of
M on the set W/W;. Let s € S and let d € D. Then we define ms) - dW; by
the following rules: (i) if sd < d, then m(s) - dWy = dWy; (i) if sd > d, then
m(s) - dWy = sdW,. This determines an action of M on W/W;.

REMARK. In the definition above, if sd > d, then sd € D if and only if
sdWy # dWy. If sdW; = dW, then we have m(s) - dW; = dW;.

The following theorem determines the actions of M and W on &:

THEOREM 5.4.1. Let s € S and (a,dW;) € €.

(1) m(s)-(a,dWy) is equal to (m(s)xa, m(s)-dWy) if (m(s)xa,m(s)-dWs) €
£ and is equal to (a,dWy) if (m(s) xa,m(s) - dW;) ¢ €. The latter case
can only occur if s is imaginary for a and sdW; = dWy.

(2) s (a,dW;) is equal to (sas,sdWy) if (sas,sdWy) € £ and is equal to
(a,dWy) if (sas,sdW;) & £. The latter case occurs if and only if 5 s
real for a and sd < d.

5.5. The opposite parabolic P~. Let P~ be the unique parabolic sub-
group opposite to P which contains To. Then K = PN P~. If J = —wel(J),
then P~ = woPywp. In particular, P~ is conjugate to P if and only if J = J'.

LEMMA 5.5.1. (1) The map ¢ — BeP™ is a bijection from D to Bo\G/P~.
(2) Let ¢, d € D. Then BdP™ C BcP~ if and only if ¢ < d. (3) Lete,d€ D.
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Then BAP N BeP~™ £ 0 if and only if c < d. If ¢ < d, then BAP N BeP™ is a
smooth irreducible variety of dimension I{(d) — l{c) + dim P.

PrOOF. The proof of (1) follows from [RRoSt, §5]. The proof of (2) and (3)
follows from [R2, §3] (see, in particular, 3.6, 3.7 and 3.9.1).

Note the reversal of order in (2) of Lemma 5.6.1.

Since K C P, every { By x K)—~orbit is contained in a unique (Bg x P~ )-orbit.
It follows from Lemma 5.6.1 that the {By x P~ )-orbits are also parametrized
by W/W;. We define a map v/ : V. — W/W; as follows: V/(v) = cW; if
BovK C BgeP~. Welet p: V — T x W/W; x W/W; denote the map v —
(¢p(v), v(v),v'(v)). We let £* denote the subset image(p) of T x W/W; x W/W ;.
Thus p maps V bijectively onto £* and we may also use £ as a parameter set
for the orbits.

The relation between the maps v and v/ is given by the following lemma:

LEMMA 5.5.2. Let v € V and let p(v) = (a,dWy,cWy). Then dW; =
acWy = m(a) - cWjy.

5.6 Partial order on the orbits. The following lemma is easy to prove:

LEMMA 5.6.1. Let v/, v € V, let p(v') = (a,dW;,d/W;) and let p(v) =
(a,dWy,cWy), with ', d', c,de€ D. Ifv' <w, thena' <aandc < <d <d.

It has been conjectured by P. D. Ryan that the converse of Lemma 5.6.1 holds.

CONJECTURE 5.6.2 (P. D. Ryan). Let v/, v € V, let p(v') = (a/,d'W;, W)
and let p(v) = (a,dWy,eWy), with ¢/, d', ¢, d € D. Then v' <wv if and only if
a <agande<d <d <d.

This conjecture is implicit in Ryan’s M.Sc. thesis [Ry], although it is not
explicitly stated there. In loc. cit., Ryan gives considerable evidence for this
conjecture. We (PDR and RWR) now have a proof of the following slightly
weaker result:

THEOREM 5.6.3. Let the notation be as in Conjecture 5.6.2 and assume fur-
ther that I(v) = 1(v')+ 1. Thenv' <v if and only if’ <a andc < < d' < d.

Since the partial order on V satisfies the chain condition (see Proposition 4.8),
we see that Theorem 5.6.3 gives an elementary description of the partial order
on the set V of orbits in terms of the parameter set £%. '

If d € D, it is not difficult to see that BydK is a closed subset of G. Let v(d)
be the corresponding element of V, so that Bov(d)K = BedK. Then Vp, the set
of closed orbits, is equal to {v(d) | d € D} and v(d) £ v(d) ifd# d. Ifv eV,
let Co(v) = {vg € Vo | o < v}. We can also prove the following special case of
Ryan’s conjecture (which is not covered by Theorem 5.6.3).

THEOREM 5.6.4. Let v € V and let p(v) = (a,dWy,cW), with ¢, d € D.
Then Co(v) = {v(d') |c <d < d}.

‘Here is an equivalent form of Ryan’s conjecture:
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CONJECTURE 5.6.5. Let v/, v € V, let ¢’ = ¢(v) and let a = ¢(v). Then
v < if and only if ' < a and Co(v') C Co(v).

§8. Orbits of real forms of G and duality of orbits

In §6 the base field F' will be the field C of complex numbers. Other than this,
the notation is as in §1-84. We will have occasion to consider two distinct topolo-
gies on algebraic varieties and their subsets, the classical (Hausdorff) topology
and the Zariski topology. Unless explicitly indicated otherwise, in §6 all refer-
ences to topological concepts will refer to the classical topology. Thus a closed
set is closed in the classical topology and a Zariski-closed subset is closed in the
Zariski topology. By a torus, we mean a compact Lie group isomorphic to a
product of circle groups, as opposed to an algebraic torus, which is an algebraic
group isomorphic to a product of multiplicative groups C*.

Let 7 be a Cartan involution of (the underlying real Lie group of) G which
commutes with . Let 0 = 67 = 76 and let Gp = G° and U = G” be the
fixed point subgroups. Then U and Gy are real forms of G and U is a maximal
compact subgroup of G. We wish to study the orbits of the real Lie group Gy on
the flag manifold B or, equivalently, the (Bg x Gg)-orbits on G. In general, the
Gr-orbits on B will not be complex submanifolds of B. We also study orbits of
Gr on generalized flag manifolds P; & G/P;. Matsuki has shown that there is a
natural duality between K-orbits and Gr—orbits on B (or on P;) which reverses
the natural partial order on these orbits. It turns out that all of the machinery
of the paper [RS] applies to the Gg orbits in a natural way. In §6, we will review
(and sometimes reformulate) a number of Matsuki’s results and indicate how to
apply the methods of [RS] to these problems. We will only sketch the results
here. A detailed exposition will appear in a paper by one of us (RWR).

6.1. Duality of orbits. Let Kg = GgN K. Then Ky is a maximal compact
subgroup of both Gr and K. In particular every connected component of Gp
and of K meets Kg. Let I' = {Idg,0,7,0}. Then T is a subgroup of the group
of all Lie group automorphisms of G. It is clear that Kp = GT. We note that T’
acts on 7 and B; recall that 7 denotes the set of all maximal algebraic tori of
G. We let TV denote the set of all ['-stable maximal algebraic tori.

PROPOSITION 6.1.1. Each K -orbit on T? meets TT in a unique Kp—orbit and
each Gr-orbit on T° meets T in a unique Kg-orbit. Thus we have canonical
bijections between the three following sets of orbits: (i) K\T?; (ii) Gg\T?; and
(iii) Kp\7T.

Note that Proposition 6.1.1 also gives a bijective correspondence between
the following sets: (i) Gr conjugacy classes of Cartan subalgebras of Lie(Gg);
(i) K conjugacy classes of §-stable Cartan subalgebras of Lie(G); and (iii) Kg
conjugacy classes of f-stable Cartan subalgebras of Lie(Gg).

For the rest of §6, we assume that the standard pair (B, Tp) of 1.2 is chosen
such that 75 € 77, Let C = U NTy. Then C is the unigque maximum compach
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subgroup of Ty and is a maximal torus of the compact connected Lie group U.
Let Wi (Tp) (respectively We, (Tp)), denote the image of Nx(Tp) (respectively
Ng(To)) in W = W(Ty). Similarly, let W, (C) denote the image of Ng (C) in
W(C) = Ny(C)/C.

LeEMMA 6.1.2. (1) The inclusion map U — G maps Ny(C) into Ng(Tp)
and induces an isomorphism of W(C) onto W(Ty). (2) The inclusion map
Kg « K induces an isomorphism of Wk, (C) onto Wi (Ty). (3) The inclusion
map Kg — Gg induces an isomorphism of Wi, (C) onto Wg, (Ts).

COROLLARY 6.1.3. Wg(Tp) = W (Th).

We define subsets Vg, V,, and Vr of G by:
(6-1) Vo={geG|gblg™") € Ng(To)}.
(6-2) Vo ={g€G|golg™") € Na(Tv) }.
(6-3) Vp={ueU]|ud(ut)e Ny(C)}.
We note that g € V, if and only if the maximal algebraic torus 9 o To i§ o-stable.
Similarly, if w € U, then u € Vr if and only if the maximal torus * C of U is
f-stable. Note also that Vr = VeNU = V,NU. We observe that Vr (respectively
V,) is stable under the action of C x Kg (respectively Tp x Ggr). We have the
following orbit sets:
(6-4) Vr =C\Vr/Kg.
(6-5) Vo =To\Vs/K.
(6-6) Vo =Tp\Vs/Gr.
REMARK. In the earlier sections, the set Vy was denoted by V and Vp was
denoted by V.

THEOREM 6.1.4. (1) Each (T x K)-orbit on Vg meets Vo in a unique (C X
Kp)-orbit. Thus the inclusion Vr — Vg induces a bijection of orbit sets Vr — Vj.
(2) Fach (Ty x Gr)-orbit on ¥V, meets Vr in o unique Kr-orbit. Consequently
the inclusion map Vp — V, induces a bijection from Vpr o V. (3) The inclusion
Vr < G induces bijections from Vp onto Bo\G/K and By\G/Gg.

It follows from Theorem 6.1.4 that the set Vp naturally parametrizes the
following sets of orbits: (a) Bo\G/K ; (b} Bo\G/Gr; (c) K\B; and (d) Gr\B.
If v € Vp, we let O(v) = BouK and let R(v) = BovGr. We let K(v) (re-
spectively G(v)) denote the K-orbit on X (respectively the Gr-orbit on X)
corresponding to v. Thus, if v = CuKy € Vr and if 2 = u™! - 2 (where 29 € X
corresponds 1o By € B), then K(v) = K -z and G(v) = Ggr - z. We have:
(6-7)  Bo\G/K ={O0(v)|veir}
(6-8) BQ\G/GR = {R(?)) lveVr }
(6-9) K\X ={K(v)|ver}
(6-10)  Gr\X ={G(v)|ver}.
It is well-known that U acts transitively on Band that UN By =UNTy = C.
It follows easily that, for every B € B, the intersection U N B is a maximal torus
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of U. We also note that o(By) = 17{Bg) = “°Bg. The intersection B N 7(8)
is a (r-stable) maximal algebraic torus of G and BN U is the unique maximal
compact subgroup of BN r(B). We let B* denote the set of all B € B such that
BNU is B-stable, or, equivalently, such that B N (B) is f#-stable. We observe
further that B € B* if and only if BNI(B) N r(B) No(B) is of maximal rank.

THEOREM 6.1.5. (1) Each K-orbit on B meeis B® in o unique Kg-orbil.
Thus the inclusion map B* — B induces a bijection of orbit sets Kp\B* — K\B.
(2) Each Gr~orbit on B meets B* in o unique Kp—orbit, so ihat the inclusion
B* — B induces a bijection Kp\B* — K\B.

The proof follows easily from Theorem 6.1.4.
Welet X* ={z € X | B, € B}. Then X" is a Kp-stable, closed differen-
tiable submanifold of the projective variety X.

ProPOSITION 6.1.6. Leiz € X*. ThenGrp - zNK -z = K- .

DEFINITION 6.1.7. (1) Let 2, y € X. Then the orbits K -z and Gg - y are
dual orbits if X - 2 NG -y meets X*. If this happens, then there exists z € X*
such that K -2 NGr -y = Kp- 2. (2) Let g, ¢’ € G. Then the (By x K)-orbit
BpgK and the {Bp x Gg)-orbit Bog'Gg are dual orbits if there exists h € G such
that B()gK N Bog,G;g = BQ}I,K'R

PROPOSITION 6.1.8. Let v, v' € V. Then the orbits K{v') and G(v) (respec-
tively O(v') and R(v)) are dual orbits if and only if v =1,

6.2. The map ¢ and the action of M and W on the Gr-orbits. For
the moment, we let f denote the bijection Vp — Vj given by Theorem 6.1.4.
We use the bijection f to transfer the actions of M and W on Vjp to actions on
Vr. Similarly, we may consider ¢ as a map from Vr to Z. Thus let v € Vr, let
vy = f(v) and let w € W. Then we set ¢(v) = ¢(v1), w-v = f~Hw-vy) and
m{w) -v = f~Ym(w) - v1). Since we also have a bijection from Vp to V,, and
since V, parametrizes the orbit sets Bo\G/Gr and Gr\B, we obtain actions of
W and M on these orbit sets; we may also consider ¢ as a map from these orbits
sets.

For w € W, we let @ € W denote no(w), where ng =np, 7, : W — Wisasin
Remark 1.7.

The following proposition gives a geometric interpretation of the map ¢ in
terms of the action of ¢ on B.

PROPOSITION 6.2.1. Let v € Vp, let a = ¢(v) and let z € G(v) (so that
G(v) = Gg - z). Then Wy = nolawy) is the relative position of (By,0(By)).

We define a partial order on Vi by requiring that the bijection Vr — V be an
isomorphism of posets.

6.3. Case analysis for the (B x Gr)—orbits on P,uGr. We follow the
notation of the earlier sections as regards real, complex and imaginary roots.
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Thus, let v € Vp, let v1 = f{v) and let s € §. Then we say that s is real
(respectively compact imaginary, ... ) for v if s is real (respectively compact
imaginary, ...) for v;.

Let s € § and v € Vr. We can carry out an analysis of the (Bp x Gg)-orbits
on PyvGp as in §2. For the (B x Gg)-orbits, the analysis of the corresponding
orbits on P! is a bit different from that of §2 and we will discuss it first. Let
Y =P, let y€Y and let P = P,. Then G NP = (PNo(P))°. As before, let
X, = B(P) = P'. Let H, denote the image of Gg N P in A, = Aut(X,); note
that Hy is a (real) Lie subgroup of A,. There are essentially three cases:

Case 1. s is complex for v. In this case, there are two Hy—orbits on X, one
of which is a fixed point.

Case 2. s is compact imaginary for v. In this case H, is a maximum compact
subgroup of A, and acts transitively on X,

Case 3. s is either real or non-compact imaginary for v. Then Hg, the identity
component of Hy, is isomorphic to PSL(2,R). There are three H§~0rbits on Xy,
the “equator”, the “upper hemisphere” and the “lower hemisphere”. The equator
is a circle and the two hemispheres are open orbits. If Hy is not connected, then
it permutes the two hemispheres, and there are only two H, orbits.

We have the following analysis for the (By x Ggr)~orbits on P,vGg.

Case A. s is complex for v. Then PsvGp = R(v) UR(s-v) and 5-v # v.
If sa > a (respectively sa < a), then R(v) (respectively R(s - v)) is open and
dense in P,uvGgr and R(s - v) (respectively R(v)) is closed of codimension two in
Ps’UGR.

Case B. s is compact imaginary for v. In this case there is only one orbit, so
that P,uGr = R{v).

Case C. s is non-compact imaginary for v. Then there exists v’ € Vr such
that R{v") is closed and of codimension one in P,oGr. We have P,oGgp =
R(v')UR(v) UR(s-v). The orbits R(v) and R(s-v) are open in P,uvGg. There
are either two or three orbits, depending on whether or not v = s - v.

Case D. s isreal for v. The orbit R(v) is closed of codimension one in P,vGp.
There exists v’ € Vr such that P,uGg = R(v) UR(v') UR(s-v'). The orbits
R{v'} and R(s-v') are open in P,uGg and there are either two or three orbits,
depending on whether or not s-v' = 2.

We note that the case analysis for the (By x Gg)-orbits on P,vGp is a bit
different from the corresponding analysis for the By x K-orbits. In the first
place, all of the closure relations get reversed. Furthermore, the dimensions of
the orbits behave somewhat differently.

6.4. Further results. Using the case analysis of 6.3, we can now prove a
number of theorems for the (By X Gg)-orbits on G or, equivalently, for the Gp—
orbits on X. We can also obtain a number of results relating to the duality of
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orbits. We list below some of these results. In the results below, all dimensions
referred to will be the real dimensions.

LEMMA 6.4.1. Let v € Vp and s € S. Then R(m(s) - v) is the unigue closed
(Bg x Gr)-orbit in PyvGr.

THEOREM 6.4.2. Letv € Vi and let a = ¢(v). Then the codimension of R(v)
in G is equal to l(a). Equivalently, the codimension of G(v) in X is equal to l(a).

COROLLARY 6.4.3. Let z € X and let b € W be the relative position of
(Bg,0(B;)). Then dimGg -z = |®F| + ().

Note that the dimension of the orbit Gg - z is explicitly determined by the
relative position of (B,,o(Bz)).

THEOREM 6.4.4. Let v/, v € Vp, let @’ = ¢(v') and let a = ¢(v). Then the
orbits G(v') and K(v) intersect transversally in X . In particular, each connected
component of G(v') N K(v) is a smooth locally closed submanifold of X whose
dimension is 2L(a) + dim B(K%) —I(d/).

THEOREM 6.4.5. Let v/, v € Vp. Then the following conditions are equive-
lent:

1) v <v.
(2) K@) cK(v).
(3) G(v) CcG).
4) GO)NK()#9.

THEOREM 6.4.6. Let v, v e Vp withv' <wv. Then

Gv)NK(w) =G(v')NK(v)
= ] Gw)nK(w).

v/ << <

All of the results of §4 concerning the partial order on the (By x K)-orbits
of G (or the K-orbits of X) apply equally well to the (Bo x Ggr)-orbits of G
(or the Gr—orbits of X). However all of the inclusion relations are reversed.
In this case the length function on the set Vp (carried over from the length
function on Vy via the bijection Vp — Vj) does not relate quite so directly to
the dimension of the corresponding orbit R(v) (or G(v)). We give below the
analogue for (Bg x Gr)-orbits of Proposition 4.1. First we need more notation.
IfECG weset E°=G\ (E\E).

PROPOSITION 6.4.7. Let s € § and v € Vr and assume that v — m(s) - v.
Then
R(m(s)-v)"= | ] PR().

v'<v
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6.5. The Hermitian symmetric case. Assume that (G, 9) is of Hermitian
syminetric type, as defined in §5. This is equivalent to the condition that Gg/Kg
be a Hermitian symmetric space. The combinatorial classification of (By x K)-
orbits on G given in §5 also gives a combinatorial classification of the (By x Gg)-
orbits on G via the duality between these two sets of orbits. Note that, by
Theorem 6.3.2, one can easily read off the dimensions of the (By x Gg)-orbits
from the parameter set £ . Note also that we have a complete description of the
closure relations between the Gr—orbits in terms of £. There does not seem to
be any easy geometric interpretation of the map v : V — W/Wj of §5 in terms
of the Gg—orbits.

6.6. Duality of orbits on generalized flag manifolds. Let ] C A and
let P = P; be the variety of all conjugates of the standard parabolic subgroup
Pr. We will briefly indicate how to set up a correspondence between K-orbits
and Gg-orbits on P. If Q € Py, set

Gr=QNn7(@)NoQ)Na(Q).

One can show that Qr is a reductive algebraic subgroup of G. Let P* denote
the set of all @ € P such that Qp is of maximal rank. We note that P* is stable
under conjugation by elements of K.

THEOREM 6.6.1. (1) Each K-orbit on P meets P* in e unique Kp-orbit.
Thus the inclusion P* — P induces a byjection Kg\P* — K\P of orbit sets.
(2) Each Gg orbit on P meets P* in a unique Kp-orbit. Hence the injection
P* — P induces a bijection Kp\P* — Gg\P.

Let Z = Kp\P*. By Theorem 6.5.1, Z naturally parametrizes the sets of K-
orbits and Gr-orbits on P, so that again we get a duality between these orbits.
For each z € Z, let K(z) (respectively G(z)) denote the corresponding K-orbit
(respectively Ggr-orbit) on P.

THEOREM 6.6.2. Let 2/, z € Z. Then K(2') C K(2) if and only if G(z) C
Gg(z").

We note that, if (G, ) is of Hermitian symmetric type, one can get quite
explicit information on the Gg-orbits on P if we combine the results of §5 and
of 3.4. In particular, if G is a classical group, then [Ry]| gives elementary and
explicit combinatorial models for the set K\P of K—orbits on P (and hence for
the Gp—orbits on P).

6.7. Comments. (1) Most of the results of §6 are due to Matsuki. The work
of Matsuki related to K -orbits and Gr—orbits on flag manifolds (and generalized
flag manifolds) appears in a series of six papers [M1-M5, MO]. Matsuki consid-
ers a somewhat more general problem, namely the orbits of minimal parabolic
subgroups on {real) affine symmetric spaces. In addition, there is a considerable
amount of cross referencing in this series of papers. Perhaps for these reasons,
we have sometimes had difficulty in understanding the precise statements of his
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theorems. The proof that there is a natural bijective correspondence between the
K-orbits and the Gg-orbits is in Matsuki’s original paper [M1], although the
proof that this bijection is order reversing does not seem to appear until a later
paper. As nearly as we can tell, most of the results of §6.1 are essentially due
to Matsuki. The results of Theorem 6.4.2, Corollary 6.4.3 and Theorem 6.4.4
on the orbit dimensions and the transversality of intersections seem to be new.
Theorems 6.4.5 and 6.4.6 are due to Matsuki. Our proofs of these theorems,
which rely on Theorem 6.4.4, are quite different. The duality of K-orbits and
Gr—orbits on generalized flag manifolds is due to Matsuki.The application of the
techniques of [RS] to the Gg—orbits is new, as are the more explicit results for
the Hermitian symmetric case.

(2) Throughout §6, we have assumed that Gg = G7. This is not an essential
assumption, and all of the results of this section go through if one only assumes
that Gg is a subgroup of G7 containing (G”)°. In this case, one lets Kz = GrNU
and lets K denote the Zariski closure of Kg in G. Then we have (G?)? ¢ K C G?,
and the arguments of Remark 1.1 apply.

§7. A Hecke algebra representation

7.1. Introduction. We keep the notations of the preceding sections. Denote
by H the Hecke algebra of the Weyl group (W, 5). Recall that H is an algebra
over the ring of Laurent polynomials Z[g,¢™!] with a basis e, (w € W). The
multiplication is defined by the following rules, where w € W, s € 5,

{ €4€y if I(sw) > l{w),
€€y =
(g — ey + gesy if I{sw) < l(w).

See [Hu, Ch. 7]

To our data G, 8, By, Ty one can associate a representation of H, i.e. an H-
module M. This representation was found by Lusztig and Vogan. It is described
in geometric terms in [LV]. We shall describe it here in purely combinatorial
terms, following [MS]. We shall not go into the details of the construction, which
invokes the powers of l-adic cohomology. But in order to describe the module
M we need to say a bit about the fine structure of the (By x K)-orbits O(v).

Namely, one ingredient of the construction is a finer geometric analysis of
the product morphism P, x O(v) — P,vK. The analysis leads one to consider
sheaves on O(v) which are locally constant for the étale topology (briefly: local
systems), which moreover are (Bg x K)-equivariant. Let z € O(v) and let I
be its isotropy group in (Bp x K). The local systems in question are classified
by the characters of the finite group I,/ I0. Therefore we need some information
about these groups.

7.2. Component groups. Let z € V, let v = TozK and write write n =
z(6z)"L. Let a = ¢(v), so that a is the image of n in W. Write T, = {t € Tp |
af(t) =t} and denote by A, the component group T,/ TO. Let U = R,(By).
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LemMMA 7.2.1. (1) I, is isomorphic to the semi-direct product of T, and a
connected subgroup of U. (2) A, is an elementary abelian 2-group.

The proof is easy.

Let y = tuzz € O(v), where t € Ty, u € U, z € K. Then the coset ¢T,,
depends only on y. We define a morphism g, : O(v) — To/Ty, by pe(y) = tTh.
We have an isogeny of tori T,/TC — Tp/T, which is a Galois covering with
group A,. A character x of that group defines a local system of rank one Ly
on Tp/T,. The inverse image Ly, = p,*(Ly) is a (Bp x K)-equivariant local
system on O(v), whose isomorpism class does not depend on the choice of the
representative z.

The Hecke algebra module M which we are going to describe has a basis
indexed by such isomorphism classes. In the geometric analysis alluded to before

one has to relate the groups A, and Apn(s)0- In relating these groups, we have
to distinguish cases (see §2).

LEMMA 7.2.2. Assume that s is complez for v. Then s induces an isomor-
phism Ay = Apy(s).0-

This is straightforward. Recall that in this case m(s) -v = 5 - v.

We assume (as we may) that m(s)-v > v. If 5 is not complex for v then
5 is non-compact imaginary for v. We then have ¢(m(s) - v) = sa = ab(s).
Let a be the simple root with s = s,. Then saf(a) = —a, from which one
sees that a(Th,(6).,) C {1,—1}. It follows that « induces a character y(a) of
Am(s)v- Denote by a" the co-root associated to a. Then oV¥(—1) € Ton(s)-v
and n(a¥) = aV(——l)TY?%(S).v defines an element of A,,(,.,. From (a,a") =2 it
follows that n(«¥) lies in the kernel of x(a).

LEMMA 7.2.3. Assume that s is non-compact imaginary for v. Then
Ay = Kery(a)/{1,n(a")}.
Proor. One shows that

Ty = Im(a") (Thys).0 N Ker(a)), and
Ty = Im(a’ )T, (5).0)-

mi{s)-v

whence

—

Ker{x{(a)) = (Tm(s),v NKer(a)) /TT?%(SM
= (Im(@”)(Tiney-» NKex(@)) / (Tm(@*)T0)., ) = To/T2,

from which the lemma follows.

This lemma shows that the quotient of the order of A (s)v by the order of

A, equals 1, 2 or 4. Hence the order of A, is increasing with respect to the weak
order on V.
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Denote by I', the character group of A,. The lemma implies that ', is
isomorphic to a quotient of the annihilator I"m( oy Of n(aY) in Tpye)n. We
denote by 9 or Yy, (s).0,s the induced homomorphism F;n(s)_v — I',. Notice ¢ is
bijective if and only if x(a) = 0.

The following criterion for the vanishing of x(«) follows readily from the
definitions.

LemMA 7.2.4. x(a) =0 if and only if s - v # v.

Notice that in this case there is an obvious isomorphism s : T'y — 'y

If 5 is real for v, then there exists v’ € V such that s is non-compact imaginary
for v" and v = m(s)-v’. The preceding results then apply with v, m(s)-v replaced
by ', v.

7.3. The Hecke algebra module. Denote by M the free Z[g, ¢~ *]-module
with a basis fyy, where v runs through V and x € T'y. In [LV] M is endowed
with a structure of H-module. In order to describe this module structure, it
suffices to describe the products e, fy 5, where s € §. We have to distinguish
several cases, t0 be described now.

{(a) s is complex for v and m(s)-v =5 v > v. Then

esfox = Fm(s)v,sx -
The notation s.x is explained by Lemma 7.2.2.
(b) s is complex for v and v =m(s) - (s-v) > s-v. Then
esfox = (0= Dfox + @fovsx-
{¢) s is compact imaginary for v. Then
esfox = 0fox-

(d) s is non-compact imaginary for v and s - v # v. Using Lemma 7.2.4 we
see that now the homomorphism v of the preceding section is an isomorphism
of a subgroup of 'y, (4., onto I'y,. We have

esfox = Fm(s)vp=1(x) T Fsosx -

(e) s is non-compact imaginary for v and s-v = v. Then here are two elements

x' and x” in F;n(s)_@ whose image under ¢ is x. We have

esfv,x = fm(s)-v,x’ + fm(s)m,x“ -+ f’U,X .
In the remaining cases s is real for v. Then there is v’ € V such that v =

m(s) - v/ > o' and s is non-compact imaginary for v'. We denote by ¢’ the
homomorphism 9, s of of the preceding section. Let ve V, x € [',.

(f) I x ¢ T then

esfv,x = "fv,x .
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(g) Hx el and s-v' # ¢ then

esfu,x = (Q - Q)fv,x + (q - 1)(fv’,v + fs"v’,s-z/)a

where v = ¢'(x).
(h) I x eIl and s-v = ¢ then

esfv,x = (q - 1)fv,x - fv,x’ + (q - 1)fv',v-,
where X' # x, ¥/ (x') = ¥/ (x) and where v is as in case (g).

That the preceding formulas do indeed define an H-module is proved in [LV]
by geometric means. Of course, a direct algebraic proof ought to be possi-
ble, but would be cumbersome. Our formulas look somewhat different from
those of [LV, pp. 371-372] or [V1, p. 403}, as we have formulated everything
in combinatorial terms. Our formulation follows [MS], where a more general
situation is considered. Our cases (a), ... ,(h) correspond to the cases labeled
(b1),(b2),(a),(d1),(c1),(e),{d2),{c2) in [LV,V1]. In these references, Kazhdan-
Lusztig polynomials are defined for this situation. We shall not go into this. See
also [MS].

7.4. Specializations. The formulas describing the module structure on M
show that they define, in fact, a representation of the Z[g]-subalgebra Mg of H
with basis e,, (w € W). We can therefore specialize ¢ to some element of F,
obtaining a representation of the specialization of the Hecke algebra.

(a) g — 1. It is well-known that now H, specializes to the group ring Z[W].
Hence we obtain a representation of W in a free Z-module with basis (fy x:1),
the index set being as before. The action of a simple reflection s € W is read off
from the formulas for the action of e,, with ¢ = 1.

(b} ¢ — 0. Now Hp specializes to the ring with a free Z-basis m(w) (w € W),
the multiplication of the basis elements being as in the monoid M = M(W). The
element e,, specializes to (—1)(*)m(w). We have a representation of the monoid
M in a free module with basis f, 0. The action of m(s) (s € ), is obtained
from the formulas for the action of e; by changing the sign of the right-hand
sides and specializing ¢ to 0.

{¢) g—oo. ForweW,veV, and x €T, put

€w = (I—l(w)f?w and fv,x = q*d(v)fv,xa

where d(v) is the dimension of the orbit 0,. One checks that the e, span a
Z[g~']-subalgebra of M and that its elements stabilize the Z[g™']-submodule of
M with basis f, , of M. We can specialize ¢ to oo, obtaining a representation of
M (W) in a free module with basis f, y..o. We obtain that in cases (b),(c),(g),(h)

m(8) * foxio0 = fupioo -
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In case (f) the left-hand side is 0, and it equals fow,s.x:00 iDt caSE (a),
Frm(e)vp=1(x)i00

in case (d) and
fm(s)v,xl;oo + fm(s)v,xt!;oo
in case (e). The notations are as before.

7.5. Examples. We now give a few examples of the Hecke algebra repre-
sentations in low rank. In the first two examples the groups I'y have order < 2.
We shall write fy , = fai, where d is the dimension of the orbit O(v) and i = 0
(respectively 1) designates the trivial (respectively the non-trivial) element of
r,. If [, is trivial we write fao = fa. If there are several orbits with the same
dimension we write f4i, fy;, ... for the corresponding basis elements. In these
examples there will be at most two such orbits. Working out the details is a
straightforward matter.

(a) G = SL(2,C), 6(g) = cge™ !, where ¢ = diag(1,—1). We write ¢ for the
only generator of H. The representation is as follows.

efo = fo+ fio,

efo = fo+ fio,

efio = (g —2)fro+ (g — V) (fo + f5)
efir = —Jfu-

(b) G = PSL(2,C) and 6 is induced by the automorphism of the previous
example. The formulas are different.

efo = fo+ fio+ fi1,
efio = (g— 1) fro— fu+(g—1)fo,
efir=(g—Dfi1—fio+(@=Dfo.

Write )

ﬁ)="ff07 -%Z“fﬁ’ and fl():fgv
where the star denotes the dual basis of the dual module. Qpe Ehecks that the
in the dual representation (g — 1) — e acts on the elements fo, fb, and fio as e
acts on the corresponding elements without a tilde in example (a). This is an
example of a general duality phenomenon, studied at length in [V2].

(¢) G=SL(3,C), b(g) = tg=1, The Hecke algebra H has two generators, 1
and eq, corresponding to the generators (12) resp. (23) of the Weyl group Ss.
The corresponding simple roots are oy and as.

There is one orbit of length 0 and 2, and there are two of length 1. See [RS,
pp. 432-433], where the case of SL(n, C) is dealt with. One shows that the groups
T', are trivial, except when O(v) is the maximal orbit, in which case it has order
4. In fact, the analysis of [loc. cit.] gives in that case an isomorphism of I', onto
the diagonal subgroup of SL(3,C) with (diagonal) entries 1. The roots ai, a2,
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and oy + o9 define characters of I',,. The corresponding basis elements of M
are denoted by fa1, f22 and fa3, respectively. The other notations are as before.
The representation is as follows.

eifo=f1, exfo=/fi, eifr= fao+ far+ fi,

exfi=(a—Dfi+afo, eufi=I(g—1)f1+afo,
eafy = foo + foz + f1, erfao = (g —1)fa0 — far + (g — 1) f1,
exfoo = (¢ — V) fao = fa + (g~ 1) f1, eifor = (g~ 1)far — fao + (g —1)f1,
eafor = —fo1r, eifa2=—fa2, eafao=(q—1)fa2— foo+ (¢ —1)f1,
e1fes = eafoz = — fas.

Editors’ note. In the final stages of the production of this volume the editors
learned that one of the contributors, Roger W. Richardson, died in Canberra,
Australia, on June 15, 1993. Roger was a valued colleague and a close friend of
many of the contributors to this volume, as well as of many others who partici-

pated in the conference. His sudden death at a time when he was actively
engaged in mathematical work is a sad loss.
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ON EXTRASPECIAL PARABOLIC SUBGROUPS

GERHARD E. ROHRLE

0. INTRODUCTION

In this note we extend a result from joint work with R. Richardson and R. Stein-
berg [RRS] regarding the structure of abelian radicals of parabolic subgroups in
Chevalley Groups to the so called ‘extraspecial’ case.

Let G be a simple, connected algebraic group over an algebraically closed field of
characteristic p > 2 or 0. Let T' be a maximal torus of G and ¥ the corresponding
root system of . We fix a Borel subgroup B D T and denote the set of simple
roots of ¥ with respect to B by A. Let p (ps) denote the highest (short) root in
¥. Assume that G is not of type A,. There is a unique simple root o satisfying
(o, p) = 1. (Here (B,7) = (B,7"), where v = 2v/(v,7) is the coroot of v, for
B,y € W.) Let P = P, = LV be the corresponding maximal standard parabolic
subgroup of G with V = R, (P), the unipotent radical of P. The Levi complement
of V in P, L, is generated by T and all root subgroups whose roots are orthogonal
to p. There is a unique parabolic subgroup P~ of @ satisfying P~ N P = L with
Levi decomposition P~ = LV ™, where V™ = R, (P7). The derived subgroup of V
is U, the root subgroup corresponding to the highest root p. Let Vi, respectively
V™, denote the commutator quotient of V, respectively V~. Our goal is to study
the conjugation action of L on V; or V.

By U, U;, Uy, etc. we denote the root system of the groups G, L, V, etc. We
also write Uy, for the roots in the support of V1, i.e., Uy, = Uy \ {p}. The Weyl
groups of G and L are W and W, respectively. We call a subset of roots of ¥ an
orthogonal set of roots provided these roots are mutually orthogonal. Let A denote
the set of all orthogonal sets of long roots in Wy, including the empty set. Note
that Wi acts on A.

It is known that L acts on V; with a finite number of orbits. This is a special
case of a result due to R. W. Richardson [Ri2, Theorem E]. Our main theorem
describes a connection between the L-orbits on Vy, the (P, P) double cosets of G,
and the Wy —orbits on A. This is the precise analogue for the case of an abelian
radical [RRS]. Let ug € Ug and ug # 1.

Main Theorem. Let G be a simple, connected algebraic group over an alge-

braically closed field of characteristic p > 2 or 0. not of type Ay,. Let P, = LV be
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