
SCHUBERT CALCULUS AND QUIVER VARIETIES

ALLEN KNUTSON

CONTENTS

Introduction 2
Notational conventions 2

Part 1. Equivariant Schubert calculus 2
1. Flag and Schubert varieties 2
1.1. Atlases on flag manifolds 3
1.2. The Bruhat decomposition of Gr(k; Cn) 4
1.3. First examples of Schubert calculus 6
1.4. The Bruhat decomposition of flag manifolds 7
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Introduction

NOTATIONAL CONVENTIONS

Part 1. Equivariant Schubert calculus

1. FLAG AND SCHUBERT VARIETIES

Let V denote an n-dimensional vector space over C, and 0 ≤ n1 ≤ n2 ≤ . . . ≤ nd ≤ n a
sequence of d integral “steps”. Our principal object of study in this book is the d-step flag
variety

Fl(n1, n2, . . . , nd; V) ∶= {(V1, V2, . . . , Vd) ∶ Vi ≤ Vi+1 ≤ V, dimVi = ni, ∀i = 1, . . . , d}

So far this is a set, of “d-step flags of subspaces in V”; our first endeavor is to give it the
structure of complex manifold (or more specifically, smooth complex variety).

When V = Cn, there is a natural map

rowspan ∶ GLn(C) → Fl(n1, n2, . . . , nd; Cn)
M ↦ (. . . , span of top ni rows, . . .)i=1...d
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which is easily seen to be onto (pick a basis of V1, extend to a basis of V2, . . . , extend to a
basis of Cn, take that basis as rows of M). This map rowspan is equivariant with respect
to the right1 action of GLn(C), transitive on both spaces.

The basic case d = 1 gets a special name and notation; it is the GrassmannianGr(n1; V) ∶=
Fl(n1; V) of n1-planes in V (and we will usually write k instead of n1). We consider this
case first, to later build on it through the obvious inclusion

Fl(n1, n2, . . . , nd; V) ↪
d

∏
i=1
Gr(ni; V)

(V1, V2, . . . , Vd) ↦ (V1, V2, . . . , Vd)
whose image is the nested tuples, satisfying V1 ≤ V2 ≤ . . . ≤ Vd.

The full flag variety Fl(1, 2, . . . , n; Cn) also gets special notation, Fl(Cn).

1.1. Atlases on flag manifolds. To makeGr(k; V) into a complex manifold, not just a set,
we give it an atlas of charts whose transition maps are holomorphic (in fact, algebraic).
Begin by defining the Stiefel manifold

Stiefel(k; Cn) ∶= {k ×n complex matrices of rank k}
and consider the surjective map

rowspan ∶ Stiefel(k; Cn) ↠ Gr(k; Cn)
The Stiefel manifold is a Zariski open set insideMk×n, the union of (n

k
) principal open sets

Uλ ∶= {M ∈Mk×n ∶ det(columns λ inM) ≠ 0} λ ∈ ([n]
k

)

The fibers of the map rowspan are exactly the left GLk(C)-orbits on Stiefel(k; Cn), and
this action preserves each of the open sets Uλ. Conveniently, this action on Uλ admits a
continuous system of orbit representatives:

U ′
λ ∶= {M ∈Mk×n ∶ columns λ inM form an identity matrix}

and consequently
● the restriction rowspan∣U ′

λ
∶ U ′

λ → Gr(k; Cn) is injective, and
● the images rowspan(U ′

λ), λ ∈ ([n]
k
) cover Gr(k; Cn)

● if we give Gr(k; Cn) the quotient topology, i.e. the coarsest topology such that
rowspan is continuous (w.r.t. the Zariski topology on Stiefel(k; Cn)), then the
images rowspan(U ′

λ), λ ∈ ([n]
k
) are open.

Theorem 1. The charts rowspan∣U ′
λ
∶ U ′

λ → Gr(k; Cn) form an algebraic atlas, makingGr(k; Cn)
a smooth scheme over C of dimension k(n − k).

Proof. Let Gλµ = rowspan(U ′
λ) ∩ rowspan(U ′

µ), so Gλµ = rowspan(Uλ) ∩ rowspan(Uµ) =
rowspan(Uλ ∩Uµ). Its preimages in U ′

λ and U ′
µ are respectively

U ′
λ ∩Uµ = {M ∈Mk×n ∶ columns λ inM form an identity matrix, det(columns µ) ≠ 0}

and the very similar U ′
µ ∩Uλ. The overlap map U ′

λ ∩Uµ →̃Gλµ →̃U ′
µ ∩Uλ is

M↦ (columns µ inM)−1M
which is algebraic.

1For a number of reasons we choose Cn to, as a rule, denote row vectors. One important one is that wide,
shallow matrices fit better on the page.
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As to the dimension, the conditions on each U ′
λ specify k2 of the kn matrix entries,

leaving k(n − k) free. �

For the most part it is easier to work with the kn Stiefel coördinates on the Grassman-
nian, rather than the (n

k
) Plücker coördinates that we won’t2 bother introducing.

As we explain below, much the same construction gives an atlas on Fl(n1, n2, . . . , nd; Cn),
restricting the surjective rowspan map to slices U ′

λ that together cover the target. The
difference is that the group we’re dividing by, instead of GLk(C), is the group P of block
lower triangular matrices inGLnd(C) with diagonal blocks of size n1, n2−n1, . . . , nd−nd−1.

We will need a finer analogue of the covering Stiefel(k; Cn) = ⋃λ∈([n]
k
)Uλ. Let M ∈

Stiefel(nd; Cn) be a matrix we’re making sure not to exclude. Start by picking λd ∈ ([n]
nd

)
such thatM’s submatrix with columns λd (and all nd rows) is invertible, exactly as we did
before. But now we also pick a subset λd−1 ∈ ( λd

nd−1
) such thatM’s submatrix with columns

λd−1 (and first nd−1 rows, a top submatrix) is invertible, then similarly λd−2 ∈ (λd−1
nd−2

), etc.
Encode this sequence (λ1 ⊆ λ2 ⊆ . . . ⊆ λd ⊆ [n]) of subsets as a string λ, whose ith letter is
min{j ∶ j ∉ λi} (considering λd+1 = [n]). To such a string we associate the manifolds

Uλ ∶= {N ∈ Stiefel(nd; Cn) ∶ det(N’s top submatrix with columns λi) ≠ 0,∀i = 1 . . . d}

U ′
λ ∶=

⎧⎪⎪⎨⎪⎪⎩
N ∈ Stiefel(nd; Cn) ∶

N’s top submatrix with columns λi
is a permutation matrix,

whose 1s run NW/SE in rows [1 +ni−1, ni]
∀i = 1 . . . d

⎫⎪⎪⎬⎪⎪⎭
As in the Grassmannian case,

● these (Uλ) cover Stiefel(nd; Cn) (the construction of λ above made sure to hitM),
● they’re invariant under the left action of P (the block lower triangular group de-

fined above),
● the submanifold U ′

λ serves as a system of P-orbit representatives in Uλ, so
● the maps rowspan∣U ′

λ
∶ U ′

λ → Fl(n1, n2, . . . , nd; Cn) form an atlas, again easily
checked to be algebraic.

1.2. The Bruhat decomposition of Gr(k; Cn). The left GLk(C) action on Mk×n is a fa-
miliar topic in first linear algebra classes, under the name “row reduction” or “Gaussian
elimination”. The principal result there concerning it is the construction of a discontinuous
system of orbit representatives, the reduced row-echelon forms (or RREF) such as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 ∗ ∗ 0 0 ∗ 0 0 ∗
0 0 0 0 0 1 0 ∗ 0 0 ∗
0 0 0 0 0 0 1 ∗ 0 0 ∗
0 0 0 0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
characterized by the properties

● The zero rows are at the bottom
● The nonzero rows start with a 1, called a pivot
● The pivotal 1s run NW/SE

2They are coördinates on the smallest GL(V)-equivariant embedding of Gr(k; V) into projective space,
via the map V1 ↦ AltkV1 ∈ P(AltkV). In particular, they let one study the Grassmannian as a subvariety of
a simpler space, rather than as a quotient.



SCHUBERT CALCULUS AND QUIVER VARIETIES 5

● Above each pivotal 1 (and below, automatically) is all 0s.
If we work not with Mk×n but Stiefel(k; Cn), then there can be no zero rows. We assume
this hereafter. Let Cλ denote the space of RREFs with pivots in columns λ ∈ ([n]

k
).

Exercise 1. Consider the 0, 1,∗ matrix, as above, describing the elements of a fixed Cλ. If
we remove the pivotal columns, show that the 0s in the resulting diagram form a “French
partition” in the SW corner of the resulting k × (n − k) matrix. Find a recipe that, starting
from such a partition, says where to reinsert the k pivot columns.

Hereafter we will make reference to the corresponding “English partition”, obtained
by flipping the French partition upside down, and by abuse of notation speak of “the
partition λ” to refer to this English partition.

Exercise 2. Show that the matrix cell (a,b) ∈ [k] × [n − k] lies in the partition λ iff for each
M ∈ Cλ, the left (k − a) + b columns ofM have rank k − a.

In this notation, the principal result about RREFs is that rowspan ∶ ⋃λ∈([n]
k
)Cλ →

Gr(k; Cn) is bijective. This map is continuous, but with discontinuous inverse. Define
the Bruhat cell X○λ ⊆ Gr(k; Cn) as the image of Cλ, and its closure Xλ as the Schubert
variety associated to λ.

Theorem 2. The homology classes associated to the cycles Xλ give a Z-basis for the homology of
Gr(k; Cn). Let [Xλ] denote the Poincaré dual basis element, in cohomology; hence {[Xλ]} form a
Z-basis for H∗(Gr(k; Cn)).

Proof. Each Cλ is a complex vector space, so even-real-dimensional; hence in the cellular
homology complex (freely spanned by the cycles {Xλ}) the differentials are zero. �

Now that we have a ring-with-basis, the natural question is of how to expand a product
of two basis elements in the basis. Studying such questions is the principal aim of the
book. Right now we don’t have enough handle on that basis to be able to do much in the
way of such computation. The following gives a start.

Theorem 3. (1) The Bruhat cells {X○λ} are exactly the orbits of the right action ofB ≤ GLn(C),
the upper triangular matrices; this is called the Bruhat decomposition of Gr(k; Cn).

(2) The subset GLk(C)Cλ ⊆Mk×n is defined as a set by the rank equalities
rank(left i columns) = #(λ ∩ [i]), ∀i = 1 . . .n.

(3) Given V ∈ Gr(k; Cn), we can determine the unique cell X○λ ∋ V as follows:

λ = {i ∈ [n] ∶ (V ∩Ci,...,n) > (V ∩Ci+1,...,n)},
where C j,...,n ≤ Cn is the coördinate subspace using coördinates j, . . . , n.

(4) GLk(C)Cλ ⊆Mk×n = {N ∈Mk×n ∶ rank(left i columns of N) ≤ #(λ ∩ [i]), ∀i = 1 . . .n}.
Call this subset Yλ ⊆Mk×n.

(5) Yλ ⊃ Cµ iff µ’s partition defined in exercise 1 contains λ’s, iff there is a chain Yλ ⊂ Yλ1 ⊂
Yλ2 ⊂ ⋯ ⊂ Yλk = Yµ where the associated partitions differ in size by one square. This
containment on partitions is called the Bruhat order on the Bruhat cells in the Grass-
mannian. ... this probably isn’t quite what I want yet...

(6) Xλ = {V ∈ Gr(k; Cn) ∶ dim(V ∩Ci,...,n) ≥ #(λ ∩ {i, . . . , n})}

Proof. First, we need argue that each X○λ is B-invariant, or equivalently upstairs in the
Stiefel manifold, that CλB ⊆ GLk(C)Cλ. The right action of B consists of scaling the
columns and adding columns to further-rightward columns. If we scale a pivot column
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(spoiling the 1), we can use GLk(C) to unscale the corresponding row (restoring the pivot
entry to 1). If we add a multiple of a column to a later non-pivotal column, the result is
still in RREF. If we add a multiple of a column to a later pivotal column, spoiling some
0s above the pivotal 1, we can use GLk(C) to add multiples of the pivotal row to cancel
those entries back to 0. This settles the B-invariance.

It’s more obvious that B acts transitively on X○λ: already a subgroup of it acts transitively
on Cλ, in which we use rightward column operations to cancel all the ∗ entries (but don’t
add pivot columns to other pivot columns) thereby reducing any element of Cλ to the
partial permutation matrix of the pivots. This proves (1).

The action ofGLk(Cn)×B (on left and right) leaves the rank measurements of (2) invari-
ant. On the partial permutation RREF with pivot columns λ, the rank equalities obviously
hold; hence they hold on the rest of the orbit, GLk(C)Cλ. This proves (2).

That rank is the rank of the composite V ↪ Cn ↠ Cn/Ci+1,...,n, whose corresponding
nullity is used to compute λ in (3).

Since Yλ is GL(k) × B-invariant, it contains Cµ iff it contains the partial permutation
matrix with pivots in columns µ. That connects straightforwardly to the first partition
statement in (5), which in turn proves the second.

The closed subset Yλ defined in (4) obviously contains the closure GLk(C)Cλ ⊆ Mk×n,
and both sets are GLk(C) × B-invariant. To check that GLk(C)Cλ ⊆Mk×n contains Yλ, we
need .... �

Exercise 3. Let Xλ ⊆ Gr(k; Cn) be a Bruhat cell. Show there is a subgroup of B that acts
simply transitively on Xλ.

Exercise 4. Show that the matrix cell (a,b) ∈ [k] × [n − k] lies in the partition λ iff for each
M ∈ rowspan−1(Xλ), the left (k − a) + b columns ofM have rank at most k − a.

The T -fixed points in Gr(k; Cn) are exactly the coördinate k-planes and in natural cor-
respondence with the set (λ) of strings with content 0k1n−k; as such we will denote those
k-planes directly as λ, abusing notation.

1.3. First examples of Schubert calculus. Let k = 1, so Gr(k; Cn) is projective space, and
the Bruhat decomposition is the familiar one

CPn−1 = Cn−1∐Cn−2∐⋯∐C0

We’ll index classes by their strings, [X01⋯1], [X101⋯1], . . . , [X1⋯10]. Then X1k01⋯1 is a codi-
mension k subspace, and our first product calculation is

[X1k01⋯1][X1j01⋯1] = {[X1j+k01⋯1] if j + k < n
0 if j + k ≥ n

Proof: X1k01⋯1 is the set of (projectivized) vectors with first k coördinates vanishing, and
if we move X1j01⋯1 to have the next j coördinates vanishing, then the two intersect trans-
versely in X1j+k01⋯1. Meanwhile, for j + k ≥ nwe know H2(j+k)(CPn−1) = 0.

The product rule is equally simple for k = n − 1 (by Grassmannian duality), so the next
case to consider is k = 2,n = 4, in which

X0101 = {V ∈ Gr(2; C4) ∶ dim(V ∩C3,4) ≥ 1}

which considered projectively is the set of lines in CP3 meeting the line P(C3,4).
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When two cycles A,B ⊆ X are transverse, we can compute [A][B] as [A ∩ B], but this
isn’t useful for computing [X0101]2. Consider the divisor

Y = {V ∈ Gr(2; C4) ∶ dim(V ∩C2,4) ≥ 1}.

that’s GL4(C)-equivalent to X0101, and defines the same cohomology class. Then

[X0101]2 = [X0101][Y] = [X0101 ∩ Y]

This intersection X0101 ∩ Y is reducible

X0101 ∩ Y = X0110 ∪ {V ∈ Gr(2; C4) ∶ V ≤ C1,2,4}

and its second component if GL4(C)-equivalent to X1001, resulting in the computation

[X0101]2 = [X0110] + [X1001]

It is not an accident that the coefficients we’ve run into so far have all been positive,
though they can be > 1, the first example being

[X010101]2 = [X011100] + [X110001] + 2[X101010].

In §2 we’ll give a general rule for these coefficients, counting a set of “puzzles”.

1.4. The Bruhat decomposition of flag manifolds. We already have the surjection of
Stiefel(nd; Cn) onto Fl(n1, n2, . . . , nd; Cn), and need now to adapt the usual RREF the-
orem to reduce it to a bijection. For each string λ with content 0n11n2−n1⋯dn−nd , define
Cλ ⊆ Stiefel(nd; Cn) as the space of matrices such that

● Each row starts with a “pivotal” 1 (/∃ zero rows since we’re in Stiefel(nd; Cn)).
● The pivotal 1s in rows [ni−1 + 1,ni] run NW/SE, for each i = 1, . . . , d,

and are in the columns j such that λ’s jth letter is i.
● Above each pivotal 1 (and below, automatically) is all 0s.

We leave the interested reader to adapt the usual proofs of RREF uniqueness to this more
general context. As in the Grassmannian case, the images of the Cλ give an even-real-
dimensional cell decomposition ∐λX

○
λ again called the Bruhat decomposition, hence Z-

bases of homology and cohomology.

WARNING. Our indexation of our basis using strings, forced on us by
the product rule computations to come, is inverse to the standard in-
dexation in the literature. Outside of the full flag manifold case, this
should cause no confusion; for example, on Grassmannians we index
with strings like 001010110 (or, permutations with only two unambigu-
ous values) whereas the standard indexation is by permutations with a
single descent (or, permutations with only two unambiguous positions).

Exercise 5. Check that
[X132][X213] = [X231] + [X312]

using the fact that X132, X213 already intersect transversely.

Exercise 6. Check that
[X213]2 = [X231]

but as in the example in §1.3, you’ll need to move one of the X213s to make the intersection
transverse.
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Given a string λ, define an inversion of λ as a pair of positions i < j such that the
λ-values are inverted: λ at position i > λ at position j. Then define

`(λ) ∶= #{inversions in λ}

Proposition 1. codimXλ = `(λ), so, [Xλ] ∈ H2`(λ)(Fl(n1, n2, . . . , nd; Cn)).

Proof. �

Exercise 7. Recall that we associated a partition to a string with two values 0, 1. How can
one compute the number of inversions of the string, directly from the partition?

Exercise 8. Extend exercise 3 to the Fl(n1, n2, . . . , nd; Cn) situation.

1.5. Poincaré polynomials of flag manifolds. Recall that the Poincaré polynomial pM(t) ∶=
∑i ti dimHi(M) of a topological spaceM is the generating function of its Betti numbers.

Theorem 4. Define the polynomial in q

n
q

●
∶=

n

∏
i=1

1 − qi
1 − q

,

the q-factorial of n or “n q-torial”. Then pFl(1,...,n;Cn)(t) = nq● when q = t2.

Proof. By proposition 1 we need to compute

∑
π∈Sn

q`(π) = ∑
i∈[n]

∑
π∈Sn, π(1)=i

q`(π) = ∑
i∈[n]

qi−1 ∑
ρ∈Sn−1

q`(ρ)

where the second follows from the bijection Sn → [n] × Sn−1, where ρ ∈ Sn−1 is determined
by the order of π(2), . . . , π(n).

Then use ∑i∈[n] qi−1 = qn−1
q−1 and induction. �

Proposition 2. Let π ∶ Fl(Cn) ↠ Fl(n1, . . . , nd; Cn) be the projection forgetting all subspaces
except those of dimensions (ni)i=1...d. LetwP0 denote the longest element in Sn1×Sn2−n1×⋯×Sn−nd ,
reversing the individual blocks. Then π is a fiber bundle, with fiber XwP0 ≅ ∏d+1

i=1 Fl(Cni−ni−1) over
the basepoint (taking n0 = 0 and nd+1 = n).

Proof. The source and target of π are compact (in the analytic topology). The set of critical
points of π is closed, hence compact, hence its image (the critical values) is closed. By
Sard’s theorem, there exist regular values, hence they form an open set in the target, over
which π is a bundle. Since π is GL(Cn)-equivariant, and the target is homogeneous, this
open set must be everything (there are no critical points).

The base fiber consists of flags whose ni-plane is the standard one, which turns directly
into the conditions definingXwP0 . Such a flag induces flags on Cn1 ,Cn2/Cn1 , . . .which gives
the isomorphism. �

Corollary 1.

pFl(n1,...,nd;Cn)(t) =
nq●

∏d
i=0(ni+1 −ni)

q
●
= ∏n

i=1(1 − qi)
∏d
i=0∏

ni+1−ni
j=1 (1 − qj)

where q = t2 and by convention n0 ∶= 0,nd+1 ∶= n.

Proof. If F → E → B is a fiber bundle, and H∗(E) → H∗(F) is onto, then it is a consequence
of the Leray-Hirsch theorem that pE = pFpB.
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Since Xw ↪ Fl(Cn) is a closed union of cells in the Bruhat decomposition, it induces
a map on cellular cohomology, and since the differential is trivial (as in theorem 2), this
map is onto.

Hence we may apply the Leray-Hirsch theorem to the fiber bundle in proposition 2,
and apply theorem 4 to compute pE and pF.

The second equality follows from multiplying top and bottom by (1 − q)n. �

Exercise 9. Give a direct combinatorial proof of corollary 1.

1.6. Self-duality of the Schubert basis. The cohomology ring H∗(Fl(n1, n2, . . . , nd; Cn)
comes with a perfect pairing ⟨α,β⟩ ↦ ∫ αβ, and now that we have a basis {[Xλ]} for
the ring, it is natural to seek (and will be handy to have) the dual basis. By conven-
tion, the integral over a compact oriented manifold M of a cohomology class is zero for
classes of degree < dimM, so this is really a series of perfect pairings, betweenHi(M) and
HdimM−i(M).

Define the opposite Schubert variety Xλ as Xλ reversedw0, where w0 ∈ GLn(C) is an an-
tidiagonal matrix (of all 1s, say, but since Xµ is T -invariant this doesn’t matter). Since each
Xλ is B-invariant, these Xλ are invariant under w−1

0 Bw0 = B−.
...make sure to mention finite-dim vs. finite-codim of strata...

Proposition 3. ...lemma to give the equations determining Xλ...

Lemma 1. Let Xλ, Xµ be a Schubert and an opposite Schubert variety, respectively, in the Grass-
mannian Gr(k; Cn). Then there are several cases:

(1) If `(λ) > `(µ) then Xλ ∩Xµ = ∅, so ∫ [Xλ][Xµ] = 0.
(2) If `(λ) < `(µ) then dim(Xλ ∩Xµ) > 0, so ∫ [Xλ][Xµ] = 0.
(3) If `(λ) = `(µ) but λ ≠ µ, then Xλ ∩Xµ = ∅, so ∫ [Xλ][Xµ] = 0.
(4) Xλ ∩Xλ = {rowspan(the matrix in Cλ with all non-pivots = 0)}, so ∫ [Xλ][Xλ] = 1.

Proof. (1) Equivalently, the areas of the partitions λ,µc add up to more than k(n − k).
Consequently there must be some overlap in the partitions µ-rotated-180○ and λ.
Let (a,b) be a square of the overlap, so (a,b) is a square in the partition λ and
(k + 1 − a,n − k + 1 − b) a square in the partition µ. By exercise 4, each M ∈ Xλ
has its left (k − a) + b columns of rank ≤ k − a, whereas each M ∈ Xµ has its right
(k − (k + 1 − a)) + (n − k + 1 − b) = a + n − k − b columns of rank ≤ a − 1. Together,
these left (k − a) + b columns and right n − k + a − b columns cover the entire M,
but only have rank ≤ (k − a) + (a − 1) < k together, so don’t define any elements of
Stiefel(k; Cn).

(2) For any A,B ⊆ C for C smooth, we have codim(A ∩ B) ≤ codimA + codimB, which
in this case gives us

dim(Xλ ∩Xµ) = dimGr(k; Cn) − codim(Xλ ∩Xµ)
≥ dimGr(k; Cn) − codimXµ − codimXλ

= dimXµ − codimXλ = `(µ) − `(λ) > 0
(3) Once one observes that λ∩µ○ contains some square (a,b), then the argument from

(1) applies.
(4) Consider M ∈ Cλ and apply the rank conditions from Xλ, which say that the rank

of the right i columns ofM is bounded above by the number of λ’s pivots in those
columns. Consequently, each non-pivot column i of M must be in the span of the
columns to the right, which (by downward induction on i) is only the span of those
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pivot columns, hence (by the RREF shape of M) that column i must be 0. So M is
unique.

�

Proposition 4. Let Xλ, Xµ be a Schubert and an opposite Schubert variety, respectively, in the
same flag manifold Fl(n1, n2, . . . , nd; Cn). Then there are several cases:

(1) If `(λ) > `(µ) then Xλ ∩Xµ = ∅, so ∫ [Xλ][Xµ] = 0.
(2) If `(λ) < `(µ) then dim(Xλ ∩Xµ) > 0, so ∫ [Xλ][Xµ] = 0.
(3) If `(λ) = `(µ) but λ ≠ µ, then Xλ ∩Xµ = ∅, so ∫ [Xλ][Xµ] = 0.
(4) Xλ ∩Xλ = {rowspan(the matrix in Cλ with all non-pivots = 0)}, so ∫ [Xλ][Xλ] = 1.

Proof. (1)
The dimension
To compute these intersections in Fl(n1, n2, . . . , nd; Cn), we can instead compute the

intersection rowspan−1(Xλ)...
�

1.7. Push and pull operations. For each d-step flag manifold and i ∈ [d], we get a pro-
jection map

π ∶ Fl(n1, . . . , nd; Cn) ↠ Fl(n1, . . . , n̂i, . . . , nd; Cn)
to a (d − 1)-step, forgetting the ni-plane in the flag.

Theorem 5. Let π ∶ Fl(n1, . . . , nd; Cn) ↠ Fl(n1, . . . , n̂i, . . . , nd; Cn) forget the ni-plane.

(1) π(Xλ) = Xλ ′ , where the string λ ′ is constructed from λ by turning all i into i−1, and more
generally, subtracting 1 from every value ≥ i.

(2) The induced map on homology, in the Schubert basis, is

π∗([Xλ]) = {[X
λ ′] if every i − 1 in λ is left of every i

0 otherwise.

Alternately, one can describe this condition as `(λ ′) = `(λ), the only other possibility being
`(λ ′) < `(λ).

(3) π∗ ([Xµ]) = [Xµ ′] in cohomology, where µ ′ is constructed from µ by adding 1 to the last
ni+1 −ni many is (i.e. breaking ties), and to all values > i.

(4) In particular, π∗ is onto, and π∗ is 1 ∶ 1.

...examples...

Proof. (1) Since π isGL(Cn)-equivariant andXλ isB−-invariant, its image isB−-invariant.
Since Xλ is closed in the analytic topology on Fl(n1, . . . , nd; Cn), which is compact,
Xλ is also compact, so its image is closed. Together, these and the Bruhat decom-
position show that π(Xλ) is a union of various Xλ ′ ⊆ Fl(n1, . . . , n̂i, . . . , nd; Cn).

(Finally, since Xλ is irreducible, its image π(Xλ) is also irreducible, hence it is a
single Xλ ′ . We only include that argument due to its interest; in fact we’ll show
both containments.)

If we determine Xλ from proposition 3, but leave out the conditions constraining
the ni-plane, we get exactly the conditions defining Xλ ′ ; hence π(Xλ) ⊆ Xλ ′ . Mean-
while, π(λ) = λ ′, hence λ ′ ∈ π(Xλ), so by B−-invariance λ ′B− ⊆ π(Xλ), then since the
latter is closed Xλ ′ ⊆ π(Xλ).
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(2) The composite Xλ ↠ Xλ
′ ↪ Fl(n1, . . . , n̂i, . . . , nd; Cn) induces a composite map π∗

on homology

[Xλ] ∈ H2`(λ)(Xλ) →→ H2`(λ)(Xλ
′) →→ H2`(λ)(Fl(n1, . . . , n̂i, . . . , nd; Cn)).

If `(λ ′) < `(λ), then the middle group is 0, so π∗([Xλ]) = 0.
If `(λ ′) = `(λ), then π∗([Xλ]) = [Xλ ′] deg(π). To show that this degree is 1, we

use exercise 8 to construct a group H such that in the maps H → Xλ○ → Xλ
′
○ , both

the first and composite maps are isomorphisms, hence the second map is also an
isomorphism.

(3) Effectively, in (2) we computed a 0, 1 matrix with rows and columns indexed by
the homology Schubert bases {[Xλ]},{[Xλ ′]} of the two flag manifolds. By propo-
sition 4, the cohomology Schubert bases {[Xλ]},{[Xλ ′]} are the dual bases under
the natural pairings, so we can compute π∗ as the transpose of this 0, 1matrix. The
claim follows.

(4) That matrix (and its transpose) visibly contains a full-rank identity matrix.
�

Hereafter let Fl(̂i; Cn) denote Fl(1, 2, . . . , î, . . . , n; Cn), and πi ∶ Fl(Cn) ↠ Fl(̂i; Cn) de-
note the natural projection forgetting the i-plane. Note that the fibers are 1-dimensional;
knowing Vi−1, Vi+1 the choice of Vi is equivalently that of a line in the plane Vi+1/Vi−1. In
particular, ifA ⊆ Fl(Cn) is an irreducible cycle, then dimπi(A) is either dimA or dimA−1,
the latter being true exactly if A consists of fibers of πi.

Let ∂i denote the degree −2 endomorphism of H∗(Fl(Cn)) given by the composite

Hk(Fl(Cn)) →̃ Hn(n−1)−k(Fl(Cn))
πi∗Ð→ Hn(n−1)−k(Fl(̂i; Cn)) →̃ Hk−2(Fl(̂i; Cn))

π∗iÐ→ Hk−2(Fl(Cn))
Geometrically, ifA ⊆ Fl(Cn) is an irreducible cycle, and d is the degree of πi∣A ∶ A→ πi(A)
(or 0 if the map drops dimension as discussed above), then ∂i([A]) = d [π−1i (πi(A))]. In
particular ∂2i = 0, because πi applied to π−1i (πi(A)) definitely drops the dimension.

This map isn’t a ring homomorphism (obviously – it takes 1 ↦ 0), but is a module
homomorphism over the subring H∗(Fl(̂i; Cn)). We will compute this subring later in
lemma 3.

Theorem 6. LetXw ⊆ Fl(Cn) be a Schubert variety. (Since this full-flag case is the situation where
confusion is most likely to arise, we remind the reader here that our indexing [Xw] of Schubert
classes is inverse to the one standard in the literature.) Then

(1)

∂i[Xw] = {[X(i↔i+1)○w] if i + 1 left of i in w
0 if i left of i + 1 in w

(2) If ∣i − j∣ > 1, then

∂i∂j[Xw] = ∂j∂i[Xw] = {[X(i↔i+1)○(i↔i+1)○w] if i + 1 left of i and j + 1 left of j in w
0 otherwise

(3) For i < n,

∂i∂i+1∂i[Xw] = ∂i+1∂i∂i+1[Xw] = {[X(i↔i+2)○w] if i + 2 left of i + 1 left of i in w
0 otherwise

(4) If `(wv) = `(w) + `(v), then [Xv] = ∂w−1[Xwv].
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In particular, ∂i∂j = ∂j∂i for ∣i − j∣ > 1, and ∂i∂i+1∂i = ∂i+1∂i∂i+1 for i < n, since the Schubert
classes [Xw] span H∗(Fl(Cn)).

Proof. ...quote theorem 5 and proposition 4 appropriately...
Claims (2) and (3) follow directly from (1). Claim (4) follows from (1) and induction on

`(w). �

Corollary 2. Since any two minimal-length “reduced” words writing w as a product of simple
reflections are related by commuting and braid moves (Tits’ theorem), if w = ∏Q is a reduced
word then ∂w ∶= ∏Q ∂q is well-defined (in either the polynomial or H∗(Fl(Cn)) context).

Exercise 10. Show

∂w∂v = {∂wv if `(wv) = `(w) + `(v)
0 otherwise, i.e. if `(wv) < `(w) + `(v)

and in particular, that these are the only two possibilities.

Exercise 11. Interpret ∂i∂j and ∂i∂i+1∂i in terms of projections similar to πi. (You’ll know
them when you’ve found them.)

Once we understand these {∂i} better, theorem 6 will supply a computation of Schubert
classes, starting from the class [Xw0] of a point (where w0(i) = n + 1 − i for all i):

Corollary 3. For w ∈ Sn, we have `(ww0) = `(w0) − `(w), and [Xw] = ∂ww0[Xw0].

Proof. For each i < j in [1,n], exactly one is true of w(i) > w(j) vs. (ww0)(n + 1 − i) >
(ww0)(n+1− j), so that’s (n

2
) = `(wn0 ) inversions to share between `(w) and `(ww0). Then

apply theorem 6(4). �

1.8. Borel’s presentation of ordinary cohomology: stable case. In this subsection we
give our first general results about the cohomology ring of flag manifolds. We begin with
the easiest case:

Proposition 5. (1) Let x1 = [X101⋯1] be the class of the Schubert hyperplane in projective
space CPn−1 ∶= Gr(1; Cn). Then H∗(CPn−1) ≅ Z[x(2)1 ]/⟨xn1 ⟩ where the superscript on x1
indicates the degree.

(2) Things are simpler still in infinite dimensions: H∗(CP∞) ≅ Z[x(2)1 ], where CP∞ denotes
the projectivization of C∞ ∶= ⊕NC.

Proof. We already did the calculation in (1) in §1.3. As for (2), the inclusions

CP0 ↪ CP1 ↪ CP2 ↪ CP3 ↪ ⋯↪ CP∞

induce a map from H∗(CP∞) to the inverse limit Z[[x1]] of the rings Z[x1]/⟨xn1 ⟩. Since
H∗(CP∞) is a graded ring, it maps to the graded part ⊕nZ[[x1]]n = Z[x1]. To map onto
H2(CP1) or even just its element x1, the map H∗(CP∞) → Z[x1] must be onto. Finally, the
cell decomposition of CP∞ tells us that H∗(CP∞) is no bigger than Z[x1] in each degree,
so the map is also 1 ∶ 1. �

(It is really a matter of taste whether H∗(X) should be the direct sum or direct product
of the individual groups Hi(X), though “direct sum” is the industry standard. For many
purposes, e.g. defining the Chern character map K(X) → H∗(X), the direct product is the
more natural object.)
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The manifold Fl(n1, . . . , nd; Cn) comes with d tautological vector bundles Vi, where
Vi∣(V1,...,Vd) = Vi. To construct them, we begin with the Grassmannian case, and do the
“associated-bundle construction”:

Vk ∶= Ck ×GLk(C) Stiefel(k; Cn) ∶= (Ck × Stiefel(k; Cn))/GLk(Cn)∆
Here “×G” means one divides by3 the diagonal G-action on the two factors (right on Ck,
left on Stiefel(k; Cn)). This essentially replaces the GLk(Cn)-fibers of the map rowspan
with Ck-fibers. Now we pull back to Fl(n1, . . . , nd; Cn) these bundles Vk,AltkVk.
Exercise 12. Extend the definitions in §1.1 to put an algebraic atlas on the total space Vk.

Consider now the first Chern classes / Euler class

c1(V∗k ) = c1(AltkV∗k ) = e(AltkV∗k )
The Euler e(L) class of a line bundle L is, by definition, Poincaré dual to the zero set of
a section σ ∈ Γ(L) transverse to the zero section. Sections of L correspond to functions
on the total space4 of the dual line bundle L∗, linear on each fiber. In the case at hand,
that dual line bundle is associated to the det−1 representation R of GLk(C), so, a function
on it is a GLk(C)-invariant function on R × Stiefel(k; Cn). Consider the following such
function:

σ ∶ (r,M) ↦ rdet(left k columns ofM)
Being linear in r, this function σ of course vanishes on the zero section, but also vanishes
on the entire fibers over the unique codimension 1 Schubert variety X0k−1101n−k−1 . Dually,
as a section of AltkV∗k , σ vanishes exactly on X0k−1101n−k−1 , so gives us

c1(V∗k ) = [X0k−1101n−k−1]
Such a class, a positive combination of classes of subvarieties, is called effective, and one
could say that we work with the dual bundle V∗k exactly to make this Chern class effective.

Since as we learned in proposition 5 that the cohomology rings are simpler (or more
specifically, freer) in infinite dimensions, we next consider the case of n-step flags in C∞.

Proposition 6. The map

β ∶ Z[x1, . . . , xn] → H∗(Fl(1, 2, . . . , n; C∞)
xi ↦ c1(Vi−1) − c1(Vi)

is an isomorphism.

Proof. In the course of the proof, but not afterward, it will be mildly convenient to reverse
the variables and instead take

xn+1−i ↦ c1(Vi−1) − c1(Vi).
The map Fl(1, 2, . . . , n; C∞) ↠ Gr(1; C∞) is a bundle with fiber Fl(1, 2, . . . , n − 1; C∞),

inducing a restriction map to the fiber, which fits into a square

H∗(Fl(1, 2, . . . , n; C∞) → H∗(Fl(1, 2, . . . , n − 1; C∞)
↑ ↑

Z[x1, . . . , xn] → Z[x1, . . . , xn−1]
3This is inspired by the ×S notation for fiber products, which results in a subset of the product rather than

a quotient. One can unify the two concepts with enough talk about “stacks”, in which case ×G = ×[pt/G],
but we will avoid such harsh language.

4Put another way, the dualization is here for the same reason one uses the antitautological bundle O(1)
on projective space.
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where the bottom map is

xi ↦ {xi if i < n
0 if i = n.

We reversed the variables in order to make this square commute.
By induction this restriction map is onto, hence the Leray-Hirsch theorem applies,

which says that

H∗(Fl(1, 2, . . . , n; C∞) ≅ H∗(CP∞) ⊗Z H
∗(Fl(1, 2, . . . , n − 1; C∞) = Z[xn] ⊗Z Z[x1, . . . , xn−1]

as graded H∗(CP∞)-modules. In particular, H∗(Fl(1, 2, . . . , n; C∞) is linearly spanned by
monomials, so our map Z[x1, . . . , xn] → H∗(Fl(1, 2, . . . , n; C∞)) is onto, but (as before)
since the graded dimensions match the map must also be 1 ∶ 1. �

From here one can build the foundation of higher Chern classes:

Lemma 2. Let π ∶ Fl(1, . . . , k; C∞) ↠ Gr(k; C∞) be the projection forgetting all subspaces ex-
cept the k-plane. Then π∗ ∶ H∗(Gr(k; C∞)) → H∗(Fl(1, . . . , k; C∞)) ≅ Z[x1, . . . , xk] is injective,
and its image (at least ⊗ZQ) is the subring of Sk-invariant polynomials.

Later in theorem 10 we will show that the ⊗ZQ is unnecessary. (Note though, that our
principal interest in this book is in the structure constants for multiplication of the Schu-
bert basis, and none of that information is lost when extending scalars.) Part of the reason
that the integrality result is so subtle is that the corresponding results for orthogonal and
symplectic flag manifolds do not hold over Z.

Proof. By theorem 5(2) (extended without incident to n = ∞), the map on homology is
surjective, so the map on cohomology is injective. Let M denote the “frame bundle”, the
principal GL(Ck)-bundle over Gr(k; C∞) whose fiber over V consists of the bases of V .
ThenM has three quotients:

Fl(1, . . . , k; C∞) Gr(k; C∞)
↑ ↑

T/M → N(T)/M → GL(Ck)/M

Here N(T) is the normalizer of T , permutation matrices times diagonal matrices. The
left vertical map is a homotopy equivalence, the right one an isomorphism. The map
ρ ∶ T/M → N(T)/M is a k!-sheeted covering space, dividing by the action of Sk ≅ N(T)/T ,

so the image of H∗(N(T)/M) ρ∗Ð→ H∗(T/M) lies inside the invariant subring H∗(T/M)Sk =
Z[e1(x1, . . . , xk), . . . , ek(x1, . . . , xk)]. A priori, the image ofGL(Ck)/Mmight be even smaller.

To show the image is indeed the entire invariant subring, we compute the Poincaré
series (the q-adic5 limit of corollary 1, as n→∞) of H∗(Gr(k; C∞)).

lim
n→∞

pGr(k;Cn)(t) = lim
n→∞

∏n
i=1(1 − qi)

∏d
i=1(1 − qi)∏n−d

i=1 (1 − qi)
= lim
n→∞

∏n
i=n−d+1(1 − qi)
∏d
i=1(1 − qi)

= 1

∏d
i=1(1 − qi)

which matches that of the polynomial ring Q[e1(x1, . . . , xk), . . . , ek(x1, . . . , xk)] in genera-
tors of degrees 2, 4, . . . , 2k. Since we are now comparing two vector spaces of the same
finite dimension (degree by degree), one containing the other, they must be equal. �

5This only means, coefficientwise as power series.
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This Gr(k; C∞) is the “classifying space” for k-dimensional vector bundles over nice
topological spacesM (e.g. finite CW-complexes): specifically, the map

Map(M,Gr(k; C∞)) → {isomorphism classes of k-plane bundles overM}
φ ↦ φ∗(Vk)

taking a map φ (considered up to homotopy) to the pullback along φ of the tautological
k-plane bundle Vk, is bijective. So from a k-plane bundle J on M, we infer a map φ to
Gr(k; C∞), hence a pullback on cohomology, and from there construct φ∗(ei) =∶ ci(J) ∈
H2i(M) and name these the Chern classes of J. We won’t make much explicit use of them
hereafter.6

Lemma 3. Let π ∶ Fl(1, . . . , n; C∞) ↠ Fl(n1, . . . , nd, n; C∞) be the projection forgetting all sub-
spaces except those of dimensions (ni)i=1...d. Then the pullback π∗ ∶ H∗(Fl(n1, . . . , nd, n; C∞)) →
H∗(Fl(1, . . . , n; C∞)) is injective. Its image ⊗ZQ is equal Q[x1, . . . , xn]Sn1×Sn2−n1×⋯×Sn−nd i.e.
polynomials symmetric in contiguous blocks of variables.

As above, we’ll be able to eliminate the “upon ⊗ZQ” proviso later.

Proof. ...should be inductive on d using the previous... �

1.9. Borel’s presentation of ordinary cohomology: unstable case.

Corollary 4. Since the restriction map H∗(Fl(1, . . . , n; C∞)) → H∗(Fl(1, . . . , n; Cn)) is onto,
proposition 6 lets us write H∗(Fl(n)) as a quotient of Z[x1, . . . , xn].

To work out the kernel we need two properties of total Chern classes c(V) = ∑i ci(V):
● if A is a trivial vector bundle, then c(A) = 1, and
● if 0→ A → B → B/A → 0 is a short exact sequence of vector bundles,

then c(B) = c(A)c(B/A).
From these and the nested vector bundles V1 < V2 < . . . < Vn on Fl(Cn), we learn

1 = c(Vn) =
n

∏
i=1
c(Vi/Vi−1) =

n

∏
i=1

(1 + c1(Vi/Vi−1))

In terms of our generators xi, this says

1 =
n

∏
i=1

(1 − xi) =
n

∑
i=0
ei(−x1, . . . ,−xn) =

n

∑
i=0

(−1)iei(x1, . . . , xn)

We explain one mystery now: why do the xi appear symmetrically in this presentation?
This can be explained from a homotopy equivalence or even a diffeomorphism with an
Sn-space:

T/GLn(C) ∼ B−/GLn(C) ≅ TR/U(n)
The first (complex algebraic) space is the set of decompositions of Cn as a direct sum of
n lines, and the third (compact real) space is the set of decompositions of Cn as a direct
sum of n Hermitian-orthogonal lines. On each of those two spaces there is an Sn-action
permuting the lines, their associated line bundles, and their Chern classes.

6Especially in work of Fulton, one finds cohomology of classifying spaces avoided in favor of “universal
degeneracy loci” constructions, perhaps in order to avoid infinite-dimensional spaces that are common-
place in topology but less standard in algebraic geometry. The equivalence of the approaches follows from
results like this.
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Lemma 4. The coinvariant ring Z[x1, . . . , xn]/ ⟨ei(x1, . . . , xn),∀i = 1, . . . , n⟩ is spanned by the
images of the bounded monomials xa11 x

a2
2 ⋯x

an
n where ai ∈ [0,n − i], hence, has rank at most n!

over Z.

Proof. Let p ∈ Z[x1, . . . , xn]. We want to rewrite p as a Z-combination of these “bounded
monomials”, plus elements of the ideal. It suffices to write xn−i+1i as a polynomial in xj≤i
of degree ≤ n − i in xi, plus an element of the ideal, and then use induction.

This monomial xn−i+1i is the last monomial in a complete homogeneous symmetric poly-
nomial hn−i+1(x1, . . . , xi), the sum of all terms of degree n − i + 1 in the first i variables.

Consider the equation ∏n
j=1(1 − xj) = ∑nk=0(−1)kek(x1, . . . , xn) = 1 in the coinvariant ring,

rewrite as ∏n
j=i+1(1 − xj) = ∏i

j=1(1 − xj)−1, and then expand the right-hand side:
i

∏
j=1

(1 − xj)−1 =
i

∏
j=1

(1 + xj + x2j +⋯) = ∑
k

hk(x1, . . . , xi)

Now consider degree by degree: the LHS ∏n
j=i+1(1 − xj) has terms only of degree ≤ n − i,

so the RHS ∑k hk(x1, . . . , xi) has vanishing degree n− i+ 1 term, namely hn−i+1(x1, . . . , xi).
Now we use hn−i+1(x1, . . . , xi) = 0 to rewrite xn−i+1i as a polynomial in xj≤i of degree

≤ n − i in xi. �

Theorem 7 (The Borel presentation). The map

β ∶ Z[x1, . . . , xn]/⟨ei(x1, . . . , xn), i = 1, . . . , n⟩ → H∗(Fl(Cn))
xi ↦ −c1(Vi/Vi−1)

is well-defined and an isomorphism. Moreover, β takes x1 + . . . + xk ↦ [X1 2...(k−1) (k+1) k ...n], and
hence the Schubert divisor classes {[X1 2...(k−1) (k+1) k ...n]} generate H∗(Fl(Cn)).

Proof. We already had the surjective map from the polynomial ring in corollary 4. The
well-definedness, i.e. the requirement that each ei(x1, . . . , xn) ↦ 0, follows from the total
Chern class calculation after corollary 4. By lemma 4 the source is a quotient of Zn!, and
by §1.4’s Bruhat decomposition the target is free of rank n!, so the surjectivity shows that
the map is an isomorphism. �

Proposition 7. Embed ι ∶ Fl(Cn) ↪ Fl(Cn+1) by taking (V1 < V2 < . . . < Vn−1 < Cn) to
(V1 ⊕ 0 < V2 ⊕ 0 < . . . < Vn−1 ⊕ 0 < Cn ⊕ 0 < Cn ⊕C = Cn+1). Then for w ∈ Sn+1,

ι∗([Xw]) = {[Xw(1),...,w(n)] if w(n + 1) = n + 1
0 otherwise

and ι∗ fits into a commutative square with Borel presentations:

Z[x1, . . . , xn+1]
/ ⟨xn+1⟩ÐÐÐÐ→ Z[x1, . . . , xn] i.e. xn+1 ↦ 0

↓ β ↓ β
H∗(Fl(Cn+1)) ι∗Ð→ H∗(Fl(Cn))

Proof. The line bundle Vi/Vi−1) on Fl(Cn) is the pullback of the line bundle (Vi⊕0)/(Vi−1⊕0)
on Fl(Cn+1). The final line bundle (Cn⊕C)/(Cn⊕0) is trivial, with c1 = 0. With these facts
one can check that each xi, i ∈ [n + 1] maps to the same value East then South, or South
then East. �

This “stability” property of Schubert classes does not hold for inclusions of orthogonal
or symplectic flag manifolds. The first case ([Xw] ↦ [Xw ′]) works, in an appropriate sense,
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but the “extra” classes at size n + 1 don’t necessarily restrict to 0; they may instead give a
Schubert class, twice a Schubert class, or a sum of two.

Our next goal is to locate the Schubert classes in this presentation, i.e., to lift them to
“Schubert polynomials” living in Z[x1, . . . , xn] directly.

1.10. Divided difference operators and Schubert polynomials. It is time to unify the
push-pull construction studied in §1.7 and the Borel presentation:

Theorem 8. Define the divided difference operator on polynomials in Z[x1, x2, . . .], again
denoted ∂i, by

∂ip(x1, x2, . . .) ∶=
p(. . . , xi, xi+1, . . .) − p(. . . , xi+1, xi, . . .)

xi − xi+1
(While seemingly producing rational functions, the results are actually polynomials, with integer
coefficients.) Then the square

Z[x1, . . . , xn]
∂iÐ→ Z[x1, . . . , xn]

↡ β ↡ β
H∗(Fl(Cn)) ∂iÐ→ H∗(Fl(Cn))

commutes, whose vertical arrows both are the Borel presentation of theorem 7 and whose lower ∂i
is the push-pull map from §1.7.

Proof. As to the polynomiality: the numerator obviously vanishes under the specializa-
tion xi = xi+1, so the long division algorithm (which incurs no rational numbers because
the leading coefficient is 1) produces no remainder.

The modules in the square have no Z-torsion, so to check commutativity it is safe to
first tensor with Q.

The upper ∂i is linear over Q[x1, . . . , xi−1, xi + xi+1, xixi+1, xi+1, . . . , xn], the subring of
(xi ↔ xi+1)-invariants. By lemma 3, that subring’s image under β is H∗(Fl(̂i; Cn)). We
already knew the bottom ∂i to be linear over that subring, by ∂i’s construction.

So it remains to check the commutativity on Q[x1, . . . , xi−1, xi + xi+1, xixi+1, xi+1, . . . , xn]-
module generators. We take {1, x1 + x2 + . . . + xi} as generators.

The upper ∂i takes 1↦ 1−1
xi−xi+1 = 0. The lower ∂i takes [Fl(Cn)] → 0 because, for example,

H−2(Fl(Cn)) = 0.
The upper ∂i takes x1 + x2 + . . . + xi ↦ 1. By theorem 7, the left vertical map takes

x1 + x2 + . . . + xi ↦ [X1 2...(i+1) i ...n], and then we apply theorem 6 to compute the effect of
the bottom map. �

Exercise 13. (1) Directly show that the polynomial operators ∂i defined in theorem 8
satisfy ∂2i = 0 and the relations in theorem 6, together called the nil Hecke rela-
tions.

(2) Give a ridiculously indirect proof by combining theorem 6 and proposition 7, and
taking the inverse limit to get the ring Z[[x1, x2, . . .]].

Let p ∈ Z[x1, . . . , xn] be a homogeneous polynomial of degree (n
2
). Then under the

Borel presentation β, p maps to an element of Hn(n−1)(Fl(Cn)) = Z ⋅ [Xw0], i.e. to some
multiple of the point class. So our next goal is to find a p that maps to 1 times the point
class. Now that we have theorem 8 and corollary 2, we can check whether β(p) = [Xw0]
by computing ∂w0β(p) = β(∂w0p). In particular if one picks p randomly enough that
∂w0p ≠ 0, and doesn’t mind using rational coefficients, then p/∂w0pwill map to 1[Xw0].
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These polynomial operators ∂w were introduced in [?] “Schubert cells, and the coho-
mology of the spaces G/P” where they suggest a (rational-coefficient) formula for such
a p, defined in a uniform way across all connected complex groups G (our Fl(Cn) case
corresponding to G = GLn(C)). We will use a different p discovered a few years later by
Lascoux and Schützenberger7, with some excellent properties:

Lemma 5. Letwk0 ∈ Sn denote the element k k−1 . . . 2 1 k+1 . . .n. Define Swk
0
∶= ∏k

i=1 x
k−i
i . Then

(1) ∂wk−1
0

wk
0
Swk

0
= Swk−1

0

(2) ∂wk
0
Swk

0
= 1

In particular β(Swk
0
) is the point class [Xw0].

Proof. There is a unique reduced word for wk−10 wk0 , giving the operator ∂1∂2⋯∂k−1. Then
(1) is a trivial calculation, and (2) follows from (1) by induction. �

Theorem 9. Let S∞ denote permutations of {1, 2, 3, . . .} such that w(i) = i for all sufficiently
large i. Then there is an obvious inclusion Sn ↪ S∞, and S∞ = ⋃n≥1 Sn.

Let w ∈ Sn ≤ S∞, and define
Sw ∶= ∂wwn

0
Swn

0

Then this (single) Schubert polynomial is independent of the n chosen, and represents the
Schubert class in that β(Sw) = [Xw] ∈ H∗(Fl(Cn)).

The fact that there exists a representative independent of n is almost automatic from
proposition 7; that stability result guarantees a unique representative in the inverse limit
Z[[x1, x2, . . .]] of the system of rings . . . ← H∗(Fl(Cn)) ← H∗(Fl(Cn+1)) ← . . . but doesn’t
guarantee that that representative is polynomial.

Proof. First observe
`(wwk0) = `(wk0) − `(w) ∀k ≥ n

hence

`(wwn+10 ) = `(wn+10 ) − `(w) = `(wn+10 ) − `(wn0 ) + `(wn0 ) − `(w) = `(wn0wn+10 ) + `(wwn0 )
To see the independence, briefly denote the polynomial with choice of n indicated, i.e.
Snw. Then finally

Sn+1w = ∂wwn+1
0
Swn+1

0
= ∂wwn

0
∂wn

0
wn+1
0
Swn+1

0
= ∂wwn

0
Swn

0
= Snw

using exercise 10. �

We compute the S3 Schubert polynomials8, starting with S321 = x21x2. Southwestern
arrows are ∂1s, Southeastern are ∂2s.

S321 = x21x2

S312 = x1x2 S231 = x21

0 S213 = x1 S132 = x1 + x2 0

S123 = 1 S123 = 10

7Pronounced Frenchly, Marcel SHÜT-sen-bear-ZHAY.
8And remind the reader, again, that our indexing is inverse to the standard one
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It is intriguing that despite their divided difference origins, the coefficients have all come
out positive! A formula for these coefficients was conjectured by Stanley, and proven
independently by Billey-Jockusch and Fomin, so Stanley’s name is on two independent
papers. We’ll happen upon this formula in §4.4, which will let us prove

Lemma 6. [to be proven in §4.5]

S1 2...(k−1) n k (k+1)...(n−1) = en−k(x1, . . . , xk)

and from there the Borel presentation over Z:

Theorem 10. The image of π∗ ∶ H∗(Fl(n1, . . . , nd; Cn)) → H∗(Fl(Cn)) is the partially-symmetric
polynomials Z[x1, . . . , xn]Sn1×Sn2−n1×⋯×Sn−nd /⟨ei(x1, . . . , xn), i = 1, . . . , n⟩.
Proof. ... lemma 3, plus going from Gr to multistep �

Exercise 14. Let π ∈ Sn, and p a polynomial in finitely many (xi) such that p↦ [Xπ⊕IdN−n] ∈
H∗(Fl(CN)) for every N > n (where π⊕ IdN−n is the image of π under the usual inclusion
Sn ↪ SN). Show that p = Sπ.

1.11. Kleiman’s theorem. Examples of Schubert calculus. One of the principal differ-
ences in doing topology with complex manifolds, rather than real, is that every manifold
comes with a canonical orientation, and the induced orientation on the transverse in-
tersection A ∩ B of two complex submanifolds matches the intrinsic orientation of the
submanifold A ∩B.

By the dual-basis property of proposition 4, one can compute the structure constants
cσπρ of the Schubert basis by integrating triple products:

cσπρ = ∫
Fl(Cn)

SπSρS
σ

Theorem 11. [?] Let C1, . . . ,Cm be subvarieties of a homogeneous space G/H, where G is an
algebraic group in characteristic 0. Then for general choices of g1, . . . , gm, the intersection ∩mi=1gi ⋅
Ci is transverse.

In particular, the cohomology product [C1]⋯[Cm] can be computed as [⋂mi=1(gi ⋅Ci)].

The proof is not very difficult; the characteristic 0 assumption is used in the “generic
freeness theorem”, the algebraic analogue of Sard’s theorem.

Corollary 5. The structure constants cσπρ in the Schubert basis are nonnegative.

Proof. Since H∗(Fl(Cn)) is a graded ring, we may assume `(σ) = `(π) + `(ρ). In that case
codimXλ + codimXρ + codimXσ = dimFl(Cn), so (by Kleiman’s theorem) p dim(g1 ⋅Xλ ∩ g2 ⋅
Xµ ∩ g3 ⋅ Xσ) = 0. By the compatibility of the complex orientations, the intersection points
come with positive orientations. �

It is a central problem in algebraic combinatorics to compute these structure constants
in a manifestly positive way. Any single structure constant cσπρ can be computed as
∂σ(SπSρ) (assuming `(σ) = `(π) + `(ρ)), which is easy to implement on a computer. How-
ever, this method produces many positive and negative terms, with no obvious reason
that more of them are positive.

To see how special homogeneous spaces are for this positive-multiplication property,
consider the space C̃P2, the plane blown up at a point, where E ≅ CP1 is the curve lying
over the blown-up point. By various means one may compute [E]2 = −1[pt]. A topologist
would say, move E to a nearby S2 called E ′ inside the real 4-manifold C̃P2, then intersect
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E∩E ′ transversely, and do tangent space calculations to determine the orientations on the
resulting points – apparently the total is −1. If E ′ were a complex submanifold like E, then
those intersections would be positive: hence there can be no such E ′. This is why E is called
an “exceptional” curve: it has no nearby neighbors.

Exercise 15. Use divided-difference operators to compute the entire ring structure on
H∗(Fl(C3)).

Exercise 16. Use divided-difference operators to prove Monk’s rule:

SπSri = ∑
j≤i,i+1≤k
(j↔k)○π⋗π

S(j↔k)○π

Since the divisor classes Sri generate H∗(Fl(Cn)) as a ring, this rule (rather implicitly)
determines the entire ring structure.

2. A FIRST LOOK AT PUZZLES

In this section we present our combinatorial formulæ for several families of Schubert
calculus problems, all based on tiling problems we call “puzzles”.

2.1. Grassmannian puzzles. The Grassmannian pieces are unit triangles with NW
and NE sides labeled 0, 1, or 2, and South side labeled 01, 02, or 12, with the South label
the (unordered) disjoint union of the NW and NE labels, except that one of the six cases is
forbidden. The Grassmannian pieces are the 180○ rotations.

allowed pieces

01

10

01

01

12

21

02

02

12

12

01

1 0

01

0 1

12

2 1

02

0 2

12

1 2

forbidden

02

20

02

2 0

A Grassmannian puzzle of size n is a filling of n with Grassmannian and pieces,
with a forbidden label on each side: the NE has no 2s, the NW has no 0s, and the South
has no 02s.

Theorem 12 (recasting of theorem 1 from [?]). Let λ,µ,ν be three 0, 1-strings defining classes
on Gr(k; Cn). Then the Schubert structure constant cνλµ is the number of Grassmannian puzzles
with

● µ on the NE side,
● λ on the NW side but 0, 1 turned into 1, 2 respectively,
● ν on the S side but 0, 1 turned into 01, 12 respectively,

each read left-to-right.

This theorem (whose proof will come later) solves the problem of Grassmannian Schu-
bert calculus, which has received many rules, the first due to Littlewood and Richardson;
for this reason these {cνλµ} are also called Littlewood-Richardson coefficients.
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Example. We use this rule to compute all products in H∗(Gr(1; C3)). The main trick,

during creation, is to avoid any partial labeling in which ii or i i appears. The

six possible puzzles are these:

02
02
01

01
02

02
01

01
01

01
12

12

02
02
01

01
12

12
01

01
21

12
01

01

12
12
21

12
01

01
21

12
01

01
01

01

01
01
02

02
01

01
01

01
12

12
10

01

01
01
12

12
10

01
21

12
01

01
01

01

01
01
01

01
01

01
12

12
10

01
10

01

The first three show that S001 (written as 112 on the Northwest side) is the left multiplica-
tive identity. The first, fourth, and sixth show that the same for right multiplication (now
S001 is 001 on the Northeast). The fifth shows that two transverse lines in the projective
plane intersect in one point.

Observe that one can flip a puzzle left-right and replace each label i by 2 − i, obtaining
another valid puzzle. Flipping the six puzzles above gives the corresponding six puz-
zles for H∗(Gr(2; C3)). More generally, this puzzle duality corresponds the puzzles for
H∗(Gr(k; Cn)) with those for H∗(Gr(n − k; Cn)), which is nice because the homeomor-
phism Gr(k; Cn) ≅ Gr(n − k; Cn), V ↦ V⊥ takes Schubert classes to Schubert classes.

Some tips on puzzle generation/computation:

● Don’t make the rookie mistake of drawing the initial labels on the outside of the

puzzle, as in
01

10 ; this isn’t sustainable. Draw them directly on the edges.

● Puzzles work pretty well on graph paper if you make them 45○-45○-90○ triangles.
Otherwise, draw in all the interior vertices before starting to add edges with labels.

● It’s not too important to actually label the horizontal labels in the interior of the

puzzle. You can just go from
ji

directly to

j i

ji
or

i j

ji
.

● You know that the 0s on the bottom must trace their way to the 0s on the NE side,
similarly the 2s to the NW side.

● A good sanity check is that cohomology should be a graded ring, i.e. the num-
ber of inversions “some 12 West of some 01” on the South should be the sum of
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the numbers of inversions on the NW and NE sides. (This property of puzzles is

tightly tied to having forbidden the
02

20 piece, as we will discuss in §???.)

Exercise 17. Use puzzles to compute all products in H∗(Gr(2; C4)). You can cut this par-
ticular calculation in about half with puzzle duality.

2.2. Rotational symmetry of puzzles. Recall the integral formula from §1.11 for structure
constants (stated here on the Grassmannian), cνλµ = ∫Gr(k;Cn) SλSµSν = ∫Gr(k;Cn) SλSµSν reversed.
This suggests we seek a modification of Grassmannian puzzles that lets us see this Z/3
rotational symmetry, where λ,µ,ν are read from the puzzle boundary all clockwise instead
of all left-to-right.

We do this in two stages. The first is to replace each double-label ij by its complement,
i.e. 01 ↦ 2, 02 ↦ 1, 12 ↦ 0. The resulting pieces are rather like hadrons assembled from
red, green, and blue quarks.

allowed pieces

2

10

2

01

0

21

1

02

0

12

2

1 0

2

0 1

0

2 1

1

0 2

0

1 2

forbidden

1

20

1

2 0

The boundary conditions on a puzzle are now that 2 does not appear on the NE side, nor
0 on the NW side, nor 1 on the South side. Without those conditions, and the forbidding
of the one piece, we would have the Z/3 symmetry.

The remaining step is to rotate the edge labels 0↦ 1↦ 2↦ 0, once on the South side (so
the forbidden 1s become forbidden 2s), twice on the NW side (so the forbidden 0s become
forbidden 2s). Now the pieces look as follows:

allowed pieces

0

12

0

00

1

20

2

01

1

11

0

1 2

0

0 0

1

2 0

2

0 1

1

1 1

forbidden

2

22

2

2 2

Since there are no 2s allowed on the outside of the puzzle – the boundary conditions are
determined by the 0, 1-strings λ,µ,ν directly rather than involving some label correspon-
dence – one could also imagine gluing pieces together along 2-edges. Then the pieces
become the original puzzle pieces from [?]:

0

00

1

11

0 1

01
up to rotation.

Exercise 18. Download the Grassmannian triangle-and-rhombus pieces from ??? and cut
them out on a laser cutter.
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Exercise 19. Define a region in a triangle-and-rhombus puzzle to be a maximal set of
identical (up to rotation) adjacent pieces. So there are 0-regions, 1-regions, and rhombus
regions.

(1) Show that all the regions are convex.
(2) Show that the rhombus regions are parallelograms.
(3) Show that the 0-regions fit together, under translation but not rotation, into a size

k triangle.
(4) Show that the 0-regions fit together, under translation but not rotation, into a size

n − k triangle.
(5) From these and area considerations, determine the number of rhombi as a function

of k,n.

Exercise 20. Take the results of the last two exercises to a math circle for grade-school
children, and challenge them to figure out how many 0-triangles, 1-triangles, and rhombi
there are in a Gr(k; Cn) puzzle by experiment.

2.3. Separated-codescent puzzles. Let π,ρ be two strings of length n, not necessarily of
the same content. Say that (π,ρ) have codescents separated by k if there exists a k such
that

● for all k ≤ j, j + 1, we have j left of j + 1 in π, and
● for all i, i + 1 ≤ k, we have i left of i + 1 in ρ.

Equivalently, Sπ is pulled back from Fl(k,k+ 1, . . . , n; Cn) whereas Sρ is pulled back from
Fl(1, . . . , k; Cn). To consider “multiplying” them, we have to pull them back to a common
flag manifold, refining the content of each, e.g. along the inclusion

Fl(Cn) ↪ Fl(k,k + 1, . . . , n; Cn) × Fl(1, . . . , k; Cn)

Obviously, if both are k-Grassmannian classes, then their codescents are separated by k.

Theorem 13. [?] If (π,ρ) have codescents separated by k, then cσπρ is the number of puzzles made
of the puzzle pieces

i

i

i

i
ij

ji

i > j
i

i

i

i

ij

j i

such that π is on the NW side, with 1 . . . k− 1 erased, ρ is on the NE side, with k . . .n erased, and
σ is along the South side, all left-to-right.

k vs k − 1 confusion here

Exercise 21. Derive the Grassmannian puzzle rule from the separated-codescents puzzle
rule.

Exercise 22 (very difficult). Show that the separated-codescents puzzle rule defines a graded
ring.
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2.4. Inventing 2-step puzzles. There are also puzzle rules for Schubert calculus on 2-
and 3-step flag manifolds, which were discovered and are most easily stated in the Z/3-
rotationally invariant terms.

Rather than stating them outright, we encourage the reader to rediscover them (as the
author did) through a series of experiments. We take the following axioms:

(0) All puzzle pieces are unit triangles (unlike the rhombus in §2.2).
(1) cσπρ = #{puzzles with π,ρ,σ on their NW, NE, South edges, all left-to-right}.
(2) Two edge labels on a puzzle piece determine the third.

(We could add axioms like “The set of puzzle pieces for d-step flag varieties should
be invariant under rotation (as in §2.2)” and “The set of puzzle pieces for d-step flag
varieties should be invariant under reflection + taking labels i ↦ d − i (puzzle duality)”
but we won’t actually need them.)

We start small, with Gr(0; C1), whose only relation is S0S0 = S0. This means we need a

puzzle (and hence a puzzle piece!)
0

00 . Similarly, Gr(1; C1) gives us the piece
1

11 .

Now we try out Gr(0; C2), whose only relation is S00S00 = S00. Axiom 1 says that there

should be a way to fill in

00

0
0

0
0 ; axiom 2 tells us how to do it

00
0
00
0

00
0 , and in so doing,

we discover the
0

0 0 piece in the center. The same process applied to Gr(1; C2) with

relation S211 = S11 leads us to
1

1 1 .

The real action comes at Gr(1; C2), with relations S201 = S01, S01S10 = S10S01 = S10. Apply-
ing axioms 1 and 2 leads us to the partial fillings

01

00
0

11
1

11
1

0
1

00
0

00
0
11
1

1
0

We invent a new label “10” to go on the unlabeled edge, which requires only one new

puzzle piece
10

01 up to rotation, finishing the fillings of all three puzzles (in which all

six rotations occur).
At that point one continues to try out larger Gr(k; Cn) Schubert problems (using Schu-

bert polynomials and divided difference operators to supply experimental data), and the
three pieces already discovered keep supplying exactly the right number of puzzles, sug-
gesting it’s time to try to prove a theorem. (This is not precisely how Terry Tao and I
discovered these three pieces, but that’s a story for another book.)

The first 2-step flag manifolds to consider are the degenerate Fl(0, 0; C1), Fl(0, 1; C2),
Fl(1, 1; C2), whose identity elements are S2, S12, S02 respectively. These lead us to invent

the labels 2, 21, 20 and pieces
2

22 ,
21

12 ,
20

02 .



SCHUBERT CALCULUS AND QUIVER VARIETIES 25

Exercise 23. Recall from exercise 15 the ring structure on H∗(Fl(C3)): the (left and right)
identity is S012, and

S2102 = S120 S2021 = S201 S102S021 = S120 + S201 = S102S021
S120S021 = S021S120 = S021S120 = S120S021 = S210

The first three equalities require these four puzzle boundaries (by axiom 1). Axiom 2 has
been applied to the leftmost.

12
21

0 0

11
1 2

220
0

01

2 2

0
2 0

1
1

02

0 2

1
1 2

1
0

02

0 2

1
2 0

1
1

Find a scheme to create only two new puzzle pieces (up to rotation), while giving (unique)
fillings of all these puzzles.

Exercise 24. Write a computer program to check that the puzzle pieces you found in the
previous exercise do indeed correctly compute products on 2-step flag manifolds in Cn
for n ≤ 8. (For larger n the Schubert polynomial calculations get really slow.9 )

The particularly industrious reader can now attempt 3-step (or higher! though under
some reasonable-looking assumptions, 4-step puzzles don’t exist). In 1999 I performed
the exercises above and invented 2-step puzzles, which were only proven in 2014 to do
the job [?]. I had a guess about d-step puzzles in general, which was very pretty but
not quite correct already at 3-step, and in despair I abandoned the approach. Thankfully
Anders Buch continued experimentation based on my conjecture, far enough to discover
the 3-step pieces I had missed, and we confirmed his version in 2017 [?]. So as not to spoil
the exercises in this section, we wait to present the 3-step rule in §??.

3. EQUIVARIANT COHOMOLOGY

3.1. Recalling ordinary cohomology. We recall some basic facts about ordinary coho-
mology, and convolution products, before considering what properties we would want
to ask about an equivariant version.

Cohomology theories are contravariant functors E∗ from the category
Top = (topological spaces, continuous maps considered up to homotopy)

to the category
Ab = (pointed abelian groups, pointed group homomorphisms)

satisfying a bunch of axioms, one being that the maps E∗(X), E∗(Y) → E∗(X × Y) induced
from the projections X×Y ↠ X,Y extend functorially to a map E∗(X)⊗E∗(Y) → E∗(X×Y).
This map is required compatible with E∗(X) ≅ E∗(X)⊗ 1E∗(Y) ↪ E∗(X)⊗E∗(Y) → E∗(X×Y)
(where 1E∗(Y) is the point in the pointed abelian group).

9Anders Buch managed to confirm the 2-step puzzle rule up to n = 15, before proving it in [?] about
ten years later, but not by comparing to Schubert polynomial calculations; rather, he checked the puzzle
rule against itself by checking that it was associative and correctly computed multiplication by some basic
generating classes. This gives a sense of how much more efficient positive rules, like the puzzle rule, can
be compared to cancelative rules like cσπρ = ∂σ(SπSρ).
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Since every topological space X has a diagonal inclusion X↪ X×X, one obtains a canon-
ical map E∗(X × X) → E∗(X); composing with the map E∗(X) ⊗ E∗(X) → E∗(X) above we
learn that each E∗(X) is a ring Since the diagonal inclusions induce commuting squares,
each map E∗(Y) → E∗(X) from X→ Y is a ring homomorphism. Effectively, we could have
chosen Ring as our target category.

Since each X comes with a canonical map πX ∶ X → pt and any triangle ↗ Y ↘
X → pt

com-

mutes, we could first determine E∗(pt) and then declare E∗(pt)-Alg to be our target cat-
egory. In ordinary cohomology E∗ = H∗, H∗(pt) ≅ Z, so E∗(pt)-Alg is just Ring anyway.

Ordinary cohomology – and many others, but we shift focus to ordinary now – has
a corresponding homology functor H∗ with a “cap product” action of H∗(X) on H∗(X).
Unfortunately, both gradings are conventionally positive (in a perfect world cohomology
would be negatively graded) soHi(X)⊗Hj(X)

∩Ð→ Hj−i(X) rather than mapping toHi+j(X).
If we map further using H∗(X → pt), this composite defines an H∗(pt)-valued pairing
between cohomology and homology. In the case that X is an oriented (e.g. complex)
manifold and is compact, this pairing is perfect.

We will frequently be dealing with noncompact complex varieties X and closed (but
noncompact) subvarieties Y ⊆ X, so we’ll also need Borel-Moore homology HBM∗ (X),
which is based on locally finite formal sums of singular chains. This provides a home
for a “fundamental homology class of X” (using the fact that complex varieties are trian-
gulable) and more generally of closed subvarieties. This functor is covariant for proper
maps f ∶ X → X ′, such as closed inclusions, and this map HBM∗ (X) → HBM∗ (X ′) is a mod-
ule homorphism w.r.t. the action of the only ring that acts on both groups – the target’s
cohomology H∗(X ′).

The fundamental class [X]∗ ∈ H∗(X) gives us a Poincaré map ∩[X]∗ ∶ H∗(X) → HBMdimR X−∗(X),
which is an isomorphism when X is smooth (Poincaré duality). In particular we can often
think about cohomology classes in geometric terms, as coming from cycles Y ⊆ X, and we
reserve [Y] for these. If f ∶ X ′ → X is a map of oriented manifolds and Y ⊆ X is an oriented
cycle transverse to f, then f∗([Y]) = [f−1(Y)].

It will be very helpful to take that geometric point of view on the ring structure of
H∗(X), say in the smooth complex case. Let Y,Z ⊆ X be closed subvarieties, defining
(by Poincaré duality) cohomology classes [Y], [Z]. If Y intersects Z transversely, then
[Y][Z] = [Y ∩Z]. Hence [Y][Z] can be seen as a measure of our inability to perturb Y,Z to
make them disjoint.

3.2. Kernels and convolution. LetA,B be smooth compact oriented manifolds, and [K] ∈
H∗(A ×B) a homology class (usually associated to a specific cycle K for “kernel”). Define
the [K]-transform (or K-transform when we do indeed have the cycle in hand)

Φ[K] ∶ H∗(A) → H∗(B), α↦ P.D. (πB)∗((α⊗ 1) ∩ [K])

where πA, πB are the coordinate projections ofA×B, and P.D. is Poincaré dual. This should
be seen as analogous to the Fourier transform L2(V) → L2(V∗), where K is the analogue
of the Fourier kernel. A classic reference (which operates at a different level of generality
than we will here) is [?, §??].

Exercise 25. RegardH∗(A) as a nondegenerate inner product space, where the inner prod-
uct on H∗(A) is ⟨α,β⟩ ↦ ∫Aαβ; similarly H∗(B) is one. A linear map Φ ∶ V →W from one
nondegenerate inner product space to another has a transpose ΦT ∶ W → V made by
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composing W → W∗ Φ∗Ð→ V∗ → V . Show that the transpose (Φ[K])T is given by the ho-
mology class [K]T ∈ H∗(B × A) corresponding to [K] under the obvious correspondence
A ×B ≅ B ×A.

The map (πB)∗ is effectively integration along the fibers of πB ∶ A × B ↠ B, which is
where we use A compact.

One would like to regard (H∗, ●-transform) as a transpose-respecting functor from
some category of spaces and kernels, to nondegenerate inner product spaces. That re-
quires some kind of convolution

Kernels(A,B) × Kernels(B,C) → Kernels(A,C)
intertwining with the usual

Hom(H∗(A),H∗(B)) × Hom(H∗(B),H∗(C)) ○Ð→ Hom(H∗(A),H∗(C)).
This is easy enough to do formally on the level of classes,

([K], [L]) ↦ (πAC)∗P.D.(π∗AB(P.D.[K]) ∪ π∗BC(P.D.[L]))

where πAB, πBC, πAC are projections from A ×B ×C. Since this involves multiplying coho-
mology classes, if one works with actual kernels K ⊆ A×B,L ⊆ B×C one runs into transver-
sality issues. The double Poincaré dualization can be skipped as long as K ×C,A × L are
transverse in A ×B ×C, and the convolution becomes

(K,L) ↦ πAC ((K ×C) ∩ (A × L)) .
For simplicity we work with the categoroid10 K whose objects are compact oriented mani-
folds, and morphisms HomK(A,B) are oriented cycles in A ×B, called “kernels”. Convo-
lution of kernels is only defined when they are transverse in the sense above.11

Exercise 26. LetA,B each be a finite set of points. Correspond the possible [K] with matri-
ces, giving linear transformations between the coordinatized vector spacesH∗(A),H∗(B).
Show that the recipe above, interpreted this way, gives matrix multiplication.

There is of course another category COMfld in play here besides K (the categoroid
just defined) and Inner (the category of finite-dimensional vector spaces with12 nonde-
generate inner products) which is that of compact oriented manifolds and smooth maps.
This has a covariant functor H∗ to Inner, which combined with transpose gives the usual
contravariant functor H∗.

Lemma 7. Let f ∶ A → B be a smooth map of compact oriented manifolds. Let K = graph(f) ∶=
{(a, f(a)) ∶ a ∈ A} ⊆ A × B. Orient it using the diffeomorphism K ↪ A × B πAÐ→ A. Then the
K-transform H∗(A) → H∗(B) is f∗, and the KT -transform H∗(B) → H∗(A) is f∗.

Proof. Start with α = P.D.[X], for X ⊆ A a cycle. Then

(α⊗1)∩[graph(f)] = (P.D.[X×B])∩[graph(f)] = [(X×B)∩graph(f)] = [{(x, f(x)) ∶ x ∈ X}]
10A groupoid is a group where not all multiplications are defined. Indeed, a category is a monoid where

not all multiplications are defined, so perhaps should be a monoidoid. However, a monoid doesn’t seem to
be a partially defined mon.

11Making such a definition, even when the intersection is non-transverse, is the realm of “derived alge-
braic geometry” [?].

12As a category this is just Vec, its additional structure being the “transpose” operation on morphisms.
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since the intersection (X × B) ∩ graph(f) is transverse. (Check: the conditions on (v⃗, w⃗) ∈
Tx,f(x)(A×B) defining the two tangent spaces intersecting at (x, f(x)) ∈ (X×B) ∩graph(f)
are given by independent conditions v⃗ ∈ TxX, w⃗ = Tf(v⃗).)

The map ι ∶ A ↪ A × B, a ↦ (a, f(a)) takes [X] ↦ [(X × B) ∩ graph(f)], so we can
compute (πA)∗([(X × B) ∩ graph(f)]) as (πA ○ ι)∗([X]) = f∗([X]). This proves the first
claim.

The second statement is the transpose of the first. �

Exercise 27. Show that the assignment (f ∶ A → B) ↦ (graph(f) ⊆ A × B) defines a functor
COMfld→ K, i.e. takes composition to (defined!) composition.

The above lemma and exercise together say that the covariant functor H∗ ∶ COMfld →
Inner factors as

COMfld → K → Inner

(f ∶ A→ B) ↦ (graph(f) ⊆ A ×B)

(K ⊆ A ×B) ↦ (K-transformΦ[K] ∶ H∗(A) → H∗(B))

where the second functor is transverse-respecting.

3.3. Equivariant cohomology: properties and definition. We now state several axioms
that will characterize equivariant cohomology. Fix a topological group G.

Equivariant cohomology should be a functorH∗
G from G-Top, the category (topological

spaces with G-actions, continuous G-equivariant maps up to G-equivariant homotopy),
to pointed abelian groups (or rings, or H∗

G(pt)-algebras, just as in §3.1). It should satisfy:
(1) If G acts on X freely, then H∗

G(X) ∶= H∗(X/G).
(2) If E is a weakly contractible G-space, then H∗

G(X) ≅ H∗
G(X × E). (Note that this

would already be covered by the above were E equivariantly contractible.)
If we can find even one such G-space EG that is both free and equivariantly contractible,
we then have a definition H∗

G(X) ≅ H∗
G(X × EG) = H∗((X × EG)/G) for any X. This “ho-

motopy quotient” (X × EG)/G is called the Borel mixing space of X, providing the Borel
construction of equivariant cohomology. Note that for any G ′ ≤ G, the space EG serves
as an EG ′ as well.

Example. Let G = GL(n,C). Define EG as the space of n×N matrices of full rank. Without
the full-rank condition, this (vector) space is obviously contractible; since the singular
matrices are a subset of infinite codimension, removing this subset doesn’t create any
homotopy groups. Then this space also serves as EG ′ for any group G ′ with a faithful
n-dimensional representation, AKA a “linear group”.

We compute the base ring H∗
GL(n,C)(pt) of GL(n,C)-equivariant cohomology:

H∗
GL(n,C)(pt) = H∗

GL(n,C)(EG) = H∗(GL(n,C)/EG) = H∗(Gr(n; C∞)) = Z[x1, . . . , xn]Sn

Milnor gave a construction of such a space EG for arbitrary topological groups G (sub-
ject to topological conditions like being a CW-complex) [?, ], but we skip it, as we only
need the case above of linear groups. Showing well-definedness ofH∗

G(X), which we also
skip, requires a proof that the homotopy type of the Borel mixing space doesn’t depend
on the choice of EG.

Exercise 28. Let G ′ ≤ G be a subgroup such that G/G ′ is contractible, e.g. U(1) ≤ C×,
SO(n,R) ≤ SL(n,R), T ≤ B. Then there is a natural isomorphism H∗

G ′(X) ≅ H∗
G(X).
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Our primary interest is in T -equivariant cohomology for T ≅ (C×)n, called an (algebraic)
torus.

Theorem 14. Let T ≅ (C×)n be a torus, and T∗ ∶= Hom(T,C×) ≅ Zn its weight lattice. Then

H∗
T(pt) ≅ SymZ(T∗)

The isomorphism is induced from the map T∗ → H2T(pt), λ ↦ c1(Cλ → pt), where Cλ is the
1-dimensional representation of T with character λ.

This construction uses the equivariant Chern classes of a G-equivariant vector bundle
V → S, which are easy to define: apply the Borel construction to both V and S to get a
vector bundle (V × EG)/G over (S × EG)/G, and take its ordinary Chern classes, which
live in H∗((S × EG)/G) =∶ H∗

G(S).

Proof. First, we use the coördinatization T ≅ (C×)n, and the space EGL1(C) = C∞ ∖ 0⃗ from
the example above:

H∗
T(pt) ≅ H∗

(C×)n(pt) ≅ H∗(EGL1(C)n/T) ≅ H∗((CP∞)n) ≅ Z[x(2)1 , . . . , x
(2)
n ]

So this ring is definitely the symmetric algebra on its degree 2 part, and we certainly have
a group homomorphism T∗ → H2T(pt), where both are ≅ Zn. It remains to show that this
map is surjective (which will make it automatically 1 ∶ 1 by rank considerations).

This, we can check in coördinates. It suffices to handle the n = 1 case. Let C1 be the
standard representation of C×, and let E ′ ⊆ EGL1(C) be C2 ∖ 0⃗, so we have the pullback of
line bundles

(C1 × E ′)/C× ↪ (C1 × EGL1(C))/C×

↓ ↓
(pt × E ′)/C× ↪ (pt × EGL1(C))/C×

Since this diagram is a pullback, c1 of the right-hand line bundle pulls back to c1 of the
left-hand line bundle under the induced isomorphismH∗((pt×EGL1(C))/C×) → H∗((pt×
E ′)/C×), AKA H2T(pt) → H2(CP1). The line bundle on the left is the Hopf bundle, whose
c1 generates H2(CP1), proving the surjectivity. �

This theorem, and the example before it, have a common generalization for connected
Lie groups: H∗

G(pt; Q) ≅ Sym(T∗ ⊗Q)WG .

Exercise 29. ...prove that with hints

As in ordinary cohomology, we want to compute in equivariant cohomology geomet-
rically, using (now G-invariant) cycles to define cohomology classes. For this we need to
define equivariant (Borel-Moore) homology, and fundamental classes therein.

There is an obvious wrong guess: the ordinary (and Borel-Moore) homology of the Borel
mixing space. The problem with this definition is that the Borel mixing space is usually
infinite-dimensional so there is no degree in which its fundamental class would sit.

Exercise 30. Compute the cap-product action of H∗(CP∞) on H∗(CP∞). Awful, isn’t it?

Instead, we filter EG as an increasing union of increasingly connectedG-manifolds EiG;
specifically we require πj(EiG) = 0 for j < i. Then we define the equivariant homology
groups by

HGd (X) ∶= lim
i→∞

Hd+dim(EiG)/G ((X × EiG)/G)
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where the increasing connectedness of Ei causes this limit to stabilize at finite i, for any
given d (and doesn’t depend on the filtration). In the case of G a linear group in GLn(C),
we can take EiG to be n ×N matrices of rank n, supported in the first i columns.

Ordinary cohomology and homology of X lives in degrees [0,dimX], whereas equi-
variant cohomology can go up forever, in [0,∞). Equivariant homology, according to the
above definition, maxes out at dimX but can go down forever, in (−∞,dimX].

Equivariant homology bears a cap-product action of equivariant cohomology thanks
to the maps H∗

G(X) = H∗((X × EG)/G) → H∗((X × EiG)/G). Note the compatibility of this
degree-subtractive action with the ranges of degrees just discussed.

If Y ⊆ X is a G-invariant oriented cycle of real dimension d, and each EiG is oriented,
then [(Y × EiG)/G] defines an element in HBM

d+dimR(EiG)/G((X × EG)/G), which for large i is
HBM,Gd (X). We call this class [Y]∗ (reserving [Y] for an equivariant cohomology class). Note
that most classes inHG∗ (X) are of negative degree, so cannot be of this form, an interesting
departure from ordinary homology.

Now that we have fundamental classes, we can define the Poincaré map H∗
G(X) →

HBM,GdimR X−∗(X), and when it is an isomorphism we can pull back Borel-Moore classes to co-
homology classes. In particular we write [Y] ∈ H∗

G(X) for the preimage of [Y]∗ ∈ HBM,G∗ (X).

Proposition 8. Let V be a T -representation, with weights λ1, . . . , λn (repetition allowed). Then
the Poincaré map H∗

T(V) → HBM,T2n−∗ (V) is an isomorphism, and [0⃗] = ∏n
i=1 λi. More generally, if

W ≤ V is a subrepresentation, then [W] is the product of the T -weights in V/W.

Proof. Write T ≅ (C×)r, and let EiT ∶= (Ci ∖ 0)r. We want to compute HBM,T2n−d (V), which
is HBM

2n−d+dim(EiT/T)((V × EiT)/T) for large i. This is a Cn-bundle over EiT/T = (CPi−1)n,
so we can contract it shifting the degree by the Gysin isomorphism, to get to the group
HBM
2n−d−2n+(2i−2)n((CPi−1)n) and from there H(2i−2)n−d((CPi−1)n). By Poincaré duality this is

dual toHd((CPi−1)n) which for i large enough, is isomorphic toHd((CP∞)n), finally, dual to
Hd((CP∞)n) = HdT(V). This verifies that Poincaré duality holds dimensionally. It remains
to check that HBM,T∗ (V) is torsion free as a H∗

T(V)-module, which is a similar calculation,
again derived from Poincaré duality of EiT/T .

no that just shows it rationally. redo this, maybe prove it for Poincaré duality spaces as-
suming that each EiG/G is smooth oriented

Equivariantly coördinatize V as ∏n
i=1Cλi with coördinates z1, . . . , zn, so 0⃗ is the trans-

verse intersection of the hyperplanes {zi = 0}. It remains to check that [{zi = 0}] = λi. By
factoring out the irrelevant directions, we reduce to the n = 1 case ... �

We get to our first interesting product calculation in equivariant cohomology: [0⃗]2 =
(∏n

i=1 λi) [0⃗]. Recall our interpretation of [A][B], which is that it measures our inability to
move A,B to make them disjoint. In ordinary cohomology on a space of positive dimen-
sion, of course [pt]2 = 0, because we can move our two points to be distinct. But in our
equivariant situation, we may be unable to move the T -fixed point 0⃗while keeping it T -fixed.
Indeed, there are nearby fixed points to move to iff V contains a trivial one-dimensional
representation, iff one of the λi = 0, iff ∏n

i=1 λi = 0, iff [0⃗]2 = 0.
We also get a nice source of positivity for polynomial coefficients:

Corollary 6 (theorem D from [?]). If X ⊆ V is a T -invariant subvariety of a T -representation
with weights λ1, . . . , λn, then [X] can be expressed as p(λ1, . . . , λn) for some polynomial p ∈
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N[x1, . . . , xn] with squarefree monomials. In particular, if all the {λi} lie in (an open half-space
and therefore lie in) an orthant ∑ni=1 µi, then the coefficients of [X], written as a polynomial in the
(µi), are nonnegative and X ≠ ∅ Ô⇒ [X] ≠ 0.

Proof sketch. Gröbner basis theory provides a T -equivariant degeneration of X to a union
X ′ of coördinate subspaces, with scheme-theoretic multiplicities. This can be used to give
a T -equivariant homology of X to X ′, so [X] = [X ′]. Then [X ′] is the sum over those
subspaces W, of the (natural number) multiplicity times the product of the weights in
V/W.

The second statement follows straightforwardly. For the third, pick the Gröbner basis
to be T -homogeneous, hence without constant term. We learn that 0⃗ lies in X and in X ′.
Therefore the positive sum above is a nontrivial sum, of terms that cannot cancel one
another. �

One reason to compute equivariant cohomology is that it can be easier than ordinary
cohomology. We don’t justify this claim yet (see theorem ??) but explain how and when
one may recover ordinary from equivariant.

Theorem 15. LetG act on X, and make Z into a gradedH∗
G(pt)-module in the unique way. Then

there is a natural map Z ⊗H∗
G
(pt) H

∗
G(X) → H∗(X). If X enjoys Poincaré duality and HBM∗ (X) is

generated byG-invariant cycles (which is typical forG solvable, and otherwise atypical), then this
natural map is an isomorphism over the rationals.

Proof. Consider the principalG-bundleG→ EG→ EG/G, where the latter space is usually
called BG. Applying the Borel construction to the G-equivariant bundle X → pt gives the
X-bundle X→ (X×EG)/G→ BG – it is just the “associated bundle construction” replacing
the G fibers with Xs.

This gives us a pullback square of spaces, and its cohomology:

H∗
⎛
⎜
⎝

X → (X × EG)/G
↓ ↓
pt → BG

⎞
⎟
⎠

=
H∗(X) ← H∗

G(X)
↑ ↑
Z ← H∗

G(pt)

So we have our natural mapH∗
G(X) → H∗(X). To show that it factors through the quotient

Z ⊗H∗
G
(pt) H

∗
G(X) we need check that the composite H∗

G(pt) → H∗
G(X) → H∗(X) factors

through Z, but of course this is guaranteed by the commuting square.
For the isomorphism statement, pickG-invariant cycles {Xi} giving a Q-basis ofH∗(X; Q),

then apply the Leray-Hirsch theorem to the X-bundle (X×EG)/G→ BG. We learn that the
[Xi] ∈ H∗((X×EG)/G) form aH∗(BG)-basis of the freeH∗(BG)-moduleH∗((X×EG)/G) =
H∗
G(X), hence after tensoring they form a Q-basis of Q⊗H∗

G
(pt;Q)H

∗
G(X; Q), finally bijecting

to the Q-basis of H∗(X; Q). �

Much of the literature invokes the property of an action being equivariantly formal,
which is the statement that Leray-Hirsch applies to the X-bundle (X × EG)/G → BG. In
this language, the theorem suggested above becomes the statement that a solvable group
action on a variety enjoying Poincaré duality is equivariantly formal.
I guess I want to prove that pullback to fixed points is an isomorphism, H∗

T -rationally

3.4. From G to T . We explain here why we focus on T -equivariant cohomology to the
exclusion of other theories H∗

G(●).
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There is an intermediate group, the normalizer N(T) ≤ G, with the properties that
W ∶= N(T)/T is finite (and ≅ Sn in the case we most care about, G = GLn(C)) and indexes
the Bruhat cells on B−/G. Let G↻ X, and consider the two fiber bundles

(X × EG)/T ↠ (X × EG)/N(T) ↠ (X × EG)/G
(with fibersW and G/N(T) respectively) inducing the maps

H∗
T(X) ← H∗

N(T)(X) ← H∗
G(X)

which we call the “first map” and the “second map” in what follows. Note that W acts
on (X × EG)/T from the right, giving an action on H∗

T(X).

Lemma 8. The first mapH∗
T(X) ← H∗

N(T)(X) induces an isomorphismH∗
T(X;Q)W ≅ H∗

N(T)(X;Q).

Proof. Because the map (X × EG)/T ↠ (X × EG)/N(T) is a principal covering space with
finite fiber, we have a map the other direction, “integration (really summation) over the
fiber”, that we then divide by #W. (This is one reason we pass to rational coefficients,
though 1

#WZ would be good enough.)
The image of H∗

N(T)(X) → H∗
T(X) obviously lands inside H∗

T(X)W , and the compos-
ite H∗

N(T)(X;Q) → H∗
T(X;Q) → H∗

N(T)(X;Q) is the identity. Meanwhile, the composite
H∗
T(X;Q)W → H∗

N(T)(X;Q) → H∗
T(X;Q)W is the identity. These establish the lemma. �

Lemma 9. H∗(G/N(T);Q) = H0(G/N(T);Q) = Q for G a connected Lie group with maximal
torus T .

Proof. We can safely replace G by a maximal compact subgroup K if necessary, since G/K
is contractible by the Iwasawa decomposition. Hereafter we assume G is compact con-
nected.

As in the previous lemma, H∗(G/N(T);Q) ≅ H∗(G/T ;Q)W . Since G/T is diffeomorphic
to GC/B+ for which we have the Bruhat decomposition, we know that Hodd(G/T ;Q) =
0, hence Hodd(G/T ;Q)W = 0 and thus H∗(G/N(T);Q) = 0. Consequently χ(G/N(T)) =
dimH∗(G/N(T);Q).

Meanwhile, since G/T is a #W-cover of G/N(T), χ(G/N(T)) = χ(G/T)/#W. (We could
deformation retract G to a maximal compact subgroup GR to make both spaces compact,
and pull back a triangulation of GR/N(TR) to get a triangulation of GR/TR, with #W as
many simplices.) Again using the Bruhat decomposition, we learn χ(G/N(T)) = 1.

Together we learn dimH∗(G/N(T);Q) = 1, giving the result. �

Theorem 16. Let G act on X, where G is a connected Lie group, and T is a maximal torus. Then
H∗
G(X;Q) ≅ H∗

T(X;Q)W .

Proof. The Leray-Hirsch theorem, applied to the G/N(T)-bundle (X × EG)/N(T) ↠ (X ×
EG)/G, says that since the set {1} restricts to a Q-basis of cohomology of the fiber (by
lemma 9) it also gives a basis of H∗

N(T)(X;Q) as a module over H∗
G(X;Q). Hence the two

are isomorphic. Now apply lemma 8. �

3.5. Convolution in equivariant cohomology. Return to the setting of §3.2, and the cate-
goroidK of smooth compact oriented manifoldsA and kernels (oriented cycles) K ⊆ A×B.
As before, we define the convolution K ○ L of K ⊆ A × B, L ⊆ B ×C only when K ×C trans-
versely intersects A × L.

Even when B is noncompact, it can happen that the projection (K×C)∩ (A×L) → A×C
is proper, giving a reasonable definition of K ○ L. The following serves as an example,
which will be key:
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Proposition 9. Recall that for X ⊆M a locally closed submanifold, the conormal bundle CXM
inside the cotangent bundle T∗M ∶= {(m, v⃗) ∶ m ∈M, v⃗ ∈ T∗mM} is {(m, v⃗) ∶ m ∈ X, v⃗ ⊥ TmX}.

Let f ∶ B → A be a function, and ιA ∶ A ↪ T∗A, ιB ∶ B ↪ T∗B be the inclusions of the zero
sections of the cotangent bundles. Then the following square of kernels commutes:

T∗A
C
graph(f)T (A×B)ÐÐÐÐÐÐÐÐÐ→ T∗B

graph(ιA) ↑ ↑ graph(ιB)

A
graph(f)T
ÐÐÐÐÐ→ B

Proof. We go from Southwest to SE to NE first:

{(f(b), b, (b ′, v⃗)) ∈ A×B×T∗B}∩{(a,b, (b, 0⃗)) ∈ A×B×T∗B} = {(f(b), b, (b, 0⃗)) ∈ A×B×T∗B}
whose (bijective) image under πA,T∗B is {(f(b), (b, 0⃗)) ∈ A × T∗B}.

To go from NW to NE we need to compute the conormal bundle to graph(f) ⊆ A × B.
The tangent space at (f(b), b) is the image of Tbf⊕ Id ∶ TbB→ Tf(b)A⊕ TbB. Hence its perp
is the kernel of T∗b f + Id ∶ T∗f(b)A⊕ T∗bB→ T∗bB, so, pairs {(a⃗,−Tf∗(a⃗)) ∶ a⃗ ∈ T∗

f(b)A}.
Now, going SW to NW to NE, we intersect

{(a, (a, 0⃗), (b, w⃗)) ∈ A × T∗A × T∗B} ∩ {(a, (f(b), a⃗), (b,−Tf∗(a⃗))) ∶ b ∈ B, a⃗ ∈ T∗f(b)A}
obtaining

{(f(b), (f(b), 0⃗), (b,−Tf∗(0⃗) = 0⃗))}
whose (bijective) image under πA,T∗B is likewise {(f(b), (b, 0⃗)) ∈ A × T∗B}. �

We would like to infer a consequence for the corresponding maps on H∗. But we can-
not do so directly, because T∗A,T∗B are noncompact. The idea will be to reduce T∗A to
(compact) A in some sense.

Lemma 10. Let A be a complex manifold, so its cotangent carries a C×-action scaling the fibers,
where H∗

C× =∶ Z[h̵]. Let ιA ∶ A→ T∗A be the inclusion of the zero section. Then

ι∗A ∶ H∗
C×(T∗A) → H∗

C×( A) = H∗(A)[h̵]
ιA∗ ∶ Z[h̵±] ⊗Z[h̵] H

∗
C×( A) → Z[h̵±] ⊗Z[h̵] H

∗
C×(T∗A)

are ring and Z[h±]-module isomorphisms, respectively. Their composite ι∗A(ιA)∗ is multiplication
by the equivariant Euler class eC×(T∗A), whose dehomogenization h̵↦ −1 is the total Chern class
c(A) = c(TA) up to a sign (−1)dimA.

If A,B carry T -actions (separate from the C×-action on T∗A,T∗B) with isolated fixed points,
then the second statement holds also in (T × C×)-equivariant cohomology if one inverts the non-
zero-divisor eT×C×(T∗A).

Proof. Of course ι∗A is an isomorphism – the inclusion ιA is an equivariant homotopy
equivalence. The composite takes 1 ↦ eC×(T∗A) essentially by the definition of Euler
class. Since the pushforward map (ιA)∗ is a module homomorphism (the push-pull for-
mula), it is multiplication by this class.

As explained before
lame , e(T∗A)∣h̵↦1 is the total Chern class of T∗A. The dimAmany Chern roots of T∗A are

the negatives of those of TA, so the elementary symmetric polynomials in T∗A’s Chern
roots are off by an alternating sign from those of TA, which accounts for the h̵ ↦ −1 we
use here. Finally, the total Chern class (of any complex vector bundle) should start with 1
not h̵dimA∣h̵↦−1, so to correct the overall sign we multiply by (−1)dimA.
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Observe thatH>0(A) consists of nilpotents. Since h̵−dimAeC×(T∗A) ∈ 1+H>0(A)[h̵±], it is
invertible; hence ιA∗ is an isomorphism.

This last argument doesn’t quite hold in T -equivariant cohomology, because H>0
T (A) is

no longer nilpotent, but the argument still shows that eC×(T∗A) is not a zero divisor. �

We take the above as motivation for extending our categoroid K as follows. Let the
objects inKC× be oriented C×-manifoldsM such thatMC× is compact, with the morphisms
from M to N being C×-invariant kernels K ⊆ M ×N. Then we get a ●-transform functor
KC× → Z[h̵±]-modules, where the K-transform ΦK is defined by

α↦ ∑
F⊆MC×component

ΦK∩(F×N) (
α

eC× (NFM)
)

Each summand uses a kernel in F ×N, where F is compact.
justify with some Borel-Moore stuff

Exercise 31. LetM be an oriented C×-manifold, and F ⊆MC× a connected component of its
fixed point set. Show that F inherits an orientation.

Exercise 32. Show that ●-transform is again a functor (takes convolution of transverse
kernels to composition of maps on localized equivariant cohomology).

The motivation for the theorem below, which allows us to compute the pullback along
f ∶ B → A in terms of the harder-looking but sometimes easier Cgraph(f)T -transform, will
likely seem completely obscure at the moment. Its utility will become clearer after we
study quiver varieties.

Theorem 17. Let A,B be smooth, compact, complex manifolds, so their cotangent bundles each
carry a C×-action scaling the fibers.

Let f ∶ B → A be a function, and Cgraph(f)T the conormal bundle to its graph, a kernel in
T∗A × T∗B. Then if the Cgraph(f)T -transform

Z[h̵±] ⊗Z[h̵] H
∗
C×(T∗A) → Z[h̵±] ⊗Z[h̵] H

∗
C×(T∗B)

takes α↦ β, we learn that

f∗ ( α

eC×(T∗A)
) = β

eC×(T∗B)
.

Proof. First, we observe that α = Φgraph ιA (α/eC×(T∗A)) from Z[h̵±] ⊗Z[h̵] H
∗
C×(A), using

lemma 10. Hence

β = ΦC
graph(f)T (A×B)(α) = ΦC

graph(f)T (A×B)ΦιA ( α

eC×(T∗A)
)

= ΦιAΦgraph(f)T (
α

eC×(T∗A)
) = ΦιAf

∗ ( α

eC×(T∗A)
) = eC×(T∗B) f∗ (

α

eC×(T∗A)
)

where we use proposition 9 to go from the first to the second line, and lemma 10 again in
the last step. �
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4. EQUIVARIANT COHOMOLOGY OF THE FLAG MANIFOLD

4.1. The equivariant Borel presentation. With equivariant cohomology, and some of our
results about it, we can give a much quicker and more satisfying derivation of the Borel
presentation (theorem 7). First, we consider the equivariant (with respect to B or T ) Borel
presentation, everywhere over Q: go to B−/G

H∗
T(G/B) ≅ H∗

B(G/B) ≅ H∗
B×B(G) undividing by the free B-action

≅ H∗
B×G∆×B(G ×G) undividing G ×G by the free G∆-action

≅ H∗
G(G/B ×G/B) dividing by the now-free B ×B-action

≅ H∗
G(G/B) ⊗H∗

G
(pt) H

∗
G(G/B) the equivariant Künneth theorem

≅ H∗
G×B(G) ⊗H∗

G
(pt) H

∗
G×B(G) undividing by the B ×B-action

≅ H∗
B(pt) ⊗H∗G(pt) H

∗
B(pt) dividing by the free G ×G-action

≅ H∗
T(pt) ⊗H∗G(pt) H

∗
T(pt) since B/T is contractible

≅ Sym(T∗) ⊗Sym(T∗)W Sym(T∗)

In the G = GLn(C) case the final result is

H∗
T(Fl(Cn)) ≅ Q[x1, . . . , xn, y1, . . . , yn] / ⟨p(x) = p(y) ∀ symmetric polynomials p⟩

The map from theorem 15 is

H∗(Fl(Cn)) ← Q⊗H∗
T
(pt) H

∗
T(Fl(Cn))

≅ Q⊗Sym(T∗) (Sym(T∗) ⊗Sym(T∗)W Sym(T∗))

≅ Q⊗Sym(T∗)W Sym(T∗) ≅ Sym(T∗) / ⟨p ∶ p ∈ Sym(T∗)W+ ⟩

In the G = GLn case we’ve proven that the Schubert cycles span the cohomology. (Indeed,
this spanning condition holds for other connected algebraic groups as well). Since the
Schubert cycles are T -invariant, theorem 15 gives a new proof of the nonequivariant Borel
presentation from theorem 7, albeit only over the rationals.

4.2. Double Schubert polynomials. Consider the B− × B+-equivariant open inclusion ι ∶
GLn(C) ↪Mn(C). This induces the second map in

H∗
B+(B−/GLn(C)) ≅ H∗

B−×B+(GLn(C)) ι∗←Ð H∗
B−×B+(Mn(C))

≅ H∗
B−×B+(pt) ≅ H∗

T×T(pt) ≅ Z[x1, . . . , xn, y1, . . . , yn]

Define Xπ ∶= B−πB+ ⊆Mn(C), a matrix Schubert variety. Since Xπ is closed inside the
smooth oriented Mn(C), it defines an element [Xπ] of H∗

B−×B+(Mn(C)), seen just above to
be the polynomial ring Z[x1, . . . , xn, y1, . . . , yn]. We use this to define the double Schubert
polynomial Sπ(x,y) ∶= [Xπ] ∈ Z[x1, . . . , xn, y1, . . . , yn].

In fact we could have skipped the B+-equivariance just above, which (as in theorem 15)
amounts to setting the yi ≅ 0, and obtained polynomials in the xi alone.

Theorem 18. (1) Let π ′ ∈ Sn+1 be the image of π ∈ Sn under the usual inclusion. Then
Sπ(x,y) = Sπ ′(x,y).

(2) The specialization Sπ(x, 0) gives the (single) Schubert polynomial from §1.10.
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(3) Schubert polynomials have positive coefficients. Double Schubert polynomials don’t, but
are positive sums of monomials in the linear forms (xi − yj).

Proof. (1) Let p ∶ Mn+1(C) ↠ Mn(C) be the projection that forgets the last row and
column. Then p−1(Xπ) is closed, irreducible, and visibly Bn+1− × Bn+1+ -invariant. It
contains the permutation matrix π ′ hence contains Xπ ′ . Since `(π) = `(π ′) the two
subvarieties have the same codimension so must be equal. Finally, p∗([Xπ]) =
[p−1(Xπ)] = [Xπ ′].

(2) We first show that the Sπ(x, 0) serve as polynomial representatives of the ordinary
Schubert classes. Since the inclusion ι ∶ GLn(C) → Mn(C) is open, it is trans-
verse to Xπ (and any other subvariety), so ι∗([Xπ]) = [ι−1(Xπ)], which maps to
[Xπ] ∈ H∗

B+
(B−/GLn(C)), and from there forgets B+ to the ordinary Schubert class

in H∗(B−/GLn(C)).
Now use exercise 14 and part (1).

(3) Apply corollary 6 to Xπ ⊆ Mn(C), based on either the left action of T for single
Schubert polynomials, or the left and right actions for double Schubert polynomi-
als (involving inverses on the right).

�

One clear advantage of this approach to Schubert polynomials is that it computes them
individually, directly, rather than via a recurrence relation. Here is an example.

Exercise 33. Let π ∈ Sn be a dominant permutation, meaning that it has all descents π(i) >
π(i + 1) followed by all ascents, such as 6 > 4 > 2 > 1 < 3 < 5 < 7 < 8 but not 1 < 3 > 2.

(1) Show that there is an English partition λ with `(π) boxes such that Xπ is defined
by the linear equations “mij = 0 for (i, j) ∈ λ”.

(2) Show that Sπ(x,y) = ∏(i,j)∈λ(xi − yj). In particular Sπ(x) is a single monomial.

foreshadow §4.5

4.3. Push-pull vs. sweeping. All of the results from §1.6 and §1.7 are based on T -invariant
geometrical statements, and so extend without change to T -equivariant cohomology. The
only one that needs revisiting is the “self” duality of the Schubert basis; it is no longer
true that [Xλ] = [Xλw0]. Rather, the dual basis to the classes of the Schubert varieties is
the basis of classes of opposite Schubert varieties.

Theorem 19. Let ∂xi , ∂
y
i be the divided difference operators in the two sets of variables. Then

∂xiSπ(x,y) = {Sri○π(x,y) if ri ○ π < π
0 if ri ○ π > π

∂yi Sπ(x,y) = {Sπ○ri(x,y) if π ○ ri < π
0 if π ○ ri > π

Proof. Consider the classes (not yet the polynomials) in any one of

H∗
B+(B−/GLn(C)) ≅ H∗

B−×B+(GLn(C)) ≅ H∗
B−(GLn(C)/B+)

The first set of relations holds on push-pull of the equivariant Schubert classes by the
same proof as in theorem 5. The second set reduces to the first by using transpose. The
compatibility of the divided difference operators on polynomials with the push-pull op-
erations is the same argument as in theorem 8. Then we invoke the stability property (1)
of theorem 18... �
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I should declare this stable characterization stuff back in single

On a fixed quotient space e.g. B−/GLn(C) we can only do the push-pull operations
from §1.7 on the left side. How can we geometrically interpret the right side operations,
directly on B−/GLn(C) without passage to GLn(C)/B+?

Consider the category C of right B+-varieties Y equipped with B+-equivariant maps
ι ∶ Y → P−/GLn(C). On this category we define functors ∂i ∶ C → C by

∂i(Y) ∶= Y ×B+ Pi,
∂i(ι) ∶ Y ×B+ Pi → P−/GLn(C)

[y,p] ↦ ι(y)p

Note that ∂i(Y) is a Y-bundle over B+/Pi ≅ CP1, so is irreducible/smooth/compact iff Y
has those properties. We christen this construction the Bott-Samelson crank.

The basic example of such a map ι ∶ Y ↪ Pi/GLn(C) is the inclusion of the unique B−-
fixed point. If we then apply Bott-Samelson cranks (∂i) in some order, determined by a
word in the simple reflections, the result is a Bott-Samelson manifold.

Exercise 34. Show that the image of a Bott-Samelson manifold is a B+-orbit closure on
P−/GLn(C).

Theorem 20. Let ι ∶ Y → P−/GLn(C) define a class ι∗[Y] ∈ H∗
B+

(P−/GLn(C)).
Then ∂i(ι)∗ [∂i(Y)] = ∂yi (ι∗[Y]), i.e. the class induced by the Bott-Samelson crank is the divided
difference operator applied to the original class.

Proof. On CP1 we check once and for all should do this back in the H∗
T section that αi =

[0] − [∞] = [0] − ri[0]. Pulling this back to ∂iY along the Pi-equivariant map ∂iY ↠ CP1,
we get the equation αi = [Y ×B+ B+] − ri[Y ×B+ B+] as classes on ∂iY. Finally we apply ∂i(ι)∗
to get αi = ι∗[Y] − riι∗[Y] as classes on P−/GLn(C). right sign? �

It is typical in the literature to assert that one can use the divided difference operator
technology on full flag varieties to construct all the Schubert classes starting from the
point class, but not on partial flag varieties; therefore to construct their Schubert classes
one should do the full-flag calculation first, and use the inclusion on cohomology. How-
ever, the Bott-Samelson crank lets us do the construction directly on the partial flag vari-
ety, so long as we are willing to work in equivariant cohomology.

Lemma 11 (The R-matrix for P−/G). Recall λri ∶= λ with positions i, i + 1 switched, and αi =
yi − yi+1. Then

Sλri = Sλ +αi Sλri [λri ⋗ λ]
where, given a boolean statement P, we define [P] to be 1 if P is true, 0 if false.

the proof below seems overwrought, and fizzles out at the end

Proof. The action of ri on nonequivariant cohomology is trivial, becauseG is connected, so
ri is homotopic to the identity map. Hence Sλri ∈ Sλ+ H>0

T ⋅ {Schubert classes}, by theorem
15.

If λri /⋗ λ then Xλri = Xλ, so Sλri = Sλ even equivariantly. Finally, if λri ⋗ λ then Xλri ⊆
Xλri . Now we apply the decomposition algorithm described after proposition 10 (upside
down) to compute the coefficient on Xλri : it is

(Xλri)∣λri
Xλri ∣λri

= ri ⋅ (X
λ∣λ)

Xλri ∣λri
= αi
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�

4.4. Point restrictions of Schubert classes. For any topological actionG↻M, the inclu-
sion of the fixed point MG ↪M is trivially a G-equivariant map, hence induces a reverse
map H∗

G(M) → H∗
G(MG). The latter ring looks pretty silly: why compute H∗

G for a trivial
action? Indeed, if G acts on N trivially, then

H∗
G(N) ∶= H∗((N × EG)/G) = H∗(N × (EG/G)) = H∗(EG/G) ⊗H∗(N) = H∗

G(pt) ⊗H∗(N)
so together we get a map H∗

G(M) → H∗
G(pt) ⊗ H∗(MG) of H∗

G(pt)-algebras. This is not
so impressive if, e.g., M is a homogeneous G-space and not a point. But something very
convenient is true in the case we care about:

Proposition 10. Let Tn act on Fl(n1, . . . , nd; Cn) as usual. Then the map

H∗
G(Fl(n1, . . . , nd; Cn)) → H∗

T(pt) ⊗H∗(Fl(n1, . . . , nd; Cn)T) ≅ ⊕
Fl(n1,...,nd;Cn)T

H∗
T(pt)

is an injection of H∗
T(pt)-algebras. Put another way, instead of a class β we can work with the list

(β∣λ)λ∈Fl(n1,...,nd;Cn)T of polynomials in Z[y1, . . . , yn].
These point restrictions satisfy the following triangularity results:
(1) Sw∣v = 0 unless v ≥w in Bruhat order
(2) Sw∣w ≠ 0.

Proof. We first prove (1) and (2) and then prove the injectivity from them.
Recall from §?? that the Schubert classes are in correspondence with the T -fixed points.

Consider the matrix Sw∣v wherew,v are T -fixed points, and Sw∣v ∈ H∗
T(pt) is the restriction

of the equivariant class Sw to the point P−/P−v ∈ P−/GLn(C) ≅ Fl(n1, . . . , nd; Cn). We pick
a linear extension of Bruhat order and order the rows and columns by it.

To prove (1) when v /≥w, consider the inclusions

P−/P−v ↪ P−/GLn(C) ↩ P−/P−wB+
inducing

H∗
T(P−/P−v) ← H∗

T(P−/GLn(C)) ∋ [P−/P−wB+] = Sw
Then, since P−/P−wB+ intersects P−/P−v transversely (indeed, in the empty set, by v /≥ w),
we can compute the pullback as the class of that empty set, so 0.

For (2) we want to use corollary 6, but need first to linearize our situation. Consider
the T -equivariant algebraic submersions v−1 ⋅ n+ ≅ v−1 ⋅N+ ≅ B−/B−N+v ↪ B−/GLn(Cn) ↠
P−/GLn(Cn) where the first is given by say exp (which is algebraic!) or just X ↦ Id + X.
By the assumption v ≥ w, we know the preimage of Xw under these maps is a nonempty
subvariety X ⊆ v−1 ⋅ n+. Defining the µi from corollary 6 to be v−1 ⋅ αi, we learn [X] ≠ 0. (In
fact this argument generalizes to any v ≥w.)

Now observe that an upper triangular matrix with nonvanishing diagonal defines an
injective map. �

In fact this injectivity is a surprisingly general phenomenon, holding e.g. for all alge-
braic torus actions on smooth projective varieties [?]! The image has been characterized
nicely in [?] under the assumption (which holds for flag varieties) that not only T -fixed
points but T -fixed curves are isolated (rediscovering work of [?], which held without this
assumption). We will never have cause to check that a list of polynomials satisfies the
GKM conditions, so we don’t recall these conditions. should put into exercises
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An algorithm for decomposing classes into Schubert classes. One consequence of the trian-
gularity is an algorithm for decomposing a class as a combination of Schubert classes.
Define the support of a class γ ∈ H∗

T(Fl(n1, . . . , nd;Cn)) as supp(γ) ∶= {λ ∶ γ∣λ ≠ 0}, and
the upward support supp(γ) ∶= {λ ∶ ∃λ ′ ≤ λ,γ∣λ ′ ≠ 0}. Then to decompose γ, we look for
a minimal element λ of the support, subtract off (γ∣λ/Sλ∣λ)Sλ, and recurse (shrinking the
upward support as we go).

Exercise 35. If cwuv ≠ 0 show that w ≥ u, v in Bruhat order.

We give our first formula (not counting the 0s in (2) of the proof above) for these point
restrictions.

Proposition 11. Sw∣v = Sw(yv(1), . . . , yv(n), y1, . . . , yn) ∀w,v ∈ Sn, the RHS being a specializa-
tion of the double Schubert polynomial.

Proof. Consider the following T ×T -equivariant maps, and induced maps on cohomology:

B−v ↪ GLn(C) ↪ Mn(C) ⊇ Xw

H∗
T(B−/B−v) ≅ H∗

B−×T(B−v) ← H∗
B−×T(GLn(C)) ← H∗

B−×T(Mn(C)) ∋ [Xw]

∈ ≅ ≅

Sw∣v H∗
T×T(Tv) H∗

T×T(pt)≅ ↓
H∗
T×T(S/(T × T)) ≅ H∗

T×T×S(T × T) ≅ H∗
S(pt)

where S = {(t, v−1tv) ∶ t ∈ T} is the T × T -stabilizer on Tv.
The kernel of the downward arrow, induced from the map (T × T)∗ ↠ S∗, is then gen-

erated by xi − yv(i), i = 1 . . .n. �

Exercise 36. Verify using the double Schubert polynomials for S3 that the point restrictions
result in the following 3!-tuples of polynomials.

0 0

0 0

(y3 − y1)(y3 − y2)
(y3 − y1)(y3 − y2)

0 0

0 0

0
(y2 − y1)(y3 − y2)(y3 − y1)

0 0

y3 − y2 y3 − y1

y3 − y2
y3 − y1

0 0

0 (y3 − y1)(y2 − y1)
0

(y3 − y1)(y2 − y1)

1 1

1 1

1
1

0 y2 − y1

0 y2 − y1

y3 − y1
y3 − y1
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Exercise 37. Show that the divided difference operators can be computed directly “at the
fixed points”, i.e. on these tuples of point restrictions:

(∂iγ)∣w = 1

w ⋅αi
(γ∣w − γ∣wri) (∂yi γ)∣w = 1

αi
(γ∣w − ri ⋅ (γ∣riw))

Verify that one can use either of these to compute the pictures in the previous exercise,
starting with the one in the Northeast.

Results (1), (2) from proposition 10 are quite hard to see from proposition 11, so we
shouldn’t be satisfied with with this way for computing Sw∣v. Indeed, we should hold out
for a formula enjoying a certain positivity:

Proposition 12. (1) The subgroupNv ∶=N∩v−1N−v is T -equivariantly isomorphic to its Lie
algebra nv, whose roots are {yi − yj ∶ i < j, v(i) > v(j)}. inverse?

(2) This subgroup acts simply transitively on Xv○ ∶= B−/B−vN−.
(3) Sw∣v is a positive sum of squarefree products of those roots.

Proof. (1) Use the (algebraic!) exponential map. The root calculation is immediate
from the definition.

(2) We admit now that Nv was the group to be discovered in exercise 3.
(3) Consider the T -equivariant inclusions B−/B−v↪ B−/B−vN−

ιÐ→ B−/GLn(C) and pull
back [Xw] in stages. By Kleiman’s theorem 11, Xw and the cell Xv○ ∶= B−/B−vN− are
transverse, so ι∗[Xw] = [Xw ∩Xv○]. Now apply corollary 6.

�

Pleasingly, and in contrast to the general Schubert calculus situation, we do have a
formula for the point restrictions Sw∣v that realizes the positivity in the proposition above.
Indeed, the multiplicities in the sum are all 1!

Theorem 21. [?, ???][?, ???] Let Q be a word for v. Then

Sw∣v = ∑
R ⊆Q,∏R =w
R reduced

∏
Q

(α̂[q∈R]
q rq) ⋅ 1

where [q ∈ R] ∶= 1 if q ∈ R and 0 if q ∉ R, and α̂ denotes the multiplication operator.
If we pull all the rq operators to the right past the multiplication operators, we can rewrite as

Sw∣v = ∑
R ⊆Q,∏R =w
R reduced

∏
Q

βq
[q∈R], βq ∶= ∏

p left of q
rp ⋅αq

and if Q is reduced, the βq roots are roots of the group Nv defined in proposition 12.

Proof. We write the right action of W (really, of N(T)) on P−/G as a left action, the better
to fit with the usual notation of H∗

T as a leftW-module.
First we claim that

(∗) (∏
Q

rq)
−1

⋅ S1 = ∑
R⊆Q, R reduced

((∏
Q

α̂q
[q∈R]rq) ⋅ 1)S∏R
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which we prove by induction on #Q. Let Q =Q ′t, reduced. Then

(∏
Q

rq)
−1

⋅ S1 = rt (∏
Q ′
rq)

−1

⋅ S1 = rt ∑
R⊆Q ′, R reduced

((∏
Q

α̂q
[q∈R]rq) ⋅ 1)S∏R

= ∑
R⊆Q ′, R reduced

(rt(∏
Q

α̂q
[q∈R]rq) ⋅ 1)(rt ⋅ S∏R)

= ∑
R ′⊆Q ′, R ′ reduced

(rt(∏
Q

α̂q
[q∈R ′]rq) ⋅ 1)(S∏R +αt S(∏R

′)rt [(∏R ′)rt ⋗∏R ′])

the last step by lemma 11. We can now attach the rt to R ′ (if the result is reduced), or not,
to make each R ⊆Q term in (∗).

Now we can compute

Sw∣v = ∫
G/B
Sw[P−/P−v] = ∫

G/B
Sw(v−1 ⋅ S1) = ∫

G/B
Sw ((∏

Q

rq)−1 ⋅ S1)

= ∫
G/B
Sw ∑

R⊆Q, R reduced
((∏

Q

α̂q
[q∈R]rq) ⋅ 1)S∏R = ∑

R⊆Q, R reduced
∏R=w

(∏
Q

α̂q
[q∈R]rq) ⋅ 1

�

The multiplicities being 1, and the Gröbner-degeneration derivation of corollary 6, sug-
gest that Xw ∩ Xv○ might have a degeneration to a reduced union of coördinate spaces. In-
deed this is the case [?].

Exercise 38. (1) Let v = 321 ∈ S3, with two reduced words r1r2r1 and r2r1r2. Compute
Sw∣v for each w ∈ S3 and both reduced words.

(2) Let PrirjQ, PrjriQ be two reduced words for the same permutation v (i.e. ∣i− j∣ > 1).
Show that the two resulting AJS/Billey formulæ for Sw∣v agree term-by-term.

(3) Call a permutation v 321-avoiding if /∃ i < j < k, v(i) > v(j) > v(k). Show that v
is 321-avoiding iff any two reduced words for v differ by commuting, not braid,
moves. In particular, for such v the formula Sw∣v is essentially canonical.

Exercise 39. The multiplicity of a point p on a scheme Y, locally Spec (R/Ip) ↪ Spec R, is
defined to be the degree of the normal cone ⊕dIdp/Id+1p . It is additive over top-dimensional
components and 1 for smooth points.

Characterize 321-avoiding permutations v by another condition: there exists a one-
parameter subgroup S ≤ T with the property that S acts on TvXv○ by scaling. Then show
that the degree of such a v = ∏Q on Xw is the number of reduced subwords of Q with
product w. references to Ikeda, Graham

We give two applications of the AJS/Billey formula.

Proposition 13. The equivariant Schubert structure constant cvwv can be computed as Sw∣v.
Proof. We use the triangularity from proposition 10 to give an algorithm to expand any
class β in Schubert classes∑u duSu. Start with β ′ ∶= β, then run through a linear extension
of Bruhat order (small to big), and at stage u ∈W let du = β∣u

Su∣u and subtract duSu from our
running β ′.

In the case at hand β = SwSv, so β∣u = 0 for u /≥ v (also for u /≥ w). Hence β ′ remains β
by the time we get to stage u = v. Then dv = β∣v

Sv∣v =
(SwSv)∣v
Sv∣v = Sw∣vSv∣v

Sv∣v = Sw∣v. �
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Theorem 22. (1) [?] Let w0wP0 ∈ S2n be the permutation taking i ↦ i + nmod 2n, and for
v ∈ Sn let v⊕ Idn ∈ S2n denote the evident permutation fixing n + 1, . . . , 2n. Then there is
a T 2n-equivariant isomorphism Mn(C) ≅ Xw0w

P
0○ taking each matrix Schubert variety Xv

to Xv⊕Idn ∩X
w0w

P
0○ .

(2) Sv(x1, . . . , xn, y1, . . . , yn) = Sv⊕Idn ∣w0wP0 where the left is the double Schubert polynomial.

Proof. (1) The isomorphism is ...
(2) As in the proof of proposition 12 (3), the class [Xv⊕Idn ∩ X

w0w
P
0○ ] ∈ H∗

T2n
(Xw0w

P
0○ ) is

Sv⊕Idn ∣w0wP0 . Then use the T -equivariant isomorphism above of contractible spaces,
and our definition of double Schubert polynomial.

�

The resulting “pipe dream” formula for (double) Schubert polynomials (which doesn’t
really depend on the choice of reduced word forw0wP0 , in light of exercise 38) is essentially
due to [?, ?], but see also [?, ?].

4.5. The AJS/Billey formula, in terms of Ř-matrices. It took about ten years of talking
with a quantum integrable systems person (Paul Zinn-Justin) for me to understand a
basic principle. When you see a formula given by a sum of products (e.g. the AJS/Billey
theorem 21), you should

(1) recast it as a matrix entry in a product of matrices, and
(2) investigate the commutation relations of those matrices.

More specifically, it would be nice for the vector space to be a big tensor product, on
which each of the individual matrices Ř only acts on a few, say only two, tensor factors.
So the rows and columns are each indexed by a pair of indices, i.e. the matrix entries are
Ř(i,j),(k,l).

The same simple reflection ri may appear multiple times inQ, with different associated
factors yj − yk; this is a hint that our matrices should depend on (the difference between)
two parameters. Define

Ř(a,b)(i,j),(k,l) ∶= [(i, j) = (k, l)] + [(i, j) = (l, k)] [i > j] (a − b)
where [p] = 1 respectively 0 if a property p is true respectively false. That is to say, Ř is an
identity matrix plus some off-diagonal entries a − b.

Theorem 23. Let λ,µ be strings in 0, . . . , d of the same content, and Q a reduced word for the
minimal tie-breaking lift of µ to a permutation. Let Vyi denote the vector space

explicitly do pipe dreams as the square special case
...

Proof of lemma 6 from §1.10. By theorem 22 (2), we have

S1 2...(k−1) n k (k+1)...(n−1)...

�

5. EQUIVARIANT SEPARATED-DESCENT PUZZLES. PROOF VIA YBE.
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