SECTIONS 16.1, 16.2 ,16.3 Math 1920 - Andres Fernandez NAME:

October 16, 2018

Problems

- (1) Compute the following integrals
 - (a) $\int_{-1}^{1} \int_{0}^{\pi} x^{2} \sin(y) dy dx$ (b) $\int_{0}^{1} \int_{0}^{2} (x + 4y^{3}) dx dy$
- (2) Compute the following integrals using symmetry
 - (a) $\int \int_{\mathcal{R}} \sin(x) \, dA$, $\mathcal{R} = [0, 2\pi] \times [0, 2\pi]$ (b) $\int \int_{\mathcal{R}} y^2 x^3 \, dA$, $\mathcal{R} = [-4, 4] \times [8, 10]$
- (3) Use Fubini's theorem to compute the following
 - (a) $\int_0^1 \int_0^\pi y \sqrt{1 + xy} \, dy \, dx$ (b) $\int_0^1 \int_0^\pi x e^{xy} \, dx \, dy$
- (4) Compute the following integrals over the respective domains
 - (a) f(x,y) = x over the domain $0 \le x \le 1$, $1 \le y \le e^{x^2}$
 - (b) $f(x,y) = \sin(x)$ over the domain bounded by x = 0, x = 1, $y = \cos(x)$
- (5) Compute the integral of f(x, y, z) = x in the region given by $x, y, z \ge 0$ above $z = y^2$ and below $z = 8 2x^2 y^2$
- (6) Find the volume of the region bounded by z = 40 10y, z = 0, y = 0, and $y = 4 x^2$
- (7) You have a ceiling of a rectangular building given by $z = y^2 \sin(x)$ over the rectangle $0 \le x \le \pi, 0 \le y \le 1$. What is the average height of the ceiling?