SECTIONS 18.2 Math 1920 - Andres Fernandez

PROBLEMS

(1) Verify Stoke's theorem for $\mathbf{F} = \langle yz, 0xz \rangle$ and \mathcal{S} the portion of the plane $\frac{x}{2} + \frac{y}{3} + z = 1$, where $x, y, z \ge 0$.

SOLUTION: This is not really a problem about the use of Stoke's theorem, I just included it to refresh how to compute flux/circulation along a given surface/path. The surface is going to be a triangle. Therefore for the circulation you will have to break the integral into three straight paths.

If you want to try this problem the final answer is -1, but I do not really recommend doing it as practice for Stoke's theorem.

(2) Suppose that a vector field **F** has a vector potential. What is the flux of **F** across any closed surface? Use this to compute the flux of $\mathbf{F} = \langle y, z, 0 \rangle$ along the given surface if we assume that this has a vector potential.

SOLUTION: The Figure shown on the board was some horrible surface with boundary given by the unit circle in the xy-plane. I have included a picture below from the next handout with a very similar surface (for our purpose the same).

Let S_1 be the surface shown in the picture, and let S_2 be the unit circle in the xy-plane. Then The union of S_1 and S_2 is a closed surface. Since **F** has vector potential, we know (by Stoke's or by divergence, you can prove this using either theorem) that:

$$\int \int_{\mathcal{S}_1} \mathbf{F} \cdot d\mathbf{S} + \int \int_{\mathcal{S}_2} \mathbf{F} \cdot d\mathbf{S} = 0$$

Where the normal has to be consistent (always pointing outward). Therefore, we get

$$\int \int_{\mathcal{S}_1} \mathbf{F} \cdot d\mathbf{S} = -\int \int_{\mathcal{S}_2} \mathbf{F} \cdot d\mathbf{S} = -\int \int_{\mathcal{S}_2} \mathbf{F} \cdot \mathbf{n} dS$$

Notice that the normal for S_2 is $\mathbf{n} = \langle 0, 0, -1 \rangle$ (it has to point outwards, you can see it geometrically in the picture below). Hence, $\mathbf{F} \cdot \mathbf{n} = 0$, and so the integral over S_2 above is 0.

Alternatively you can parametrize the unit circle $S(r, \theta) = \langle r \cos(\theta), r \sin(\theta), 0 \rangle$ and set up the integral with this parametrization (compute $\mathbf{N} = S_r \times S_\theta$ etc.)

Either way when you set up the integral you get that the final answer is 0.

- (3) Let I be the flux of $\mathbf{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ through the upper hemisphere \mathcal{S} of the unit sphere.
 - (a) Let $\mathbf{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field \mathbf{A} such that $\operatorname{curl}(\mathbf{A}) = \mathbf{G}$. Solution:

This part is not very illuminating and is not going to be relevant for the final. I explained briefly in discussion what is the reasoning for getting the vector potential in this specific case. If you want to you can check that $\mathbf{A} = \langle 0, 0, e^y - e^{x^2} \rangle$ works.

(b) Use Stokes' theorem to show that the flux of **G** through S is zero. *Hint:* Calculate the circulation of **A** around ∂S .

SOLUTION:

Stoke's theorem applied to ${\bf A}$ gives us:

$$\oint_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{s} = \int \int_{\mathcal{S}} curl(\mathbf{A}) \cdot d\mathbf{S} \qquad \left(= \int \int_{\mathcal{S}} \mathbf{G} \cdot d\mathbf{S} \right)$$

Where the boundary of S is denoted by C and is the unit circle in the xy-plane. Hence in order to compute the flux of **G** it suffice to compute the circulation of **A** along C.

We know how to parametrize C, since it is a circle (with r = 1). One possible parametrization is $\mathbf{r}(t) = \langle \cos(t), \sin(t), 0 \rangle$ with $0 \le t \le 2\pi$. Therefore $\mathbf{r}'(t) = \langle -\sin(t), \cos(t), 0 \rangle$. And so the circulation is:

$$\oint_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{s} = \int_{0}^{2\pi} \mathbf{A} \cdot \mathbf{r}'(t) \, dt = \int_{0}^{2\pi} \left\langle 0, 0, e^{y} - e^{x^{2}} \right\rangle \cdot \left\langle -\sin(t), \cos(t), 0 \right\rangle \, dt = 0$$

(c) Calculate I. Hint: Use (b) to show that I is equal to the flux of $(0, 0, z^2)$ through S. SOLUTION:

We know that $\mathbf{F} = \mathbf{G} = \langle 0, 0, z^2 \rangle$. Therefore by part (b):

$$\int \int_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \int \int_{\mathcal{S}} \mathbf{G} \cdot d\mathbf{S} + \int \int_{\mathcal{S}} \langle 0, 0, z^2 \cdot d\mathbf{S} = 0 + \int \int_{\mathcal{S}} \langle 0, 0, z^2 \cdot d\mathbf{S} \rangle$$

So we are left to compute the flux of a much easier vector field. We can parametrize the upper unit hemisphere using spherical coordinates: $S(\theta, \phi) = \langle \cos(\theta) \sin(\phi), \sin(\phi) \sin(\theta), \cos(\phi) \rangle$, with $0 \le \theta \le 2\pi$ and $0 \le \phi \le \frac{\pi}{2}$.

The normal can be computed to get $\mathbf{N} = S_{\theta} \times S_{\phi} = \langle \cos(\theta) \sin(\phi), \sin(\phi), \sin(\theta), \cos(\phi) \rangle \sin(\phi)$. Therefore, we end up with the integral:

$$\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \left\langle 0, 0, \cos^2(\phi) \right\rangle \cdot \left\langle \cos(\theta) \sin(\phi), \sin(\phi) \sin(\theta), \cos(\phi) \right\rangle \, \sin(\phi) \, d\phi \, d\theta$$

Expanding everything out and doing a u substitution we get:

$$\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \cos^{3}(\phi) \sin(\phi) \, d\phi \, d\theta = \frac{\pi}{2}$$

(4) Let $\mathbf{F} = \langle y^2, x^2, z^2 \rangle$. Prove that the circulation along any two curves lying on the cylinder with central axis the z-axis (as in the board) is the same.

SOLUTION: I have included a picture below with basically the same image I drew on the board. Let's apply Stoke's theorem to the area in the cylinder bounded by the two curves. Notice that C_1 has the right orientation, but C_2 doesn't (make sure you understand this, when you walk along a curve with the right orientation the surface should be to your left). Therefore, Stoke's theorem gives us:

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} - \oint_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{s} = \int \int_{\mathcal{S}} curl(\mathbf{F}) \cdot d\mathbf{S}$$

Now, a computation shows that $curl(\mathbf{F}) = \langle 0, 0, 2x - 2y \rangle$. Hence, we have:

$$\int \int_{\mathcal{S}} curl(\mathbf{F}) \cdot d\mathbf{S} = \int \int_{\mathcal{S}} \langle 0, 0, 2x - 2y \rangle \cdot \mathbf{n} \, dS$$

Now, S is in the cylinder, so its normal vector **n** is the normal vector to the cylinder. Using the picture below, you can reason geometrically to see that **n** is going to be parallel to the xy-plane, and therefore the z-component of **n** is 0. This means that the normal is of the form $\mathbf{n} = \langle n_x, n_y, 0 \rangle$. And so:

$$\int \int_{\mathcal{S}} curl(\mathbf{F}) \cdot d\mathbf{S} = \int \int_{\mathcal{S}} \langle 0, 0, 2x - 2y \rangle \cdot \langle n_x, n_y, 0 \rangle \ dS = 0$$

Alternatively, instead of reasoning geometrically you can parametrize the cylinder (here r=1 is constant) $C(\theta, z) = \langle \cos(\theta), \sin(\theta), z \rangle$ and compute the normal directly $\mathbf{N} = C_{\theta} \times C_{z}$ to see that the dot product in the integral above is 0.

Either way, we conclude that the circulation along the paths is the same, since

$$\oint_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} - \oint_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{s} = \iint_{\mathcal{S}} curl(\mathbf{F}) \cdot d\mathbf{S} = 0$$

Figure 1: Problem 2.

Figure 2: Problem 4.