FROM COMPACT GROUPS TO ROOT SYSTEMS
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ALLEN KNUTSON

1. GENERALITIES ON COMPACT CONNECTED LIE GROUPS

Throughout, let K be a compact connected Lie group.

Theorem (Oracular fact #1). There is a K-equivariant map exp : € — K from the adjoint repre-
sentation to the group acting on itself by conjugation, and its image is dense.

Proof. There are a couple of different ways to see this. One is to put a K-invariant symmet-
ric definite form on ¢, thereby a K x K-invariant Riemannian metric on K, and use the ge-
odesic spray to define the exponential map (as usual in Riemannian geometry). Another
is to embed K in U(n) via the Peter-Weyl theorem and restrict the standard exponential
from U(n).

(In fact for compact groups K, which is all we discuss, the map is onto.) O

Corollary. The kernel of the adjoint representation € is the center Z of K.

Proof. Since Z acts trivially on K by conjugation, it obviously acts trivially on ¢. Con-
versely, if k € K acts trivially on ¢, then it fixes a dense subset of K (by the exponential
map), and by continuity it fixes all of K, so it’s in the center. O

Theorem (Oracular fact #2). A closed subgroup of a Lie group is Lie.

(This, we aren’t going to prove right now.)

2. MAXIMAL TORI

Let T a maximal torus of K: a subgroup of K isomorphic to (S')", with n maximized.
Our main example so far has been K = U(n), T the diagonal unitary matrices. Note that
this is not the same as a maximal abelian subgroup: the diagonal matrices in SO(3) are a
Z, x Z; that do not live in any maximal torus (as those are =S).

Define the rank of K as the dimension of T. (In particular, if K = T, then rankT = dim T.)
This is usually denoted 1.

Define the roots A of K as the nonzero weights of the complexified adjoint representa-
tion ¢QC of K on its Lie algebra, restricted to T. (We complexify only because we under-
stand complex reps of T better than real ones.) This is a finite subset of the weight lattice
T

Lemma. Let 3 denote the Lie algebra of the center Z of K. Then 3 < t, and its perp inside t* is the
linear span of the roots A.

In particular, the roots span t* if and only if Z is discrete.

1



Proof. Let Zbe the center of K, and Z, the identity component. Then we claim that Z, < T.
For otherwise, we could take the closure of the group generated by Z, U T, which would
be a compact, connected, abelian Lie subgroup, therefore a torus properly containing T.
But this contradicts T’s maximality.

In particular, Zo < ZNT < Z. On the Lie algebra level, this says 30 < 3Nt < t. But
30 =3 Sowegetz <t

Now consider the kernel of T’s action on ¢®C. This is just T N Z, so its Lie algebra is
tN 3 = 3. Put another way, the kernel of s action is 3.

But we can calculate this kernel also from the roots A:

3 =ker = ﬂo&z (G}]Roc)L

xeA xEA
(Here the L of a root « € t* is a hyperplane in t.)

So the roots span t* if and only if 3 is zero, which is true if and only if Z is discrete. I

(In fact Z, not just Z,, is always inside T, but this is not easy to show, since the example
in SO(3) above shows it’s not true for arbitrary abelian subgroups.)

Proposition. The multiplicity of the root « € A is the same as that of —«.

Proof. At this point we really need to think about T’s action on ¢®C, and the hard part is
to understand T’s irreducible real representations (and how they complexify). Start with
T acting on the real vector space €. This has a 1-d fixed subspace, t (which complexifies
to a complex 1-d fixed subspace). The rest breaks up into R?’s. Any one of them can be
identified T-equivariantly with C, acted on with some weight x. When we complexify,
this irreducible action on R? complexifies to the reducible representation C, & C_. There-
fore the number of times C, shows up in £¢®C is the same as the number of times C_4
does. O

(One of our goals is to show that this number is only 0 or 1.)

3. THE LEVI SUBGROUPS

Given a root « € A, let ker « denote the codimension-one subgroup of T. Note that it is
not necessarily connected. Then define

Ky := Ck(ker )
as the centralizer of this subgroup, i.e. the fixed-point set of the conjugation action of
ker oc on K. This is called the Levi subgroup corresponding to «.
If A < B is a subgroup, denote by Ng(A) its normalizer in B.

Proposition. Let K, T, A, K, be as above.

1. Kg > T. In particular K 's roots are a subset of A.

2. The roots of Ky are AN Z«.

3. Let ¢ : Ky — Ky/kerax. Then S := $(T) is a maximal torus of Ky/ ker o, and Ng(T) =
" (Nico el S)).

4. Sisacircle, i.e. Ky/ ker  is a rank one group.

2



Proof. 1. Since T is commutative, it centralizes any of its subgroups, so T < K,. Then
t.®C is a T-subrepresentation of ¢QC, and as such we have the containment on the
weights.

2. The group ker « acts trivially on K, by conjugation, but the only weight spaces it acts
trivially on are the multiples of «.

3. The action of T on ¢®C descends to an action of T/ ker « on £,/ (x*)®C, whose zero
weight space is t/(o")®C. So S := T/ ker « (obviously a torus) doesn’t centralize any
other subspace of £/(a'). Hence it is a maximal torus.

For the other statement, let n € K:

nTn '=T = é(Mn)Sp(n)'=S$

therefore ¢(Nk(T)) < Nk kera(S). Conversely, if ¢(n) conjugates S to itself, then n
conjugates ¢~'(S) to itself. Then only subtle point is that $~'(S) may be larger than
T (and will be if ker  is not connected), although dimensionally they must be the
same.
Therefore T is the identity component of ¢ '(S), and since n preserves ¢ 1(S), it
must preserve its identity component.
4. Since ker « is codimension one in T, the quotient S is 1-dimensional.

Therefore we want to get a handle on these rank one groups.

4. RANK ONE GROUPS

We want to prove the following;:

Theorem. Let K be a compact connected Lie group with a 1-dimensional maximal torus T. Then
K=S', SU(2), or SO(3).

In this section, K will always be such a group. We start with an easy case:

Proposition. If K is three-dimensional, then K =SU(2), SO(3).

Proof. The adjoint action of K on itself is a map K — GL(¢) = GL(R?), with kernel Z(K). If
we pick an invariant inner product on this space, the map lands inside O(3). But since
K’s connected, it actually lands inside SO(3).

If this real representation is reducible (hint: it’s not), then it’s got a 1-d invariant sub-
space. In that representation K is mapping to SO(1) = 1, i.e. it’s the trivial representation.
So it corresponds to a 1-dimensional central subgroup H of K. Pick a maximal torus S of
the quotient K/H, and lift a Lie algebra element of it to . That generates another circle in
K, commuting with H, making a rank 2 torus (at least) in K, contradiction.

Therefore Z is finite, and the map factors as K/Z — SO(3), with image a 3-dimensional
group, therefore all of SO(3). So the map K — SO(3) is a covering space.

If we consider the case SU(2) (which is simply connected), we get a double cover of
SO(3). Therefore SO(3)’s fundamental group is Z,, and its only cover is S3. It is easy to
show that the group structure on the universal covering space of a connected Lie group
is unique, so SU(2) is the only possibility. O



Consider now the complexified adjoint representations of SU(2),SO(3). Identify the
maximal torus with S, so we can consider A as a subset of Z.

Start with SU(2). Then su(2)®C=51(2,C) hasabasis (34), (%), (9§), with weights
2,0,—2.
This action factors through SO(3), but we have to use a different identification of SO(3)’s

(different) maximal torus with S', and all the odd weights of SU(2) disappear (they aren’t
weights of SO(3)’s torus). So SO(3)’s weights are 1,0, —1.

Call a 3-dimensional subgroup H of K a high root subgroup if H > T, H’s roots are £n,
and K’s are contained in [-n, n]. This definition is used more generally than K being rank
1, where it turns out to be stupid:

Proposition. If K has a high root subgroup H, then K = H.

Proof. Consider ¢QC as a representation of H, which we already know to be isomorphic
to either SO(3) or SU(2).

If H=SO(3), then n = 1, and A’s only possible weights are 1,0, —1. So t®C is a sum
of a copies of SO(3)’s 3-d rep and b of its trivial rep, giving it a zero weight space of
dimension a + b. But since T only centralizes itself, a + b=1. Soa=1,b =0,and K is
three-dimensional. Therefore K = H.

If H=SU(2), then n = 2, and it’s slightly trickier. Now £®C is a sum of a copies of
SU(2)’s 3-d rep, b of its trivial rep, and c of its 2-d rep (which doesn’t descend to SO(3)).
By the previous analysis a = 1,b = 0, but it may still be that the weight spaces C; @ C_;
is ¢ copies of the standard representation of SU(2) acting on C?.

However, that action does not arise as a complexification (i.e. SU(2) isn’t a subgroup of
SO(2)!), contradiction. Hence ¢ = 0, K is three-dimensional, so K = H. O

So it remains to show that K does indeed have a high root subgroup (unless it’s S', of
course). We do this via the Lie algebra, in a couple of steps.

Proposition. Let n be the highest root in A. Let V. < € be a real T-irrep, complexifying to
Co ® C_,,. Then V @ tis a Lie subalgebra.

This almost deserves to be called a “high root subalgebra”; unfortunately its expo-
nential might not be closed, and the closure might be more than three-dimensional. (Of
course, this doesn’t actually happen — in reality this is the whole algebra!) So even with
this, we won’t be done.

Proof. Consider g := £¢®C as a complex Lie algebra, containing V¢ := V®C. It is enough
to show that V¢ @ t®C is a subalgebra of g.

Let g, gg be two root spaces in g. Since the Lie bracket g®g — g is K-equivariant, it’s
T-equivariant, and takes [gy, gg] — guasp. For us, the important inclusion is [gn, g-n] < go
which is t®C, and 1-d.

Then for any weight vector Vv € gy we have [go, V] = CV. In particular, writing V¢ =
Cv,®Cv_,, (its decomposition into weight spaces), we see that [V,,V_,] € go, and therefore
go ® Cv,, & Cv_,, is closed under bracket. O

Proposition. Let V@t < €be a high root subalgebra as in the last proposition, and H its stabilizer
under the conjugation action. Then H is a high root subgroup.
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Proof. First off, H is at least 3-d, since it contains T and exp(V). Second, H maps to O(V &
t) =0(3). If the kernel isn’t finite, then it contains a circle. Lifting a Lie algebra generator
of O(3)’s maximal torus and blah blah blah, we construct a 2-torus inside H, no good,
therefore the kernel was finite, so H is three-dimensional. O

We sum up:

Proof of the theorem. Let K be a rank one group. Look at A C [-m, n] (where n is the highest
root). Then there is a 3-d subalgebra complexifying to the 0, £n root spaces, and it expo-
nentiates to a 3-d subgroup (by checking its stabilizer). That subgroup must be a cover
of SO(3), and there’s only two of those, namely SO(3) and SU(2). Then since we know
those guys’ representation theory, we see that ¢ can’t have any other components. O

5. COROLLARY: ROOT SYSTEMS

We’re back to thinking about K arbitrary compact connected, but now we know a lot

about its Levi subgroups K,; when we quotient them by a central subgroup we get SU(2)
or SO(3).

Lemma. Let L be a compact, connected group, H a subgroup, such that L/H is rank one non-

abelian. Then L's Lie algebra contains a subalgebra = su(2) (in fact it is the commutator subalge-
bra).

(This is pretty lame — in fact the commutator subgroup L’ of L is SU(2) or SO(3). Even
better, L = (L’ x H) /T where T is either trivial or Z;.)

Proof. Let g := IQC. As a representation of T, its weights are 0,+n for n = 1 or 2, with
multiplicities 1 at the weights £n, and 1 + dim H at the weight 0. Let s¢ := [gn, g_n]. Then
it is trivial to see that sc, gn, g_n generate a subalgebra, and not very difficult to isomorph
it to sl(2,C).

Back in the real picture, instead of g, we have a H-fixed R?, whose commutator defines
a preferred line s < h, and that 3-space is our subalgebra su(2). O

Theorem (Oracular fact #3). Every finite-dimensional representation of su(2) comes from a unique
representation of SU(2).

This isn’t very hard, but we won't take the time for it. (The much better, harder, state-
ment is that the same holds true for any connected simply-connected Lie group, compact
or not.)

Theorem. Pick a K-invariant positive definite bilinear form (,) on ¢, and therefore on t and
t* O A. Then if x € Ais a root,

1. the multiplicity of o is 1
2. ANRx =+«
3. if B € Ais another root, the reflection

B_z(cx,ﬁ)

(o, )

x

of B through the hyperplane o™ is a root.

4. that number 2% is an integer



5. each weight B — ke, for k € [0, 2(“"3)} , is a root. (“Root strings are unbroken.”)

(o, x)

Proof. The first two of these just follow from the fact that K/ ker « is a rank 1 group, and
therefore SU(2) or SO(3), whose root systems we know. (In fact can only be SO(3).)

For the third, pick a lift n € N(T) of the element

01 O
10 0
00 -1

in Nk, /kera(S) =SO(3), where we have picked a basis so that S is the upper left SO(2).
This lift w normalizes T (as we proved before), preserves the invariant form, acts trivially
on Z(K,) > ker o, and takes o — —a. Therefore it is the reflection in the hyperplane oc*.
(It’s easy to see this must be the formula for the reflection — it takes o« — —«, and fixes the
hyperplane {3 : (3, «) = 0}.)

For the last two, use the fact that ¢®C is a representation of the su(2) found in the
lemma. O

This suggests the definition of abstract root system: a subset A of a positive-definite
real inner product space satisfying 2, 3, and 4 in the above theorem. (It turns out that 5
comes for free.)



