SECTIONS 18.2 NAME: SOLUTIONS
Math 1920 - Andres Fernandez November 21, 2017

PROBLEMS

(1)

3)

Verify Stoke’s theorem for F = (yz,0x2) and S the portion of the plane §+ £ +2 = 1, where z,y, 2 > 0.

SOLUTION: This is not really a problem about the use of Stoke’s theorem, I just included it to refresh
how to compute flux/circulation along a given surface/path. The surface is going to be a triangle.
Therefore for the circulation you will have to break the integral into three straight paths.

If you want to try this problem the final answer is -1, but I do not really recommend doing it as practice
for Stoke’s theorem.

Suppose that a vector field F has a vector potential. What is the flux of F across any closed surface?
Use this to compute the flux of F = (y, z,0) along the given surface if we assume that this has a vector
potential.

SOLUTION: The Figure shown on the board was some horrible surface with boundary given by the
unit circle in the xy-plane. I have included a picture below from the next handout with a very similar
surface (for our purpose the same).

Let &1 be the surface shown in the picture, and let Sy be the unit circle in the xy-plane. Then The
union of §; and Sy is a closed surface. Since F has vector potential, we know (by Stoke’s or by
divergence, you can prove this using either theorem) that:

// F~dS+// F-dS=0
51 « 52

Where the normal has to be consistent (always pointing outward). Therefore, we get

//le'dS:_//52F'dsz_//52F'nd5

Notice that the normal for Sp is n = (0,0, —1) (it has to point outwards, you can see it geometrically
in the picture below). Hence, F - n = 0, and so the integral over Sy above is 0.

Alternatively you can parametrize the unit circle S(r, ) = (r cos(6),rsin(#),0) and set up the integral
with this parametrization (compute N = S,. x Sy etc.)

Either way when you set up the integral you get that the final answer is 0.

Let I be the flux of F = (e¥, 2336””2, 22) through the upper hemisphere S of the unit sphere.

(a) Let G = (¥, 2ze®”,0). Find a vector field A such that curl(A) = G.
SOLUTION:

This part is not very illuminating and is not going to be relevant for the final. I explained briefly
in discussion what is the reasoning for gettigg the vector potential in this specific case. If you
want to you can check that A = (0,0,e¥ — e”" ) works.

(b) Use Stokes’ theorem to show that the flux of G through S is zero. Hint: Calculate the circulation
of A around 05S.

SOLUTION:
Stoke’s theorem applied to A gives us:



?{:A.ds://scurl(A).dS (//Sc;.ds>

Where the boundary of S is denoted by C and is the unit circle in the xy-plane. Hence in order
to compute the flux of G it suffice to compute the circulation of A along C.

We know how to parametrize C, since it is a circle (with » = 1). One possible parametrization
is r(t) = (cos(t),sin(t),0) with 0 < ¢ < 2m. Therefore r'(t) = (—sin(t),cos(t),0). And so the
circulation is:

27 27
fA ds= [ A dt :/ (0.0,¢9 — ") -~ sint) cos(1).0) dt = 0
C 0 0

(c) Calculate I. Hint: Use (b) to show that I is equal to the flux of (0,0, 22) through S.
SOLUTION:
We know that F = G = (0,0, 22). Therefore by part (b):

//FdS //GdS+//OOz dS—O+//OOz -dS

So we are left to compute the flux of a much easier vector field. We can parametrize the upper
unit hemisphere using spherical coordinates: S(6,¢) = (cos(8) sin(¢), sin(¢) sin(f), cos(¢)), with
0<0<2rand 0 < ¢ < 3.

The normal can be computed to get N = Sy x Sy, = (cos(8) sin(¢), sin(¢) sin(d), cos(¢)) sin(¢).
Therefore, we end up with the integral:

/O x /05 <O,0’C052(¢)> - (cos(0) sin(¢), sin(¢) sin(f), cos(¢)) sin(¢) do df

Expanding everything out and doing a w substitution we get:

27 5
/ / cos®(¢) sin(¢p) dep df = T
o Jo 2

(4) Let F = (y2, 22, 22). Prove that the circulation along any two curves lying on the cylinder with central
axis the z-axis (as in the board) is the same.

SOLUTION: I have included a picture below with basically the same image I drew on the board. Let’s
apply Stoke’s theorem to the area in the cylinder bounded by the two curves. Notice that C; has the
right orientation, but Co doesn’t (make sure you understand this, when you walk along a curve with
the right orientation the surface should be to your left). Therefore, Stoke’s theorem gives us:

j{F-ds—j{ F-ds://curl(F) ds
C1 Ca S

Now, a computation shows that curl(F) = (0,0, 2z — 2y). Hence, we have:

//Scurl(F)-dS://S<O,O,2x—2y)-ndS

Now, S is in the cylinder, so its normal vector n is the normal vector to the cylinder. Using the picture
below, you can reason geometrically to see that n is going to be parallel to the xy-plane, and therefore
the z-component of n is 0. This means that the normal is of the form n = (ng,n,,0). And so:

//SCWZ(F)'dS://S@vOa?l“*?y%<nm,ny,0> ds =0



Alternatively, instead of reasoning geometrically you can parametrize the cylinder (here r=1 is con-
stant) C(0, z) = (cos(0),sin(f), z) and compute the normal directly N = Cp x C, to see that the dot
product in the integral above is 0.

Either way, we conclude that the circulation along the paths is the same, since

j{F-ds—?{ F-ds://curl(F)~dS:0
Ci Ca S
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Figure 1: Problem 2. Figure 2: Problem 4.



