
Section 18.3 Name: Solutions
Math 1920 - Andres Fernandez November 29, 2018

Review

(1) Divergence of a vector field F = 〈F1, F2, F3〉:

div(F) = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

(2) Divergence Theorem: Let S be a closed surface that encloses a region W in R3. Assume that S is
piecewise smooth and is oriented by normal vectors pointing to the outside of W. Let F be a vector
field whose domain contains W. Then∫∫

S
F · dS =

∫∫∫
W

div(F) dV.

(3) If div(F) = 0, then F has zero flux through the boundary ∂W of any W contained in the domain of F.

(4) The divergence div(F) is interpreted as “flux per unit volume”, which means that the flux through
a small closed surface containing a point P is approximately equal to div(F)(P ) times the enclosed
volume.

(5) Basic operations on functions and vector fields:

f
function

∇−→ F
vector field

curl−−→ G
vector field

div−−→ g
function

(6) The result of two consecutive operations is zero:

curl(∇(f)) = 0, div(curl(F)) = 0.

(7) The inverse-square field FIS = er/r
2, defined for r 6= 0, satisfies div(FIS) = 0. The flux of FIS through

a closed surface S is 4π if S contains the origin and is zero otherwise.
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Problems

(1) Which of the following is correct (F is a continuously differentiable vector field defined everywhere)?

(a) The flux of curl(F) through all surfaces is zero.

Solution: This is false, since the surface is not specified to be closed. We can only used the
divergence theorem if the surface is closed.

(b) If F = ∇φ, then the flux of F through all closed surfaces is zero.

Solution: This is false. We are given that F has a scalar potential, and so the only thing that
we know is that the line integral through all closed paths is 0. We don’t know anything about
the higher dimensional analogue (closed surface integrals). For this higher dimensional analogue
we would need to know that F has a vector potential, as shown below in part c.

(c) The flux of curl(F) through all closed surfaces is zero.

Solution: This is true, you can prove it using the divergence theorem as follows:∫ ∫
S

curl(F) · dS =

∫ ∫ ∫
V enclosed

div(curl(F)) dV = 0

Since div(curl(F)) = 0 by the formula in part 6 in the first page.

(2) How does the Divergence Theorem imply that the flux of F = 〈x2, y − ez, y − 2zx〉 through a closed
surface is equal to the enclosed volume?

Solution: An easy computation shows that div(F) = 1 (check it). Therefore, the divergence theorem
tells us that:∫ ∫

S

F · dS =

∫ ∫ ∫
V enclosed

div(F) dV =

∫ ∫ ∫
V enclosed

1 dV = Volume enclosed

(3) Apply the Divergence Theorem to evaluate the flux
∫∫
S F · dS.

(a) F = 〈xy2, yz2, zx2〉, S is the boundary of the cylinder given by x2 + y2 ≤ 4, 0 ≤ z ≤ 3.

Solution: First we compute div(F) = y2+z2+x2. Since the surface is closed (it is the boundary
of a solid volume), we can apply the divergence theorem, and we get:∫ ∫

S
F · dS =

∫ ∫ ∫
V enclosed

div(F) dV =

∫ ∫ ∫
V enclosed

x2 + y2 + z2 dV

In order to set up the triple integral, it is easier to work with cylindrical coordinates here.
Changing everything to cylindrical coordinates and finding the bounds, we get (remember that
dV = r dz dr dθ): ∫ 2π

0

∫ 2

0

∫ 3

0

(r2 + z2) r dz dr dθ = 60π

I omit the computation of the integral, as it only involves integration of polynomials.

2



(b) F = 〈x+ y, z, z− x〉, S is the boundary of the region between the paraboloid z = 9− x2− y2 and
the xy-plane.

Solution:

First we do div(F) = 1+0+1 = 2. As in part (a), we can use the divergence theorem to conclude:∫ ∫
S
F · dS =

∫ ∫ ∫
V enclosed

div(F) dV =

∫ ∫ ∫
V enclosed

2 dV

It is again advantageous to use cylindrical coordinates. Notice that we are given 0 ≤ z ≤ 9− r2,
and we can proceed as usual (try to get the values of r when the first bound for z makes sense,
and remembering that 0 ≤ r) to get

∫ 2π

0

∫ 3

0

∫ 9−r2

0

2 r dz dr dθ = 81π

Again the integration is not very difficult per se, it only involves polynomials.

(4) Calculate the flux of the vector field F = 2xyi−y2j+k through the surface S in figure 1. (Hint: Apply
the Divergence Theorem to the closed surface consisting of S and the unit disk).

Solution: This is similar to a problem from the previous handout, but here we have to use the diver-
gence theorem. Let S1 be the surface shown in the picture, and let S2 be the (filled) unit circle in the
xy-plane. Then the union of S1 and S2 is a closed surface. Therefore we can use the divergence theorem.

Notice that div(F) = 2y − 2y + 0 = 0, and therefore by divergence thm:∫ ∫
S1

F · dS +

∫ ∫
S2

F · dS =

∫ ∫ ∫
V enclosed

div(F) dV = 0

Here the normal is always chosen to point outwards (as stated in the divergence theorem).

Hence it suffices to find the flux through S2 (with normal pointing downwards, out of the closed surface).
The integral can be done in two ways. First, notice that the unit normal to S2 is n = 〈0, 0,−1〉, as can
be seen in the picture (the unit vector pointing downwards). Therefore,∫ ∫

S2
F · dS =

∫ ∫
S2

F · n dS =

∫ ∫
S2
〈2xy,−y2, 1〉 · 〈0, 0,−1〉 dS = −

∫ ∫
S2
dS

The last integral is just −Area(S2) = −π, since S2 is just a unit circle. We conclude that∫ ∫
S1

F · dS = −
∫ ∫

S2
F · dS = −(−π) = π

Alternatively you can parametrize the unit circle S(r, θ) = 〈r cos(θ), r sin(θ), 0〉 with 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π. If you set up the integral with this parametrization (compute N = Sr ×Sθ and make sure
that you get the downward pointing normal, etc.) you should get

∫ ∫
S2 F · dS = −π.

(5) Let I =
∫∫
S F · dS, where

F(x, y, z) =

〈
2yz

r2
,−xz

r2
,−xy

r2

〉
(r =

√
x2 + y2 + z2) and S is the boundary of a region W.
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(a) Check that F is divergence-free.

Solution: There is not much to say about this. You are asked to prove that div(F) = 0,

substitute r =
√
x2 + y2 + z2 and compute the derivatives to see that this is true.

(b) Show that I = 0 if S is a sphere centered at the origin. Explain, however, why the Divergence
Theorem cannot be used to prove this.

Solution:

Notice that the Divergence Theorem cannot be used because F is not defined at the origin, which
is inside the ball with boundary S. We will have to do it by hand.

We can parametrize the sphere using spherical coordinates (here ρ = 1 will be constant). The
usual parametrization is S(θ, φ) = 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉, with 0 ≤ θ ≤ 2π and
0 ≤ φ ≤ π. The normal will be N = Sθ × Sφ = 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉 sin(φ).

We can convert everything to spherical coordinates to get:∫ 2π

0

∫ π

0

F · 〈cos(θ) sin(φ), sin(φ) sin(θ), cos(φ)〉 sin(φ) dφ dθ

Where F =
〈

2 sin(θ) sin(φ) cos(φ)
ρ2 ,− cos(θ) sin(φ) cos(φ)

ρ2 ,− cos(θ) sin(φ) sin(θ) sin(φ)
ρ2

〉
.

A tedious computation shows that the dot product inside the integral F ·N = 0.

Faster way: An alternative way to see this is the following: the normal to the sphere is always
parallel to the radial vector r = 〈x, y, z〉. So you don’t need to do all that work to get the result,
just notice that F · r = 0 and so the flux will be 0 (because F ·N = 0).

Figure 1: Problem 4.
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