SECTIONS 16.1, 16.2 ,16.3

Math 1920 - Andres Fernandez

NAME: October 17, 2017

PROBLEMS

(1) Compute the following integrals

(a)
$$\int_{-1}^{1} \int_{0}^{\pi} x^{2} \sin(y) dy dx$$

(b)
$$\int_0^1 \int_0^2 (x+4y^3) \, dx \, dy$$

(2) Compute the following integrals using symmetry

(a)
$$\int \int_{\mathcal{R}} \sin(x) dA$$
, $\mathcal{R} = [0, 2\pi] \times [0, 2\pi]$

$$\mathcal{R} = [0, 2\pi] \times [0, 2\pi]$$

(b)
$$\iint_{\mathcal{R}} y^2 x^3 dA$$
, $\mathcal{R} = [-4, 4] \times [8, 10]$

$$\mathcal{R} = [-4, 4] \times [8, 10]$$

(3) Use Fubini's theorem to compute the following

(a)
$$\int_0^1 \int_0^{\pi} y \sqrt{1 + xy} \, dy \, dx$$

(b)
$$\int_0^1 \int_0^{\pi} x e^{xy} \, dx \, dy$$

(4) Compute the following integrals over the respective domains

(a)
$$f(x,y) = x$$
 over the domain $0 \le x \le 1$, $1 \le y \le e^{x^2}$

(b)
$$f(x,y) = \sin(x)$$
 over the domain bounded by $x = 0$, $x = 1$, $y = \cos(x)$

- (5) Compute the integral of f(x,y,z)=x in the region given by $x,y,z\geq 0$ above $z=y^2$ and below $z = 8 - 2x^2 - y^2$
- (6) Find the volume of the region bounded by z = 40 10y, z = 0, y = 0, and $y = 4 x^2$
- (7) You have a ceiling of a rectangular building given by $z = y^2 \sin(x)$ over the rectangle $0 \le x \le \pi, 0 \le \pi$ $y \leq 1$. What is the average height of the ceiling?