SECTIONS 15.6, 15.7 Math 1920 - Andres Fernandez

NAME: ______October 2, 2018

PROBLEMS

- (1) Use the chain rule to compute the partial derivatives:
 - (a) Find $\frac{\partial f}{\partial v}$, $\frac{\partial f}{\partial u}$ given $f(x, y) = \cos(x y)$, x = 3u 5v and y = -7u + 15v.
 - (b) Find $\frac{\partial f}{\partial \theta}$ given $f(x, y, z) = xy z^2$, $x = r \cos \theta$, $y = \cos^2 \theta$ and z = r.
- (2) Compute $\frac{\partial z}{\partial y}$ where $e^{xy} + \sin(xz) + y = 0$.

(3) Suppose that f is a function of x and y, where x = g(t, s) and y = h(t, s). Show that f_{tt} is equal to

$$f_{xx}\left(\frac{\partial x}{\partial t}\right)^2 + 2f_{xy}\left(\frac{\partial x}{\partial t}\right)\left(\frac{\partial y}{\partial t}\right) + f_{yy}\left(\frac{\partial y}{\partial t}\right)^2 + f_x\left(\frac{\partial^2 x}{\partial^2 t}\right) + f_y\left(\frac{\partial^2 x}{\partial^2 t}\right)$$

- (4) Find critical points of the following functions. Determine whether they are local maxima, minima or saddle points.
 - (a) $xy^3 + 2y x 5$ (b) $e^x - xe^y$
 - (c) $x \ln(x+y)$
- (5) What is the point in the plane 2x 6y + z = 7 that is closest to P = (1, 1, 1)