
COMPLEX CHARACTER THEORY OF FINITE GROUPS

ALLEN KNUTSON

Throughout, G is a finite group acting on a finite-dimensional complex vector space V ,
i.e. bearing a group homomorphismG→ GL(V). We write the action as g~v, i.e. just using
juxtaposition, except in special circumstances. I’ll assume the language of group actions
(on sets).

1. REDUCTION TO IRREPS

A subrepresentation (or subrep)W ≤ V is a linear subspace invariant under the action,
i.e. g~w ∈W ∀g ∈ G, ~w ∈W.

A representation V is reducible if it has a subrep W ≤ V other than 0,W. It is irre-
ducible (or an irrep) if it is nonzero and not reducible. (So the 0 representation is neither.)

One obvious subrepresentation is the invariant vectors VG := {~v ∈ V : g~v = ~v, ∀g ∈ G}.
Hereafter we use the notation

∫
G

as shorthand for 1
|G|

∑
g∈G. Or, if you know how to do

a left-invariant integral on your group and get
∫
G
1 = 1, then maybe you can work with

some infinite groups, like the circle.

Theorem 1.1. There exists a Hermitian (sesquilinear positive definite) form 〈, 〉 on V invariant
under the G-action.

Proof. Let (, ) be any Hermitian form, i.e. pick a basis and declare it to be orthonormal.
Then define

〈~v, ~w〉 :=
∫
G

(g~v, g~w)

and observe that this is sesquilinear, still positive definite, and now G-invariant. �

Corollary 1.2. Every representation is a direct sum of irreps.

Proof. If V is irreducible, we’re done. Else it has a nontrivial subrep W. Pick an invariant
Hermitian form 〈, 〉 on V , and check that W⊥ is also G-invariant. By assumption, W,W⊥
are both lower-dimensional than V , so we can use induction. �

1.1. More about VG. Let g|V ∈ GL(V) denote the matrix associated to an acting element.

Lemma 1.3. The operator πV :=
∫
G
g|V is a G-equivariant projection V � VG, with trace

dim(VG).

Proof. It’s easy to check that π2V = πV , hence is a projection onto its image. Also, gπV = πV ,
hence that image lies inside VG. But obviously πV(~v) = ~v for ~v ∈ VG, so the image is VG. If
we pick bases of VG and ker πV and concatenate them to a basis of V , then we can easily
calculate the trace. �
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2. SCHUR’S LEMMA

Given representations V of G and W of H, the vector space Hom(V,W) ∼= V∗ ⊗ W
is naturally a (G × H)-representation, by (g, h) · φ := h ◦ φ ◦ g−1. If H = G, then we
can restrict this representation to the diagonal G ↪→ G × G, g 7→ (g, g). The invariant
vectors Hom(V,W)G are written as HomG(V,W) and called intertwining operators; they
are exactly the equivariant linear maps.

Lemma 2.1 (Schur). Let V,W be irreps. Then dimHomG(V,W) = 1 if V ∼=W, 0 if V 6∼=W.

Proof. If φ ∈ HomG(V,W) is not zero, then its kernel is not all of V (and is a subrepresen-
tation, hence 0), and its image is not 0 (and is a subrepresentation, hence all ofW), giving
an isomorphism.

If ρ ∈ HomG(V,W), then φ−1 ◦ ρ ∈ HomG(V,V), and must have an eigenvalue λ. Hence
(φ−1 ◦ ρ) − λ is an equivariant map with a nonzero kernel, which must be V . So (φ−1 ◦
ρ) − λ = 0, i.e. ρ is a multiple of φ. �

Theorem 2.2 (Jordan-Hölder for representations). Given two decompositions of V into irreps,
the number of times an irrepW occurs in the decompositions is the same.

Proof. That number is dimHomG(W,V), by composing the projections of V to its pieces
with the maps fromW, and applying Schur’s lemma. �

Let Rep(G) denote the ring of formal differences of representations of G, with multipli-
cation and addition derived from direct sum and tensor product. Given two representa-
tions V,W and associated elements [V ], [W] ∈ Rep(G), define

〈[V], [W]〉 := dimHomG(V,W)

as an inner product on Rep(G). (One must extend linearly in order to define it on formal
differences.)

Corollary 2.3. This inner product is well-defined, symmetric, and positive definite. The irreps are
an orthonormal basis for Rep(G).

Proof. The irreps span by corollary 1.2, are independent by theorem 2.2, and are orthonor-
mal by Schur’s lemma. One can check well-definedness by expanding everybody into
irreps and counting them. �

Theorem 2.4. Let V be an irrep of G×H. Then V ∼= A⊗ B for two irreps A,B of G,H.

Proof. Pick an H-irrep B inside V (forgetting the G-action), and think of it as a (G × H)-
rep by giving it the trivial G-action. Define A := HomH(B, V) = Hom(B, V)1×H, where
Hom(B, V) is a (G×H)-rep since B, V each are (G×H)-reps. Then since G× 1 normalizes
1 × H, it acts on A, making A a G-rep. Note that one element of A is the inclusion map
B ↪→ V .

Now we have a map A ⊗ B → V given by φ ⊗ ~b = φ(~b), easily checked to be G × H-
equivariant, and nonzero if we take φ to be that inclusion map. Hence its image is a
nonzero subrep of V , so is all of V by irreducibility.

Finally, we check that this map is 1 : 1. As a map of H-reps, this sticks a number of
copies of B into V , and since it’s onto we learn V is H-isomorphic to Bk for some k. (I.e.
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we split A ⊗ B into the kernel plus a complement, and use theorem 2.2 to know that
complement is a sum of Bs.) By Schur’s lemma, dimA = k. Hence dimV = dim(A ⊗ B),
so the onto map must be 1 : 1. �

3. CHARACTERS

From lemma 1.3,

dimHomG(V,W) = dimHom(V,W)G = trace(πHom(V,W)) =

∫
G

trace(g|Hom(V,W))

Lemma 3.1. (1) If V ∼=W, then trace(g|V) = trace(g|W).
(2) trace(g|V⊗W) = trace(g|V)trace(g|W)

(3) trace(g|V∗) = trace(g|V)

Proof. (1) Picking bases, g|V and g|W become matrices conjugate by the matrix φ : V →
W, and hence have the same trace.

(2) Since g acts unitarizably on V andW, it acts diagonalizably. Pick bases w.r.t. which
the actions are by diagonal matrices. Then the action on the tensor product is given
by the Kronecker product of the two matrices, whose diagonal entries are all the
pairwise products, whose sum is therefore the product of the two sums.

(3) The action on V∗ comes from g−1, and trace(M−1) = trace(M) for unitary matrices
(since their eigenvalues are of norm 1).

�

Consequently,∫
G

trace(g|Hom(V,W)) =

∫
G

trace(g|V∗⊗W) =

∫
G

trace(g|V∗) trace(g|W) =

∫
G

trace(g|V) trace(g|W)

This motivates the definition of the character χV of a representation:

χV(g) := trace(g|V)

Unwrapping the g from the notation, χV lies in Fun(G), the space of complex-valued
functions on G. We will make this into a ring via pointwise addition and multiplication
(i.e. from C’s ring structure).

Lemma 3.2. χV⊕W = χV + χW

Proof. In matrix terms, g|V⊕W is block diagonal with g|V , g|W as its blocks, so the trace is
additive. �

On Fun(G) we define a Hermitian inner product

〈a, b〉 :=
∫
G

a(g)b(g)

and unwrap one more level:

Theorem 3.3. χ descends to a map Rep(G) → Fun(G), a ring homomorphism, and an isometry
w.r.t. the two inner products. In particular it is injective.
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Proof. Lemmata 3.1 and 3.2 establish the ring homomorphism statement. Separately, we
matched up the two inner products. If a vector is in the kernel, it has norm square zero
in the target, hence norm square zero in the source, so by positive definiteness must be
zero. �

In particular, the number of distinct irreps is finite!
The map obviously isn’t onto – the source is a lattice Z#irreps, and the target a complex

vector space – but it doesn’t even usually span the target. Let ClFun(G) denote the func-
tions that are constant on conjugacy classes, and observe that χV ∈ ClFun(G) by the fact
that trace(XYX−1) = trace(Y).

4. THE GROUP ALGEBRA

To show that Rep(G) does indeed span ClFun(G), we need enough irreps of G, and
we’ll look for them inside

C[G] := { formal sums
∑
g

λgg }

which later we’ll consider as the group algebra, by linearly extending the multiplication
from the group. (So unlike the formally similar Fun(G), this is usually not commutative.)

Theorem 4.1 (Peter-Weyl1). As a G × G-representation, C[G] ∼=
⊕
V

(V∗ ⊗ V), where V runs

over the irreps.

Proof. It’s some sum of G × G-irreps, which we classified in theorem 2.4, so we use or-
thonomality to find out which ones. �

Proof.

〈χC[G], χV⊗W〉 =

∫
G×G

trace((g, h)|C[G]) χV⊗W(g, h) =

∫
G×G

∑
k∈G

[gkh−1 = k] χV(g) χW(h)

=
1

|G|2

∑
g∈G

χV(g)
∑
k∈G

∑
h∈G

[k−1gk = h] χW(h) where [true] = 1, [false] = 0

=
1

|G|2

∑
g∈G

χV(g)
∑
k∈G

χW(k
−1gk) =

1

|G|2

∑
g∈G

χV(g)
∑
k∈G

χW(g)

=
1

|G|2

∑
g∈G

χV(g)χW(g) |G| = 〈χV∗ , χW〉

which is 1 ifW ∼= V∗ and 0 otherwise by Schur’s lemma, so V ⊗W occurs in C[G] exactly
once in that case. �

Corollary 4.2. The number of irreps is the number of conjugacy classes, hence the characters of
irreps are an (orthonormal) basis of the ring ClFun(G) of class functions.

1They actually work with L2(G) where G is a compact group, and ⊕ is the L2 direct sum, so it’s rather
more impressive.
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Proof. We consider the G-invariants in C[G]. Each summand V∗ ⊗ V has a 1-dimensional
invariant space, by Schur’s lemma, giving a basis to the invariant space. But it’s easy
to see that the invariant space is linear combinations whose coefficients are constant on
conjugacy classes, i.e. the conjugacy classes give a basis of the dual space. �

Corollary 4.3. |G| =
∑

V(dimV)
2.

IfG acts on V , then we can linearly extend the mapG→ GL(V) → End(V) to an algebra
map C[G] → End(V), and it isG×G-equivariant. By the irreducibility of End(V) ∼= V∗⊗V
as a G×G-representation, this map must be onto.

Theorem 4.4 (Artin-Wedderburn, for group algebras). As an algebra, C[G] ∼=
⊕
V

End(V).

Proof. We add up the maps to the individual End(V). For each one, the kernel is⊕W 6=VEnd(W),
and the intersection of these kernels is zero. Hence the map is 1 : 1, and the two algebras
are the same dimension, |G|. �

This is where the idempotent 1
|G|

∑
g∈G g really lives, whose image πV we considered in

End(V) for each rep V . The other idempotents are also easy to construct:

πV :=
dimV

|G|

∑
g∈G

χV(g)g

Exercise: Show that this projects any representation to its V-isotypic component, i.e.
the sum of the irreducible subreps isomorphic to V .

5. CHARACTER TABLES

Given an ordering on the conjugacy classes (which will be the columns) and the irre-
ducible characters (which will be the rows), we make a square (!) matrix with entries
χV(g), called a character table.

Theorem 5.1. If one multiplies column [g] by |CG(g)|
−1/2, the resulting matrix is unitary. Hence

the columns of a character table are orthogonal, and the norm-square of the [g] column is |CG(g)|.

Proof. The rows are now orthonormal by the orthonormality of characters, and the fact
that |CG(g)|−1 = |[g]|/|G|. Hence the columns are now orthonormal. Unscaling the columns,
we get the claimed results. �

This includes corollary 4.3 where g = e, traditionally the leftmost column of the char-
acter table. Likewise, one puts the trivial character χV ≡ 1 in the first row.
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