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Problems

(1) Verify Stoke’s theorem for F = 〈yz, 0xz〉 and S the portion of the plane x
2 + y

3 +z = 1, where x, y, z ≥ 0.

Solution: This is not really a problem about the use of Stoke’s theorem, I just included it to refresh
how to compute flux/circulation along a given surface/path. The surface is going to be a triangle.
Therefore for the circulation you will have to break the integral into three straight paths.

If you want to try this problem the final answer is -1, but I do not really recommend doing it as practice
for Stoke’s theorem.

(2) Suppose that a vector field F has a vector potential. What is the flux of F across any closed surface?
Use this to compute the flux of F = 〈y, z, 0〉 along the given surface if we assume that this has a vector
potential.

Solution: The Figure shown on the board was some horrible surface with boundary given by the
unit circle in the xy-plane. I have included a picture below from the next handout with a very similar
surface (for our purpose the same).

Let S1 be the surface shown in the picture, and let S2 be the unit circle in the xy-plane. Then The
union of S1 and S2 is a closed surface. Since F has vector potential, we know (by Stoke’s or by
divergence, you can prove this using either theorem) that:∫ ∫

S1

F · dS +

∫ ∫
S2

F · dS = 0

Where the normal has to be consistent (always pointing outward). Therefore, we get∫ ∫
S1

F · dS = −
∫ ∫

S2

F · dS = −
∫ ∫

S2

F · ndS

Notice that the normal for S2 is n = 〈0, 0,−1〉 (it has to point outwards, you can see it geometrically
in the picture below). Hence, F · n = 0, and so the integral over S2 above is 0.

Alternatively you can parametrize the unit circle S(r, θ) = 〈r cos(θ), r sin(θ), 0〉 and set up the integral
with this parametrization (compute N = Sr × Sθ etc.)

Either way when you set up the integral you get that the final answer is 0.

(3) Let I be the flux of F = 〈ey, 2xex2

, z2〉 through the upper hemisphere S of the unit sphere.

(a) Let G = 〈ey, 2xex2

, 0〉. Find a vector field A such that curl(A) = G.

Solution:

This part is not very illuminating and is not going to be relevant for the final. I explained briefly
in discussion what is the reasoning for getting the vector potential in this specific case. If you
want to you can check that A = 〈0, 0, ey − ex2〉 works.

(b) Use Stokes’ theorem to show that the flux of G through S is zero. Hint: Calculate the circulation
of A around ∂S.

Solution:

Stoke’s theorem applied to A gives us:
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∮
C
A · ds =

∫ ∫
S
curl(A) · dS

(
=

∫ ∫
S
G · dS

)
Where the boundary of S is denoted by C and is the unit circle in the xy-plane. Hence in order
to compute the flux of G it suffice to compute the circulation of A along C.

We know how to parametrize C, since it is a circle (with r = 1). One possible parametrization
is r(t) = 〈cos(t), sin(t), 0〉 with 0 ≤ t ≤ 2π. Therefore r′(t) = 〈− sin(t), cos(t), 0〉. And so the
circulation is:∮

C
A · ds =

∫ 2π

0

A · r′(t) dt =

∫ 2π

0

〈
0, 0, ey − ex

2
〉
· 〈− sin(t), cos(t), 0〉 dt = 0

(c) Calculate I. Hint: Use (b) to show that I is equal to the flux of 〈0, 0, z2〉 through S.

Solution:

We know that F = G = 〈0, 0, z2〉. Therefore by part (b):∫ ∫
S
F · dS =

∫ ∫
S
G · dS +

∫ ∫
S
〈0, 0, z2 · dS = 0 +

∫ ∫
S
〈0, 0, z2 · dS

So we are left to compute the flux of a much easier vector field. We can parametrize the upper
unit hemisphere using spherical coordinates: S(θ, φ) = 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉, with
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π

2 .

The normal can be computed to get N = Sθ × Sφ = 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉 sin(φ).
Therefore, we end up with the integral:∫ 2π

0

∫ π
2

0

〈
0, 0, cos2(φ)

〉
· 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉 sin(φ) dφ dθ

Expanding everything out and doing a u substitution we get:∫ 2π

0

∫ π
2

0

cos3(φ) sin(φ) dφ dθ =
π

2

(4) Let F = 〈y2, x2, z2〉. Prove that the circulation along any two curves lying on the cylinder with central
axis the z-axis (as in the board) is the same.

Solution: I have included a picture below with basically the same image I drew on the board. Let’s
apply Stoke’s theorem to the area in the cylinder bounded by the two curves. Notice that C1 has the
right orientation, but C2 doesn’t (make sure you understand this, when you walk along a curve with
the right orientation the surface should be to your left). Therefore, Stoke’s theorem gives us:∮

C1

F · ds−
∮
C2

F · ds =

∫ ∫
S
curl(F) · dS

Now, a computation shows that curl(F) = 〈0, 0, 2x− 2y〉. Hence, we have:∫ ∫
S
curl(F) · dS =

∫ ∫
S
〈0, 0, 2x− 2y〉 · n dS

Now, S is in the cylinder, so its normal vector n is the normal vector to the cylinder. Using the picture
below, you can reason geometrically to see that n is going to be parallel to the xy-plane, and therefore
the z-component of n is 0. This means that the normal is of the form n = 〈nx, ny, 0〉. And so:∫ ∫

S
curl(F) · dS =

∫ ∫
S
〈0, 0, 2x− 2y〉 · 〈nx, ny, 0〉 dS = 0
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Alternatively, instead of reasoning geometrically you can parametrize the cylinder (here r=1 is con-
stant) C(θ, z) = 〈cos(θ), sin(θ), z〉 and compute the normal directly N = Cθ × Cz to see that the dot
product in the integral above is 0.

Either way, we conclude that the circulation along the paths is the same, since∮
C1

F · ds−
∮
C2

F · ds =

∫ ∫
S
curl(F) · dS = 0

Figure 1: Problem 2. Figure 2: Problem 4.
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