MATH 3210 HOMEWORK #2

ALLEN KNUTSON

Q. Compute the derivative of the determinant map $M_n(\mathbb{R}) \to \mathbb{R}$.

A. If M is invertible,

$$\begin{split} \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\det(M + \epsilon A) - \det(M)) &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\det(M(1 + \epsilon M^{-1}A)) - \det(M)) \\ &= \lim_{\epsilon \to 0} \det(M) \frac{1}{\epsilon} (\det(1 + \epsilon M^{-1}A) - 1) \\ &= \lim_{\epsilon \to 0} \det(M) \frac{1}{\epsilon} (1 + \epsilon \operatorname{trace}(M^{-1}A) + O(\epsilon^2)) \\ &= \det(M) \operatorname{trace}(M^{-1}A) \\ &= \operatorname{trace} \left(\det(M) M^{-1}A\right) \\ &= \operatorname{trace} \left(\operatorname{adj}(M)A\right) \end{split}$$

where adj(M) is the numerator of Cramer's rule for the inverse of a matrix.

Note that the formula for adj(M) makes sense (and is continuous) even when M is not invertible. Since the invertible matrices are dense in all matrices, this continuous formula that holds for invertible matrices must also hold for noninvertible.

```
https://en.wikipedia.org/wiki/Cramer%27s_rule
https://en.wikipedia.org/wiki/Adjugate_matrix
```

Q. Compute the critical points (in the source) and critical values (in the target) of the map $f: M \mapsto MM^T$, from $M_n(R) \to \text{symmetric matrices}$.

HINT: it's easier to compute the perpendicular space to the image than the image itself. Two matrices A,B are perpendicular if $trace(AB^T) = 0$.

A. The derivative is $Df_M(A) = AM^T + MA^T$, as we computed in class. If its image is not full rank, it's because the image is perpendicular to S, i.e. $trace((AM^T + MA^T)S) = 0$ for all matrices A. Rewriting,

$$\begin{array}{lll} 0 = trace((AM^T + MA^T)S) & = & trace(AM^TS) + trace(MA^TS) \\ & = & trace(AM^TS) + trace(S^TAM^T) & since \, trace(X) = trace(X^T) \\ & = & trace(AM^TS) + trace(AM^TS^T) & since \, trace(XY) = trace(YX) \\ & = & trace(A(M^TS + M^TS^T)) \\ & = & trace(A(M^TS + M^TS)) & since \, S = S^T \\ & = & 2trace(AM^TS) \end{array}$$

The only vector (in the vector space of matrices!) M^TS perpendicular to all A is the zero vector, i.e. $M^TS = 0$.

If M is invertible, then the only such S is zero, i.e. M is a regular point. If M is not invertible, then we can pick $\vec{v} \neq \vec{0}$ such that $M^T \vec{v} = \vec{0}$, and let $S = \vec{v}(\vec{v})^T$, so M is not a regular point.

If M is invertible, then so is M^T and MM^T . If M is not invertible, then neither is MM^T . So the critical values are the noninvertible symmetric matrices.

Alternate answer: we're mapping from an n^2 -dimensional vector space to an $\binom{n+1}{2}$ -dimensional one. So by the nullity plus rank theorem, the derivative is onto iff its kernel is only $\binom{n}{2}$ -dimensional, not larger. What is that kernel?

$$\begin{split} A \in \ker(\mathsf{D} f_M) &\iff & AM^\mathsf{T} + MA^\mathsf{T} = 0 \\ &\iff & (AM^\mathsf{T}) + (AM^\mathsf{T})^\mathsf{T} = 0 \\ &\iff & AM^\mathsf{T} \text{ is antisymmetric} \end{split}$$

If M (hence M^T) is invertible, then such A correspond 1 : 1 to antisymmetric matrices, so the nullity is indeed only $\binom{n}{2}$ -dimensional. It is more annoying to show that if M is not invertible, then the space of A such that AM^T is antisymmetric is larger than $\binom{n}{2}$ -dimensional.

Q. Let O(n) denote the set of orthogonal matrices, i.e. $f^{-1}(1)$. Compute the tangent space to each point of O(n).

A. Let $M \in O(n)$. Then

$$T_MO(n) = \ker(Df_M) = \{A : Df_M(A) = 0\} = \{A : AM^T + MA^T = 0\}$$

In particular, at M = 1, A must be antisymmetric. More generally, $(AM^T)^T = MA^T = -AM^T$, i.e. AM^T (also known as AM^{-1}) must be antisymmetric.

Q. Let G be an $n \times n$ diagonal matrix with k consecutive 1s and n - k consecutive 0s on the diagonal. Let $h : O(n) \to \text{symmetric}$ matrices take $M \mapsto MGM^T$. Compute its derivative and the rank of the derivative.

A. $Dh_M(A) = AGM^T + MGA^T$ much as before. If M = 1, the kernel is

$${A : A + A^{T} = 0, AG + GA^{T} = 0}.$$

If we write $G = \begin{pmatrix} 1_k & 0 \\ 0 & 1_{n-k} \end{pmatrix}$ and $A = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$, then these say $P = -P^T$, $S = -S^T$, Q = R = 0. So the kernel is $\binom{k}{2} + \binom{n-k}{2}$ dimensional, and the rank is $\binom{n}{2} - \binom{k}{2} - \binom{n-k}{2} = k(n-k)$. For general $M \in O(n)$, we want

$$\{B : BM^{T} + MB^{T} = 0, BGM^{T} + MGB^{T} = 0\}$$

Multiply each equation by M^T, M on left and right, to obtain

$$\{B : M^TB + B^TM = 0, M^TBG + GB^TM = 0\}$$

Now under the correspondence $A=M^TB$, these are the same equations as before, i.e. the kernel has the same dimension as before. Hence the rank is again k(n-k), independent of $M \in O(n)$.

E-mail address: allenk@math.cornell.edu