NAME: November 13, 2018

PROBLEMS

- (1) Compute the integral $\iint_{\mathcal{S}} x^2 y \, dS$, where \mathcal{S} is the surface given by $z = \sqrt{3}x + y^2$, $-1 \le x \le 1$, and $0 \le y \le 1.$
- (2) Calculate $\int \int_{S} (x^2 + y^2) e^{-z} dS$, where S is the cylinder given by $x^2 + y^2 = 9$ and $0 \le z \le 10$.
- (3) Compute flux of the vector field $\mathbf{F} = \langle x, y, z \rangle$ through the part of the unit sphere with $0 \le z \le \frac{\sqrt{3}}{2}$ with normal pointing outwards.
- (4) Calculate the flow rate of a fluid with velocity vector field $\mathbf{v} = \langle 2x, y, xy \rangle$ across the part of the cylinder $x^2 + y^2 = 9$ where $x, y \ge 0$ and $0 \le z \le 4$.
- (5) Suppose that you submerge a closed surface (for example a sphere) into the ocean. What is the net flux of water through the surface?

Now you can answer the following question without a single computation: find the flux of the constant vector field (2,3,6) along the unit sphere centered at (3,1,5).

- (6) Calculate the flow rate of a fluid with velocity vector field $\mathbf{v} = \langle 2x, y, xy \rangle$ across the part of the cylinder $x^2 + y^2 = 9$ where $x, y \ge 0$ and $0 \le z \le 4$.
- (7) Determine the flow for the vector field $\mathbf{v} = \langle x y, z + y + 4, z^2 \rangle$ through the surface given by $y = \langle x y, z + y + 4, z^2 \rangle$ $1 - x^2 - z^2$ and $y \ge 0$ oriented in the positive y direction.