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1. SYMMETRIC POLYNOMIALS

In this section R = Z[x1, x2, . . . , xn] is the ring of polynomials in n variables, with integer
coefficients.

A polynomial p ∈ R is symmetric if it is unchanged under switching the variables
around, i.e. if p(x1, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)) for each permutation σ in the sym-
metric group Sn. It’s enough to check that p(. . . , xi, xi+1, . . .) = p(. . . , xi+1, xi, . . .) for each
i ∈ [1, n). Some examples:

• Any constant function (degree 0 polynomial) is symmetric.
• The sum x1 + . . .+ xn of all the variables is symmetric.
• The sum xk1 + . . .+ xkn of all the kth powers is symmetric.
• The sum

∑
i≤j xixj of all products, including the squares, is symmetric.

• The sum
∑

i<j xixj of all products, but excluding the squares, is also symmetric.

Let RSn ≤ R denote1 the set of all symmetric polynomials. It is easy to see that it is closed
under addition and multiplication, and in particular, is a subring.

Motivating question. What polynomials “generate” RSn , analogous to the
way that x1, . . . , xn generate R itself?

Polynomial rings such as R have a useful property: every polynomial p can be uniquely
written as a sum

∑
N
pd of homogeneous polynomials pd, in which every monomial in pd

has the same degree d. More generally, define a graded ring Q as one that contains a
list (Qd)d∈N of subspaces, such that QdQe ≤ Qd+e and every q ∈ Q is uniquely the sum
q =

∑
N
qd, qd ∈ Qd.

Date: Draft of July 28, 2012.
1More generally, one may write XG to denote the fixed points of an action of a group G on a set X.
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Exercise 1.1. Rk has a Z-basis of size
(

n+k−1
n

)

. (Hint: correspond a monomial like x51x
3
2x

2
4x

2
5, for

n = 6, to a word like ∗ ∗ ∗ ∗ ∗| ∗ ∗ ∗ || ∗ ∗| ∗ ∗||.)

Proposition 1.2. The ring RSn of symmetric polynomials is a graded subring, i.e. the homoge-
neous pieces of a symmetric polynomial are themselves symmetric.

Proof. If p is any polynomial of degree k, we can compute p’s top homogeneous compo-
nent pk as limt→∞ p(tx1, tx2, . . . , txn)/t

k. If p is symmetric, then the above ratio is symmet-
ric for every t, so is symmetric in the limit. Then p− pk is again symmetric, and if not 0 is
of strictly lower degree, so by induction on k its homogeneous pieces are symmetric. �

Since the degree 1 part (RSn)1 of R
Sn is only 1-dimensional, namely multiples of x1 +

x2 + . . .+ xn, we will need our other generators to be higher degree. To narrow down the
problem of giving generators, let’s insist that our generators be homogeneous.

Being gradedmakes it easier for us to look at examples, like n = 2, because we can look
one homogeneous degree at a time. Here

(RS2)0 = Z · 1, (RS2)1 = Z · (x1 + x2), (RS2)2 = {ax21 + ax22 + bx1x2 : a, b ∈ Z}.

Exercise 1.3. For each polynomial in (RS2)2, show that it can be written uniquely as a polynomial
in x1 + x2 and x

2
1 + x22 using rational coefficients. Find one that despite having integer coefficients

itself, cannot be written as p(x1 + x2, x
2
1 + x22) where p(a, b) ∈ Z[a, b] has integer coefficients.

So
{
x1 + x2, x

2
1 + x22

}
will not be a good generating set for us.

For each k ≤ n, let ek denote the polynomial

ek =
∑

1≤i1<i2<...<ik≤n

xi1 · · · xik ,

called the kth elementary symmetric polynomial.

Theorem 1.4. Let p be a symmetric polynomial with integer coefficients, i.e. p ∈ RSn . Then p
is uniquely expressible as a polynomial in (e1, . . . , en) with integer coefficients. Put another way,
the homomorphism

Z[e1, . . . , en] → Z[x1, . . . , xn]
Sn

ek 7→
∑

1≤i1<i2<...<ik≤n

xi1 · · · xik

is an isomorphism of rings. Regarding ek as having degree k, it becomes an isomorphism of graded
rings.

To prove this, we define the lexicographically firstmonomialm in a nonzero polynomial
p, and denote it init p. It is the m with the highest power of x1 available, then among
ties it has the highest power of x2 available, and so on. (Writing monomials x21x2x

3
3 like

x1x1x2x3x3x3, this is almost dictionary order, except that in dictionaries x1x1 comes after
x1. It is indeed dictionary order when restricted to monomials of a fixed degree.)

Exercise 1.5. (1) init ek =
∏k

i=1 xi.
(2) init (pq) = init p · init q.
(3) If p is symmetric, and init p = c

∏
i x

mi

i (c ∈ Z), then m1 ≥ m2 ≥ . . . ≥ mn.
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Proof. It is slightly simpler to break p into the sum of its homogeneous components, and
treat each one separately. Which is to say, we reduce to the case that p is homogeneous of
some degree k.

Let init p = c
∏

i x
mi

i , and E = c
∏n

i=1 e
mi−mi+1

i (a polynomial, by exercise 1.5 (3)). Then
init p = init E, so init p is lex-earlier than init (p− E).

If p−E = 0, we are done. Otherwise it is again homogeneous of degree k. Since there are
only finitely many monomials of degree k, and init (p − E) is lex-later than init p, we can
use induction to say that p−E is a polynomial in the elementary symmetric polynomials.
Hence p itself is also such a polynomial.

As for uniqueness, observe that each monomial
∏

i e
ni

i has a different initial term,
∏

i x
∑

j≤i nj

i . So we claim that we must use the monomial E in writing p, and then invoke
induction to get the uniqueness of the expression of p− E. �

Exercise 1.6. Write
∑

i x
n
i as a polynomial in the elementary symmetric polynomials, for n ≤ 4.

It is important to note that it was by no means obvious that RSn would, itself, be iso-
morphic to a polynomial ring, as the following exercise shows.

Exercise 1.7. Let n = 2, and Z2 = {1, τ} act on R by τ · x = −x, τ · y = −y. Show that
the τ-invariant subring RZ2 is generated by x2, xy, y2, and is isomorphic to Z[a, b, c]/〈b2 − ac〉.
Show that this graded ring is not graded-isomorphic2 to a polynomial ring.

In fact there is a complete classification, due to C. Chevalley, of which finite groups G
acting on R and preserving degree have RG isomorphic to a polynomial ring.

2. SCHUBERT POLYNOMIALS

One moral of the story so far is that symmetric polynomials have many, many mono-
mials in them, and that there are better ways to write down symmetric polynomials than
the standard way (namely, by adding up monomials).

In this section we’ll consider partially symmetric polynomials, that are symmetric under
some exchanges of variables, but not all. Since we won’t need full symmetry, we won’t
have to fix a finite number n of variables, and we let R = Z[x1, x2, . . .] be the polynomial
ring in an infinite set of variables.

Some references for this theory are [Man01, Mac91, BB93, BJS93, FS94].

2.1. Divided difference operators. For p ∈ R, and i ∈ N, define the action of the simple
reflection operator ri by

(ri · p)(x1, . . . , xi, xi+1, . . .) := p(x1, . . . , xi+1, xi, . . .)

so p is symmetric in xi, xi+1 exactly if ri · p = p, or if (1− ri) · p = 0.

It is interesting to note that if q = (1−ri)·p, then ri ·q = −q, and q(x1, . . . , xi, xi, . . .) = 0.
Using the long division algorithm for polynomials, we can write q = (xi − xi+1)q

′ + c,
where deg c < deg(xi − xi+1), i.e. c ∈ Z. Setting xi = xi+1, we learn 0 = 0+ c.

2In fact, there are no isomorphisms at all, even ones that ignore the grading. To show this, one can in
some sense force a grading, as follows. Tensor both rings with C, so we can use dimension arguments.

Then prove that for any maximal ideal m in a polynomial ring over C, dimC(m
2/m3) =

(

dimC(m/m2)
2

)

, which

is part of its being a “regular ring”. But m = 〈a, b, c〉 ≤ RZ2 doesn’t satisfy this equality.
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This allows us to define a divided difference operator ∂i on p ∈ R by

∂ip :=
p− ri · p

xi − xi+1

and we see that despite appearances, it is again a polynomial!

Exercise 2.1. (1) If p is homogeneous of degree k, then ∂ip is homogeneous of degree k − 1
(or zero).

(2) If ∂ip = 0, then ∂i(pq) = p∂iq.
(3) More generally (but less usefully) ∂i satisfies the “twisted Leibniz rule”:

∂i(pq) = (∂ip)q+ (rip)(∂iq).

In these ways, ∂i behaves somewhat like a derivative.
(4) Let p be a polynomial such that ∂ip = 0 for all i 6= n. Show that p is a symmetric

polynomial in x1, . . . , xn.

Let’s start with p = x21x2 and apply divided differences. This polynomial is symmetric
in x3, x4, . . . (insofar as it doesn’t involve any of them at all) so only ∂1, ∂2 can do anything
interesting:

∂1(x
2
1x2) = x1x2∂1x1 = x1x2, ∂1x1x2 = 0

∂2(x
2
1x2) = x21∂2x2 = x21, ∂2x

2
1 = 0

∂2(x1x2) = x1∂2x2 = x1, ∂2x1 = 0

∂1(x
2
1) = x1 + x2, ∂1(x1 + x2) = 0

∂1x1 = ∂2(x1 + x2) = 1

So from x21x2, we can generate x21, x1x2, x1, x1 + x2, 1 using divided difference operators.
Here are some properties that speed up such calculations:

Exercise 2.2. (1) Show ∂2
i = 0.

(2) If |i− j| 6= 1, show ∂i and ∂j commute.
(3) Show ∂i∂i+1∂i = ∂i+1∂i∂i+1.

2.2. Schubert polynomials: their definition and uniqueness. We can embed Sn into Sn+1

as those permutations that fix n + 1. Taking the union over all n, we get a group S∞ of
those permutations π of N such that π moves only finitely many i ∈ N, and conversely
given a π ∈ S∞, for large enough nwe have π ∈ Sn.

One of our big goals is to prove the following:

Theorem 2.3. There exists uniquely a way of assigning to each π ∈ S∞ a homogeneous Schubert
polynomial Sπ such that Sid = 1, and

∂iSπ =

{
Sπ◦(i↔i+1) if π(i) > π(i+ 1), a descent of π

0 if π(i) < π(i+ 1), an ascent of π.

Existence will take a bunch of doing, but uniqueness is pretty easy.

Let ℓ(π) denote the number of inversions of π, which are pairs {(i, j) : i < j, π(i) > π(j)}.
(This will turn out to be the degree of the polynomial Sπ.) Notice that it is very dependent
on the order 1 < 2 < 3 < . . . < n – the number of inversions of the transposition (i ↔ j)
is 2|i− j|− 1. So it’s very rare to see people in this line of work write down permutations
as products of disjoint cycles, which is optimized for conjugation-invariant calculations;
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rather we use one-line notation π(1)π(2) . . . π(n). Multiplying π by a simple reflection

(i ↔ i + 1) on the right acts on places, switching the values at positions i and i + 1.
(Multiplying on the left acts on values, plucking the numbers i and i+1 out of their places
and putting them back in, switched.)

Exercise 2.4. (1) Show ℓ(π ◦ (i ↔ i+ 1)) = ℓ(π)± 1, with the sign depending on whether i
is an ascent or descent of π.

(2) Show ℓ(π) = ℓ(π−1).
(3) What is the maximum value of ℓ(π), π ∈ Sn?

Proof of theorem 2.3, uniqueness only. First we claim that if π is not the identity permutation,
then Sπ 6= 0 and degπ > 0. Pick a descent i of π. Then ∂iSπ = Sπ◦(i↔i+1)), which by
induction on ℓ(π) is nonzero of degree ℓ(π) − 1. Hence Sπ is nonzero of degree ℓ(π).

Now we claim that
⋂

i ker ∂i = Z. If p ∈
⋂

i ker∂i, then p is symmetric in all our vari-
ables. But unless p is constant, being a finite sum of monomials it uses a variable xm with
m maximized, and thus isn’t symmetric in xm, xm+1, contradiction.

Since we are given ∂iSπ for all i, and Sπ is homogeneous of degree 6= 0, it is uniquely
determined. �

Exercise 2.5. (1) Determine S(i↔i+1).
(2) Determine Sπ for π ∈ S3, thought of as the evident subgroup of the group of finite permu-

tations of N.

2.3. Reduced words for permutations. A word Q for a permutation π ∈ Sn is a list
(q1, q2, . . . , qℓ) of elements of 1, 2, . . . , n − 1, such that π is the ordered product of the
transpositions (qi ↔ qi + 1). To avoid (the exceedingly rare) confusion with one-line
notation, we’ll underline permutations in one-line notation, e.g. Q = 232 gives π = 1432.
If we start with Q instead of π, we may write

∏
Q for π.

It is easy to see (and we will prove in a moment) that every permutation in Sn is a
product of such “adjacent” transpositions. How many are needed?

Theorem 2.6. The shortest possible words for π ∈ Sn have exactly ℓ(π) letters.

Proof. If π is the identity, then ℓ(π) = 0, and indeed can be written as an empty product.

Otherwise π has some d with π(d) > π(d + 1), called a descent of π (a very special
type of inversion). Then we can correspond the other inversions (i, j) of π with all the
inversions of π ◦ (d ↔ d + 1), taking (i, j) 7→ ((d ↔ d + 1) · i, (d ↔ d + 1) · j). Hence
ℓ(π) = ℓ(π ◦ (d ↔ d+ 1)) + 1.

By induction, a shortest word for π ◦ (d ↔ d+ 1) has ℓ(π) − 1 letters, so attach d at the
end to get a word for π. This establishes the bound |Q| ≤ ℓ(π) for the shortest Qs.

Now let Q be a shortest possible word for π, so each initial string of it is automatically
shortest as well (for its respective product). Let Q ′ be Q with the last letter removed, and
π ′ its product. By induction, |Q ′| = ℓ(π ′), and the bijection on inversions again shows that
ℓ(π) = 1+ ℓ(π ′), which is |Q|. �

For this reason, ℓ(π) is called the length of π. A word Q is called reduced if |Q| = ℓ(π).

Exercise 2.7. Show that 12321, 13231, and 31231 are reduced words for the same permutation in
S4, and find all the other reduced words for that permutation.
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2.3.1. Wiring diagrams. To each letter i (meaning i ↔ i + 1) in a word Q, associate the
following “card” pictured on the left. One very fruitful way to think about a word Q is
in terms of the wiring diagram constructed by concatenating the cards of its letters, as
pictured on the right. We can label the individual wires 1 through n on the left side, and
carrying them through to the right side, we get

∏
Q.

1

2

i

i+1

1

2

i

i+1

n n

3 1 2 3 1

1

2

3

4 1

2

3

4

Proposition 2.8. A word Q is reduced iff in its wiring diagram, no two wires cross twice. In
this case, we can identify the crossings with the inversions of

∏
Q, and call the wiring diagram

reduced as well.

Proof. If two wires cross twice, we can eliminate both crossings, to obtain a new diagram
with the same connectivity. That one uses two fewer letters, so the original one was not
reduced.

Assume now that no two wires cross twice. Then by the Jordan curve theorem or just
the intermediate value theorem, wire i and j cross at all iff (i, j) is an inversion of

∏
Q.

So the number of inversions is the number of crossings is the number of letters, hence
ℓ(π) = |Q| and Q is therefore reduced. �

Exercise 2.9. Show the following conditions on a permutation π are equivalent:

(1) π(i) = i for i ≤ m.
(2) Some reduced word for π does not use the letters 1, . . . ,m− 1.
(3) No reduced word for π uses the letters 1, . . . ,m− 1.

One can think of a wiring diagram as the superimposition of the graphs of n piecewise-
linear functions f1, . . . , fn (with finitely many corners) on the interval [0, |Q|], and such
that

• f1(0) < f2(0) < . . . < fn(0),
• fπ(1)(|Q|) < fπ(2)(|Q|) < . . . < fπ(n)(|Q|),
• at most two wires meet at a crossing, and such points are isolated, and
• no crossing is directly above another.

(More specifically, in the diagrams constructed above the values at the endpoints will be
the numbers 1 through n.)

We can reverse this connection, associating a word Q to such a superimposition. Look
at the (finitely many) crossings from left to right (at all different x). For each crossing
fi(x) = fj(x), if fi − fj changes sign from x− ǫ to x+ ǫ, put in the letter k if fi(x) is the kth
and (k+ 1)st largest numbers from {fm(x)}

n
m=1.
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In particular, if we change a wiring diagram by continuously moving around the wires,
we can study how the associated word changes as we pass through diagrams that violate
the latter two conditions listed.

Exercise 2.10. If we replaced “fi piecewise linear with finitely many corners” by “fi differen-
tiable”, it becomes impossible to associate a word Q. Give a horrible counterexample to demon-
strate this.

2.3.2. The moves.

Theorem 2.11. Any two reduced words for π ∈ Sn can be connected by the “moves”

• i j → j i for |i− j| > 1
• i(i+ 1)i → (i+ 1)i(i+ 1), called the braid move.

For example, from 1232 we can make 1323, 3123, and that’s it; these are all the reduced
words for 2431.

Proof. LetQ be a reduced word for π (not the identity), andm the least number appearing
in Q. We’ll use the moves to get Q to end with the sequence m m + 1 . . . π(m) − 1.
Ripping that sequence off, we get a reduced word for a shorter element π ′ of Sn, which
by induction can be turned into any other reduced word using the moves. (Moreover, m
turns out to be min{i : π(i) > i}, and m occurs only once in our modified Q.)

Use the commuting move to move the first occurrence ofm forward past any j > m+1.
We get stuck when m runs into either an m or m + 1, or makes it to the end. If we get to
m m, then the resulting word is not reduced, contradiction. If we push the m all the way
to the end, then π(i) = i for i < m, and π(m) = m+ 1, so we’re done.

Assume then that we have a sequence m m + 1 . . . m + k, and continue to bubble the
numbers to its right back through this sequence. The only ways to get stuck are to push
the sequence to the end, in which case we’re done; for it to get longer by acquiring an
m+ k+ 1 in which case increment k and continue; or for some j ∈ (m,m+ k) to get stuck
in the middle, in which case we have the sequencem . . . j−1 j j+1 j. Use the braid move
to trade that for m . . . j − 1 j + 1 j j + 1, then commute that to j + 1 m . . . j − 1 j j + 1.
Resume pushing the sequence m . . . j− 1 j j+ 1 to the right.

When we’ve done pushing forward this way, we find that the resulting word has only
one m, and terminates withm m+ 1 . . . m+ k, as claimed. (Hence k = π(m) − 1.) �

Exercise 2.12. Follow the algorithm just given, starting with Q = 3142352, and see how the
wiring diagrams change.

Corollary 2.13. To any reduced word Q for a permutation π, we can define an operator ∂π as the
product ∂q1

. . . ∂qℓ(π)
, and it is independent of Q (i.e. ∂π is well-defined).

Exercise 2.14. Let π ◦ ρ = σ be a product of two permutations. Show that ℓ(π) + ℓ(ρ) ≥ ℓ(σ),
and

∂π∂ρ =

{
∂σ if ℓ(π) + ℓ(ρ) = ℓ(σ)

0 if ℓ(π) + ℓ(ρ) > ℓ(σ).

Exercise 2.15. Show that any two words (not necessarily reduced) for π can be related by the
commuting move, the braid move, and insertion/deletion of pairs i i.
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2.4. Schubert polynomials: existence.

Theorem 2.16. Schubert polynomials exist, and can be computed as follows:

(1) If wn
0 := n n−1 n−2 . . . 3 2 1 n+1 n+2 . . ., define Swn

0
:= xn−1

1 xn−2
2 · · · x1n−1.

(2) If π ∈ Sn, define Sπ := ∂π−1wn
0
Swn

0
.

In particular, the degree of Sπ is ℓ(π).

Exercise 2.17. If π ∈ Sn, show ℓ
(

π−1wn
0

)

=
(

n
2

)

− ℓ(π).

Proof. We first need to show that this definition is well-defined. At which point, the fact
that it satisfies the recursion will be quite automatic.

The problem is that while there is a least n such that π ∈ Sn, and that’s certainly the
most efficient one to use to calculate Sπ, the definition doesn’t insist that n be chosen that
way. So we need to show that different choices n,n ′ give the same value for Sπ.

Obviously it is enough to take n ′ = n+ 1, then use induction. The claim then becomes

∂π−1wn+1
0

Swn+1
0

= ∂π−1wn
0
Swn

0

Let us first check the case π = wn
0 = π−1:

∂wn
0w

n+1
0

Swn+1
0

= ∂n∂n−1 · · ·∂1Swn+1
0

= ∂n∂n−1 · · ·∂1x
n−1
1 xn−2

2 · · · x1n−1

= ∂n∂n−1 · · ·∂2x
n−2
1 xn−2

2 · · · x1n−1

= ∂n∂n−1 · · ·∂ix
n−2
1 xn−3

2 · · · xn−i−2
i+1 xn−i−2

i+2 · · · x1n−1

= xn−2
1 xn−3

2 · · · x0n−1

= Swn
0

Now observe that if Q is a reduced word for π−1wn
0 , then Q n n − 1 . . . 1 is a reduced

word for π−1wn+1
0 . (Hint: use the exercise.) Hence

∂π−1wn+1
0

= ∂π−1wn
0
∂n∂n−1 · · ·∂1

so applying ∂π−1wn
0
to the equation just derived, we get that Sπ is well-defined. �

The definition above is due to Lascoux and Schützenberger in 1973, though their ap-
proach was slightly different from that presented here (and their original motivation was
very different).

Lemma 2.18. If ℓ(π) = ℓ(ρ), then ∂πSρ is 1 if π = ρ, 0 if π 6= ρ.

Proof. If ℓ(π) = ℓ(ρ) = 0, then π = ρ = the identity permutation and we’re done. Other-
wise let i be a descent of π, so π has a reduced word of the form Qi. Then

∂πSρ = ∂π(i↔i+1)∂iSρ

which is zero unless ρ also has a descent at i (as would be implied by π = ρ). When it is
nonzero, we continue to ∂π(i↔i+1)Sρ(i↔i+1), and use induction. �

Recall that our stated goal in introducing these polynomials was to provide a more
compact way to study partially-symmetric polynomials. The following theorem realizes
half that dream:
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Theorem 2.19. Schubert polynomials are linearly independent.

Proof. Let
∑

π cπSπ = 0, with only finitely many cπ 6= 0. If they are not all zero, let ρ
be a term with cρ 6= 0 and ℓ(ρ) maximized. Then 0 = ∂ρ

∑
π cπSπ =

∑
π cπ∂ρSπ. By

the recursion, ∂ρSπ is homogeneous of degree ℓ(π) − ℓ(ρ) ≤ 0, so can only be nonzero if
ℓ(π) = ℓ(ρ) by the lemma. The equation is now just 0 = cρ, contradiction. �

We’ll show later that they’re a basis of Z[x1, x2, x3, . . .] (theorem 4.11).

3. COMPUTING SCHUBERT POLYNOMIALS

Exercise 3.1. Compute all the Schubert polynomials for S4, starting with S4321 and going down
using divided difference operators.

It was already somewhat odd that divided difference operators take polynomials to
polynomials. It is perhaps even more surprising that the Schubert polynomials we de-
fine using these divided difference operators all have positive coefficients! While Schubert
polynomials date to 1973, proof of the positivity only came in 1991, with two groups in-
dependently proving R. Stanley’s combinatorial conjecture for the coefficients. (This is
why his name is on two “independent” papers.)

Write π ′ ⋗ π if

(1) π ′ = π(ab),
(2) π(a) < π(b), and
(3) {c : a < c < b} ∩ {c : π(a) < π(c) < π(b)} = ∅.

This is a Bruhat covering relation, in that one can take its transitive closure to get the
Bruhat partial order on S∞ (due again to Chevalley!). Note that ℓ(π ′) = ℓ(π) + 1.

Theorem 3.2 (Monk’s rule). S(i i+1)Sπ =
∑

π ′=π(ab),π ′⋗π,a≤i<b Sπ ′ .

Proof. Both sides are homogeneous of degree ℓ(π) + 1 > 0, so we just need to show they
agree after application of any ∂j.

We describe the case analysis, and leave the reader to check the many cases. If j 6= i,
then ∂jS(i i+1) = 0, so the left side becomes S(i i+1)∂jSπ. Then we split into the cases that j is
an ascent of π, or a descent. When it’s a descent, the desired equation becomes a Monk’s
rule equation for π(j j+ 1) and can be assumed by induction.

Those ∂j 6=i done, consider the application of ∂i.

∂iS(i i+1)Sπ = Sπ + (ri · S(i i+1))∂iSπ = Sπ + (S(i+1 i+2) − 2S(i i+1) + S(i−1 i))∂iSπ

so again, induction lets us calculate each of the products on the right side. �

Corollary 3.3. xiSπ =
∑

π ′=π(ib),π ′⋗π,i<b Sπ ′ −
∑

π ′=π(ai),π ′⋗π,a<i Sπ ′ .

The corollary is perhaps simpler-looking, but unlike Monk’s rule it has the drawback of
having minus signs. If we move them to the other side of the equation, and take a special
case, we get

9



Theorem 3.4 (Lascoux’s “transition formula”). Let π 6= Id, and i be the last descent of π.
Let j = max{i ′ : π(i ′) < π(i)}, so j ≥ i+ 1. Let π ′ = π(ij). Then

Sπ = xiSπ ′ +
∑

a<i,π ′(ai)⋗π ′

Sπ ′(ai).

Proof. The condition on π ′ ensures that the only positive term in the corollary above will
be Sπ. Then move the other terms to the other side of the equation. �

There is a generalization of this to other Southeasternmost “essential boxes” (see exer-
cise 4.8) that we might need later.

Corollary 3.5. Schubert polynomials have positive coefficients.

Exercise 3.6. Compute all the Schubert polynomials for S4, starting with SId = 1 and going up
using the transition formula.

In the next section we unwrap the recursion formula to a direct, manifestly positive for-
mula for Schubert polynomials as a sum of monomials. That is, if some term in the for-
mula contributes a certain monomial, we can say for sure that the monomial will actually
appear, rather than being canceled by some other term in the sum.

4. A POSITIVE FORMULA FOR SCHUBERT POLYNOMIALS

Define a pipe dream to be a filling of an n × n square with two types of tiles, crosses
and elbows ��, such that the Southeast triangle (including the antidiagonal) gets only

elbows. In a moment we’ll put an additional requirement on them.

To a pipe dream P, we can associate three objects:

• A permutation πP in Sn, given by following the “pipes” from the left side to the
top. (Label the top 123 . . . n, carry the numbers SW to the left side, then read top
to bottom.)

• A monomial mP :=
∏

xeii , where ei is the number of s in the ith row.
• A wordQP in Sn’s generators, by “reading” P from the top row to the bottom row,
right to left in each row, with a in location (i, j) giving a letter i+ j− 1.

Exercise 4.1. Use wiring diagrams to show that

(1) QP is a word for πP, and
(2) QP is reduced iff no two pipes cross twice.

We’ll require this condition on pipe dreams, hereafter. (This is not always done in the
literature, and when it is not, pipe dreams with this condition are called “reduced”.)

Our goal is to prove the following:

Theorem 4.2. Each Schubert polynomial is a sum of monomials, one for each pipe dream:

Sπ =
∑

P: πP=π

mP =
∑

P: πP=π

∏

i

x
#{+s in row i of P}
i .

This is the interpretation from [BB93] of the less graphical formula from [BJS93, FS94].
Since we know reduced words have the same length, this formula gives homogeneous
polynomials, as it should.

10



Exercise 4.3. Check this theorem for each π ∈ S3.

First let’s study the pipe dreams for a given π, following [BB93]. Make the pipe dreams
into the vertices of a pipe dream graph, where P,Q are connected if P has only one
that Q doesn’t, and therefore vice versa (exercise: why “therefore”?). To find all the Q
that P is connected to, look at each inversion i < j of π. The pipes i, j must cross at some

tile x in P, but may have a near-miss in some �� tile m. If we move the crossing from
x tom, we get a new pipe dream for π, and every Q arises from one of these moves.

Exercise 4.4. Construct the pipe dream graph for π = 1432.

This suggests that we could find all the pipe dreams for π, if we were able to find one,
and if the pipe dream graph were connected. These are related problems; the easiest way
to show a graph is connected is to show every vertex has a chain to some “home” vertex.

(In fact, there is more than a pipe dream graph, of vertices and edges – there is a natural
way to put in triangles, tetrahedra, and higher-dimensional “simplices”, in such a way
that the resulting pipe dream simplicial complex is topologically a ball [KM04].)

4.1. Pipe dream polynomials satisfy the transition formula. The bijection in the follow-
ing proof is due to Anders Buch (personal communication).

Proof sketch of theorem 4.2. Let S ′
π be the polynomial given by the formula. First we show

that the S ′
π satisfy the transition formula (theorem 3.4), and then use induction to show

that Sπ = S ′
π for all π ∈ S∞.

Recall that in the transition formula we first let r be the last descent position where
π(r) > π(r+ 1), then choose s maximal such that π(r) > π(s).

Given a pipe dream for π, find the unique crossingCwhere the string starting at column
r crosses the string starting at column s. (Draw the pipe dream so that the permutation
maps columns to rows.) Now do the following:

(1) Remove C. If there are no ��s above C (in the same column), then we are done.
(2) Otherwise replace the lowest �� above C with a new crossing C ′. If the diagram

is now reduced, then we are done.
(3) If it is not, the strings passing through C ′ cross exactly one other place. Let C be

this other crossing, and go back to step 1.

What must now be checked:
The resulting pipe dream has the same number of crossings in each column, except that
it may be missing exactly one crossing in some column. When this happens, the crossing
is always missing in column r, and we have a pipe dream representing v. Otherwise the
resulting pipe dream represents one of the permutations π ◦ (i ↔ r)tir. �

4.2. The bottom pipe dream of π (lets one prove that Schubert polynomials span).
Define the Lehmer code cπ : {1, . . . , n} → N of π ∈ Sn to be the list of n numbers
cπ(i) := #

{
j > i : π(j) < π(i)

}
∈ {0, . . . , n− i}. For example, the Lehmer code of 426351 is

313110.

Exercise 4.5. (1) Find the Lehmer codes for all of S3.
(2) What is the sum of the Lehmer code of π?
(3) Show that π is uniquely determined by its Lehmer code.
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(4) If one attaches a 0 to the end of the Lehmer code of π, the result is again a Lehmer code; of
which new permutation?

Theorem 4.6. Let c : N → N be a function that is eventually 0. Fix n such that c(i) 6= 0 =⇒
i + c(i) ≤ n. Then c is the Lehmer code of a unique permutation π ∈ Sn, and there is a bottom
pipe dream for π with c(i) s in row i, all flush-left in each row, i.e. no �� appears.

Proof. ... �

The (Rothe) diagram of a permutation π is the set of matrix boxes left over after cross-
ing out each box south or east (but not southeast) of each 1 in the permutation matrix,
including crossing out the 1s themselves. *** example, probably stolen from [KY] ***

Exercise 4.7. (1) Argue that each connected component of a diagram is shaped like a partition,
so has one northwest, one northeast, and one southwest corner.

(2) Show that when we shove the diagram to the left, and put s in its boxes, we get the
bottom pipe dream of π.

(3) Show that the number of boxes is ℓ(π).

Exercise 4.8. The Fulton essential set [Fu92] of π is the set of SE corners in π’s diagram, which
for this exercise we call the “weak SE diagram”. Define the strict SW diagram by crossing out
each box south or west (but not southwest) of each 1 in the permutation matrix, now not crossing
out the 1s themselves, and define the new essential set as the NE corners in this diagram. What is
the relation between these two essential sets? (Try a large random example, figure out the relation,
then prove it.)

Theorem 4.9. (1) The bottom pipe dream for π is the only pipe dream whose s are flush-
left.

(2) If a pipe dream is not the bottom pipe dream, one can move a in it down (and left).
Consequently, the graph is connected.

(3) The bottom pipe dream contributes the unique lex-largest term in the formula in theorem
4.2.

Proof. (1) By counting the s in a flush-left pipe dream, we compute π’s (unique)
Lehmer code.

(2) Look for the lowest, then leftmost, occurrence of �� . (If none occurs, we have
the bottom pipe dream.) This pair stands atop a ladder of s, then atop a pair
�� ��. We can replace the �� on top and �� �� on bottom with �� �� on top and

�� on bottom, called a ladder move [BB93], obtaining another (reduced) pipe
dream for π.

(3) Let p be a non-bottom pipe dream for π, and p ′ another constructed from p by a
downwards ladder move. Then p is lex-smaller than p ′.

�

Exercise 4.10. Show that the following are equivalent:

(1) Sπ is a monomial;
(2) π has all descents, then all ascents;
(3) π’s diagram has one component, a partition in the NW corner.

When these hold, π is called a dominant permutation. In S3, which permutations are dominant?
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Theorem 4.11. Schubert polynomials form a Z-basis for Z[x1, x2, x3, . . .].

Proof. We know they are linearly independent (theorem 2.19), so we have only to show
that they span.

Let p be a polynomial we wish to expand in Schubert polynomials. Let its lex-largest
term be b

∏n
i=1 x

ci
i , for some b ∈ Z. For n ∈ N large enough, (ci) the Lehmer code of some

π ∈ Sn. Then p− bSπ has a smaller lex-largest term, and we can apply induction.

(Note that the permutation π in the algorithm above isn’t well-defined, since n isn’t.
How does this fit with the Schubert polynomials being linearly independent?) �

Since the Schubert polynomials form a Z-basis, there are unique structure constants
cσπρ ∈ Z such that

SπSρ =
∑

σ

cσπρSσ.

It is an amazing theorem, proven using an algebro-geometric interpretation of these num-
bers, that the (cσπρ) are nonnegative. (Of course Monk’s rule, theorem 3.2, is a case of this.)
It is a long-standing problem to compute these structure constants in a combinatorial way,
i.e. as counting special pipe dreams or somesuch.

Exercise 4.12. Let p ∈ Z[x1, x2, . . .] be symmetric in xi, xi+1. Show that the expansion of p in
Schubert polynomials doesn’t use any Sπ with π(i) > π(i+ 1).

5. SCHUR POLYNOMIALS AND SCHUR FUNCTIONS

Let us return to our original motivation: symmetric polynomials. Say a permutation
π is n-Grassmannian if π(i) > π(i + 1) implies i = n, i.e. π is either the identity or has
only that one descent. There is a correspondence between n-Grassmannian permutations
π and partitions (λ1 ≥ . . . ≥ λn ≥ 0) with at most n parts, taking λn−i = π(i) − i.

Exercise 5.1. Prove that this is a bijection.

Define a Schur polynomial Sλ(x1, . . . , xn) of a partition λ and a number of variables
n (more than the number of parts of λ) to be the Schubert polynomial of the corre-
sponding n-Grassmannian permutation. If n is less than the number of parts of λ, let
Sλ(x1, . . . , xn) = 0.

Proposition 5.2. The Schur polynomial Sλ(x1, . . . , xn) is indeed a polynomial in x1, . . . , xn, and
symmetric.

If we fix n, and let λ vary over the partitions with at most n parts, the resulting polynomials
are a Z-basis for the ring Z[x1, . . . , xn]

Sn of symmetric polynomials.

Of course, since this ring Z[x1, . . . , xn]
Sn is a polynomial ring in the elementary sym-

metric polynomials (ei), the monomials in the (ei) also form a basis, and there are other
interesting bases besides these.

Proof. Since π has ascents at all i 6= n, this Schubert polynomial is symmetric in x1, . . . , xn
and separately in xn+1, xn+2, . . . Hence it can’t use the latter set of variables at all (being a
polynomial, with finitely many terms).

By exercise 4.12, the expansion of any f ∈ Z[x1, . . . , xn]
Sn into Schubert polynomials

uses only these n-Grassmannian Schubert polynomials. �
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The interesting thing afforded by this point of view (partitions rather than permuta-
tions) is that we can fix λ and let n vary, even to∞.

A power series in infinitely many variables x1, x2, . . . is an assignment of a scalar “co-

efficient” (in, say, Z) to each monomial
∏

i x
di

i , where the “exponent vector” d has di ≥ 0
and

∑
i di < ∞. If only finitely many coefficients are nonzero, this is the same data as a

polynomial. The vector space of power series forms a ring under usual multiplication of
monomials, which depends on the fact that there are only finitely many ways to decom-
pose d as a sum b+ c of two other exponent vectors.

Proposition 5.3. For any partition λ and n ∈ N,

Sλ(x1, . . . , xn+1)|xn+1=0 = Sλ(x1, . . . , xn).

Consequently, Sλ(x1, x2, . . .) is a well-defined power series, called a Schur function, symmetric
in all variables.

This will be a trivial consequence of the following well-known formulæ for Schur poly-
nomials and Schur functions. Define a semistandard Young tableau on λ as a filling of
the squares {(i, j) : j ≤ λ(i)} with natural numbers, weakly increasing in columns j and
strictly increasing in rows i. For example, here are the five SSYT on the shape λ = (4, 3, 2)
with entries ≤ 3.

1 1 1 1
2 2 2
3 3

1 1 1 2
2 2 2
3 3

1 1 1 3
2 2 2
3 3

1 1 2 2
2 2 3
3 3

1 1 2 3
2 2 3
3 3

Theorem 5.4.

Sλ(x1, . . . , xn) =
∑

τ

n∏

i=1

x
# of is in τ

i

where τ runs over the semistandard Young tableaux τ of shape λ, with entries ≤ n.

Hence

Sλ(x1, . . . , . . .) =
∑

τ

n∏

i=1

x
# of is in τ

i

where τ runs over all semistandard Young tableaux τ of shape λ.

Proof. This is very similar to the pipe dream formula, suggesting that there is a corre-
spondence between these SSYT and pipe dreams for π, the n-Grassmannian permutation
corresponding to λ.

To associate a pipe dream to an SSYT on λ, start with s in the boxes of λ, and upside-
down ��s in the rest of the first n rows. Then move each due Southeast until its new
row matches the SSYT entry. The SSYT conditions ensure that boxes do go South not
North, and no box outraces the boxes east or south of it. In particular, we can move the

s one by one, ordered so as to only move a after the boxes to its East and South
move first, using only the move

��

�� ��
7→

�� ��

��

which preserves the connectivity. Now flip this upside-down pipe dream right side up.
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Because of the flip, this actually gives the formula
∑

τ

∏n
i=1 x

# of is in τ
n+1−i . But since π is

n-Grassmannian this is symmetric in x1, . . . , xn, so we can switch xi ↔ xn+1−i. �

In particular, Sλ is homogeneous of degree |λ|, the number of boxes in the partition.

5.1. The ring of symmetric functions. A power series is a symmetric function if the

coefficient on
∏

i x
di

i is invariant under permutation of the variables. (So a symmetric
function can only be a polynomial if it is constant.)

To what extent is such a thing a “function” of its variables? If we restrict to power

series of bounded degree (i.e.
∑

di is bounded, for those monomials
∏

i x
di

i with nonzero
coefficient), we can specialize their variables xi to values, so long as all but finitely many
are set to 0. The ring of symmetric functions Symm is defined as this set of bounded-
degree symmetric power series.

Exercise 5.5. Define amonomial symmetric functionmλ for each partition λ1 ≥ λ2 ≥ . . . ≥ 0

(with any finite number of parts), with coefficient 1 on
∏

i x
di

i iff d is a permutation of λ, and 0
otherwise. In particular mλ is homogeneous of degree |λ|. Show that the monomial symmetric
functions are a Z-basis for Symm.

Given a Z-basis B for a ring (or module), one can speak of elements being B-positive
if their expansion in B has coefficients in N. For example, theorem 5.4 shows that Schur
functions are “monomial-positive”.

Exercise 5.6. Let A,B, C be three Z-bases for R, such that A is B-positive and B is C-positive.
Then A is C-positive.

Theorem 5.7. The Schur functions are a Z-basis for Symm.

Proof. First, we show they span. Let f be in Symm, with a bound N on the total degree∑
ei of its summands. Let f ′ be the specialization f|xN+1=xN+2=...=0, which is now a sym-

metric polynomial in x1, . . . , xN, and hence can be written uniquely as a Z-combination of
Schur polynomials with at most N rows:

f ′ =
∑

λ

cλSλ(x1, . . . , xN)

Even better, by degree considerations, each |λ| ≤ N.

We want to show that g := f −
∑

λ cλSλ is the symmetric function 0; we know that
g|xN+1=xN+2=... = 0. Writing g as a combination

∑
dλmλ of monomial symmetric functions,

degree considerations again allow us to assume |λ| ≤ N, so dλ 6= 0 implies λ has at most
N rows. Hence mλ|xN+1=xN+2=... 6= 0. But then g|xN+1=xN+2=... =

∑
λ dλmλ|xN+1=xN+2=... 6= 0,

contradiction.

Linear independence is similar; any nontrivial linear relation
∑

λ dλSλ = 0 only in-
volves λ with some bounded number of rows, and we can specialize to that many vari-
ables to reach a contradiction. �

Exercise 5.8. Find a total order on partitions, such that the change-of-basis matrix expressing
a Schur function as a sum of monomial symmetric functions is upper triangular with 1s on the
diagonal. Use this to give a different proof that the Schur functions are a Z-basis of Symm.
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