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This is just barely the amount of algebraic geometry needed to appreciate that the goofy
construction we gave of the representations of U(n) is actually based on some very clas-
sical geometry.

1. TWO LINE BUNDLES ON PROJECTIVE SPACE

Let CP™ ' := (C™ — {0})/C* denote the space of 1-d subspaces of C*, or projective
space. This is naturally a complex manifold.

The incidence variety
Ch:={#1) eC xCP"":v el
consisting of pairs (vector,line) such that the vector lies in the 1-d subspace, has a natural
map to C" by projection onto the first factor. Note that if ¥ # 0, then | = C¥, so this map
is generically one-to-one. But if Vv = 0, the fiber is CP™'. This is called the blowup of C*
at the origin.

It also has a projection onto the second factor. The fiber over an element 1 € CP™' is
exactly the line 1 C C™. This is the tautological line bundle over CP™ .

Now consider the ring R of complex analytic functions on c. By Liouville’s theorem,
any function on Ccp™! (the fiber over 0) is constant, so these are just the functions on C*,
pulled back. In general we’re going to be more interested in the subring of polynomial
functions (this being “algebraic” geometry, not complex analytic geometry). That’s just a

polynomial ring in n variables, but thought of as functions on C".

R is also a representation of the C* that acts on the first factor of C* by rescaling. The
weight space R, for the weight n € (C*)*=Zis 0if n < 0, and the homogeneous polyno-
mials of degree n forn > 0.

Focus now on an element vV € R;, which is to say, a linear functional on C". Restricted
to each fiber of the line bundle C* over CP™ ', this gives a linear function on the line.
Equivalently, it gives an element of the dual space to the line.

Working in reverse, if we have a section of the dual line bundle, it gives an element of
R;. We sum this up in a coordinate-free way:

Theorem. Let V be a complex vector space, and PV its projective space. Let O(1) denote the dual

line bundle to the tautological bundle V over PV. Then the space of holomorphic sections of this
line bundle is naturally identified with V*.



This is relevant for representation theory in the following way:

Theorem. Let X be a (nonempty) variety with a G-action, V a representation of G, and i: X —
PV a G-equivariant inclusion. Let PW be the smallest projective-linear subspace of PV containing
1(X). Then W is a nonzero subrepresentation of V. Also, the restriction map from sections of O(1)
on PV to sections over i(X) factors through V* — W*.

Proof. PW is automatically a G-invariant subvariety of PV, since it is defined solely in
terms of the G-invariant i(X). When we restrict sections of O(1) from PV to PW, that’s
the map V* — W*. Since X is nonempty, PW is nonempty, so W is not zero. [

2. BOREL-WEIL: EXISTENCE

We already noticed that every representation of U(n) is the restriction of an algebraic
representation of GL,,(C) (i.e. using only ratios of polynomials).

Proposition. Let V be an irrep of GL,,(C). Then there exists a subgroup P such that GL,,(C)/P
is compact, and an algebraic line bundle L over GL,,(C)/P, such that

o GL,(C) acts on the total space of L
e the projection L — GL,(C)/P is GL,,(C)-equivariant
e V is a subspace of the space of algebraic sections of L.

(In fact V will turn out to be all the algebraic sections of L, but we can’t prove that yet.)

Proof. Look at the action of GL,(C) on PV*. Let X be an orbit of minimal dimension. X
is necessarily a closed subset of PV*, because anything in its closure would be of smaller
dimension. (One can imagine grosser things happening, like the topologist’s sine curve,
but these don’t happen in algebraic geometry because it only deals with nice functions
like ratios of polynomials.)

This orbit X is therefore compact (being a closed subset of projective space, which is
compact), and being an orbit, is of the form GL,,(C)/P for P the stabilizer of some point.
Let L be the restriction of O(1) to a line bundle on X.

The restriction of sections of O(1) over PV* to sections over X gives a map from V to the
space of sections of L. Since V is irreducible, this map is either an inclusion or zero. But
the sections of O(1) separate the points of projective space, so the map is nonzero. O

It will turn out that we only need to use one P — the space of upper triangular matrices
in GL,,(C), usually denoted B for “Borel subgroup”. (This is Armand Borel, not his father
Emile of Borel measures etc.)

3. EQUIVARIANT EMBEDDINGS OF GL,(C)/B INTO PROJECTIVE SPACE

So we know we can get the irreps of GL,,(C) by looking at all the ways that GL,,(C)/P
sits in projective space (for subgroups P such that GL,,(C)/P is compact). To figure out
how to make these for P the upper triangular subgroup B, we need to understand the
space GL,(C)/B better.



3.1. The flag manifold. Let Flags(C™) denote the space of maximal chains F = ({0} =
Fo < F1 < ... < F, = C") of subspaces of C*. These chains are called (complete) flags
and Flags(C") the flag manifold or flag variety. (We will see how to make this set into
an algebraic manifold in a moment.)

Given a linear transformation g € GL,(C), letg-F= ({0} < g-Fi<g-Fa<...<g-F, =
C™). This defines an action of GL,(C) on Flags(C").

If we take F; = {(*,%,...,%,0,0,...,0)} to be the obvious i-dimensional coordinate
subspace, we get the standard flag.

Given a flag F, pick unit vectors ¥; € F; N F, for each i = 1...n. This gives an
orthonormal basis from which one can reconstruct each F; = (¥, ..., V). Since U(n) acts
(simply) transitively on the set of orthonormal bases, it acts transitively on Flags(C™).
This shows that Flags(C™) is naturally a manifold, and compact.

On the other hand, since we have an action of the complex group GL,(C) on it, and

the stabilizer of the standard flag is the complex! subgroup B, the quotient is naturally a
complex manifold.

3.2. Grassmannians. Let Gy (C") denote the space of k-dimensional subspaces of C",
the k-Grassmannian. For much the same reasons as the above, each of these is a compact
complex manifold. The most familiar one is k = 1, which is just projective space. There is
an obvious forgetful map Flags(C™) — Gry(C™) which forgets all the subspaces in a flag
other than the kth one. (Q: what are the fibers of this map?)
Multiplying these together, we get an obvious inclusion:
n—1
Flags(C") <= [ [ Gre(CM).

k=1
So if we can embed Grassmannians into projective space, we can embed flag manifolds
into products of projective spaces.

3.3. The Pliicker embedding. Let V<— C™ be the inclusion of a k-plane V. Applying the
Alt* functor, we get a nonzero map Alt*V < Alt“C™, with image some one-dimensional
subspace of C".

Put another way, pick a basis vy, ... , vy of V; the wedge product vi Av, .. . Avy defines
a nonzero element of Alt*C™.

Either way, this gives a way of taking k-planes in C" to lines in Alt“C™, called the
Pliicker embedding Gry (C") < P(AIt“C™) of the k-Grassmannian. Note that it is natu-
rally equivariant with respect to GL,(C).

This begins to look like the rep theory — we have the Alt*s showing up as the basic
building blocks.

3.4. The Veronese embeddings. The next step is take powers of those blocks. Consider
the (nonlinear) map
V — vee Vs V®...QV

lit’s “complex” because it’s defined by the vanishing of holomorphic functions, namely the matrix entries
in the lower triangle



embedding V in its ath tensor power. It is a fairly unimportant comment that in fact the
image lands inside Sym“V, the symmetric tensors. This map V — Sym®V, or rather its
projectivization
PV — P(Sym“V)
is called the ath Veronese embedding. It is obviously GL(V)-equivariant.
So far this gives us a big family of embeddings of flag manifolds into products of pro-
jective spaces

Flags(C") <= | [ Gr(CY) = | [P(Alt*C™) — [ [ P(Sym®*(Alt*C™))
k=1 k=1 k=1
indexed by the choices {ax € N}.
Foreshadowing. If k =n, AIt*C™ and Sym®<(Alt*C") are is 1-dimensional, the projective

space is a point, and it may seem silly to include in the above product. But we'll need it
soon.

3.5. The Segre embedding. Let V, W be two vector spaces, and consider the (nonlinear)
map
Vx W= VeWw, (V, W) — VvW.

This descends to the projective spaces, giving the Segre embedding
PV x PW — P(VQW).

Now we have our projective embeddings!
Flags(C") — P(®7_,Sym® (Alt“C"))

The discussion from before suggests that we should look for irreps of GL,,(C) as quo-
tients of (the dual space of) @}_;Sym®* (AIt*C™). But we’ve run into this already.

4. THE RELATION WITH REP THEORY

We’ve seen this combination ®{<‘=]Sym“k(A1tkC")) before; it was strongly dominated,
and so contained an irrep strongly dominated by the same weight. What was unclear in
that construction was how to pick out the big irrep from the other junk that showed up
in the tensor product.

The geometry makes this separation clearer. The image of the flag manifold in the
projective space P(®}_,Sym® (Alt“C™)) does not span the whole space; it is contained in
a subspace.

Example. Consider the a; = a; = 1 embedding of Flags(C?) into Gr;(C?) x Gr(C?) =
CP? x CP?%. The coordinates on the first Grassmannian are a, b, ¢, and on the second are
bAc,c/Aa,a/Ab. Since we're thinking of them as independent we’ll call them x,y, z.

The flag manifold is a hypersurface in Gr;(C?) x Gr(C?), defined by the condition that
the line sit in the plane. Another way to say that is that if one picks a basis for the plane,
and puts the three lines in a matrix, the matrix will have determinant zero. That equation
isax+ by +cz=0.

Now consider the Segre embedding of CP*=>"! x CP*=>"" — CP*=**3"". (Sometimes the
—1 in the exponent is convenient, sometimes not.) The projective coordinates on the CP®

4



are the independent variables ax, ay, az, bx, by, bz, cx, cy, cz. (The image is defined by
equations like ax - by = ay - bx, etc. expressing the fact that these aren’t independent on
the CP? x CP?.) The image of the flag manifold satisfies what is now a linear condition:
ax + by 4 cz = 0. So the corresponding representation of GLj is only 8-dimensional, not
9-dimensional.

(In this case it is even easier to see on the rep side. The rep Alt*C3? (high weight (1, 1,0))
is isomorphic to the dual (C3)* of the standard representation (high weight (0,0, —1))
tensor the determinant representation (high and only weight (1, 1,1)). So the rep

CCRAI’C = C@(C3)*@ det =End(C3)® det.

And this rep End(C?), the conjugation action of GL3(C) on 3 x 3-matrices, splits into the
scalar matrices and (its perp) the trace-zero matrices. That’s the ax+by+cz = 0 condition
again.)

Anyway, this suggests a way of picking out the irrep we want from ®}_, Sym® (Alt*C"));
understand the algebraic conditions that cut the flag manifold out of the product of Grass-
mannians (this plane’s in that plane), that cut out the Veronese, that cut out the Pliicker
embedding (the “Pliicker relations”), and that cut out the Segre (the ax - by — ay - bx-type
from above). We won’t do this, but it can be done, and is done in detail in Fulton’s Young
Tableaux.

Technical note. It seems like the {ay} all had to be naturals, so we're getting a pointy
cone’s worth (N™) of representations here. But we know that the cone of dominant weights
is =(N*!) x Z. What gives?

We know the answer: we need negative powers of the determinant. Which is to say, that
last power a,, can be negative. It’s only involved in a symmetric power of a 1-dimensional
space.

Geometrically, this can look like a pretty weird thing to worry about — isn’t this even-
tually just affecting our choice of a point, P(Sym“™ det)? But no, because over that point is
a line bundle (really, just a line), and the choice of a,, affects how the group GL,(C) acts
on that line. So eventually, when we pull the line bundle back and take sections of it, the
representation of GL,,(C) will be different depending on the choice of a.,.



